
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

MAGE: MULTI-SCALE AUTOREGRESSIVE GENERATION
FOR OFFLINE REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Generative models have gained significant traction in offline reinforcement learning
(RL) due to their ability to model complex trajectory distributions. However, exist-
ing generation-based approaches still struggle with long-horizon tasks characterized
by sparse rewards. Some hierarchical generation methods have been developed
to mitigate this issue by decomposing the original problem into shorter-horizon
subproblems using one policy and generating detailed actions with another. While
effective, these methods often overlook the multi-scale temporal structure inherent
in trajectories, resulting in suboptimal performance. To overcome these limitations,
we propose MAGE, a Multi-scale Autoregressive GEneration-based offline RL
method. MAGE incorporates a condition-guided multi-scale autoencoder to learn
hierarchical trajectory representations, along with a multi-scale transformer that
autoregressively generates trajectory representations from coarse to fine temporal
scales. MAGE effectively captures temporal dependencies of trajectories at mul-
tiple resolutions. Additionally, a condition-guided decoder is employed to exert
precise control over short-term behaviors. Extensive experiments on five offline
RL benchmarks against fifteen baseline algorithms show that MAGE successfully
integrates multi-scale trajectory modeling with conditional guidance, generating
coherent and controllable trajectories in long-horizon sparse-reward settings.

1 INTRODUCTION

In offline reinforcement learning (RL) (Lange et al., 2012), agents are trained solely from previously
collected datasets without further interaction with environments, which makes it attractive for multiple
real-world applications, such as autonomous driving. However, relying on fixed collected datasets to
learn a policy faces several challenges, including distributional shift and overestimation bias (Levine
et al., 2020; Kumar et al., 2019).

Existing offline RL methods generally fall into four main categories: (1) Generation-based approaches,
which view policy learning as conditional trajectory generation (Janner et al., 2021; Chen et al.,
2021; Janner et al., 2022; Wang et al., 2023; Ajay et al., 2023); (2) Regularization-based approaches,
which aim to prevent policy deviation by adding constraints relative to the behavior policy (Fujimoto
et al., 2019; Kumar et al., 2019; Fujimoto & Gu, 2021); (3) Constraint-based approaches, which
assign pessimistic values to out-of-distribution actions to suppress their selection (Yang et al., 2021;
Kumar et al., 2020); and (4) Model-based approaches, which utilize a learned environment model for
planning (Yu et al., 2021; Williams et al., 2016). Our proposed method falls under the generation-
based paradigm.

Generative models have been applied in both offline and online RL, with examples such as Diffusion-
QL (Wang et al., 2023), Decision Diffuser (Ajay et al., 2023), and QVPO (Shutong Ding et al.,
2024). These approaches have demonstrated competitive performance and high trajectory diversity,
benefiting from the strong representational capacity of generative models like diffusion processes (Ho
et al., 2020; Song et al., 2021) to capture multi-modal distributions. Despite these advantages, such
methods struggle in long-horizon sparse-reward tasks, which are prevalent in real-world applications
such as robotic manipulation and strategic planning. In such settings, delayed feedback and complex
temporal dependencies pose significant challenges for reliable policy learning (Tang et al., 2022;
Villaflor et al., 2022; Andersen et al., 2018).

The inferior performance of generation-based offline RL in long-horizon tasks stems primarily from
inadequate modeling of multi-scale temporal dependencies, particularly long-range information.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

(b) Decision Diffuser(a) Decision Transformer

… … … … … …… …

T I

(c) MAGE

1m
2m

3m
1Km 

Km

 Multiple Temporal scale

Dataset  

…

K

1

0 1 1 10 0{( , ), ( , ), , ( , )}, , ,T T Tsa aR s R s R a  

Figure 1: Schematic Illustration of Generation-based Offline RL Methods. (a) Decision Transformer follows
a step-by-step, autoregressive generation process. (b) Decision Diffuser utilizes an all-at-once, denoising-based
generation approach. (c) MAGE operates in a top-down manner, first establishing a macroscopic outline of a
trajectory and then progressively refining it with microscopic details.

While transformers (Chen et al., 2021; Janner et al., 2021) are widely used, their unidirectional
autoregressive nature limits bidirectional understanding of the global context. Diffusion models (Wang
et al., 2023; Ajay et al., 2023), although generally achieving stronger results, exhibit a local generation
bias (Lu et al., 2025), often producing trajectories that are locally plausible but lack global coherence
over extended horizons.

A promising direction is to use hierarchical generation methods (HGM), which convert long-horizon
tasks into shorter-horizon subproblems. Existing approaches (Ma et al., 2024; Li et al., 2023; Chen
et al., 2024) typically adopt a fixed two-layer hierarchy, with each level governed by a distinct policy.
For example, HDMI (Li et al., 2023) generates sub-goals at a high level and detailed trajectories
at a low level. HIQL (Seohong Park et al., 2023) extracts implicit hierarchical behaviors through
value decomposition. This rigid structure not only limits the ability to capture multi-scale temporal
abstractions, but also introduces significant optimization challenges. The need to jointly optimize
two interdependent policies within a fixed hierarchy could lead to training efficiency issues.

To address the challenges of long-horizon and sparse-reward tasks, we propose MAGE, a novel Multi-
scale Auto-regressive Generation model for offline RL. MAGE generates trajectories in a top-down
coarse-to-fine manner. It produces a long-term, coarse-grained trajectory representation, and then this
initial sketch is progressively refined through iterative rounds of auto-regressive generation, with each
step yielding a finer-grained representation. Finally, actions are determined based on the resulting
multi-scale trajectory representations. Figure 1 provides a schematic overview of this generative
process.

MAGE comprises two core components: a multi-scale autoencoder and a multi-scale transformer. The
autoencoder encodes a trajectory into a hierarchy of latent representations according to a predefined
scale schedule, constituting a set of token maps from coarse-to-fine temporal resolutions. Coarse-
scale tokens capture long-term dependencies, while fine-scale tokens encapsulate short-term details.
The multi-scale transformer autoregressively generates these token maps sequentially, with each
finer-scale token map conditioned coarser-scale token maps generated in the previous step. This
coarse-to-fine generation scheme enables the model to capture both the global trajectory structure
and local temporal dynamics, resulting in highly coherent trajectories. For finer-grained control, a
condition-guided adapter module is integrated into the decoder, modulating internal representations
based on specified conditions to precisely steer the generated trajectories.

Extensive evaluations on five offline RL benchmarks show that MAGE achieves state-of-the-art
performance, particularly in long-horizon tasks with sparse rewards, while remaining competitive in
dense-reward settings. Systematic ablations confirm the critical role of multi-scale temporal modeling
and conditional guidance. Additionally, MAGE exhibits fast inference speeds, providing an efficient
and practical solution for complex sequential decision-making.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 BACKGROUND

2.1 AUTO-REGRESSIVE MODELS

As a predominant autoregressive architecture, the Transformer (Vaswani et al., 2017) generates
sequences by predicting each token xi solely based on its predecessors x<i. The probability of a
sequence under this model is defined by:

p(x1, x2, . . . , xT ) =

T∏
i=1

p(xi|x1, x2, . . . , xi−1) (1)

The Visual Autoregressive (VAR) model (Tian et al., 2024) introduces a hierarchical approach to
autoregressive data generation. Central to VAR is a hierarchical autoregressive likelihood, which
operates across multiple spatial scales rather than individual tokens. The joint probability of generating
the complete set of token maps B = (b1, b2, . . . , bK) is formulated as:

p(b1, b2, . . . , bK) =

K∏
k=1

p(bk|b1, b2, . . . , bk−1) (2)

Here, each bk denotes a token map of dimensions hk × wk, and the sequence B is ordered according
to increasing spatial resolution (i.e., hk+1 > hk, wk+1 > wk). The generation of bk is conditioned
on all previously generated coarser-scale maps b<k.

2.2 VECTOR QUANTIZED VARIATIONAL AUTOENCODER

The Vector Quantized Variational Autoencoder (VQ-VAE) (Van Den Oord et al., 2017) extends the
standard Variational Autoencoder (VAE) (Kingma & Welling, 2014) by incorporating tokens (discrete
latent representations) through vector quantization. The model comprises three key components:
an encoder Eϕ that maps an input x ∈ X to a continuous latent vector ze = Eϕ(x), a learnable
codebook {ek}Kk=1 containing K embedding vectors in RD, and a decoder Dθ that reconstructs the
input from the quantized codes x̂ = Dθ(zq). The continuous output ze is discretized by replacing it
with the nearest codebook entry:

zq = Quantize(ze) = ek, k = argmin
j
∥ze − ej∥2. (3)

This quantization step enables the learning of tokens, which are well suited for autoregressive
modeling.

3 MAGE: MULTI-SCALE AUTO-REGRESSIVE DECISION MAKING

Generation-based offline RL models have demonstrated a competitive advantage in decision-making
tasks with complex trajectory distributions. However, they struggle with long-horizon tasks that have
sparse rewards. Their lack of long-term awareness and multi-scale modeling for temporal abstraction
often produces trajectories that are locally coherent but globally inconsistent, hindering effective
decision-making.

Our key observation is that, for effective long-horizon tasks, it is important to generate trajectories at
multiple temporal scales, capturing both long-term and short-term information. We propose MAGE, a
Multi-scale Autoregressive GEneration method for offline RL. MAGE consists of two major modules:
multi-scale trajectory autoencoder (Section 3.1) and multi-scale condition-guided auto-regressive
generator (Section 3.2).

3.1 MULTI-SCALE TRAJECTORY AUTOENCODER

The Multi-scale Trajectory Autoencoder (MTAE) incorporates a multi-scale quantization architecture
to capture hierarchical dependencies in long-horizon trajectories. It represents a trajectory τ as a
sequence of state and return-to-go (RTG) pairs: τ = (R0, s0), (R1, s1), . . . , (RT , sT ), where Ri

denotes the cumulative future reward from timestep i onward, and si is the corresponding state.
To enable autoregressive modeling, MTAE tokenizes the trajectory into discrete representations.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

(a) 

Causal Transformer

�1 �2 �� ...

�1 �2 �� ...

...

�1

��

�0

1 2 1 2 3 T

1 2 3 T1

1

1 2

� ��

. . .

. . .

�0 �0

�1 �1

�� ��

... ...

�0 �0

� ����

�0

�0

��−1 ...�1 1

. . .
...

1 2 t

Finetune Decoder with Adapter

(b) 

Z0

...

Z1

ZT

Multip
le T

ime S
cales

...

�1

��

�0

Inverse D
ynam

ic

EncoderDecoder

... Multip
le T

ime S
cales

...

�1

��

�0

Inverse D
ynam

ic

DecoderEncoder

�0

�1

��

�

. . .

D
ecoder B

lock

D
ecoder B

lock

D
ecoder B

lock

A
dapter

A
dapter

. . .�0 �0�0 �0 �1 �1 �� ��

. . .�0 �0�0 �0 �1 �1�1 �1 �� ���� ��

� ���

�0

Figure 2: MAGE Overview: (a) Multi-scale Representation: hierarchical quantization of trajectories across
scales for global–local structure modeling. (b) Condition-guided Decision-making: autoregressive latent predic-
tion with conditional refinement for consistent trajectory generation.

This is achieved through a top-down encoding process that maps τ into a multi-scale token map
M = (m1,m2, . . . ,mK). Each token map mk ∈ [V ]lk is a sequence of lk tokens, where each
token t ∈ [V ] is an integer from a vocabulary of size V . The token map mk encapsulates temporal
information at the k-th scale of the trajectory, with m1 capturing the coarsest, global-level structure
and mK containing the finest-grained details.

The encoding and decoding processes of MTAE are depicted in Algorithm 1 and 2. E(·), Q(·), and
D(·) denote the encoder, quantizer, and decoder, respectively. MTAE employs a similar architecture
to VQVAE (Van Den Oord et al., 2017). Besides, a shared codebook C is utilized across all scales
to ensure that all tokens have the same size and the same vocabulary. The scale-up and scale-down
operators are implemented through linear projection. For trajectory modeling, we empirically find
that modeling (R, s) rather than other alternatives leads to the highest performance, as shown in
Section 4.4.

Algorithm 1 Multi-scale Encoding

Require: τ = {(s0, R0), . . . , (sT , RT )};
Require: temporal scales [lk]Kk=1; codebook
C;

1: f = E(τ,R0), M = [];
2: for k = 1, · · · ,K do
3: mk = Q(Scale_down(f, lk));
4: M = queue_push(M,mk);
5: zk = Lookup(C,mk);
6: zk = Scale_up(zk, lK);
7: f = f − zk;
8: end for

Ensure: multi-scale token maps M ;

Algorithm 2 Multi-scale Decoding

Require: multi-scale token maps M ;
Require: temporal scales [lk]Kk=1; codebook
C;

1: for k = 1, · · · ,K do
2: mk = queue_pop(M);
3: zk = Lookup(C,mk);
4: zk = Scale_up(zk, lK);
5: end for
6: Z = (z1, · · · , zK)
7: τ̂ = D(Z,R0);

Ensure: reconstructed trajectory τ̂ ;

3.2 MULTI-SCALE CONDITIONAL GUIDE AUTOREGRESSIVE GENERATION

MAGE uses multi-scale temporal information as guidance to generate tokens. The token map mk is
generated based on all previous token maps mi i < k and (s0, R0). After generating the token maps,
an action a is determined, which is executed by the agent.

In MAGE, a multi-scale conditional guide transformer is tasked with autoregressively predicting the
sequence of codebook maps (m1,m2, . . . ,mK). The generative process is described as follows.

p(m1,m2 . . . ,mk | s0, R0) =

K∏
k=1

p(mk | m<k, s0, R0). (4)

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

At each scale k, the input to the transformer consists of s0, R0, and the token maps from the previous
scale m<k. This hierarchical conditioning approach makes the predicted token map mk close to R0

and s0 across different temporal scales. The transformer outputs a categorical distribution over the
token map at each scale. It is trained using a cross-entropy loss against the ground-truth token maps.

LCE = −
K∑

k=1

pk∑
i=1

m⊤
k,i log m̂k,i, (5)

where mk,i denotes the one-hot encoding of the ground-truth integer at position i and scale k and
m̂k,i is the predicted categorical distribution. The latent representation Z = (z1, · · · , zK) for the
generate trajectory τ̂ is obtained alongside (m1, · · · ,mK) through look up in codebook C.

Determining Action MAGE adopts a latent inverse dynamics model I to determine the action a to
be executed from the generated trajectory. Given the aggregated latent representation Z encoding the
generated trajectory, I determines the action as

a = I(

K∑
k=1

zk), Linv = ∥a− a0∥22, (6)

a0 is the action taken in τ at timestep 0. The objective Linv is designed to encourage the latent variable
Z to preserve dynamics-consistent information at the finest temporal scale for the most recent timestep.
As evidenced by the ablation study in Appendix B.5, utilizing this latent representation Z leads to
superior performance compared to the use of the fully generated trajectory.

Condition-Guided Refinement MAGE generates trajectories starting from the current state s0.
However, we identified a challenge: the cross-entropy loss LCE alone does not guarantee that the
first state of the generated trajectory τ̂ exactly matches s0, potentially leading to trajectories that
diverge from the intended condition. This issue is compounded by the information loss inherent in the
quantization of latent variables Ẑ. To correct for these deviations, MAGE incorporates an additional
condition-guided refinement loss, implemented as a mean squared error between the decoded initial
state-return pair and the true initial condition (s0, R0).

Lcond = ∥D′(Z,R0)0 − (s0, R0)∥
2
2 . (7)

D′ is an augmented decoder with a parameter-efficient refinement module. This decoder maps the
latent codes Z back to trajectory space, where D′(Z,R0)0 denotes the generated initial condition
(ŝ0, R̂0). To ensure this output strictly matches the true initial condition (s0, R0), the conditional
loss Lcond is applied during training. This loss term guides the auto-regressive process to yield
conditionally coherent trajectories. The necessity of Lcond is validated in Appendix Figure 4, where
its removal leads to a deviation at the trajectory outset.

4 EVALUATION

Comprehensive evaluations against 15 baselines across 5 benchmarks demonstrate MAGE’s strong
performance in long-horizon sparse-reward tasks, along with competitiveness in dense-reward settings.
Ablations validate the necessity of multi-scale modeling and compare trajectory schemes, while
results confirm high inference efficiency. Due to space limitations, please refer to Appendix B for
details.

4.1 EXPERIMENTAL SETUP

Environment We evaluate MAGE on widely-used benchmarks covering long-horizon tasks—such as
dexterous manipulation (Adroit (Rajeswaran et al., 2018)), sequential tasks (Franka Kitchen (Gupta
et al., 2019)), and navigation (Maze2D, Multi2D, AntMaze (Fu et al., 2020))—as well as locomotion
tasks with dense rewards (MuJoCo (Todorov et al., 2012)).

Baselines. Our method is compared with a broad set of 15 representative baselines covering different
families of offline RL approaches.

• Non-generation methods: Behavior Cloning(BC) (Bain & Sammut, 1995), Conservative Q-
Learning(CQL) (Kumar et al., 2020), and Implicit Q-learning(IQL) (Kostrikov et al., 2022)

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

(a) Decision Transformer (b) Decision Diffuser (c) Hierarchical Diffuser (d) Ours

Figure 3: A Maze Game: The dark grid cells are walls. The trajectories are plotted in red. Lighter color
represents earlier timesteps. The red circles shown in (c) are subgoals.

learn policies directly from offline data via behavior cloning or policy regularization, while
Model Predictive Path Integral(MPPI) (Williams et al., 2016) uses environment dynamics for
model-based trajectory optimization.

• Generation-based methods: Decision Transformer(DT) (Chen et al., 2021), Trajectory Trans-
former(TT) (Janner et al., 2021) and TAP (Zhang et al., 2023) generate trajectories using Trans-
formers. Diffuser (Janner et al., 2022), Decision Diffuser(DD) (Ajay et al., 2023), and RGG (Lee
et al., 2023) generate trajectories using diffusion, while Diffusion-QL (Wang et al., 2023) gener-
ates actions through diffusion.

• Hierarchical generation methods: ADT (Ma et al., 2024) is a two-level transformer-based
method. HDMI (Li et al., 2023) and HD (Chen et al., 2024) are two-level diffusion-based methods.
CARP (Gong et al., 2025) is a coarse-to-fine autoregressive modeling method that generates
action sequences.

To ensure a fair and meaningful comparison, for each algorithm, we report its performance for each
environment reported in the official paper. If such results are unavailable, we report the performance
by running the algorithm for some environments.

For all experiments, the average score (with standard error) is utilized to measure the performance of
all algorithms. For each environment, results are averaged over 5 random training seeds. In Adroit
and Kitchen, each seed is tested 20 times, while in Maze2D, Multi2D, and AntMaze, each seed is
tested 100 times due to the stochasticity of the environment.

4.2 AN ILLUSTRATIVE EXAMPLE

Figure 3 illustrates a maze navigation task in which the agent must first collect the silver coin, then the
gold coin, and finally reach the goal. The agent receives rewards for collecting coins and reaching the
goal. The results indicate that Decision Transformer (DT) fails to reach the goal, Decision Diffuser
(DD) reaches the goal but fails to discover the gold coin, and Hierarchical Diffuser (HD) produces
trajectories that cross walls. MAGE can obtain all the coins and reach the goal. This example
qualitatively demonstrates the ability of MAGE in such a long-horizon task with sparse rewards.
Please refer to Appendix B.4 for further details.

4.3 COMPARISON STUDY

We evaluate MAGE against 15 offline RL algorithms on 5 different sets of environments. The
results demonstrate MAGE’s compelling ability in long-horizon tasks with sparse rewards. Moreover,
MAGE is also competitive in tasks with dense rewards.

4.3.1 ADROIT: DEXTEROUS MANIPULATION ENVIRONMENTS

The key difficulty of the Adroit environment (Rajeswaran et al., 2018) lies in its sparse reward
signals and the requirement for long-horizon, high-dimensional, fine-grained control. As shown
in Table 1, MAGE achieves significant improvements on the Pen, Door, and Hammer tasks, with
particularly strong performance on Pen, where it substantially outperforms other methods. The results

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: The Average Scores for the Adroit Scenarios.

Scenario IQL DT ADT CARP DD D-QL HDMI HD MAGE

Pen
Expert 128.0±9.2 116.3±1.2 113.3±12.1 112.7±19.8 107.6±7.6 112.6±8.1 109.5±8.0 121.4±14.3 147.8±4.9
Human 78.4±8.2 67.6±5.4 70.1±16.1 62.3±21.4 64.1±9.0 66.0±8.3 66.2±8.8 47.6±14.9 137.1±9.0
Cloned 83.4±8.1 64.4±1.4 35.9±13.1 12.5±15.2 47.7±9.2 49.3±8.0 48.3±8.9 13.9±9.7 108.4±17.6

Door
Expert 106.6±0.3 104.8±0.3 105.1±0.1 98.4±4.7 87.0±0.8 93.7±0.8 85.9±0.9 105.9±0.6 106.8±0.1
Human 3.2±1.8 4.4±0.8 7.5±2.3 5.0±4.6 6.9±1.2 8.0±1.2 7.1±1.1 0.2±0.0 16.5±0.9
Cloned 3.0±1.7 7.6±3.2 1.8±1.3 0.0±0.0 9.0±1.6 10.6±1.7 9.3±1.6 4.5±3.6 20.5±2.5

Hammer
Expert 128.6±0.3 117.4±6.6 127.4±0.4 127.5±0.6 106.7±1.8 114.8±1.7 111.8±1.7 126.8±1.1 131.7±0.2
Human 1.7±0.8 1.2±0.1 1.8±0.2 0.9±0.3 1.0±0.1 1.3±0.1 1.2±0.1 0.9±0.3 10.4±1.2
Cloned 1.5±0.6 1.8±0.5 2.1±0.5 0.9±0.2 0.9±0.1 1.1±0.1 1.0±0.1 0.9±0.2 13.2±4.7

Relocate
Expert 106.1±4.0 104.2±0.4 106.4±1.4 71.0±8.3 87.5±2.8 95.2±2.8 91.3±2.6 62.1±13.1 109.6±1.6
Human 0.1±0.0 0.1±0.0 0.1±0.1 0.0±0.0 0.2±0.1 0.2±0.1 0.1±0.1 0.0±0.0 0.3±0.1
Cloned 0.0±0.0 0.0±0.0 0.0±0.0 -0.2±0.0 -0.2±0.0 -0.2±0.0 -0.1±0.0 -0.2±0.0 0.0±0.0

Mean(w/o Expert) 21.4 18.4 14.9 10.2 16.2 17.0 16.6 8.5 38.3
Mean(all settings) 53.4 49.2 47.6 40.9 43.2 46.1 44.3 40.3 66.9

Table 2: The Average Scores for the Franka Kitchen Scenarios.

Scenario IQL DT ADT CARP DD DQL HDMI HD MAGE

Kitchen
Partial 59.7±8.3 31.4±19.5 64.2±5.1 32.5±2.6 65.0±2.8 60.5±6.9 - 73.3±1.4 91.3±3.2
Mixed 53.2±1.6 25.8±5.0 69.2±3.3 30.0±2.2 57.0±2.5 62.6±5.1 69.2±1.8 71.7±2.5 86.3±3.3

Average 56.5 28.6 66.7 31.3 61.0 61.6 - 72.5 88.8

demonstrate that MAGE maintains consistent advantages in Adroit, despite the challenges of sparse
rewards and high-dimensional control.

IQL shows limited performance, as it learns value functions, making it suffer from the deadly triad
issues (Sutton & Barto, 2018). While DD improves performance through modeling trajectories, its
single-step, non-holistic process lacks a global perspective, leading to poor performance. CARP
does not model the relationship between generated action sequences and rewards, leading to weaker
performance than MAGE. Hierarchical RL methods, such as ADT and HD, do not fully model the
multi-scale temporal information in trajectories, leading to suboptimal performance.

MAGE employs trajectory modeling with multi-scale temporal guidance and RTG for high-reward
trajectory generation. MAGE achieves the best performance for such long-horizon, high-dimensional,
fine-grained control and sparse reward tasks.

4.3.2 FRANKA KITCHEN: COMPOSITIONAL ENVIRONMENTS

In the Franka Kitchen environments (Gupta et al., 2019), success depends not only on reaching
individual sub-goals but also on executing them in the correct order, which makes naive trajectory
generation prone to errors. By leveraging multi-scale trajectory generation, MAGE captures both the
global task structure and local sub-goal details, providing coherent and fine-grained decision-making.
MAGE demonstrates superior performance, surpassing all competing algorithms by a considerable
margin, as detailed in Table 2.

4.3.3 MAZE NAVIGATION ENVIRONMENTS: ANTMAZE, MAZE2D, AND MULTI2D

In the AntMaze, Maze2D, and Multi2D scenarios (Fu et al., 2020), a robot must navigate through
maze-like structures to reach a distant goal location. Mazes of different sizes (U-shaped, medium,
and large) are evaluated. In the AntMaze tasks, the proposed MAGE outperforms the baselines on
5 out of 6 datasets, as shown in Table 3. MAGE performs the best on all datasets for the Maze2D
and Multi2D scenarios, as shown in Table 4. The results demonstrate that our method can effectively
handle the long-horizon navigation tasks.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: The Average Scores for the Antmaze Scenarios.

Scenario BC CQL IQL DT ADT DD D-QL HD MAGE

Diverse
U-maze 47.2±4.0 37.2±3.7 70.6±3.7 51.7±0.4 83.0±3.1 49.2±3.1 66.2±8.6 94.0±4.9 95.2±2.2
Medium 0.8±0.8 67.2±3.5 61.7±6.1 0.0±0.0 83.4±1.9 4.0±2.8 78.6±10.3 88.7±8.1 98.2±1.3
Large 0.0±0.0 20.5±13.2 27.6±7.8 0.0±0.0 65.4±4.9 0.0±0.0 56.6±7.6 83.6±5.8 84.6±3.6

Play
U-maze 55.2±4.1 92.7±1.9 83.3±4.5 57.0±9.8 83.8±2.3 73.1±2.5 93.4±3.4 72.2±2.0 92.2±2.7

Medium 0.0±0.0 65.7±11.6 64.6±4.9 0.0±0.0 82.0±1.7 8.0±4.3 76.6±10.8 42.0±1.9 92.0±2.7
Large 0.0±0.0 20.7±7.2 42.5±6.5 0.0±0.0 71.0±1.3 0.0±0.0 46.4±8.3 54.7±2.0 75.8±4.3

Average 17.2 50.7 58.4 18.1 78.1 22.4 69.6 72.5 89.7

Table 4: The Average Scores for the Maze2D and Multi2D Scenarios.

Scenario CQL IQL DT ADT CARP DD HDMI HD MAGE

Maze2D
U-maze -8.9±6.1 42.1±0.5 31.0±21.3 60.5±2.0 26.2±3.9 116.2±2.7 120.1±2.5 128.4±3.6 145.4±3.2
Medium 86.1±9.6 34.8±2.7 8.2±4.4 109.4±6.2 65.8±2.4 122.3±2.1 121.8±1.6 135.6±3.0 155.0±3.3
Large 23.7±36.7 61.7±3.5 2.3±0.9 155.4±10.4 0.7±2.0 125.9±1.6 128.6±2.9 155.8±2.5 159.4±2.9

Single-task Average 33.6 46.2 13.8 108.4 30.9 121.5 123.5 139.9 153.3

Multi2D
U-maze 25.4±5.8 13.5±3.0 15.6±2.4 66.9±5.2 82.5±3.4 128.2±2.1 131.3±1.8 144.1±1.2 150.4±1.8
Medium 8.3±3.9 8.3±3.4 6.3±1.6 108.5±6.2 48.7±2.6 129.7±2.7 131.6±1.9 140.2±1.6 147.7±3.1
Large 8.2±4.2 5.2±1.4 5.1±1.4 159.4±9.2 32.2±3.2 130.5±4.2 135.4±2.5 165.5±0.5 166.8±3.6

Multi-task Average 14.0 9.0 9.0 111.6 54.5 129.5 132.8 149.9 155.0

Table 5: Performance of varying the number of temporal scales K

Scenario ADT HD 1 2 4 6 8 10
Pen-Expert 113.3±12.1 121.4±14.3 123.5±9.1 127.5±5.2 134.2±7.7 139.5±5.7 147.8±4.9 149.9±9.2
Door-Cloned 1.8±1.3 4.5±3.6 5.2±1.8 6.0±2.1 10.7±2.3 14.0±2.7 20.5±2.5 17.0±2.7

Table 6: Different trajectory sequence generation schemes.

Scenario ADT HD S A A+CQL R, S, A Ours
Pen-Expert 113.3±12.1 121.4±14.3 127.7±3.3 127.1±13.0 127.6±4.6 124.9±7.8 147.8±4.9
Door-Cloned 1.8±1.3 4.5±3.6 11.9±2.7 9.1±2.3 4.9±1.0 17.2±3.0 20.5±2.5

Table 7: Ablation results of condition and constraint loss on the Adroit scenarios

Scenario ADT HD �R in D �R in mk>1 �R in Lcond Ours
Pen-Expert 113.3 ± 12.1 121.4±14.3 140.3±9.1 139.5±6.7 139.9±7.2 147.8±4.9
Door-Cloned 1.8 ± 1.3 4.5±3.6 12.3±1.9 16.3±2.6 17.1±2.5 20.5±2.5

Beyond sparse-reward, long-horizon tasks, MAGE also demonstrates strong performance in environ-
ments with dense rewards, as detailed in Appendix B.3 for Gym locomotion tasks. Notably, MAGE
achieves top performance in 7 out of 9 tasks, confirming its general competitiveness across different
reward structures.

4.4 ABLATION STUDY

To explore the effectiveness of design components, we conduct ablation studies regarding temporal
scale, generation scheme, and conditional guidance on the Adroit scenarios: Pen-Expert and Door-
Cloned. Moreover, we evaluate the inference time of MAGE.

Importance of multiple temporal scales (K). We analyze the impact of varying the number of
temporal scales K. Results in Table 5 show that performance generally improves as K increases up
to 8, confirming that modeling multiple temporal scales is beneficial. However, beyond this point
(e.g., for Door-Cloned), performance declines. This suggests that while incorporating finer-grained

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 8: Average inference time (ms) in Adroit environments.

Method Ours DT TT ADT DD HD
Time (ms) 27.30±0.69 6.49±0.11 12863.07±19.37 7.81±0.14 2339.16±11.37 1480.21±25.18

Table 9: Effect of the adapter module for applying Lcond.

Scenario MAGE (direct decoder) MAGE
Pen-Expert 132.4±8.3 147.8±4.9
Door-Cloned 12.0±1.7 20.5±2.5

information helps up to a certain point, excessive granularity (K ≥ 8) may introduce noise or
unnecessary complexity without further gains. The optimal K is thus task-dependent.

Comparison of Trajectory Sequence Generation Schemes. We benchmark various sequence
modeling strategies to identify the most effective scheme for trajectory generation. As shown in
Table 6, these include modeling states only (S), actions only (A), actions with CQL regularization
(A+CQL), and the joint modeling of returns, states, and actions (R, S, A). Our approach, which
models returns and states (R, S), achieves the best performance. This result suggests that the (R,
S) scheme optimally balances the capture of high-level outcome intent (via returns) with detailed
environmental dynamics (via states), whereas incorporating actions adds unnecessary complexity
that hinders performance.

Role of RTG-based Conditioning. To quantify the importance of return-to-go (RTG) guidance, we
systematically ablate its use in three key parts of MAGE: the autoencoder (�R in D), the multi-scale
transformer for finer scales (�R in mk>1), and the conditioning loss Lcond (�R in Lcond). The results
(Table 7) indicate a consistent performance drop when RTG is removed, underscoring its critical role
in aligning the generated trajectories with the desired return across temporal scales.

Inference Speed. As summarized in Table 8, MAGE achieves a favorable balance between perfor-
mance and efficiency. It runs approximately 50× faster than HD and 80× faster than DD. While
slightly slower than some other Transformer-based methods, MAGE maintains a low inference time
of 27 ms per step. This rate is well within the 20 Hz requirement for real-time robotic control (Reed
et al., 2022), demonstrating its practical applicability.

Role of the Adapter for Conditional Guidance. To evaluate whether Lcond can be applied without
the adapter, we introduce a variant named MAGE (direct decoder) in Table 9, where the conditional
loss is added directly to the main decoder. This variant results in a noticeable performance drop,
indicating that the decoder’s reconstruction behavior is adversely affected. The conditional objective
interferes with the learned decoding distribution, leading to degraded trajectory consistency. In
contrast, the adapter cleanly separates Lcond from the decoder, ensuring stable optimization and
stronger overall performance.

5 RELATED WORK

5.1 GENERATION-BASED OFFLINE RL

Offline RL (Kostrikov et al., 2022; Kumar et al., 2020; Fujimoto et al., 2018; Fujimoto & Gu, 2021;
Fujimoto et al., 2019; Kumar et al., 2019) aims to learn policies from static datasets. A prominent
branch of work is generation-based methods (Chen et al., 2021; Lee et al., 2023; Ye & Gombolay,
2024; Zhang et al., 2023), which leverage generative models like Transformers (Vaswani et al.,
2017), flows (Kingma & Dhariwal, 2018), and diffusion models (Ho et al., 2020) to model the data
distribution. Among these, diffusion-based approaches have been widely adopted.

Despite their powerful modeling capacity, diffusion-based RL methods face notable challenges.
Approaches like Diffusion-QL (Wang et al., 2023) learn a policy with Q regularization, while
Diffuser (Janner et al., 2022), Decision Diffuser (Ajay et al., 2023), and RGG (Lee et al., 2023)
generate trajectories for planning. However, they are plagued by a local generation bias (Lu et al.,

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

2025), which can compromise global coherence, especially in long-horizon sparse-reward tasks.
Their iterative denoising also results in slow inference.

5.2 HIERARCHICAL RL

Recent hierarchical methods in offline RL are often inspired by human decision-making processes.
Hierarchical offline RL (Ajay et al., 2021; Rao et al., 2022) decomposes long-horizon tasks into man-
ageable subproblems, which can be broadly categorized as subgoal-based or skill-based (Hutsebaut-
Buysse et al., 2022). Subgoal-based methods identify intermediate targets (Pateria et al., 2020), while
skill-based approaches learn reusable low-level behaviors (Villecroze et al., 2022). Although MAGE
can be viewed as subgoal-based, it differs fundamentally by learning a single unified policy across all
latent temporal hierarchies, rather than separate policies for each level.

Existing two-level hierarchical models include HDT (Correia & Alexandre, 2023) and ADT (Ma et al.,
2024), which use an autoregressive framework: a high-level policy generates subgoals or prompts,
and a low-level policy produces actions conditioned on them. Similarly, HDMI (Li et al., 2023) and
HD (Chen et al., 2024) employ a diffusion-based two-stage process, first generating subgoals under
reward guidance and then producing subgoal-conditioned trajectories. While effective, these methods
often fail to capture the full spectrum of multi-scale temporal dependencies in long-horizon tasks.

CARP (Gong et al., 2025) is a multi-level method that generates action sequences based on current
state. Due to their high-frequency and non-smooth characteristics, action sequences (like joint
torques) are considerably more difficult to predict (Ajay et al., 2023; Tedrake, 2009). Moreover,
without explicit return conditioning, the approach cannot guarantee high returns. In contrast, MAGE
utilizes a return-conditioned, multi-scale auto-regressive process over states and RTG, ensuring
high-performance outcomes. Please refer to Appendix B.7 for more in-depth discussion of MAGE
and others.

6 DISCUSSION

MAGE introduces a coarse-to-fine generative framework that enhances long-horizon trajectory mod-
eling. The approach achieves strong performance across diverse offline RL benchmarks and shows
clear advantages over prior generation-based and hierarchical methods.

In parallel, MAGE also has certain characteristics that may affect its behavior in challenging settings.
OGBench (Seohong Park et al., 2025) is an excellent large-scale benchmark that provides a compre-
hensive evaluation of offline RL methods, especially in environments with extremely sparse rewards
and long horizons. We compared several strong algorithms on these difficult tasks and found that
MAGE performs competitively, although fully handling such extreme scenarios remains an open
challenge. The results on these long-horizon maze tasks are summarized in Table 25.

The hierarchical structure in MAGE introduces natural trade-offs. The model commits to a global plan
at coarse scales, which limits the degree to which finer-scale predictions can adjust early decisions.
In addition, distribution shifts that fall outside the support of the dataset represent a long-standing
out-of-distribution challenge in offline RL, and further research is needed to better handle such
situations.

7 CONCLUSION

We propose MAGE, a multi-scale autoregressive generation method for offline reinforcement learning.
It consists of a multi-scale condition-guide autoencoder and a multi-scale transformer. The transformer
generates trajectories in a multi-time-scale approach conditioning on return-to-goal and current
state. Extensive experiments on five offline RL benchmarks against fifteen approaches validate the
effectiveness of MAGE. The results demonstrate that MAGE successfully integrates multi-scale
trajectory modeling with conditional guidance, enabling the generation of coherent and controllable
trajectories, and could effectively handle tasks with long horizons and sparse rewards.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

Pseudocode and framework diagrams of our proposed method are provided in Appendix A, allowing
readers to understand the algorithmic structure and workflow. All datasets used in our experiments
are publicly available from the D4RL (Fu et al., 2020) benchmark. Detailed hyperparameter settings
for training and evaluation can be found in Appendix B. We have included the source code of MAGE
in the supplementary.

ETHICS STATEMENT

This work focuses on developing and evaluating reinforcement learning methods in simulated
environments. Our study does not involve human subjects, personally identifiable information, or
sensitive data. The datasets and benchmarks used are publicly available and widely adopted in the
reinforcement learning community. We believe that our research does not raise ethical concerns
related to privacy, fairness, or potential misuse.

REFERENCES

Anurag Ajay, Aviral Kumar, Pulkit Agrawal, Sergey Levine, and Ofir Nachum. OPAL: offline
primitive discovery for accelerating offline reinforcement learning. In ICLR, 2021.

Anurag Ajay, Yilun Du, Abhi Gupta, Joshua B. Tenenbaum, Tommi S. Jaakkola, and Pulkit Agrawal.
Is conditional generative modeling all you need for decision making? In ICLR, 2023.

Per-Arne Andersen, Morten Goodwin, and Ole-Christoffer Granmo. Deep rts: a game environment
for deep reinforcement learning in real-time strategy games. In CIG, 2018.

Michael Bain and Claude Sammut. A framework for behavioural cloning. In Machine intelligence
15, 1995.

Chang Chen, Fei Deng, Kenji Kawaguchi, Caglar Gulcehre, and Sungjin Ahn. Simple hierarchical
planning with diffusion. In ICLR, 2024.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel,
Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence
modeling. In NeurIPS, 2021.

Seohong Park, Dibya Ghosh, Benjamin Eysenbach, and Sergey Levine. Hiql: Offline goal-conditioned
rl with latent states as actions. In NeurIPS, 2023.

Seohong Park, Kevin Frans, Benjamin Eysenbach, and Sergey Levine. Ogbench: Benchmarking
offline goal-conditioned rl. In ICLR, 2025.

Shutong Ding, Ke Hu, Zhenhao Zhang, Kan Ren, Weinan Zhang, Jingyi Yu, Jingya Wang, and
Ye Shi. Diffusion-based reinforcement learning via q-weighted variational policy optimization. In
NeurIPS, 2024.

André Correia and Luis A. Alexandre. Hierarchical decision transformer. In IROS, 2023.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4RL: datasets for deep
data-driven reinforcement learning. In CoRR, 2020.

Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning. In
NeurIPS, 2021.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
critic methods. In ICML, 2018.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. In ICML, 2019.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Zhefei Gong, Pengxiang Ding, Shangke Lyu, Siteng Huang, Mingyang Sun, Wei Zhao, Zhaoxin Fan,
and Donglin Wang. Carp: Visuomotor policy learning via coarse-to-fine autoregressive prediction.
In ICCV, 2025.

Abhishek Gupta, Vikash Kumar, Corey Lynch, Sergey Levine, and Karol Hausman. Relay policy
learning: Solving long-horizon tasks via imitation and reinforcement learning. In CoRL, 2019.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In NeurIPS,
2020.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe,
Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for
nlp. In ICML. PMLR, 2019.

Matthias Hutsebaut-Buysse, Kevin Mets, and Steven Latré. Hierarchical reinforcement learning: A
survey and open research challenges. Mach. Learn. Knowl. Extr., 4(1):172–221, 2022.

Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning as one big sequence
modeling problem. In NeurIPS, 2021.

Michael Janner, Yilun Du, Joshua B. Tenenbaum, and Sergey Levine. Planning with diffusion for
flexible behavior synthesis. In ICML, 2022.

Diederik P. Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible 1x1 convolutions.
In NeurIPS, 2018.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. In ICLR, 2014.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit
q-learning. In ICLR, 2022.

Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabilizing off-policy
q-learning via bootstrapping error reduction. In NeurIPS, 2019.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. In NeurIPS, 2020.

Sascha Lange, Thomas Gabel, and Martin Riedmiller. Batch reinforcement learning. In Reinforcement
learning: State-of-the-art. Springer, 2012.

Kyowoon Lee, Seongun Kim, and Jaesik Choi. Refining diffusion planner for reliable behavior
synthesis by automatic detection of infeasible plans. In NeurIPS, 2023.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tutorial,
review, and perspectives on open problems. In arXiv, 2020.

Wenhao Li, Xiangfeng Wang, Bo Jin, and Hongyuan Zha. Hierarchical diffusion for offline decision
making. In ICML, 2023.

Rui Lu, Runzhe Wang, Kaifeng Lyu, Xitai Jiang, Gao Huang, and Mengdi Wang. Towards under-
standing text hallucination of diffusion models via local generation bias. In ICLR, 2025.

Yi Ma, Jianye Hao, Hebin Liang, and Chenjun Xiao. Rethinking decision transformer via hierarchical
reinforcement learning. In ICML, 2024.

Shubham Pateria, Budhitama Subagdja, and Ah-Hwee Tan. Hierarchical reinforcement learning with
integrated discovery of salient subgoals. In AAMAS, 2020.

Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, Giulia Vezzani, John Schulman, Emanuel
Todorov, and Sergey Levine. Learning complex dexterous manipulation with deep reinforcement
learning and demonstrations. In Robotics: Science and Systems, 2018.

Dushyant Rao, Fereshteh Sadeghi, Leonard Hasenclever, Markus Wulfmeier, Martina Zambelli,
Giulia Vezzani, Dhruva Tirumala, Yusuf Aytar, Josh Merel, Nicolas Heess, and Raia Hadsell.
Learning transferable motor skills with hierarchical latent mixture policies. In ICLR, 2022.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Scott Reed, Konrad Zolna, Emilio Parisotto, Sergio Gomez Colmenarejo, Alexander Novikov, Gabriel
Barth-Maron, Mai Gimenez, Yury Sulsky, Jackie Kay, Jost Tobias Springenberg, et al. A generalist
agent. In TMLR, 2022.

Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. In ICLR, 2021.

Richard S. Sutton and Andrew G. Barto. Reinforcement learning - an introduction. MIT Press, 2018.

Shengpu Tang, Maggie Makar, Michael Sjoding, Finale Doshi-Velez, and Jenna Wiens. Leveraging
factored action spaces for efficient offline reinforcement learning in healthcare. In NeurIPS, 2022.

Russ Tedrake. Underactuated robotics: Learning, planning, and control for efficient and agile
machines course notes for mit 6.832. In Working draft edition, 2009.

Keyu Tian, Yi Jiang, Zehuan Yuan, Bingyue Peng, and Liwei Wang. Visual autoregressive modeling:
Scalable image generation via next-scale prediction. In NeurIPS, 2024.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In IROS, 2012.

Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. In NeurIPS, 2017.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In NeurIPS, pp. 5998–6008, 2017.

Adam R Villaflor, Zhe Huang, Swapnil Pande, John M Dolan, and Jeff Schneider. Addressing
optimism bias in sequence modeling for reinforcement learning. In ICML, 2022.

Valentin Villecroze, Harry J. Braviner, Panteha Naderian, Chris J. Maddison, and Gabriel Loaiza-
Ganem. Bayesian nonparametrics for offline skill discovery. In ICML, volume 162, pp. 22284–
22299. PMLR, 2022.

Zhendong Wang, Jonathan J. Hunt, and Mingyuan Zhou. Diffusion policies as an expressive policy
class for offline reinforcement learning. In ICLR, 2023.

Grady Williams, Paul Drews, Brian Goldfain, James M Rehg, and Evangelos A Theodorou. Aggres-
sive driving with model predictive path integral control. In ICRA, 2016.

Yiqin Yang, Xiaoteng Ma, Chenghao Li, Zewu Zheng, Qiyuan Zhang, Gao Huang, Jun Yang, and
Qianchuan Zhao. Believe what you see: Implicit constraint approach for offline multi-agent
reinforcement learning. In NeurIPS, 2021.

Sean Ye and Matthew C Gombolay. Efficient trajectory forecasting and generation with conditional
flow matching. In IROS, 2024.

Tianhe Yu, Aviral Kumar, Rafael Rafailov, Aravind Rajeswaran, Sergey Levine, and Chelsea Finn.
COMBO: conservative offline model-based policy optimization. In NeurIPS, 2021.

Tianjun Zhang, Michael Janner, Yueying Li, Tim Rocktäschel, Edward Grefenstette, Yuandong Tian,
et al. Efficient planning in a compact latent action space. In ICLR, 2023.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Appendix
A ALGORITHM

For completeness, we provide detailed algorithmic descriptions and the overall framework in this
section. Together, these pseudocode listings provide a transparent view of both the quantization and
latent prediction stages, complementing the high-level descriptions in the main text. They serve as
a step-by-step reference for reproducing our method and clarifying the implementation details that
underpin the proposed framework.

In addition, the framework illustration (Figure 2) offers an intuitive overview of how these components
interact, highlighting the multi-scale representation and condition-guided generation process that
form the core of MAGE.

A.1 BACKGROUND

A.1.1 VECTOR QUANTIZED VARIATIONAL AUTOENCODER

The Vector Quantized Variational Autoencoder (VQ-VAE) (Van Den Oord et al., 2017) encodes
an input into a discrete tokens. It extends the standard Variational Autoencoder (VAE) (Kingma &
Welling, 2014) by introducing discrete latent variables through vector quantization. It consists of
an encoder Eϕ that maps an input x ∈ X to a continuous latent ze = Eϕ(x) ∈ RD, a learnable
codebook with K embedding vectors {ek}Kk=1 where ek ∈ RD, and a decoder Dθ that maps discrete
codes zq to a reconstruction x̂ = Dθ(zq). Each encoder output ze is replaced by its nearest neighbor
in the codebook to obtain the discrete token zq:

zq = Quantize(ze) = ek, k = argmin
j
∥ze − ej∥2. (A.1)

This enables the model to learn discrete representations suitable for autoregressive modeling.

The VQ-VAE is trained by jointly optimizing reconstruction quality and aligning encoder outputs
with their assigned codebook vectors. The overall loss is

L = ∥x− x̂∥22 + ∥sg[ze]− ek∥22 + β∥ze − sg[ek]∥22, (A.2)

where sg[·] denotes the stop-gradient operator and β controls the encoder’s commitment to codebook
entries. Gradients are copied from zq to ze during backpropagation, enabling end-to-end learning
despite the discrete bottleneck.

A.2 MAGE FRAMEWORK

The MAGE(Multi-scale Autoregressive GEneration) framework is designed to model trajectories in a
hierarchical and multi-scale manner, capturing both global structures and local dynamics.

As shown in Figure 2(a), trajectories are first quantized across multiple scales, where higher-level
latents encode coarse, long-horizon patterns, while lower-level latents capture fine-grained, short-
horizon variations. This hierarchical representation enables the model to preserve coherent structures
across temporal scales while effectively propagating high-level information to guide the generation
of long-horizon trajectories.

Figure 2(b) illustrates the conditional trajectory generation process in MAGE. At each scale, MAGE
autoregressively predicts latent variables conditioned on past latents and return-to-go. These pre-
dictions are then refined and fine-tuned to better align the generated trajectories with the provided
conditions. The refined latents are finally decoded into states, producing coherent trajectories across
scales.

A.3 MULTI-SCALE QUANTIZATION

The first part presents the multi-scale quantization procedure of our VQ-VAE framework.

This pseudocode illustrates how the encoder maps a trajectory into hierarchical continuous embed-
dings, how these embeddings are quantized across scales using codebook lookups, and how the

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

discrete hierarchy is aggregated into the final latent representation f̂ for trajectory reconstruction. The
pseudocode emphasizes the residual connections across scales, ensuring that finer levels progressively
refine the coarser representations while mitigating information loss.

Algorithm 3 Multi-scale Encoding

Require: raw Trajectory τ = {(s0, R0), (s1, R1), . . . , (sT , RT )}; Number of scales K, scales
lk

K
k=1; codebook C

1: f = E(τ,R0), M = [], Z = [];
2: for k = 1, · · · ,K do
3: mk = Q(Scale_down(f, lk));
4: M = queue_push(M,mk);
5: zk = Lookup(C,mk);
6: zk = Scale_up(ẑk, lK);
7: f = f − zk;
8: end for

Ensure: multi-scale token maps M ;

Algorithm 4 Multi-scale Decoding

Require: multi-scale token maps M ; Number of scales K, scales lkKk=1;current state s0; codebook
C

1: for k = 1, · · · ,K do
2: mk = queue_pop(M);
3: zk = Lookup(C,mk);
4: zk = Scale_up(zk, lK);
5: end for
6: Z = (z1, · · · , zK)
7: τ̂ = D(Z,R0);

Ensure: reconstructed trajectory τ̂ ;

A.4 AUTOREGRESSIVE GENERATION PROCESS

The second part of the appendix provides the pseudocode for the Transformer-based latent prediction
process. In this procedure, the Transformer autoregressively predicts codebook indices conditioned
on the initial state s0 and target return R0, thereby capturing temporal dependencies in the discrete
latent space.

The pseudocode explicitly demonstrates how predicted indices are embedded into tokens, how the
model outputs categorical distributions over codebook entries, and how the training is performed with
cross-entropy loss against the ground-truth indices.

It further outlines the inference phase, where the most probable indices are selected, the corresponding
codebook vectors are retrieved, and the resulting multi-scale latent representation is decoded to
reconstruct the trajectory.

A.4.1 GUIDING MODELS WITH CONDITIONAL CONSTRAINTS

While the cross-entropy loss enforces consistency between predicted and ground-truth latent variables,
it does not guarantee that the generated trajectory strictly matches the prescribed initial state s0 and
target RTG. As a result, the generated rollouts may deviate from the desired conditional targets.
Moreover, since the latent variables are discrete and quantized representations, information loss
is inevitable; even perfectly predicted latents can still lead to biased reconstructions. To address
these limitations, we introduce a condition-guided refinement mechanism that enables end-to-end
optimization, ensuring that generated trajectories adhere both to the autoregressive latent dynamics
and to the input conditions.

Concretely, we decode the autoregressively predicted multi-scale latents Z using the decoder D, with
its parameters frozen to preserve the trajectory prior it has learned. However, a fixed decoder cannot

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Algorithm 5 Training Multi-scale Transformer with Cross-Entropy and Conditional Fine-Tuning

Require: training trajectories {τ}; VQ-VAE encoder for ground-truth tokens; codebook C; number
of scales K; scales {lk}Kk=1; hyperparameters λcond

1: initialize Transformer parameters θ and adapter parameters ϕ
2: for each mini-batch of trajectories do
3: LCE ← 0
4: for each trajectory τ in the mini-batch do
5: obtain ground-truth multi-scale tokens mapsMgt = {mgt

k,i}
K,lk
k=1,i=1 using the VQ-VAE

encoder
6: Msoft ← []
7: for k = 1, · · · ,K do
8: for i = 1, · · · , pk do
9: prepare input tokens with s0, R0,Msoft

10: obtain logits lk,i ← Transformerθ(tokens)
11: compute predicted categorical distribution m̂k,i = softmax(lk,i)
12: accumulate cross-entropy loss LCE += − log m̂k,i[m

gt
k,i]

// Straight-through estimator
13: ysoft

k,i ← GumbelSoftmax(lk,i, τg)
14: mhard

k,i ← argmax(ysoft
k,i )

15: construct one-hot yhard
k,i with 1 at index mhard

k,i

16: apply STE: yk,i ← yhard
k,i − stopgrad(ysoft

k,i ) + ysoft
k,i

17: compute soft codebook vector zk,i ← y⊤k,iC
18: end for
19: scale up zk ← Scale_up(zk, lk)
20: append soft token Msoft ← queue_push(Msoft, yk)
21: end for
22: Z ← (z1, · · · , zK)
23: decode with adapter-augmented decoder τ̂ ← D′(Z,R0)

24: compute condition loss Lcond ← ∥(R0, s0)− τ̂0∥22
25: end for
26: total loss L ← LCE + λcondLcond

27: update θ and ϕ by descending gradient of L
28: end for
Ensure: trained Transformer parameters θ and adapter parameters ϕ

dynamically adapt to specific conditional inputs, limiting its ability in conditional generation. Inspired
by parameter-efficient fine-tuning, we insert lightweight adapter (Houlsby et al., 2019) modules
between decoder layers. These adapters specialize in modulating internal representations according
to the conditional signals, thereby enhancing the sensitivity of the decoder to s0 and the target RTG.

To enable gradient propagation through the inherently non-differentiable codebook lookup, we adopt
the Gumbel-Softmax relaxation. Instead of sampling hard indices directly, we draw differentiable
approximations from the categorical distribution. In the forward pass, the straight-through estimator
discretizes these samples via argmax for codebook indexing, while in the backward pass, gradients
are computed with respect to the continuous relaxation. This mechanism preserves the discrete struc-
ture required for decoding while ensuring differentiability, thereby allowing end-to-end optimization
under conditional constraints.

Under this end-to-end differentiable framework, the latents Z is decoded through the adapter-
augmented decoder to produce the final trajectory τ̂ . To enforce strict conditional alignment, we
introduce a condition loss defined as the mean squared error between the decoded initial state-return
pair and the target condition.

Lcond = ∥D′(Z)0 − (s0, R0)∥
2
2 . (A.3)

Here, D′ denotes the decoder equipped with adapters, and Z represents the latent representation
retrieved from the codebook based on the indices predicted by the model. This loss not only adapts

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

the decoder to the current condition but also guides the latent prediction process, encouraging the
model to compose optimal discrete tokens from the fixed codebook so that the decoded trajectory
precisely satisfies the specified initial conditions.

B EXPERIMENT DETAILS

B.1 EXPERIMENTAL SETUP

We describe the baseline algorithms used in our experiments in detail, organized into three categories
based on their approach.

• Non-generation-based Methods. This category includes approaches that do not rely on explicit
generative modeling. BC learns policies by directly imitating expert demonstrations through
supervised learning, while CQL regularizes Q-value estimation to prevent overestimation and im-
prove stability in offline settings. IQL further decouples Q-function learning from policy updates,
achieving better robustness by avoiding direct policy constraints. In contrast, MPPI (Williams
et al., 2016) is a model-based control method which uses learned or known dynamics to sam-
ple candidate trajectories and optimizes them with a cost function, representing a trajectory
optimization approach rather than a pure policy learning method.

• Generation-based methods. These methods reframe offline RL as a conditional generative mod-
eling task, learning to generate trajectories or actions conditioned on states and task signals (e.g.,
desired returns or Q-values) instead of directly optimizing a policy. DT and TT employ Trans-
former architectures to model long-horizon dependencies. DT conditions on desired returns and
generates actions autoregressively, while TT focuses on trajectory-level prediction by learning a
sequence model over state–action pairs. Diffuser and Decision Diffuser adopt diffusion models to
synthesize entire trajectories under task constraints; the latter incorporates classifier-free guidance
to balance multiple conditional signals. Diffusion-QL differs by integrating Q-learning signals
directly into the diffusion process, generating high-value actions rather than full trajectories,
thereby bridging generative modeling with value-based RL.

• Hierarchical generation methods. Long-horizon tasks are particularly challenging for flat
generative models, motivating hierarchical designs. ADT introduces a hierarchical reinforcement
learning framework, where a high-level policy generates prompts that guide a low-level Decision
Transformer to produce actions, thus enhancing the ability to stitch suboptimal trajectories into
coherent solutions. HDMI leverages graph-based planning to extract subgoals and incorporates
them into diffusion-based trajectory generation. HD improves diffusion planning efficiency by
using jumpy hierarchical planning to expand the temporal horizon effectively. CARP uses a
coarse-to-fine generation strategy for imitation learning, first producing coarse action chunks and
then refining them into precise actions.

The work used for comparison is listed as shown in table 10.

B.1.1 COMPUTING RESOURCES

The experimental work was carried out on a high-performance computing cluster that includes several
NVIDIA GeForce RTX 4090 GPUs to supply the required computing power. The cluster is also

1https://github.com/BY571/CQL
2https://github.com/ikostrikov/implicit_q_learning
3https://github.com/kzl/decision-transformer
4https://github.com/ZhengyaoJiang/latentplan
5https://github.com/mamengyiyi/Autotuned-Decision-Transformer
6https://github.com/JannerM/trajectory-transformer
7https://github.com/jannerm/diffuser
8https://github.com/leekwoon/rgg
9https://github.com/anuragajay/decision-diffuser

10https://github.com/HeyuanMingong/DiffusionQL
11https://github.com/changchencc/Simple-Hierarchical-Planning-with-Diffusion
12https://github.com/ZhefeiGong/carp

17

https://github.com/BY571/CQL
https://github.com/ikostrikov/implicit_q_learning
https://github.com/kzl/decision-transformer
https://github.com/ZhengyaoJiang/latentplan
https://github.com/mamengyiyi/Autotuned-Decision-Transformer
https://github.com/JannerM/trajectory-transformer
https://github.com/jannerm/diffuser
https://github.com/leekwoon/rgg
https://github.com/anuragajay/decision-diffuser
https://github.com/HeyuanMingong/DiffusionQL
https://github.com/changchencc/Simple-Hierarchical-Planning-with-Diffusion
https://github.com/ZhefeiGong/carp


918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 10: Baseline algorithms

No. Algorithm Brief Description

1 BC (Bain & Sammut, 1995) Trains a model by directly learning from examples provided by an
expert, enabling the model to mimic the expert’s behavior

2 CQL1 (Kumar et al., 2020) Updates Q-values conservatively to improve stability and sample
efficiency

3 IQL2 (Kostrikov et al., 2022) Decouples policy updates from Q-value estimation to improve the
stability and performance of offline reinforcement learning

4 DT3 (Chen et al., 2021)
Uses a Transformer architecture to model sequences of states,
actions, and rewards, enabling it to make decisions based on the
entire history of interactions and desired outcomes

5 TAP4 (Zhang et al., 2023)
Addresses the challenge of high-dimensional control by planning
over temporally abstract latent actions, drastically reducing decision
latency while improving performance

6 ADT5 (Ma et al., 2024) Jointly optimizes high-level prompt and low-level action policies to
improve Decision Transformer’s ability to stitch trajectories

7 TT6 (Janner et al., 2021) Predicts future states and actions by modeling sequences of past
trajectories

8 MPPI (Williams et al., 2016) Uses a probabilistic approach to optimize control inputs by sampling
future trajectories and selecting the best one based on a cost function

9 Diffuser7 (Janner et al., 2022) Leverages diffusion models to generate high-reward trajectories
conditioned on past experiences and guided by rewards

10 RGG8 (Lee et al., 2023) Improves diffusion-based planners by training a "gap predictor" that
guides trajectory generation away from unreliable plans

11 Decision Diffuser9 (Ajay et al., 2023) Incorporates classifier-free guidance to dynamically fuse multiple
conditions, enabling more flexible and diverse policy generation

12 Diffusion QL10 (Wang et al., 2023)
Combines behavior cloning with Q-learning guidance during
training to generate high-value actions through an iterative denoising
process

13 HDMI (Li et al., 2023)
Extracts subgoals by using a graph-based planning method that
constructs a weighted graph from the dataset and finds optimal
subgoal sequences through shortest path search

14 HD11 (Chen et al., 2024) Improves diffusion planning efficiency and generalization in
long-horizon tasks by using a jumpy planning strategy

15 CARP12 (Gong et al., 2025) Introduces a coarse-to-fine generation method for the refinement of
action chunks

equipped with Intel(R) Xeon(R) Gold 6348 CPUs, each operating at a frequency of 2.60GHz. In
order to verify the reliability of our findings, we executed our algorithm on five separate occasions
for each experimental configuration, utilizing distinct random seeds each time.

B.1.2 ENVIRONMENT AND HYPERPARAMETERS

Our method is implemented based on the source code of DT (Chen et al., 2021), TAP (Zhang et al.,
2023) and VAR (Tian et al., 2024).

The training hyperparameters for the Adroit environment in trajectory generation are shown in Table
11. The training hyperparameters for the Kitchen environment in trajectory generation are shown
in Table 12. The training hyperparameters for the Antmaze environment in trajectory generation
are shown in Table 13. The training hyperparameters for the Maze2D and Multi2D environment in
trajectory generation are shown in Table 14.

The learning rate controls the step size during optimization, ensuring stable updates to model
parameters. The horizon specifies the number of future steps considered in trajectory prediction,
which is crucial in tasks requiring long-term reasoning. Dropout is used to prevent overfitting and
improve generalization, while the discount factor balances immediate and long-term rewards. Higher
values encourage the agent to prioritize delayed outcomes, which are common in sparse reward
scenarios. The codebook size defines the capacity of discrete latent representations for trajectory
modeling, and the number of Transformer blocks, attention heads, and embedding dimensions
together determine the expressive power of the sequence model. Batch size influences both training
stability and computational efficiency, while the Adam optimizer is employed to adaptively adjust

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

learning rates during training. All experiments use datasets provided by the D4RL benchmark
suite (Fu et al., 2020), which standardizes offline reinforcement learning evaluation and ensures
comparability across methods.

In general, we normalize the RTG values for each environment based on the task’s return range and
set the guided value to around 1.0. We use a fixed conditional consistency weight λcond = 0.2 and set
the number of temporal scales to K = 8.

Adroit The Adroit benchmark focuses on dexterous robotic hand manipulation and is widely
regarded as one of the most challenging domains in offline reinforcement learning due to its high-
dimensional continuous action space, contact-rich dynamics, and extremely sparse rewards. It
contains four primary tasks that evaluate different aspects of fine-grained control. In the pen task, the
robot hand must rotate and manipulate a pen to match a desired orientation, requiring precise finger
coordination and continuous adjustment of forces. The door task involves opening a door by turning
the handle and pulling it open, which demands both grasping and forceful motion under complex
dynamics. The hammer task requires the agent to pick up a hammer and strike a nail into a board,
posing difficulties due to unstable contact interactions and the need for accurate motion sequencing.
Finally, the relocate task challenges the agent to grasp a ball and place it at a designated target location,
which requires the integration of grasping, lifting, and accurate placement in three-dimensional space.
Together, these tasks test whether an algorithm can generate coherent long-horizon action sequences
that achieve realistic manipulation skills.

Each task is available with three types of datasets that reflect different data collection strategies. The
expert dataset is collected from demonstrations generated by a near-optimal policy and represents
high-quality trajectories that closely follow the desired behavior. The human dataset is collected
from human teleoperation, resulting in diverse but suboptimal demonstrations that include natural
variations and mistakes. The cloned dataset is generated by a behavior cloning policy trained on
human demonstrations, which often produces noisy and inconsistent trajectories due to compounding
errors. These datasets pose varying levels of difficulty: while the expert data is relatively easier to
learn from, the human and cloned datasets are much more challenging, as they require the algorithm
to handle noisy, imperfect trajectories and extract meaningful learning signals from suboptimal
behaviors. For the Adroit tasks, we adopt the hyperparameter configurations summarized in Table 11.

Table 11: Hyperparameter Settings for Adroit environment

Hyper-parameter Value

learning rate 2e-4
horizon 24

dropout rate 0.1
discount 0.99

codebook size 512
transformer blocks 8

attention head 4
embed dim 512
batch size 512
optimizer Adam optimizer

Franka Kitchen The Franka Kitchen environment is a multi-task, high-dimensional manipulation
benchmark designed to evaluate planning and generalization in realistic, non-navigation settings.
It involves controlling a 9-DoF Franka robot to interact with several common household items,
including a microwave, a kettle, an overhead light, cabinets, and an oven. Each task requires the
agent to manipulate these objects to reach a specific goal configuration, often involving multiple
sub-goals executed in a particular sequence. For example, a goal state may require opening the
microwave and a sliding cabinet door, placing the kettle on the top burner, and turning on the overhead
light. The main challenge of this environment lies in its long-horizon, sequential, and combinatorial
nature. Agents must plan over multiple sub-goals while respecting their dependencies, and trajectories

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

collected in this domain often contain complex, non-trivial paths through the state space. Success
therefore depends on effective generalization to unseen states, rather than simply reproducing training
trajectories.

D4RL provides three types of datasets to study this environment. The complete dataset consists of
trajectories in which the robot performs all tasks in order, offering demonstrations that are relatively
easy for imitation learning methods. The partial dataset contains undirected subtasks, but a subset
of trajectories can still solve the tasks, allowing agents to succeed by selectively choosing relevant
segments. Finally, the mixed dataset contains only undirected subtasks with no complete solutions,
requiring agents to stitch together relevant sub-trajectories and generalize the most in order to achieve
successful task execution. These datasets collectively benchmark an algorithm’s ability to handle
multi-task manipulation, sequential planning, and generalization in a realistic robotic environment.

Table 12: Hyperparameter Settings for Franka Kitchen environment

Hyper-parameter Value

learning rate 2e-4
horizon 24

dropout rate 0.1
discount 0.99

codebook size 2048
transformer blocks 8

attention head 4
embed dim 512
batch size 512
optimizer Adam optimizer

Antmaze The AntMaze benchmark is one of the most challenging tasks in offline reinforcement
learning, designed to evaluate long-horizon planning and effective credit assignment under sparse
reward settings. In this environment, a quadrupedal ant robot must navigate through maze-like
structures to reach a distant goal location. The task is difficult due to the combination of a high-
dimensional continuous action space, complex dynamics, and extremely sparse feedback, where
the agent is rewarded only after successfully reaching the goal. Mazes of different sizes (U-shaped,
medium, and large) also vary in complexity, with larger mazes requiring more complex planning
and longer-term vision. Therefore, AntMaze is a standard platform for testing algorithms’ ability to
perform global reasoning and generate coherent sequences of actions with long horizons. For this
environment, we adopt the hyperparameter settings summarized in Table 13.

Table 13: Hyperparameter Settings for Antmaze environment

Hyper-parameter Value

learning rate 2e-4
horizon 24

dropout rate 0.1
discount 0.998

codebook size 1024
transformer blocks 8

attention head 4
embed dim 512
batch size 512
optimizer Adam optimizer

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Maze2D & Multi2D The Maze2D benchmark provides a series of 2D navigation tasks where
a point-mass agent must traverse complex maze layouts to reach a goal position. Although the
dynamics are simple, the challenge lies in long-term planning under sparse rewards, as the agent only
receives a positive signal when the goal is reached. Maze2D consists of several difficulty levels, such
as U-maze, medium, and large mazes, with increasing structural complexity that requires the agent
to discover feasible paths across longer horizons. In this setting, the start position of the agent is
fixed while the goal position is randomized across episodes, which prevents overfitting to a single
target location. The Multi2D variant further increases the difficulty by randomizing both the start
and goal positions in each episode, forcing the agent to generalize over a much broader distribution
of navigation tasks. Together, Maze2D and Multi2D serve as canonical benchmarks for evaluating
the ability of algorithms to plan effectively under sparse feedback and diverse conditions. For these
environments, we adopt the hyperparameter settings reported in Table 14.

Table 14: Hyperparameter Settings for Maze2D and Multi2D environment

Hyper-parameter Value

learning rate 2e-4
horizon 24

dropout rate 0.1
discount 0.99

codebook size 256
transformer blocks 4

attention head 4
embed dim 256
batch size 512
optimizer Adam optimizer

Gym locomotion control The Gym locomotion control benchmark comprises a set of continuous
control tasks including HalfCheetah, Walker2d, and Ant, where agents with articulated bodies
must learn to move forward efficiently. These tasks are built on simplified physics engines that
capture essential dynamics of legged locomotion. At each timestep, the agent observes a vector of
physical variables such as joint angles, joint velocities, and body orientation, and outputs continuous
torque commands to control its joints. The reward functions are typically dense, combining terms
for forward velocity, stability, and control cost, which guide the agent toward producing smooth
and sustainable gaits. Each environment poses distinct locomotion challenges: HalfCheetah
focuses on generating rapid forward motion in a planar setting, Walker2d requires maintaining
upright balance while walking bipedally, and Ant involves coordinating multiple legs to achieve
stable quadrupedal movement. Collectively, these benchmarks evaluate an algorithm’s ability to learn
coordinated control policies under continuous dynamics and varying morphological structures. For
these environments, we adopt the hyperparameter settings reported in Table 15.

B.2 ADDITIONAL RESULTS FOR COMPARISON STUDY

In this section, we provide additional experimental results that were not included in the main text
due to space limitations. These results cover a broader set of baseline methods, including flat
reinforcement learning algorithms as well as several hierarchical reinforcement learning approaches.
The purpose of this comparison is to offer a more comprehensive view of the performance landscape,
complementing the results reported in the main paper.

Adroit We additionally evaluate several representative baselines on the Adroit benchmarks. BC
learns a policy by supervised imitation of expert demonstrations. CQL regularizes Q-learning to avoid
overestimation of out-of-distribution actions. TT models trajectories as autoregressive sequences
with a transformer. TAP (Zhang et al., 2023) leverages a discrete latent action space learned with
VQ-VAE to enable efficient planning in continuous control tasks. As shown in Table 16, all these
baselines are clearly outperformed by our method across different scenarios.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 15: Hyperparameter Settings for Gym locomotion control tasks

Hyper-parameter Value

learning rate 2e-4
horizon 24

dropout rate 0.1
discount 0.99

codebook size 512
transformer blocks 8

attention head 4
embed dim 512
batch size 512
optimizer Adam optimizer

Table 16: Additional baseline comparisons for the Adroit scenarios. Results are averaged over 5 random training
seeds, with each seed tested 20 times. Bold numbers indicate the best performance.

Scenario BC CQL TT TAP MAGE

Pen
Expert 94.6±3.2 -1.4±2.3 101.8±13.8 127.4±7.7 147.8±4.9
Human 71.0±6.2 13.7±16.9 2.0±3.4 76.5±8.5 137.1±9.0
Cloned 51.9±15.1 1.0±6.6 38.8±13.3 57.4±8.7 108.4±17.6

Door
Expert 105.1±2.4 -0.3±0.0 101.6±4.8 104.8±0.8 106.8±0.1
Human 2.6±5.7 5.5±1.3 0.1±0.0 8.8±1.1 16.5±0.9
Cloned -0.1±0.0 -0.3±0.0 0.0±0.0 11.7±1.5 20.5±2.5

Hammer
Expert 126.7±3.8 0.2±0.0 1.1±0.2 127.6±1.7 131.7±0.2
Human 1.2±2.7 0.1±0.1 1.4±0.1 1.4±0.1 10.4±1.2
Cloned 0.6±0.1 0.3±0.0 0.4±0.0 1.2±0.1 13.2±4.7

Recolate
Expert 107.7±5.8 -0.3±0.0 8.5±3.1 105.8±2.7 109.6±1.6
Human 0.0±0.0 0.0±0.0 0.1±0.0 0.2±0.1 0.3±0.1
Cloned -0.2±0.2 -0.3±0.0 -0.2±0.0 -0.2±0.0 0.0±0.0

Average(w/o expert) 15.9 2.5 5.3 19.6 38.3
Average(all settings) 46.8 1.5 21.3 51.9 66.9

Table 17: Additional baseline comparisons for the Franka Kitchen Scenarios. Results are averaged over 5
random training seeds, with each seed tested 20 times. Bold numbers show the best performance.

Scenario BC CQL Diffuser MAGE

Kitchen
Partial 41.3±3.7 51.3±7.7 52.5±2.5 91.3±3.2
Mixed 48.9±0.7 51.3±7.7 55.7±1.3 86.3±3.3

Average 45.1 51.3 54.1 88.8

Franka Kitchen We additionally evaluate several representative baselines on the Franka Kitchen
benchmarks. BC learns a policy by supervised imitation of expert demonstrations. CQL regularizes
Q-learning to avoid overestimation of out-of-distribution actions. Diffuser models trajectories as
denoising diffusion processes to generate state and action sequences. As shown in Table 17, all these
baselines are clearly outperformed by our method across different scenarios.

Maze2D & Multi2D We further include comparisons on the Maze2D and Multi2D benchmarks
with several additional baselines. MPPI (Williams et al., 2016) is a sampling-based model predictive
control method. Diffuser leverages diffusion probabilistic models to generate trajectories for planning.
RGG (Lee et al., 2023) enhances diffusion planners by introducing the recovery gap metric to detect
and mitigate infeasible plans, improving both reliability and interpretability. As shown in Table 18,

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Table 18: Additional baseline comparisons for the Maze2D and Multi2D scenarios. Results are averaged over 5
random training seeds, with each seed tested 100 times. Bold numbers indicate the best performance.

Scenario MPPI Diffuser RGG MAGE

Maze2D
U-maze 33.2 113.9±3.1 108.8±1.4 145.4±3.2
Medium 10.2 121.5±2.7 131.8±0.5 155.0±3.3
Large 5.1 123.0±6.4 135.4±1.7 159.4±2.9

Single-task Average 16.2 119.5 125.3 153.3

Multi2D
U-maze 41.2 128.9±1.8 128.3±0.8 150.4±1.8
Medium 15.4 127.2±3.4 130.0±0.9 147.7±3.1
Large 8.0 132.1±5.8 148.3±1.4 166.8±3.6

Multi-task Average 21.5 129.4 135.5 155.0

Table 19: Baseline comparisons across different Gym locomotion control tasks. Bold numbers indicate the best
performance.

Task Dataset BC CQL IQL DT TT CARP TAP Diffuser HD MAGE

HalfCheetah
Medium-Expert 55.2 91.6 86.7 86.8 95.0±0.2 57.1±2.7 91.8±0.8 88.9±0.3 92.5±0.3 95.2±0.2
Medium 42.6 49.2 47.4 42.6 46.9±0.4 38.2±1.4 45.0±0.1 42.8±0.3 46.7±0.2 43.9±0.2

Md-Replay 36.6 45.5 44.2 36.6 41.9±2.5 34.6±0.6 40.8±0.6 37.7±0.5 38.1±0.7 46.0±0.2

Walker2d
Medium-Expert 107.5 108.8 109.6 108.1 101.9±6.8 102.2±2.8 107.4±0.9 106.9±0.2 107.1±0.1 110.3±0.1
Medium 75.3 83.0 78.3 74.0 79.0±2.8 60.7±1.8 64.9±2.1 79.6±0.6 84.0±0.6 83.5±0.5

Md-Replay 32.3 77.2 73.9 79.4 82.6±6.9 42.7±1.1 66.8±3.1 70.6±1.6 84.1±2.2 87.8±2.0

Ant
Medium-Expert 114.2 115.8 125.6 122.3 116.1±9.0 107.6±1.8 128.8±2.4 101.8±17.0 109.2±11.7 135.1±1.9
Medium 92.1 90.5 102.3 94.2 83.1±7.3 76.1±0.2 92.0±2.4 79.3±10.8 90.1±8.9 107.4±1.0
Md-Replay 89.2 93.9 88.8 88.7 77.0±6.8 80.2±1.2 96.7±1.4 88.1±6.2 83.2±1.3 99.3±0.9

Average 71.7 83.9 84.0 81.4 80.4 66.6 81.6 77.3 81.7 89.8

our method consistently achieves the best performance across both single-task and multi-task settings,
outperforming all baselines.

B.3 RESULTS FOR GYM LOCOMOTION CONTROL TASKS

We evaluate our method on standard Gym locomotion control environments, including HalfCheetah,
Walker2d, and Ant. These environments involve controlling simulated agents with continuous action
spaces to achieve stable and efficient locomotion. While our approach focuses on long-horizon and
sparse-reward settings, it also demonstrates competitive performance on short-horizon and dense-
reward tasks compared to other baselines. This indicates that our method is capable of generating
coherent trajectories, maintaining fine-grained control, and effectively aligning actions with target
returns across a wide range of locomotion scenarios.

B.4 RESULTS FOR THE MAZE GAME IN FIGURE 2

To investigate the model’s ability to capture multi-scale temporal dynamics, we designed a simple
Maze game. In the game, the agent can only succeed if it starts from the initial position, collects
the silver coin and the gold coin in sequence, and finally reaches the goal. In the dataset, the start
and goal positions are randomized, while the silver and gold coin locations remain fixed but are
not explicitly revealed by the environment. Therefore, the agent must rely on its understanding of
long-horizon spatial information to identify the coin positions and navigate toward them. We study
the performance of Decision Transformer, Decision Diffuser, Hierarchical Diffuser, and our method
in this setting, with the results shown in Figure 1 of the main text. The results show that MAGE can
finish such that long-horizon task while others cannot.

In Figure 4, we analyze the impact of conditional constraints Lcond on MAGE. Even after removing
the conditional constraint Lcond, MAGE still shows an understanding of the long-horizon structure,
locating the silver and gold coins and reaching the goal. However, the resulting trajectories often
become distorted, sometimes walking through walls. This demonstrates that our multi-scale trajectory

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

(b) MAGE(a) MAGE w/o cond

Figure 4: Effect of Conditional Constraints on MAGE: without Lcond, the agent can still locate coins and
reach the goal, but the agent generates the wrong trajectory that crosses the wall.

Table 20: Comparison between explicit and latent inverse dynamics models.

Scenario Explicit Latent (Ours)
Pen-Expert 136.5±6.7 147.8±4.9
Door-Cloned 0.4±0.3 20.5±2.5

Table 21: Effect of codebook size on performance.

Scenario 128 256 512 1024
Pen-Expert 112.9±19.0 146.5±3.1 147.8±4.9 145.3±1.9

Door-Cloned 14.4±2.9 19.7±3.4 20.5±2.5 11.3±2.1

Table 22: Effect of Transformer depth on performance.

Scenario 2 4 8 16
Pen-Expert 109.8±18.3 124.1±17.1 147.8±4.9 145.6±3.4

Door-Cloned 12.4±2.2 14.8±2.4 20.5±2.5 18.4±2.5

modeling approach can effectively capture the long-horizon temporal dynamic, while the conditional
constraints Lcond ensure fine-grain control and guide the model to generate more condition-compliant
trajectories.

B.5 ABLATION STUDY RESULTS

Explicit or Latent Inverse Dynamics Model. As illustrated in Table 20, we perform an ablation study
on where to incorporate the inverse dynamics model. Explicit denotes decoding the trajectory first and
then applying the inverse dynamics model to recover actions, and Latent directly decodes actions from
the latent trajectory. Our approach consistently outperforms the explicit inverse model, indicating
that modeling inverse dynamics in the latent space can more effectively capture trajectory-action
relationships and yielding more accurate action predictions for improved planning performance.

Evaluating Codebook size and Transformer layers. In this experiment, we examine two hyperpa-
rameters of our method, the size of the codebook and the number of Transformer layers. As shown in
Table 21, increasing the codebook size improves performance by enriching the discrete representation,
but when the codebook becomes too large the performance declines due to overfitting and excessive
partitioning of the state space. Table 22 illustrates that adding more Transformer layers initially
enhances performance. However, once the network reaches sufficient depth (≥ 8), the performance
declines, indicating that further scaling provides only limited benefit.

Evaluating RTG-value generalization. We further examine how MAGE responds to different target
RTG values. After normalizing the RTG (default target set to 1.0), we evaluate four settings: low

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Table 23: Performance under different target RTG settings.

Scenario Low Medium High OOD
Pen-Expert 55.6± 12.9 121.6± 9.9 147.8± 4.9 135.2± 8.0

Door-Cloned 0.0± 0.0 6.6± 2.1 20.5± 2.5 16.8± 2.5

Table 24: Effect of RTG-based reweighting compared with RTG conditioning.

Scenario MAGE (w/o condition) MAGE (reweight) MAGE
Pen-Expert 92.1± 13.2 131.7± 10.4 147.8± 4.9

Door-Cloned 0.0± 0.0 6.1± 1.8 20.5± 2.5

(30%), medium (60%), high (100%), and out-of-distribution (120%). As shown in Table 23, lower
RTG values lead to more conservative behaviors, whereas higher RTGs induce trajectories with
higher returns. Under the out-of-distribution RTG, the model remains stable and shows only a mild
decrease in performance, indicating that MAGE can interpret RTG signals for conditional control and
exhibits reasonable robustness beyond the training distribution.

Effect of RTG-Based Reweighting. Inspired by advantage-weighted formulations such as
QVPO (Shutong Ding et al., 2024), we further examine whether explicit reweighting can serve as an
alternative to RTG conditioning. In our variant, each trajectory RTG is first normalized to the interval
[0, 1] to obtain a weight wi, and the reconstruction loss becomes wiLi instead of being averaged
uniformly. We compare three settings: MAGE (w/o condition), which removes RTG conditioning
entirely; MAGE (reweight), which applies the normalized RTG weights during training; and the full
MAGE model. This scheme increases the influence of high-return trajectories and suppresses low-re-
turn ones. As shown in Table 24, reweighting provides a clear improvement over the no-condition
baseline, indicating that it can partially leverage RTG information. However, it still falls significantly
short of the full MAGE model, suggesting that direct RTG conditioning remains a more effective and
reliable mechanism for guiding the generative process toward high-return behaviors.

Evaluating performance on OGBench tasks. We further evaluate MAGE on the extremely long-
horizon and sparse-reward maze environments in OGBench (Seohong Park et al., 2025). These tasks
present significant challenges due to their extended trajectories and limited feedback. As shown in
Table 25, MAGE performs competitively across all scenarios and achieves the best results in three
cases. While these findings demonstrate the potential of our coarse-to-fine generative framework in
highly demanding settings, fully addressing such environments still requires additional exploration.

Evaluating the default configuration. We additionally conduct experiments using a default MAGE
configuration (K = 8, codebook size = 512, transformer blocks = 8). As shown in Table 26, MAGE
(fixed config) denotes this default setup, while MAGE refers to our final tuned model. The results
show that even with the default configuration, MAGE achieves strong performance across all tasks
and consistently outperforms ADT and HD.

B.6 ANALYZING THE MULTI-SCALE DESIGN AND COMPONENTS OF MAGE

Our work is a multi-scale generation method for offline RL. It consists of 4 parts: a multi-scale
autoencoder, a multi-scale autoregressive transformer, an inverse dynamics model with multi-scale
input, and a condition-guided decoder. The multi-scale autoencoder leverages multi-scale temporal
information for encoding and decoding, whereas the multi-scale transformer leverages multi-scale
temporal information for generation. The inverse dynamics model I makes use of latent multi-scale
trajectory information Z to determine action. Moreover, the condition-guided decoder refines the
finest scale information, which implicitly optimizes the multi-scale information too.

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Table 25: Performance on OGBench long-horizon maze tasks.

Scenario Diffuser ADT HIQL MAGE
pointmaze-giant-navigate-v0 0± 0 19± 4 46± 9 52± 5

antmaze-giant-navigate-v0 2± 1 26± 4 65± 5 58± 5

antmaze-teleport-navigate-v0 8± 3 23± 4 42± 3 49± 5

humanoidmaze-giant-navigate-v0 0± 0 2± 1 12± 4 17± 4

Table 26: Performance with the default MAGE configuration.

Scenario ADT HD MAGE (fixed config) MAGE
Maze2d-Medium 109.4±6.2 135.6±3.0 146.9±4.2 155.0±3.3
Multi2d-Medium 108.5±6.2 140.2±1.6 142.1±1.8 147.7±3.1
Antmaze-Medium-Play 82.0±1.7 42.0±1.9 90.0±3.0 92.0±2.7
Antmaze-Medium-Diverse 83.4±1.9 88.7±8.1 94.8±2.2 98.2±1.3
Kitchen-Mixed 69.2±3.3 71.7±2.5 80.0±5.8 86.3±3.3
Kitchen-Partial 64.2±5.1 73.3±1.4 86.3±4.1 91.3±3.2

Table 27: Effect of temporal scales and the condition-guided decoder module.

Scenario DT K=8 w/o Lcond K=1 w/o Lcond K=1 K=2 K=4 K=8
Pen-Expert 116.3± 1.2 136.6± 7.4 119.5± 11.5 123.5± 9.1 127.5± 5.2 134.2± 7.7 147.8± 4.9

Door-Cloned 7.6± 3.2 16.6± 2.1 3.4± 2.6 5.2± 1.8 6.0± 2.1 10.7± 2.3 20.5± 2.5

Hammer-Expert 117.4± 6.6 128.3± 0.3 113.2± 6.2 116.5± 0.6 121.7± 0.4 127.9± 0.3 131.7± 0.2

Relocate-Expert 104.2± 0.4 108.9± 1.7 100.1± 2.9 101.3± 3.8 102.5± 1.8 105.9± 1.4 109.6± 1.6

We conduct an experiment to understand the impact of multi-scale with different scales K and without
the condition-guided decoder (Multi-scale w/o Lcond). The results are depicted in the following
Table 27.

In this table, the Multi-scale K=8 w/o Lcond column corresponds to removing the condition-guided
decoder module from MAGE. It still models the multi-scale information through a multi-scale autoen-
coder, a multi-scale transformer, and the inverse dynamics model with multi-scale input. Multi-scale
K=1 w/o Lcond is similar to Multi-scale K=8 w/o Lcond with K equal to 1. K = 1 and K = 8
represent the case where K is configured to 1 or 8 for MAGE, respectively. We have the following
findings.

• As we can observe from the table that using the multi-scale information can indeed performs
better than its single-scale counterpart. For example, Multi-scale K=8 w/o Lcond performs better
than Multi-scale K=1 w/o Lcond, and K = 8 performs better than K = 1.

• Using the condition-guided decoder module Lcond can improve the performance of MAGE, but its
contribution is not as high as increasing the scale. For example, on the Door-Cloned environment,
Multi-scale K=8 w/o Lcond is 13.2 higher than Multi-scale K=1 w/o Lcond, while K = 1 (with
Lcond) is only 1.8 higher than Multi-scale K=1 w/o Lcond.

• We show that through setting the scale to 1 and removing Lcond, MAGE performs similarly to
DT. For the Door-Cloned, the Hammer-Expert, and the Relocate-Expert environment, MAGE
without multi-scale and Lcond performs even slightly weaker than Decision Transformer (DT).

B.7 DIFFERENCE AMONG MAGE AND OTHER HIERARCHICAL METHODS

MAGE distinguishes itself from other hierarchical methods through its multi-level structure and
trajectory modeling. While ADT, HDMI, and HD adopt a two-level hierarchy, MAGE employs
a multi-level hierarchy that captures global route structures at a coarse level while refining local
movements at finer levels. This design supports more coherent and consistent trajectory generation
over long horizons.

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

The methods differ in their generation models and conditioning mechanisms. MAGE uses a
Transformer-based generator to produce return–state pairs (R,S), and its condition includes the
current state, target return (RTG), and outputs from higher levels. ADT and CARP generate full
trajectories or action sequences, while HDMI and HD rely on diffusion models and mainly condition
on state or subgoals. In this table, G, R, S, and A represent subgoal, return-to-go, state, and action,
respectively Table 28 summarizes these structural and conditioning differences among the methods.

Table 28: Comparison of different methods.

ADT HDMI HD CARP MAGE

Level/scales Two-level Two-level Two-level Multi-scale Multi-scale

Number of Policies 2 2 2 1 1

Generation Model Transformer Diffusion Diffusion Transformer Transformer

Generated Data at the first level G G G latent of A latent of (S,R)

Generated Data at the last level S,A S,A S,A latent of A latent of (S,R)

Condition at the first level S S,R S,R S S,R

Condition at the last level S,G S,G S,G S, latents of A (S,R), latents of (S,R)

Return Alignment Yes Yes Yes No Yes

C STATEMENT ON THE USE OF LARGE LANGUAGE MODELS

Large language models were used solely as general-purpose tools to assist with language refinement,
including improving grammar, style, and clarity of exposition. They were not involved in generating
research ideas, designing methods, conducting experiments, or analyzing results. All scientific
insights and contributions presented in this paper are entirely the work of the authors.

27


	Introduction
	Background
	Auto-regressive Models
	Vector Quantized Variational Autoencoder

	MAGE: Multi-scale Auto-regressive Decision Making
	Multi-scale Trajectory Autoencoder
	Multi-Scale Conditional Guide Autoregressive Generation

	Evaluation
	Experimental Setup
	An illustrative Example
	Comparison Study
	Adroit: Dexterous Manipulation Environments
	Franka Kitchen: Compositional Environments
	Maze Navigation Environments: AntMaze, Maze2D, and Multi2D

	Ablation Study

	Related Work
	Generation-based offline RL
	Hierarchical RL

	Discussion
	Conclusion
	Algorithm
	Background
	Vector Quantized Variational Autoencoder

	MAGE Framework
	Multi-scale Quantization
	Autoregressive Generation Process
	Guiding Models with Conditional Constraints


	Experiment Details
	Experimental Setup
	Computing Resources
	Environment and Hyperparameters

	Additional Results for Comparison Study
	Results for Gym locomotion control tasks
	Results for the Maze Game in Figure 2
	Ablation Study Results
	Analyzing the multi-scale design and components of MAGE
	Difference among MAGE and other hierarchical methods

	Statement on the Use of Large Language Models



