
Under review as a conference paper at ICLR 2021

PARETO-FRONTIER-AWARE NEURAL ARCHITECTURE
SEARCH

Anonymous authors
Paper under double-blind review

ABSTRACT

Designing feasible and effective architectures is essential for deploying deep models
to real-world scenarios. In practice, one has to consider multiple objectives (e.g.,
model performance and computational cost) and diverse constraints incurred by
different computation resources. To address this, most methods seek to find
promising architectures via optimizing a well pre-defined utility function. However,
it is often non-trivial to design an ideal function that could well trade-off different
objectives. More critically, in many real scenarios, even for the same platform, we
may have different applications with various latency budgets. It would be fantastic
if we can produce multiple promising architectures to fulfill each budget in the same
search process. However, existing methods may have to perform an independent
search for each budget, which is very inefficient and unnecessary. In this paper,
we propose a Pareto-Frontier-aware Neural Architecture Search (PFNAS) method
which seeks to learn the Pareto frontier (i.e., the set of Pareto optimal architectures)
w.r.t. multiple objectives. Here, we formulate the Pareto frontier learning problem
as a Markov decision process (MDP). Relied on the MDP, we transform and absorb
the objectives other than model performance into the constraints. To learn the
whole Pareto frontier, we propose to find a set of Pareto optimal architectures
which are uniformly distributed on the range of budget to form a frontier. Based on
the learned frontier, we are able to easily find multiple promising architectures to
fulfill all considered constraints in the same search process. Extensive experiments
on three hardware platforms (i.e., mobile, CPU, and GPU) show that the searched
architectures by our PFNAS outperform the ones obtained by existing methods
under different budgets.

1 INTRODUCTION

Deep neural networks (DNNs) (LeCun et al., 1989) have been the workhorse of many challenging
tasks, including image classification (Krizhevsky et al., 2012; Srivastava et al., 2015) and semantic
segmentation (Long et al., 2015; Noh et al., 2015). However, designing effective architectures is
often labor-intensive and relies heavily on human expertise. To alleviate the computation burden of
architecture design, neural architecture search (NAS) methods have been proposed to automatically
design architectures (Zoph & Le, 2017; Liu et al., 2019). Existing studies show that the automati-
cally discovered architectures often outperform the manually designed architectures in both image
classification and language modeling tasks (Pham et al., 2018; Liu et al., 2019).

However, deep models often contain a large number of parameters and thus come with a very
high computational cost. As a result, it is hard to deploy deep models to the hardware devices or
application scenarios with limited computation resources. To obtain promising architectures that
fulfill the computation constraint, we have to consider multiple kinds of objectives (e.g., accuracy and
computational cost). Thus, we seek to solve a Pareto optimization problem w.r.t. multiple objectives to
perform architecture search (Tan et al., 2019). To solve this problem, one can design a utility function
by computing a weighted sum/product of different objectives to find the desired architectures (Tan
et al., 2019; Stamoulis et al., 2019). However, it is hard to design a utility function that could
trade-off different kinds of objectives (Miettinen, 2012). As a result, the searched architectures do
not necessarily satisfy the constraints (See results in Figure 3(b)). Thus, how to find feasible and
effective architectures to satisfy the constraint becomes an important problem.
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(b) Model deployment under diverse budget constraints.

Figure 1: Illustration of the search strategy and applications of PFNAS. (a) Instead of finding a single
Pareto optimal architecture, PFNAS seeks to learn the Pareto frontier. (b) PFNAS takes arbitrary
budget constraint as input and output the architecture satisfied the budget constraint.

More critically, even for the same hardware platform, we may have different applications which result
in diverse deployment budgets/requirements in terms of a specific objective. For example, a company
may develop/maintain multiple applications on the same hardware device and each of them has a
specific requirement of latency. To handle multiple application scenarios, we need to find a set of
Pareto optimal architectures (i.e., Pareto frontier) over multiple objectives. To this end, existing NAS
methods may have to perform an independent search for each scenario (Tan et al., 2019), which is
very inefficient yet unnecessary. To address this issue, we propose to directly learn the Pareto frontier
over multiple objectives rather than find a single optimal architecture (See Figure 1(a)). Based on
the learned Pareto frontier, one can easily find the desired architecture to fulfill an arbitrary budget.
However, it is still unknown how to learn the Pareto frontier to produce effective architectures for
multiple scenarios with diverse budgets.

In this paper, we propose a Pareto-Frontier-aware Neural Architecture Search (PFNAS) method
to learn the Pareto frontier over two kinds of objectives. As shown in Figure 1(a), unlike existing
methods that find the optimal architectures, we seek to learn the Pareto frontier (i.e., improving the
blue curve to the red curve). To this end, we formulate the Pareto frontier learning problem as a
Markov decision process (MDP). Based on MDP, we transform and absorb the objectives other than
model performance as the constraints and make decisions to find promising architectures satisfying
them. To learn the whole Pareto frontier, we uniformly sampling budgets from its distribution and
find a set of Pareto optimal architectures satisfying these budgets to form a frontier. Then, we exploit
policy gradient to maximize the expected reward over different budgets. Based on the learned
frontier, we may easily obtain the desired architectures given arbitrary budgets. To provide accurate
reward, we propose an architecture evaluator to learn a Pareto dominance rule, which judges whether
an architecture is better than another w.r.t. multiple objectives. By taking such a rule as the reward, we
are able to iteratively find better frontiers during training. More critically, since our PFNAS exploits
the shared knowledge across the search processes with multiple budgets, we find better architectures
than those searched by an independent search for each budget (See results in Table 1).

We summarize the contributions of our paper as follows.

• We propose a Pareto-Frontier-aware Neural Architecture Search (PFNAS) method that
simultaneously finds multiple Pareto optimal architectures (i.e., Pareto frontier) over the
whole range of computational cost (e.g., latency). Based on the learned frontier, PFNAS
takes arbitrary latency as the budget and automatically finds feasible architectures.

• We propose a Pareto dominance rule to judge whether an architecture is better than another
under diverse computation budgets. By taking such a rule as the reward, our PFNAS is able
to iteratively find better frontiers to approach the ground-truth Pareto frontier.

• Extensive experiments on three hardware platforms show the proposed method is able to
find the architectures that not only satisfy diverse computation budgets but also outperform
the architectures searched by existing methods.
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2 RELATED WORK

Neural Architecture Search. Neural architecture search (NAS) has been proposed to automatically
design effective architectures. Zoph & Le (2017) use reinforcement learning to discover the optimal
configuration of each layer. Real et al. (2019) employ evolution algorithms and propose a new
regularization method. Liu et al. (2019) propose DARTS, a differentiable NAS method by relaxing
the search space to be continuous. However, these methods only search for the architectures with
high accuracy but ignore the resource constraints of real-world applications.

Architecture Design with Resource Constraints. There is a growing interest in designing architec-
tures under a resource constraint automatically. OFA (Cai et al., 2020) trains a powerful super network,
from which we can directly get a specialized sub-network without additional training. Recently,
PONAS (Huang & Chu, 2020) has been proposed to build an accuracy table to find architectures
under a single constraint. However, given various resource budgets, these methods need to repeat the
architecture search process for each budget. By contrast, our PFNAS only needs to search once to
produce multiple architectures that satisfy diverse resource budgets simultaneously.

Pareto Frontier Learning. Pareto frontier learning aims to find a set of Pareto optimal solutions
by solving a multi-objective optimization problem. Most methods convert the problem into a
single-objective problem by constructing a weighted sum/product utility function (Wierzbicki, 1982;
Miettinen, 2012). To simultaneously find multiple Pareto optimal solutions (i.e., Pareto frontier),
many methods exploit evolutionary algorithms (Deb et al., 2002; Kim et al., 2004) to perform a
parallel search. Recently, some NAS methods aim to find a single Pareto optimal architecture by
making a trade-off between accuracy and computational cost (Cheng et al., 2018; Dong et al., 2018).
However, it is still unknown how to learn the Pareto frontier in NAS.

3 PROPOSED METHOD

3.1 PROBLEM DEFINITION

Notations. Let T be the distribution of discrete random variable T∼T , where T denotes the upper
bound of any budget constraint, such as latency, the number of multiply-adds (MAdds) and memory
consumption. Given an architecture space Ω and an architecture α, we use c(α) and Acc(α) to
measure the cost and the validation accuracy of α, respectively. We compute the reward of α using
a function R(α;w) parameterized by w. Without loss of generality, we use α(i)

T to denote the i-th
searched architecture under the budget constraint c(α(i)

T ) ≤ T . We use 1[A] to denote an indicator
function, where 1[A] = 1 if A is true and 1[A] = 0 otherwise.

In this paper, we focus on the neural architecture search problem with multiple objectives (e.g., the
model performance and latency) and seek to find promising architectures under arbitrary constraints
in the same search process. This problem, however, is non-trivial since it is hard to design a utility
function to well trade-off the multiple kinds of objectives (Miettinen, 2012). Moreover, in real-world
applications where we should consider diverse application scenarios with different budget constraints,
performing an independent search for each scenario (Tan et al., 2019) would very inefficient yet
unnecessary. To address these issues, we propose to learn the Pareto frontier (i.e., the set of Pareto
optimal architectures) w.r.t. different objectives instead of finding a single optimal architecture. Based
on the learned frontier, it would be easy to select an architecture that fulfills arbitrary latency budgets.

3.2 PARETO-FRONTIER-AWARE NEURAL ARCHITECTURE SEARCH

In this paper, we propose a Pareto-Frontier-aware Neural Architecture Search (PFNAS) method that
simultaneously finds multiple Pareto optimal architectures (i.e., Pareto frontier). To this end, we
formulate the optimization problem into a Markov decision process (MDP). Specifically, we transform
and absorb the objectives other than model performance as a constraint and make decisions to find
promising architectures to fulfill this budget. To cover the whole range of budgets, we uniformly
sample different budgets and maximize the expected reward over all the decisions conditioned on
them. Formally, a typical MDP is defined by a tuple (S,A, P,R), where S is a finite set of states, A
is a finite set of actions, P : S ×A× S → R is the state transition distribution, and R : S ×A → R
is the reward function. Here, we define the budget as a state, the decision to find an architecture
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Figure 2: The overview of the proposed PFNAS. Our PFNAS takes a budget constraint as input and
produces promising architectures that satisfy the budget constraints. The orange and green boxes in
(c) denote the embeddings of the architecture αT and the budget w.r.t. T .

satisfying any budget as an action. To find Pareto optimal (also called non-dominated) solutions, we
develop a Pareto dominance rule to compute the reward (See Section 3.3). Here, we exploit the policy
gradient method (Williams, 1992) to the MDP problem.

As shown in Figure 2, to find promising architectures under diverse budget constraints, we develop a
conditional model that takes a budget T as input and outputs an architecture αT satisfying the budget
constraint c(αT ) ≤ T . Formally, the PFNAS model can be represented by αT = f(T ; θ), where
αT denotes the architecture under this budget constraint and θ denotes the learnable parameters.
Based on the searhed architecture αT , we further feed it together with the considered budget T into
an architecture evaluator to compute the reward. To illustrate our method, we first revisit the NAS
problem with a single budget and then generalize it to the problem with diverse budgets. Note that
it is non-trivial to directly find the optimal architecture (Zoph & Le, 2017). By contrast, one can
first learn a policy π(·; θ) and then conduct sampling from it to find promising architectures, i.e.,
α ∼ π(·; θ). Given a budget T , the optimization problem becomes

max
θ

Eα∼π(·;θ) [R (α;w)] , s.t. c(α) ≤ T. (1)

Here, π(·; θ) is the learned policy parameterized by θ, and R(α,w) is the reward function parame-
terized by w that measures the joint performance of both the accuracy and the latency of α. We use
Eα∼π(·;θ) [·] to denote the expectation over the searched architectures.

However, Problem (1) only focuses on one specific budget constraint. In fact, we seek to learn the
Pareto frontier over the whole range of budgets (e.g., latency). However, this problem is hard to solve
since there exist infinite Pareto optimal architectures. To address this, one can learn the approximated
Pareto frontier by finding a set of uniformly distributed Pareto optimal points (Grosan & Abraham,
2008). In this paper, we uniformly sample latencies as the budgets and maximize the expected reward
over them. Thus, the optimization problem can be formulated as

max
θ

ET∼T
[
Eα

T
∼π(·|T ;θ) [R (αT |T ;w)]

]
, s.t. c(αT ) ≤ T, T ∼ T , (2)

where ET∼T [·] denotes the expectation over the budget. Unlike Eqn. (1), π(·|T ; θ) is the learned
policy conditioned on the budget of T . To find the architectures satisfying the budget constraint, we
take T into account to compute the reward R(·|T ;w). We will illustrate this in Section 3.3.

From Eqn. (2), we aim to improve the overall ability to find promising architectures under arbitrary
latency budget, i.e., learning the Pareto frontier. It is worth noting that simultaneously finding multiple
Pareto optimal architectures would benefit the search process for each scenario with a specific latency
constraint due to the shared knowledge across them (See results in Table 1). To be specific, if we find
a good architecture w.r.t. one budget, we can slightly change the width or depth of some modules to
obtain promising architectures that satisfy the adjacent budgets.

4



Under review as a conference paper at ICLR 2021

3.3 REWARD DESIGN FOR PARETO FRONTIER LEARNING

In this section, we propose a Pareto dominance reward to train PFNAS. Specifically, to obtain the
Pareto optimal architectures, we have to find the Pareto improvement direction to iteratively find
better architectures. Here, Pareto improvement is a situation where some objectives will increase and
no objectives will decrease. This situation is also called Pareto dominance where the better solution
dominates the worse one. In this sense, an architecture is defined to be Pareto optimal when it is
not dominated by any architectures in the search space. Thus, since the Pareto frontier is the set of
Pareto optimal architectures, the key challenge to Pareto frontier learning becomes how to find Pareto
optimal architectures by judging whether an architecture dominates another architecture.

To address this, we define a Pareto dominance rule for the NAS problem. In practice, the quality of
an architecture should depend on both the satisfaction of the budget and the accuracy. Specifically,
given a specific budget T , a good architecture should be the one with the cost lower than or equal
to T and with high accuracy. Motivated by this, we devise a rule to compare two architecture and
judge which one is dominative. Given any two architectures β1, β2, 1) if c(β1) ≤ T and c(β2) ≤ T ,
the architecture with higher accuracy is dominative; 2) if at least one architecture has the latency
higher than T , the architecture with lower latency is dominative. Formally, we use a function d(·) to
represent the above rule:

d
(
β1, β2, T

)
=

{
1[Acc(β1) ≥ Acc(β2)], if c(β1) ≤ T and c(β2) ≤ T ;

1[c(β1) ≤ c(β2)], otherwise.
(3)

Here, d(β1, β2, T ) = 1 if β1 dominates β2 and d(β1, β2, T ) = 0 otherwise. Similar rules are also
found in the conventional constrained optimization problems (Deb et al., 2002). Note that Eqn. (3) can
be considered as a hard threshold function which helps to guide the controller to find an architecture
satisfying the budget constraints (See results in Sections 4).

From Eqn. (3), the Pareto dominance rule requires architecture pairs to find the Pareto optimal
architectures. However, the controller model only finds an architecture at a time and thus Eqn. (3)
cannot be directly used to compute the reward. To address this issue, we propose to train an
architecture evaluator R(·|T ;w) to learn the proposed Pareto dominance rule and output a scalar as
the reward for the scenario with c(α) ≤ T . Since the proposed rules are built on the architecture
comparisons, we train the architecture evaluator using a pairwise ranking loss, which has been widely
used in ranking problems (Freund et al., 2003; Burges et al., 2005; Chen et al., 2009). Given M
architectures, there are M(M−1) architecture pairs in total after omitting the pairs with the same
architecture. Assuming that there are K budgets, the pairwise ranking loss becomes

L(w) =
1

KM(M−1)

K∑
k=1

M∑
i=1

M∑
j=1,j 6=i

φ
(

(R(βi|Tk;w)−R(βj |Tk;w)) · d(βi, βj , Tk)
)
, (4)

where φ(z) = max(0, 1−z) is the hinge loss function. Due to the page limit, we put more discussions
on Eqn. (4) in the supplementary.

Data preparation. We first train a super network with the progressive shrinking strategy. Then, we
randomly sample M=16, 000 architectures from the architecture space Ω and measure their accuracy
Acc(·) on 10, 000 validation images sampled from the training set of ImageNet (Deng et al., 2009)
using the super network. We also measure their latency c(·) on hardware devices. We record the
results using a set of triplets {(βi, c(βi),Acc(βi))}Mi=1.

3.4 TRAINING AND INFERENCE METHODS

As shown in Algorithm 1, we first train the super network using the progressive shrinking tech-
nique (Cai et al., 2020). Then, we sequentially train the architecture evaluator and the controller. We
detail the training methods of the architecture evaluator and the controller below.

Learning the architecture evaluator R(α|T ;w). To learn the Pareto frontier, we propose an
architecture evaluator to compute the reward based on the proposed Pareto dominance rule. According
to Eqn. (4), based on collected training data and {Tk}Kk=1, the gradient w.r.t. w becomes

∇w(w) =
1

KM(M−1)

K∑
k=1

M∑
i=1

M∑
j=1,j 6=i

∇wφ
(
(R(βi|Tk;w)−R(βj |Tk;w)) · d(βi, βj , Tk)

)
. (5)
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Algorithm 1 Training method of PFNAS.
Require: Latency distribution T , learning rate η, parameters M , N and K.
1: Initialize model parameters θ for the controller and w for the architecture evaluator.
2: // Collect the architectures with the validation accuracy and the latency
3: Train the super network on the training set with progressive shrinking strategy (Cai et al., 2020).
4: Randomly sample a set of architecture {βi}Mi=1 from the search space.
5: Measure the cost and the accuracy on the validation data set to construct set {(βi, c(βi),Acc(βi))}Mi=1.
6: // Train the architecture evaluator
7: while not converge do
8: Sample a set of latencies {Tk}Kk=1 from T .
9: Update the architecture evaluator parameters w by descending the gradient:

10: w ← w−η 1
KM(M−1)

K∑
k=1

M∑
i=1

M∑
j=1,j 6=i

∇wφ
(
(R(βi|Tk;w)−R(βj |Tk;w))·d(βi, βj , Tk)

)
.

11: end while
12: // Train the controller
13: while not converge do
14: Sample a set of latencies {Tk}Kk=1 from T .
15: Obtain {α(i)

Tk
}Ni=1 according to the policy π(·|Tk; θ) for each k ∈ {1, · · · ,K}.

16: Update the controller parameters θ via policy gradient by ascending the gradient:

17: θ ← θ+η 1
KN

K∑
k=1

N∑
i=1

[
∇θ log π(α(i)

Tk
|Tk; θ)R(α(i)

Tk
|Tk;w)+λ∇θH(π(·|Tk; θ))

]
.

18: end while

Learning the controller f(T ; θ). The controller model f(T ; θ) takes any given latency budget as
input and outputs promising architectures to fulfill the budget. We learn the controller with policy
gradient and use an entropy regularization term to encourage exploration. The objective becomes

J(θ) = ET∼T
[
Eα

T
∼π(·|T ;θ) [R (αT |T ;w)] + λH

(
π(·|T ; θ)

)]
, (6)

where H(·) evaluates the entropy of the policy and λ is a hyper-parameter. In each iteration, we first
sample {Tk}Kk=1 from the distribution T , and then sample N architectures {α(i)

Tk
}Ni=1 for each budget

Tk. Thus, the gradient of Eqn. (6) w.r.t. θ becomes1

∇θJ(θ) ≈ 1

KN

K∑
k=1

N∑
i=1

[
∇θ log π(α

(i)
Tk
|Tk; θ)R(α

(i)
Tk
|Tk;w) + λ∇θH(π(·|Tk; θ))

]
. (7)

Inferring architecture under diverse budgets. Based on the learned policy π(·|T ; θ), we conduct
sampling to find promising architectures. Specifically, given any arbitrary latency T , we first sample
several candidate architectures from π(·|T ; θ) and then select the architecture with the highest
validation accuracy. Note that we train PFNAS using a finite number of discrete latencies. During
inference, to enable T to be any value, we perform a linear interpolation between the embeddings of
two adjacent discrete latencies to represent the considered latency (See more details in supplementary).

Training cost of PFNAS. The training of super network takes about 1.5 days based on 32 GPUs.
The data preparation process takes about 40 GPU hours. We train the architecture evaluator for about
15 minutes. The training of the controller takes about 2 GPU hours, which is more efficient than
the search process of most methods. Given K budgets, PFNAS only searches once and thus takes
approximately 1/K search cost of the total cost to train a controller model for each budget.

4 EXPERIMENTS

We apply PFNAS to search for architectures under diverse latency budgets on three kinds of hardware
platforms, including mobile devices (Google Pixel1), CPU devices (Intel Core i5-7400), and GPU
devices (NVIDIA TITAN X). For convenience, we use “Architecture-T ” to represent the searched
architecture that satisfies the latency budget w.r.t. T , e.g., PFNAS-80. Due to the page limit, we put
the visualizations of the searched architectures in the supplementary.

1We put the derivations of Eqn. (7) in the supplementary.
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Table 1: Comparisons with state-of-the-art architectures on Google Pixel1 phone. ∗ denotes the
best architecture reported in the original paper. “-” denotes the results that are not reported. All the
models are evaluated on 224× 224 images of ImageNet.

Architecture Latency (ms) Top-1 Acc. (%) Top-5 Acc. (%) #Params (M) #MAdds (M)

MobileNetV3-Large (0.75×) (Howard et al., 2019) 93.0 73.3 - 4.0 155
MobileNetV2 (1.0×) (Sandler et al., 2018) 90.3 72.0 - 3.4 300

OFA-S-80 76.8 76.8 93.3 6.1 350
OFA-MO-80 77.6 76.6 93.2 7.9 340

PFNAS-80 (Ours) 79.9 77.5 93.7 7.3 349

ProxylessNAS-Mobile (Cai et al., 2019) 97.7 74.6 - 4.1 319
MobileNetV3-Large (1.0×) (Howard et al., 2019) 107.7 75.2 - 5.4 219

OFA (Cai et al., 2020) 109.3 78.1 94.0 8.2 354
OFA-S-110 109.2 77.5 93.6 6.4 406

OFA-MO-110 106.3 78.0 93.8 8.4 478
PFNAS-110 (Ours) 106.8 78.4 94.2 9.9 451

MnasNet-A1 (1.0×) (Tan et al., 2019) 120.7 75.2 92.5 3.4 300
FBNet-C (Wu et al., 2019) 135.2 74.9 - 5.5 375

OFA (Cai et al., 2020) 133.7 78.4 94.1 8.4 388
OFA-S-140 130.0 77.7 93.7 6.6 428

OFA-MO-140 139.0 78.4 94.0 9.5 486
PFNAS-140 (Ours) 127.8 78.7 94.3 9.2 492

PONAS-C (Huang & Chu, 2020) 145.1 75.2 - 5.6 376
OFA∗ (Cai et al., 2020) 150.9 78.9 94.4 9.1 511

OFA-S-170 163.6 78.2 94.1 7.8 534
OFA-MO-170 165.0 78.8 94.4 8.5 584

PFNAS-170 (Ours) 167.1 79.0 94.5 10.0 606

DARTS (Liu et al., 2019) 176.6 73.1 91.0 4.7 574
PC-DARTS (Xu et al., 2020) 194.1 75.8 92.7 5.3 597

MnasNet-A1 (1.4×) (Tan et al., 2019) 205.5 77.2 93.5 6.1 592
EfficientNet B0 (Tan & Le, 2019) 237.7 77.3 93.5 5.3 390

OFA-S-200 197.5 78.3 94.2 8.4 629
OFA-MO-200 187.4 78.9 94.4 9.1 630

PFNAS-200 (Ours) 193.9 79.2 94.7 10.4 724

(a) Ground-truth latency histogram. (b) Comparisons of search results. (c) Comparisons of Pareto frontiers.

Figure 3: Latency histograms and Pareto curves of the architectures on mobile devices. (a) Ground-
truth latency histogram of 16, 000 architectures that are uniformly sampled from the search space. (b)
The latency histogram of 1, 000 architectures sampled by different methods given T=110ms. (c) The
Pareto frontier of the architectures sampled by different methods.

Implementation details. We use MobileNetV3 (Howard et al., 2019) as the backbone to build the
search space (Cai et al., 2020). We first obtain the range of latency by randomly samplingM=16, 000
architectures from the search space (See Figure 3(a)). Then, we select K=5 latency budgets by
evenly dividing the range (e.g., {80, 110, 140, 170, 200} on mobile devices). We put the discussion
on the impact of K on the search performance of PFNAS and more implementation details in the
supplementary materials.

4.1 COMPARISONS ON HARDWARE DEVICES

We compare PFNAS with state-of-the-art methods on Google Pixel1 phone. We also consider the
following baselines: 1) OFA-MO conducts architecture search based on OFA super network by
exploiting the multi-objective reward (Tan et al., 2019). 2) OFA-S finds the best one from 16, 000
architectures sampled from the learned super network. From Table 1 and Figure 4(a), our PFNAS
consistently achieves higher accuracy than other methods. Moreover, compared with the methods
searching for different constrained architectures independently (e.g., OFA and OFA-MO), our PFNAS
only needs to search once to find the Pareto frontier instead of a single Pareto optimal solution. The
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(a) Results on Google Pixel1.
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(b) Results on Intel Core i5 CPU.
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(c) Results on TITAN X GPU.

Figure 4: Comparisons of the architectures obtained by different methods on three hardware devices.

Table 2: Comparisons with different reward functions and search strategies on ImageNet. Ps(%)
denotes the proportion of the searched architectures that satisfy the corresponding budget.

Reward Pareto Frontier T=80ms T=110ms T=140ms T=170ms T=200ms
Learning Acc. Ps Acc. Ps Acc. Ps Acc. Ps Acc. Ps

Multi-objective Reward (Tan et al., 2019) 7 76.6 1.4 78.0 33.2 78.4 54.0 78.8 90.5 78.9 99.9
X 77.0 3.2 78.1 43.9 78.5 88.4 78.9 99.1 78.9 99.9

Pareto Dominance Reward 7 76.3 92.8 78.1 92.5 78.6 93.2 78.9 94.3 79.0 99.9
X 77.2 30.2 78.4 76.9 78.7 82.5 79.0 88.1 79.2 99.5

learned Pareto frontier benefits from the shared knowledge across the search process under different
budgets, helping the decision makers to further select their preferred architectures.

We also visualize the latency histograms of the architectures searched on mobile devices in Figure 3(b).
Given a latency budget of 110ms, only a few architectures produced by OFA-MO satisfy the budget,
which demonstrates the multi-objective reward is hard to design to obtain the preferred architectures.
By contrast, PFNAS uses the Pareto dominance reward to encourage the architectures to satisfy the
desired budget constraints. Moreover, we compare the searched frontiers of different methods. Here,
we combine the architectures searched by 5 independent OFA-MO runs under different budgets and
select all the best architectures to generate an entire Pareto frontier. From Figure 3(c), our PFNAS
finds a better frontier than OFA-MO due to the shared knowledge across the search process under
different budgets. We also evaluate PFNAS on Intel Core i5-7400 CPU and NVIDIA TITAN X GPU.
From Figure 4, PFNAS consistently find better architectures than existing methods for each latency
budget on all considered devices (See more results in supplementary).

4.2 ABLATION STUDIES OF THE PROPOSED METHOD

In this experiment, we investigate the effectiveness of the Pareto frontier search strategy and the
Pareto dominance reward. From Table 2, the Pareto frontier search strategy tends to find better
than the independent search process due to the shared knowledge across the search processes under
different budgets. Moreover, compared with multi-objective reward, the Pareto dominance reward
encourages the controller to find more architectures that satisfy the considered budget constraints.
For example, even if only a few architectures have the latency lower than 80ms (See Figure 3(a)), we
still achieve the Ps of 92.8% with the Pareto dominance reward. With both the Pareto frontier search
strategy and the Pareto dominance reward, we yield the best search results under all budgets.

5 CONCLUSION

In this paper, we have proposed a novel Pareto-Frontier-aware Neural Architecture Search (PFNAS)
method to find the Pareto frontier under diverse computation budget (i.e., latency). Specifically, we
train the PFNAS model to learn the Pareto frontier by maximizing the expected reward over a set of
budgets. To provide accurate rewards under diverse budgets, we propose a Pareto dominance rule to
judge whether an architecture is better than another and devise an architecture evaluator to learn this
rule. In this way, PFNAS is able to learn the Pareto frontier and find promising architectures under
diverse budgets. Extensive experiments on three platforms (i.e., mobile, CPU, and GPU devices)
demonstrate the effectiveness of the proposed method.
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