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ABSTRACT

Fine-tuning large foundation models is essential for building expert models tai-
lored to specialized tasks and domains, but fully updating billions of parameters
is computationally prohibitive. Reducing the number of trainable parameters us-
ing parameter-efficient fine-tuning is therefore crucial not only to reduce training
costs but also to mitigate storage, caching, and serving overheads during deploy-
ment. Prior works, such as Singular Vectors-guided Fine-Tuning, have shown
that exploiting the geometry of pre-trained weights can significantly improve
parameter-efficiency, but they lack a solid theoretical foundation. In this paper, we
introduce Parameter-efficient Fine-tuning with Column Space Projection (PiCa),
a novel theoretically grounded PEFT method. We prove that projecting gradients
onto the principal column space of pre-trained weights provides an effective in-
ductive bias for adaptation and further enhance parameter efficiency through a
novel weight-sharing strategy. Across diverse NLP and vision tasks, PiCa consis-
tently outperforms state-of-the-art baselines under comparable or smaller parameter
budgets, demonstrating both theoretical rigor and practical effectiveness.

1 INTRODUCTION

Fine-tuning large foundation models is essential for building expert models tailored to special-
ized tasks and domains. However, fully fine-tuning billions of parameters is often computation-
ally prohibitive in terms of both training and deployment cost. Parameter-Efficient Fine-Tuning
(PEFT) (Houlsby et al., 2019) addresses this challenge by adapting models with only a small number
of trainable parameters while keeping the pre-trained backbone frozen. In particular, minimizing
the number of trainable parameters is critical in practical scenarios where multiple adapters must be
deployed simultaneously (Chen et al., 2024). In such cases, numerous sets of fine-tuned parameters
for different tasks, models, and checkpoints per user must be stored separately from the pre-trained
models, leading to significant storage, caching, and serving overheads.

A prominent line of research is low-rank adaptation (LoRA) (Hu et al., 2022), known for its simplicity
and strong empirical performance. While reducing its rank lowers the number of trainable parameters,
it inevitably causes significant performance degradation. To address this, DoRA (Liu et al., 2024a)
introduces weight decomposition into LoRA, achieving stronger performance at a fixed rank and often
matching or surpassing LoRA while requiring only half the trainable parameters. VeRA (Kopiczko
et al., 2023) further reduces parameter budgets by training small scaling vectors, demonstrating
that comparable or superior performance to LoRA can be obtained with up to 4× fewer trainable
parameters.

Furthermore, recent studies (Lingam et al., 2024; Han et al., 2023; Mantri et al., 2025) have shown
that leveraging the geometry of pre-trained weights, particularly their spectral structure, can lead to
further parameter-efficiency without performance degradation. For instance, Singular Vectors-guided
Fine-Tuning (SVFT) (Lingam et al., 2024) constructs a sparse, weighted combination of a model’s
pre-trained singular vectors to achieve strong performance with fewer trainable parameters. However,
despite their empirical success, these SVD-based approaches (Lingam et al., 2024; Han et al., 2023;
Mantri et al., 2025) lack theoretical foundation for their approaches and leave open why using the
spectral structure of pre-trained weights constitutes an effective inductive bias for fine-tuning.
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Figure 1: Average accuracy as a function of the num-
ber of trainable parameters on Commonsense Reasoning
datasets using Gemma-2B. PiCa demonstrates superior
performance compared to baseline methods with similar
parameter budgets.

In this work, we propose Parameter-
efficient Fine-tuning with Column Space
Projection (PiCa), a new theoretically
grounded PEFT method that leverages the
geometry of pre-trained weights. Our theo-
retical analysis demonstrates that project-
ing gradients onto the principal column
space spanned by pre-trained weights can
lead to effective adaptation. This gradient
projection is effectively paired with our
novel weight sharing method for further
parameter efficiency. With this approach,
we can significantly reduce the number
of trainable parameters, even using less
than the most parameter-efficient config-
urations of other methods (e.g., rank-1
LoRA and DoRA), while achieving sig-
nificantly better performance. Our exten-
sive experiments across various models
and datasets demonstrate that PiCa consistently outperforms all baseline methods under comparable
parameter budgets, as illustrated in Fig 1.

Our contributions can be summarized as follows:

• We introduce PiCa, a theoretically grounded PEFT method that explicitly exploits the
geometry of pre-trained weights. We provide a theoretical foundation showing that projecting
gradients onto the principal column space of pre-trained weights enables effective adaptation.
For further parameter efficiency, PiCa also introduces a novel weight-sharing approach that
can be paired with gradient projection.

• PiCa consistently achieves competitive or superior performance with significantly fewer pa-
rameters compared to other baselines. In particular, it outperforms state-of-the-art baselines,
SVFTR and SVFTB , across all datasets and models under smaller parameter budgets.

• Our experiments span a wide range of NLP tasks including mathematical reasoning, common-
sense reasoning, and natural language understanding with different language models, as well as
diverse vision tasks such as visual adaptation on 19 VTAB datasets with vision transformers
and subject-driven generation on DreamBooth with text-to-image diffusion models. We also
conduct comprehensive ablation studies to better understand the individual components of our
method and their effects.

2 RELATED WORK

Parameter-efficient fine-tuning In adapting large foundation models for downstream tasks, while
full fine-tuning often yields superior performance on these tasks, its prohibitive computational
overheads have motivated the development of various PEFT methods that aim to achieve comparable
performance with much fewer number of trainable parameters. Recently highlighted approaches
include low rank approximation (Hu et al., 2022; Liu et al., 2024a; Kopiczko et al., 2023), orthogonal
reparametrization (Qiu et al., 2023; Liu et al., 2024b), and Singular Value Decomposition (SVD)-
based approaches (Lingam et al., 2024; Meng et al., 2024).

In particular, LoRA and its variants (Hu et al., 2022; Liu et al., 2024a; Kopiczko et al., 2023) have
significant attention due to its simplicity and efficiency, based low-rank decomposition. DoRA (Liu
et al., 2024a) decomposes weights and achieves stronger performance at a fixed rank, often matching
or surpassing LoRA while requiring only half the trainable parameters. VeRA (Kopiczko et al., 2023)
further reduces parameter budgets by training small scaling vectors.

On the other hand, methods leveraging the structure of pre-trained weights, specifically through their
SVD components, have been explored (Lingam et al., 2024; Han et al., 2023; Mantri et al., 2025).
SVFT (Lingam et al., 2024) utilizes the entire singular vectors of pre-trained weights as a basis and
employs a sparse matrix for updates. SVDiff (Han et al., 2023) has demonstrated fine-tuning only

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

the singular values of pre-trained weight matrices is effective in personalization of text-to-image
diffusion models. Similarly, DiTASK (Mantri et al., 2025) has shown that preserving singular vectors
and enabling task-specific adaptations through neural diffeomorphic transformations of the singular
values can be effective for dense prediction tasks.

Although these SVD-based methods have shown empirical success, they often lack a strong theoretical
foundation that provides an analytical justification for their methods, and only few works has
attempted to analyze the change in spectral structure after fine-tuning (Shuttleworth et al., 2024). In
contrast, we develop a method based on a theoretical proof that the optimal rank-r approximation
of ∆W can be achieved by the singular vectors of the pre-trained weights, which aligns with
our empirical findings. We further validate this theoretical result through extensive experiments,
demonstrating its effectiveness.

Weight sharing Prior research has explored weight sharing to reduce the number of parameters
in neural networks (Press & Wolf, 2017; Inan et al., 2016). More recently, this concept of weight
sharing has been adapted within the LoRA framework (Kopiczko et al., 2023; Renduchintala et al.,
2023; Zhou et al., 2025; Shen et al., 2024; Song et al., 2024). For instance, VeRA (Kopiczko et al.,
2023) introduces a frozen random projection matrix shared across all layers, combined with trainable
scaling vectors. Furthermore, recent works (Renduchintala et al., 2023; Song et al., 2024) explore
different strategies of combining freezing, training, and sharing both projection matrices and scaling
vectors. While demonstrating progress in parameter reduction, these prior approaches tend to be
highly sensitive to randomly initialized projection matrices and often their performance is below that
of standard LoRA. However, in PiCa, we construct projection matrix based on structure of pre-trained
weights for each layer and share trainable weights across layers with the same function role. This
approach allows significant reduction of trainable parameters without performance degradation.

3 METHODOLOGY

In this section, we introduce our novel PEFT method, PiCa. (1) We first discuss how fine-tuning
relates to singular vectors and introduces Theorem 1, which shows that the principal subspace of
pre-trained weights offers an effective space for adaptation (Section 3.1). (2) We develop this idea in
the context of PEFT settings, showing that sequentially projecting gradients onto this subspace offers
a theoretically grounded way to perform fine-tuning under parameter constraints (Section 3.2). (3) On
top of these insights, we finally present our algorithm, PiCa, which integrates sequential projection
with weight sharing for further parameter-efficient adaptation (Section 3.3).

3.1 FINE-TUNING AND COLUMN SPACE PROJECTION

Figure 2: Distribution of perturbations EP
ij and EQ

ij
across all weight matrix elements using DeBERTaV3base.
Most values are tightly concentrated around zero, vali-
dating that O(ϵ) is negligible in practice.

Fine-tuning is the process of adapting
a large pre-trained foundation model,
trained on large-scale general-purpose
datasets, to a specific downstream task
with a much smaller dataset. To pre-
vent overfitting and preserve pre-trained
knowledge, it is common to adjust the
weights only finely, using a low learning
rate, a limited number of epochs, and ad-
ditional regularization such as weight de-
cay, dropout, parameter freezing, or ex-
plicit penalties on deviations from the pre-
trained weights.

In this sense, the update from pre-trained
weights W0 to fine-tuned weights W ∗ can
be regarded as a relatively small change
∆W = W ∗ −W0, where ∥W0∥ ≫ ∥∆W∥. Prior results, Lemma 3.1, indicate that when the change
is small, the leading singular structures of W0 and W ∗ remain closely aligned.
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Lemma 3.1 (Wedin (1972)). Let W0,W
∗ ∈ Rm×n with W ∗ = W0 +∆W . Let Ur, U

∗
r denote the

top-r left singular-vector matrices of W0 and W ∗. Define the gap

δ := min
{
σr(W0)− σr+1(W

∗), σr(W
∗)− σr+1(W0)

}
.

Then for any unitarily invariant norm,

∥ sinΘ(Ur, U
∗
r )∥ ≤

∥∆W∥
δ

.

Building on this insight, Theorem 1 expresses the relation between W0 and W ∗ in a form that involves
a small deviation E, and uses this to analyze how the update ∆W can be captured within the column
space of Ur. Empirical results in Fig. 2 support this view, showing that the entries of E are tightly
concentrated near zero.

Theorem 1 (Approximation error of projection onto Ur). Let W0 = UΣV ⊤ ∈ Rm×n be the Singular
Value Decomposition (SVD) of W0. Suppose the fine-tuned matrix W ∗ ∈ Rm×n has the form

W ∗ = (UP )Σ∗(V Q)⊤,

where:

• U∗ = UP and V ∗ = V Q are the left and right singular vectors of W ∗, respectively,

• Σ∗ = diag(σ1(W
∗), . . . , σmin(m,n)(W

∗)),

• P = Im + EP , Q = In + EQ, with |EP
ij | < ϵ, |EQ

ij | < ϵ.

Let ∆W = W ∗ −W0, and let Ur ∈ Rm×r be the top-r left singular vectors of W0. Then, the
approximation error incurred by projecting ∆W onto the subspace spanned by Ur satisfies

∥∥∆W − UrU
⊤
r ∆W

∥∥2
F
≤

min(m,n)∑
i=r+1

σ2
i (∆W ) +O(ϵ).

The complete proof of Theorem 1 is detailed in Appendix B.

Theorem 1 indicates that the update ∆W can be well captured within the principal column space
of W0. The first term on the right-hand side,

∑min(m,n)
i=r+1 σ2

i (∆W ), corresponds to the rank-r
approximation error of ∆W given by the Eckart–Young theorem (Eckart & Young, 1936). The
additional O(ϵ) term reflects the small deviation introduced through EP and EQ, and empirical
evidence in Fig. 2 suggests that theO(ϵ) term is negligible in practice. Appendix C.3 provides further
observations on large-scale models, which is consistent with this view.

3.2 SEQUENTIAL GRADIENT PROJECTION

Theorem 2 shows that the principal column space in Theorem 1 can be naturally incorporated into
PEFT by projecting gradients onto the subspace at each step. This provides a practical way to exploit
the same effective space throughout training, offering a simple and theoretically supported view of
how sequential updates can operate within the projection framework.
Definition 1 (L-smoothness for matrix-valued functions). A differentiable function ℓ : Rm×n → R
is L-smooth (w.r.t. ∥ · ∥F ) if

∥∇ℓ(W1)−∇ℓ(W2)∥F ≤ L ∥W1 −W2∥F for all W1,W2 ∈ Rm×n.

Theorem 2 (Sequential projection approximates accumulated projection). Let ℓ : Rm×n → R be
L-smooth with ∥∇ℓ(W )∥F ≤ G. Define the unprojected gradient descent path

Zt+1 = Zt − η∇ℓ(Zt).

Let the accumulated-projection iterate be

WT = W0 − ηΠUr

(T−1∑
t=0

∇ℓ(Zt)
)
,

4
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Algorithm 1: Adam with PiCa
Input: rank r; learning rate η; decay rates β1, β2; small ε > 0.

Setup / Notation. For each group f ∈ F and layer i: compute SVD W f,i
0 = Uf,iΣf,i(V f,i)⊤

and set P f,i ← Uf,i
[:,1:r] ; // Layer-wise fixed projector

Set W f,i ←W f,i
0 .

For each group f : set shared compact states θf0 ,M
f
0 , V

f
0 ∈ Rr×n ← 0; set t← 0.

Elementwise ops: ⊙ (Hadamard), ⊘ (elementwise divide),
√
· (elementwise).

repeat
t← t+ 1
foreach group f do

// (1) Project layer-wise gradients & aggregate

Rf
t ←

∑
i (P

f,i)⊤
(
−∇W f,i ℓt(W

f,i)
)

// (2) Adam update in compact space

Mf
t ← β1M

f
t−1 + (1− β1)R

f
t ; V f

t ← β2V
f
t−1 + (1− β2)(R

f
t ⊙Rf

t )

M̂f
t ←Mf

t /(1− β t
1 ); V̂ f

t ← V f
t /(1− β t

2 )

∆θft ← M̂f
t ⊘

(√
V̂ f
t + ε

)
; θft ← θft−1 + η∆θft

// (3) Decompress shared update to each layer
foreach layer i do

W f,i ←W f,i+ P f,i ∆θft

until convergence;
return {θfT }f∈F ; // Final shared compact parameters

and the sequential-projection iterates

Pt+1 = Pt − ηΠUr
∇ℓ(Pt), P0 = W0,

where ΠUr
= UrU

⊤
r is the fixed rank-r projector.

Then, for any T , the difference satisfies

∥WT − PT ∥F ≤
η2

2
LGT (T − 1) +O((ηLT )3).

Proof is provided in Appendix B.

3.3 PICA: PEFT WITH COLUMN SPACE PROJECTION

Based on the preceding results, we propose PiCa that projects gradients onto the principal column
space spanned by pre-trained weights for each update. This gradient projection is effectively paired
with our novel weight sharing method for further parameter efficiency. For clarity, we describe PiCa
in Algorithm 1 using Adam, though the approach is not limited to this optimizer.

In Algorithm 1, each functional group f ∈ F = {query,key,value,. . .} is associated with a single
trainable matrix θf ∈ Rr×n, which is shared across all layers i = 1, . . . , L of the same group. The
projection matrices P f,i remain layer-specific, leveraging the geometry of each pre-trained weight
W f,i

0 . The gradients of each layer i are first projected onto P f,i defined by the top-r singular vectors
of the corresponding pre-trained weight, Uf,i

r . The updates are then accumulated in this compact
space as shared parameters θf . Momentum and variance statistics are also updated in this compact
space. Then, the shared update is mapped back to each layer through its layer-specific projector Uf,i

r .

Unlike prior approaches (Kopiczko et al., 2023; Renduchintala et al., 2023) that primarily rely
on random projection matrices for weight sharing, our method leverages layer-specific projection
matrices Uf,i

r derived from the structure of the pre-trained weights W f,i
0 for each layer i of group

f . This allows us to capture the distinct characteristics and pre-trained knowledge encoded in each

5
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W f,i
0 . Given the use of unique projection matrices per layer, we posit that the trainable parameter θf

can be effectively shared across layers with the same functionality, facilitating efficient adaptation
to downstream tasks. Our extensive experiments demonstrate the effectiveness of weight sharing
in PiCa, which reduces the number of trainable parameters by up to 7× without compromising
performance (see Sec. 4.3 for details).

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

We evaluate the effectivenss of PiCa across a diverse set of Natural Language Processing (NLP) tasks,
covering Mathematical Reasoning, Commonsense Reasoning, and Natural Language Understanding
(NLU). For Mathematical Reasoning tasks, we fine-tune our model on the MetaMathQA-40K
dataset (Yu et al., 2023) and assess its performance on the GSM-8K (Cobbe et al., 2021) and
MATH (Hendrycks et al., 2021) datasets. Furthermore, we conduct evaluations on eight commonsense
reasoning benchmarks: BoolQ (Clark et al., 2019), PIQA (Bisk et al., 2020), SIQA (Sap et al.,
2019), HellaSwag (Zellers et al., 2019), Winogrande (Sakaguchi et al., 2019), ARC-Easy/ARC-
Challenge (Clark et al., 2018), and OpenBookQA (Mihaylov et al., 2018). For NLU tasks, we
utilize the GLUE benchmark (Wang et al., 2018). We report matched accuracy for MNLI, Matthew’s
correlation for CoLA, Pearson correlation for STS-B, and accuracy for all other tasks. We employ
the Gemma-2B/7B (Team et al., 2024), and LLaMA-3-8B (AI, 2024) models for Mathematical
Reasoning tasks and adopt the DeBERTaV3-base (He et al., 2023) model for NLU tasks.

Beyond NLP, we also evaluate PiCa on vision tasks. Specifically, we conduct experiments with visual
adaptation using the ViT-B/16 (Dosovitskiy et al., 2021)on 19 different datasets of VTAB-1K (Zhai
et al., 2020), grouped into Natural, Specialized, and Structured categories. Performance is reported
as the average accuracy across these groups. In addition, we evaluate subject-driven generation
tasks with the Stable Diffusion v2.1 (Rombach et al., 2022) on the DreamBooth dataset (Ruiz et al.,
2023), which includes 30 subjects and 25 prompts per subject, totaling 750 different personalization
tasks. Following prior work (Ruiz et al., 2023), we report results using DINO for subject fidelity and
CLIP-T for text fidelity. To ensure a fair comparison, hyperparameters and training protocols are
aligned with those outlined in (Lingam et al., 2024; Cho et al., 2024). Further details are provided in
the Appendix C.

4.2 RESULTS

For a fair comparison, we follow (Lingam et al., 2024; Dosovitskiy et al., 2021; Cho et al., 2024) and
evaluate the effectiveness of PiCa across three NLP tasks (Mathematical Reasoning, Commonsense
Reasoning, and Natural Language Understanding) and two vision tasks (Visual Adaptation and
Subject-Driven Generation). The baselines include LoRA (Hu et al., 2022), DoRA (Liu et al., 2024a),
BOFT (Liu et al., 2024b), VeRA (Kopiczko et al., 2023), and SVFT (Lingam et al., 2024). Full
experimental details are provided in Appendix C.

Mathematical Reasoning In Table 1, we provide results on mathematical question answering,
comparing our method against baseline PEFT methods across three different base models ranging
from 2B to 8B parameters. Our experiments include two configurations of PiCa: a high-rank setting
with fewer trainable parameters than SVFTR, and a low-rank configuration with fewer trainable
parameters than rank 1 LoRA. As shown in Table 1, our high-rank PiCa consistently achieves superior
performance while using the fewest trainable parameters across all models and datasets. In the
low-rank setting, PiCa achieves either the best or second-best performance.

Commonsense Reasoning In Table 2, we evaluate commonsense reasoning performance on eight
benchmark datasets using Gemma-7B, following the same experimental setup as in the Mathematical
Reasoing task. We compare both high-rank and low-rank configurations of our method against PEFT
baselines. In both settings, PiCa outperforms all baselines on average across the eight datasets. In the
high-rank setting, our method achieves state-of-the-art performance on seven out of eight datasets
while using over 13× fewer parameters than LoRA, and it consistently outperforms SVFT on all
eight datasets with approximately half the number of parameters. In the low-rank setting, PiCa also

6
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Table 1: Performance on Mathematical Reasoning benchmarks (GSM-8K and MATH). #Params
indicates the number of trainable parameters. The best and second-best PEFT methods are highlighted
in bold and underlined, respectively. For Gemma-7B, we set r = 16 to ensure the number of trainable
parameters remains below that of rank-1 LoRA. For SVFTR

d , we use d = 16 for Gemma models
and d = 12 for LLaMA-3 models. In the high-rank setting, PiCa consistently achieves the best
performance across all models and datasets, while using the fewest trainable parameters.

Method
Gemma-2B Gemma-7B LLaMA-3-8B

#Params GSM-8K MATH #Params GSM-8K MATH #Params GSM-8K MATH

Full-FT 2.5B 52.69 17.94 8.5B 74.67 25.70 8.0B 64.13 16.24

BOFTb=8
m=2 1.22M 36.01 12.13 2.90M 71.79 28.98 4.35M 67.09 21.64

DoRAr=1 1.19M 35.35 13.04 3.26M 74.37 26.28 2.55M 68.30 21.96
LoRAr=1 0.82M 32.97 13.04 0.82M 72.40 26.28 1.77M 68.84 20.94
VeRAr=1024 0.63M 36.77 14.12 0.43M 71.11 27.04 0.98M 63.76 20.28
SVFTP 0.19M 40.34 14.38 0.43M 73.50 27.30 0.48M 69.22 20.44
PiCar=32 0.67M 41.32 15.22 0.64M 74.30 28.92 1.38M 73.54 24.14

LoRAr=32 26.2M 43.06 15.50 68.8M 76.57 29.34 56.6M 75.89 24.74
DoRAr=16 13.5M 44.27 16.18 35.5M 74.52 29.84 29.1M 75.66 24.72
SVFTR

d 6.35M 50.03 15.56 19.8M 76.81 29.98 13.1M 75.90 24.22
PiCar=256 5.37M 52.77 16.36 10.22M 78.39 30.16 11.01M 76.12 24.88

Table 2: Performance on Commonsense Reasoning benchmarks. #Params refers to the number of
trainable parameters. The best and second-best PEFT methods are highlighted in bold and underlined
text, respectively. In the high-rank setting, PiCa achieves state-of-the-art performance on 7 out of 8
datasets, using over 13× fewer parameters than LoRA and about half the parameters of SVFT.

Method #Params BoolQ PIQA SIQA HS WG ARC-e ARC-c OBQA Avg.

Full-FT 8.5B 72.32 87.32 76.86 91.07 81.76 92.46 82.87 89.00 84.19

DoRAr=1 3.31M 68.22 86.72 75.23 91.14 78.13 91.87 83.19 86.20 82.59
VeRAr=2048 1.49M 64.25 86.28 74.04 86.96 69.00 92.76 82.33 82.00 79.70
LoRAr=1 0.82M 65.44 86.28 75.02 89.91 75.92 91.79 81.91 85.40 81.46
SVFTP 0.51M 67.92 86.45 75.47 86.92 74.03 91.80 81.21 83.00 80.85
PiCar=16 0.64M 70.95 86.29 76.00 91.42 76.32 92.89 83.19 85.60 82.83

LoRAr=32 68.8M 71.55 87.95 77.27 91.80 79.71 92.67 82.16 86.40 83.69
DoRAr=16 35.5M 71.46 87.59 76.35 92.11 78.29 92.00 80.63 85.60 83.00
SVFTB

d=8 9.80M 71.90 86.96 76.28 91.55 78.76 92.80 83.11 85.40 83.35
PiCar=128 5.11M 72.84 87.98 77.79 92.82 79.40 93.14 83.62 88.20 84.47

Table 3: Performance of DeBERTaV3base on the GLUE benchmark. #Params refers to the number of
trainable parameters. The best and second-best PEFT methods are highlighted in bold and underlined
text, respectively. While using more than 2.5× fewer parameters than SVFTR

d=2, PiCa outperforms it
on all datasets.

Method #Params MNLI SST-2 MRPC CoLA QQP QNLI RTE STS-B Avg.

Full-FT 183.83M 89.90 95.63 89.46 69.19 92.40 94.03 83.75 91.60 88.25

LoRAr=8 1.33M 90.65 94.95 89.95 69.82 93.87 91.99 85.20 91.60 88.50
LoRAr=1 0.17M 90.12 95.64 86.43 69.13 91.43 94.18 87.36 91.52 88.23
DoRAr=4 0.75M 89.92 95.41 89.10 69.37 91.53 94.14 87.00 91.80 88.53
BOFTb=8

m=2 0.75M 90.25 96.44 92.40 72.95 92.10 94.23 88.81 91.92 89.89
VeRAr=1024 0.09M 89.93 95.53 87.94 69.06 90.40 93.24 87.00 88.71 87.73
SVFTP 0.06M 89.69 95.41 88.77 70.95 90.16 94.27 87.24 91.80 88.54
SVFTR

d=2 0.28M 89.97 95.99 88.99 72.61 91.50 93.90 88.09 91.73 89.10
PiCar=16 0.11M 90.20 96.00 91.40 73.10 91.60 94.20 89.20 91.80 89.69
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Table 4: Performance on vision benchmarks. VTAB-1K (ViT-B/16) is averaged over 19 datasets
grouped into Natural, Specialized, Structured. DreamBooth is evaluated with Stable Diffusion
v2.1 using DINO (subject fidelity) and CLIP-T (text fidelity). The best and second-best results are
highlighted in bold and underlined, respectively.

VTAB-1K (ViT-B/16) DreamBooth (Stable Diffusion v2.1)

Method #Params Natural Specialized Structured All Method #Params DINO CLIP-T

LoRAr=8 1.32M 0.823 0.851 0.508 0.696 LoRAr=16 3.37M 0.618 0.305
DoRAr=8 1.41M 0.827 0.846 0.505 0.695 DoRAr=16 3.42M 0.617 0.306
SVFTB

d=8 0.93M 0.820 0.844 0.486 0.684 SVFTB
d=12 2.50M 0.622 0.307

VeRAr=4096 0.45M 0.813 0.845 0.474 0.677 VeRAr=13312 1.80M 0.613 0.305
PiCar=64 0.44M 0.825 0.851 0.508 0.697 PiCar=128 1.72M 0.634 0.306

achieves the best average performance, surpassing rank 1 DoRA while using more than 5× fewer
parameters. Compared to SVFTP , our method delivers superior performance on seven out of eight
datasets, with an average improvement of nearly two percentage points. Similar trends are observed
with Gemma-2B (see Appendix C.2).

Natural Language Understanding Table 3 presents the results on the GLUE benchmark using
DeBERTaV3base. Compared to LoRA with rank 8, our method achieves over one percentage point
higher average performance. While using more than 2.5× fewer parameters than SVFTR

d=2, our
method outperforms it on all datasets. Furthermore, despite using over 7× fewer parameters than
BOFT, our method achieves comparable average performance.

Vision Experiments Table 4 reports results on VTAB-1K and DreamBooth dataset. On the VTAB-
1K dataset, PiCa achieves the best overall score while using the fewest trainable parameters. In
particular, PiCa achieves competitive results compared to other baselines while using 2 to 3× fewer
trainable parameters in VTAB-1K. On the DreamBooth dataset, PiCa achieves a higher DINO score
while maintaining a comparable CLIP-T score, demonstrating strong personalization with fewer
parameters than other baselines. These results highlight that PiCa maintains strong performance on
vision tasks under substantially reduced parameter budgets.

4.3 FURTHER ANALYSIS

Table 5: Ablation study on projection choice (rank =
256). Average scores are reported across commonsense
reasoning benchmarks using Gemma-2B.

Projection Method #Params Avg.
Random Space 5.37M 63.18
Column Space (Ours) 5.37M 67.60

Ablation study of column space projec-
tion In Table 5, we compare the effect of
using column space projection versus ran-
dom space projection. We use common-
sense reasoning benchmarks with Gemma-
2B. The results show that column space
projection improves overall accuracy by
4.42 points compared to random space pro-
jection, demonstrating the effectiveness of
leveraging the spectral structure of pre-
trained weights, aligned with the results
in Theorem 1.

Ablation study of weight sharing In Fig. 3a, we analyze the impact of weight sharing in PiCa
across eight Commonsense Reasoning datasets using Gemma-7B. By comparing PiCa with its stan-
dard configuration (rank 128 with weight sharing, 5.1M trainable parameters) against a variant without
sharing (rank 16, 35.8M parameters), we find that the default PiCa consistently achieves performance
comparable to its non-sharing variant while requiring about 7× fewer trainable parameters.These
results indicate that weight sharing substantially improves parameter efficiency without performance
degradation.

Furthermore, we conduct an additional study on the effect of weight sharing under varying rank
settings using the GSM-8K benchmark with Gemma-2B. As shown in Fig. 3b, PiCa consistently

8
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BoolQ PIQA SIQA HS WG ARC-e ARC-c OBQA Avg.
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(a) Accuracy across Commonsense Reasoning datasets
with and without weight sharing. Weight sharing reduces
the number of trainable parameters by up to 7× without
compromising performance.
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PiCa (w/ share): r = 32, 64, 128, 256
PiCa (w/o share): r = 4, 8, 16, 32
LoRA: r = 1, 4, 8, 16

(b) Accuracy on GSM-8K under varying rank set-
tings. Weight sharing consistently yields superior
performance under similar parameter budgets.

Figure 3: Ablation study of weight sharing across different datasets and rank configurations.

achieves superior performance under similar parameter budgets compared to both its no-sharing
ablation and LoRA.

5 DISCUSSION

While PiCa significantly reduces the number of trainable parameters required, it introduces a minor
limitation during inference. Specifically, PiCa stores only a small shared matrix θf for each functional
group f , but requires to perform an additional SVD on the pre-trained weights W0 at load time
to recover the projection matrix P f,i = Uf,i. This presents a trade-off between storage cost and
loading overhead. If the loading overhead is a concern, one can optionally store Uf,i. Nonetheless,
in scenarios where multiple task-specific adaptations are required from a single base model, PiCa
offers greater scalability: a shared set of task-agnostic Uf,i can be pre-computed and paired with
multiple sets of lightweight task-specific θf , enabling efficient adaptation across diverse tasks.

6 CONCLUSION

In this work, we introduced PiCa, a parameter-efficient fine-tuning method that integrates gradi-
ent projection onto the principal column space of pre-trained weights with a novel weight-sharing
mechanism. Our theoretical analysis establishes that column space projection provides an effective
inductive bias for fine-tuning, while the addition of weight sharing offers substantial reductions in
trainable parameters without compromising performance. Through extensive experiments, we demon-
strated that PiCa consistently achieves competitive or superior results compared to state-of-the-art
baselines across a wide spectrum of NLP tasks (Mathematical Reasoning, Commonsense Reasoning,
and Natural Language Understanding) as well as challenging vision tasks (Visual Adaptation and
Subject-Driven Generation).

Taken together, our results indicate that PiCa offers a theoretically grounded and empirically validated
approach to parameter-efficient adaptation of large models. We hope this work motivates further
exploration of theoretically guided approaches that unify geometry-aware design with practical
efficiency in fine-tuning large-scale foundation models. In future work, we aim to extend PiCa to
more dynamic and practical settings such as multi-task adaptation and continual learning, where
efficient and scalable fine-tuning is critical.
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APPENDIX

A PRELIMINARIES

A.1 NOTATION

Notation 1. The following notation is used throughout this paper:

• For any matrix A ∈ Rm×n, let σi(A) denote its i-th largest singular value, with σ1(A) ≥
σ2(A) ≥ · · · ≥ σmin(m,n)(A) ≥ 0.

• ∥A∥F : Frobenius norm of matrix A, defined as ∥A∥F =
√∑

i,j A
2
ij .

• ∥A∥2: Spectral norm of matrix A, defined as ∥A∥2 = σ1(A).

• Aij : Entry at the i-th row and j-th column of matrix A.

• Ik: Identity matrix of size k × k.

• diag(a1, . . . , an): Diagonal matrix with entries a1, . . . , an.

• sinΘ(Ur, U
∗
r ): denotes the principal angles between the subspaces range(Ur) and

range(U∗
r ).

A.2 PRELIMINARY RESULTS

Lemma A.1 (Weyl’s Inequality (Weyl, 1912)). For A,B ∈ Rm×n, and all i,

|σi(A+B)− σi(A)| ≤ ∥B∥2.

Lemma A.2 (Invariance of Frobenius Norm). If A ∈ Rm×n, and U, V are orthogonal matrices, then

∥UAV T ∥F = ∥A∥F .

Lemma A.3 (Orthogonal projection is non-expansive in Frobenius norm). Let Ur ∈ Rm×r have
orthonormal columns and let ΠUr

= UrU
⊤
r be the orthogonal projector onto range(Ur). Then, for

all X ∈ Rm×n,
∥ΠUrX∥F ≤ ∥X∥F

B PROOF OF THEOREM

Theorem 1 (Approximation error of projection onto Ur). Let W0 = UΣV ⊤ ∈ Rm×n be the Singular
Value Decomposition (SVD) of W0. Suppose the fine-tuned matrix W ∗ ∈ Rm×n has the form

W ∗ = (UP )Σ∗(V Q)⊤,

where:

• U∗ = UP and V ∗ = V Q are the left and right singular vectors of W ∗, respectively,

• Σ∗ = diag(σ1(W
∗), . . . , σmin(m,n)(W

∗)),

• P = Im + EP , Q = In + EQ, with |EP
ij | < ϵ, |EQ

ij | < ϵ.

Let ∆W = W ∗ −W0, and let Ur ∈ Rm×r be the top-r left singular vectors of W0. Then, the
approximation error incurred by projecting ∆W onto the subspace spanned by Ur satisfies

∥∥∆W − UrU
⊤
r ∆W

∥∥2
F
≤

min(m,n)∑
i=r+1

σ2
i (∆W ) +O(ϵ).
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Proof. We derive the inequality through a series of steps, decomposing the perturbation, analyzing
the projection error, and bounding the terms using spectral and entrywise techniques.

The perturbed matrix has the form

W ∗ = U(Im + EP )Σ∗(In + EQ)⊤V ⊤.

Subtracting W0 = UΣV ⊤ gives

∆W = U
[
(Im + EP )Σ∗(In + EQ)⊤ − Σ

]
V ⊤.

For notational clarity, define

H = (Im + EP )Σ∗(In + EQ)⊤ − Σ,

so that ∆W = UHV ⊤.

Let us expand H explicitly. Multiplying out terms yields

(Im + EP )Σ∗(In + EQ)⊤ = Σ∗ + EPΣ∗ +Σ∗(EQ)⊤ + EPΣ∗(EQ)⊤.

Thus
H = D + E1 + E2 + E3,

where
D = Σ∗ − Σ, E1 = EPΣ∗, E2 = Σ∗(EQ)⊤, E3 = EPΣ∗(EQ)⊤.

The diagonal matrix D captures the shifts in singular values: Dii = σi(W
∗)− σi(W0).

The error of projecting ∆W onto Ur is

∥∆W − UrU
⊤
r ∆W∥2F .

Since ∆W = UHV ⊤ and U⊤
r U = [Ir 0], we can write

UrU
⊤
r ∆W = U

[
Ir 0
0 0

]
HV ⊤.

Subtracting gives
∆W − UrU

⊤
r ∆W = U(H − PrH)V ⊤,

where Pr =

[
Ir 0
0 0

]
. By invariance of the Frobenius norm,

∥∆W − UrU
⊤
r ∆W∥2F = ∥H − PrH∥2F =

m∑
i=r+1

n∑
j=1

H2
ij .

For i > r, each entry has the form

Hij = Dij + E1,ij + E2,ij + E3,ij .

For diagonal terms (j = i), we have

Hii = σi(W
∗)− σi(W0) + EP

iiσi(W
∗) + σi(W

∗)EQ
ii +

∑
k

EP
ikσk(W

∗)EQ
ik.

Using |EP
ij |, |E

Q
ij | < ϵ, we can bound each component:

|E1,ii| ≤ ϵσi(W
∗), |E2,ii| ≤ ϵσi(W

∗), |E3,ii| ≤ ϵ2 min(m,n)σmax(W
∗).

For off-diagonal terms (j ̸= i), we have

Hij = EP
ijσj(W

∗) + σi(W
∗)EQ

ji +
∑
k

EP
ikσk(W

∗)EQ
jk,

leading to analogous bounds

|E1,ij | ≤ ϵσj(W
∗), |E2,ij | ≤ ϵσi(W

∗), |E3,ij | ≤ ϵ2 min(m,n)σmax(W
∗).

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

We now square and sum these contributions. For diagonals,

H2
ii = (σi(W

∗)−σi(W0))
2+2(σi(W

∗)−σi(W0))(E1,ii+E2,ii+E3,ii)+(E1,ii+E2,ii+E3,ii)
2.

Cross term is bounded using Cauchy–Schwarz, and third quadratic term is bounded by 3(E2
1,ii +

E2
2,ii + E2

3,ii). Therefore,

min(m,n)∑
i=r+1

H2
ii ≤

min(m,n)∑
i=r+1

(σi(W
∗)− σi(W0))

2 + ϵC1 + ϵ2C2.

where

C1 =

min(m,n)∑
i=r+1

2|σi(W
∗)− σi(W0)|(2σi(W

∗) + ϵmin(m,n)σmax(W
∗))

C2 =

min(m,n)∑
i=r+1

3(2σ2
i (W

∗) + ϵ2 min(m2, n2)σ2
max(W

∗)

Similar expansions apply for off-diagonal terms, where only E1, E2, E3 contribute. For off-diagonal
terms:

m∑
i=r+1

n∑
j=1
j ̸=i

H2
ij =

m∑
i=r+1

n∑
j=1
j ̸=i

(E1,ij +E2,ij +E3,ij)
2 ≤

m∑
i=r+1

n∑
j=1
j ̸=i

3(E2
1,ij +E2

2,ij +E2
3,ij) ≤ ϵ2C3.

where

C3 =

m∑
i=r+1

n∑
j=1
j ̸=i

3(σ2
j (W

∗) + σ2
i (W

∗) + ϵ2 min(m2, n2)σ2
max(W

∗))

Collecting everything, the sum takes the form

m∑
i=r+1

n∑
j=1

H2
ij ≤

min(m,n)∑
i=r+1

(σi(W
∗)− σi(W0))

2 + ϵC1 + ϵ2(C2 + C3).

Recall the decomposition

H = D + E1 + E2 + E3, ∆W = UHV ⊤,

so that by orthogonal invariance of singular values

σi(∆W ) = σi(H) for all i.

Since UP and V Q are the singular-vector matrices of W ∗, the factors P,Q are orthogonal. Hence

D = Σ∗ − Σ ⇒ σi(D) =
∣∣σi(W

∗)− σi(W0)
∣∣ (∀i).

Let Etot := E1 + E2 + E3. By Weyl’s inequality applied to H = D + Etot,∣∣σi(H)− σi(D)
∣∣ =

∣∣σi(∆W )−
∣∣σi(W

∗)− σi(W0)
∣∣∣∣ ≤ ∥Etot∥2.

We now bound ∥Etot∥2 piecewise. Using submultiplicativity and ∥EP ∥2 ≤ ∥EP ∥F ≤
√
mnϵ (and

similarly for EQ), we get

∥E1∥2 = ∥EPΣ∗∥2 ≤ ∥EP ∥2 ∥Σ∗∥2 ≤
√
mnϵσmax(W

∗),

∥E2∥2 = ∥Σ∗(EQ)⊤∥2 ≤ ∥Σ∗∥2 ∥EQ∥2 ≤
√
mnϵσmax(W

∗),

∥E3∥2 = ∥EPΣ∗(EQ)⊤∥2 ≤ ∥EP ∥2 ∥Σ∗∥2 ∥EQ∥2 ≤ mnϵ2 σmax(W
∗).

Therefore
∥Etot∥2 ≤ 2

√
mnϵσmax(W

∗) + mnϵ2 σmax(W
∗).
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Define
δi := σi(∆W ) −

∣∣σi(W
∗)− σi(W0)

∣∣, |δi| ≤ ∥Etot∥2.
Then ∣∣σi(W

∗)− σi(W0)
∣∣ = σi(∆W )− δi,

and squaring gives(
σi(W

∗)− σi(W0)
)2

=
(
σi(∆W )− δi

)2 ≤ σ2
i (∆W ) + 2σi(∆W ) ∥Etot∥2 + ∥Etot∥22.

Let ℓ := min(m,n). Summing for i = r + 1, . . . , ℓ,

ℓ∑
i=r+1

(
σi(W

∗)− σi(W0)
)2 ≤ ℓ∑

i=r+1

σ2
i (∆W ) + 2 ∥Etot∥2

ℓ∑
i=r+1

σi(∆W ) + (ℓ− r) ∥Etot∥22.

With the bound on ∥Etot∥2 just obtained, this can be written as

ℓ∑
i=r+1

(
σi(W

∗)− σi(W0)
)2 ≤ ℓ∑

i=r+1

σ2
i (∆W ) + ϵC4 + ϵ2 C5,

where

C4 = 2
(
2
√
mnσmax(W

∗) +mnϵσmax(W
∗)
) ℓ∑

i=r+1

σi(∆W ),

C5 = (ℓ− r)
(
2
√
mnσmax(W

∗) +mnϵσmax(W
∗)
)2

.

Finally, recalling the earlier analysis, we finally combine the bounds to obtain

∥∆W − UrU
⊤
r ∆W∥2F ≤

min(m,n)∑
i=r+1

σ2
i (∆W ) + ϵC1 + ϵ2C2 + ϵ2C3 + ϵC4 + ϵ2C5

=

min(m,n)∑
i=r+1

σ2
i (∆W ) + ϵC

where
C = (C1 + ϵC2 + ϵC3 + C4 + ϵC5)

Theorem 2 (Sequential projection approximates accumulated projection). Let ℓ : Rm×n → R be
L-smooth with ∥∇ℓ(W )∥F ≤ G. Define the unprojected gradient descent path

Zt+1 = Zt − η∇ℓ(Zt).

Let the accumulated-projection iterate be

WT = W0 − ηΠUr

(T−1∑
t=0

∇ℓ(Zt)
)
,

and the sequential-projection iterates

Pt+1 = Pt − ηΠUr∇ℓ(Pt), P0 = W0,

where ΠUr = UrU
⊤
r is the fixed rank-r projector.

Then, for any T , the difference satisfies

∥WT − PT ∥F ≤
η2

2
LGT (T − 1) +O((ηLT )3).
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Proof. We now prove that the sequentially projected iterates closely approximate the delayed pro-
jection iterate when both use the same fixed projector ΠUr

= UrU
⊤
r . Throughout we work with the

Frobenius norm, and recall from Lemma A.3 that ΠUr
is non-expansive in ∥ · ∥F .

The delayed projection iterate is defined by

W delayed
T = W0 − ηΠUr

(T−1∑
t=0

∇ℓ(Zt)
)
, Zt+1 = Zt − η∇ℓ(Zt).

The sequentially projected iterates follow

Pt+1 = Pt − ηΠUr
∇ℓ(Pt), P0 = W0.

Subtracting the two update rules yields

PT −W delayed
T = − η

T−1∑
t=0

ΠUr

(
∇ℓ(Pt)−∇ℓ(Zt)

)
.

Taking Frobenius norms and using ∥ΠUr
∥F→F ≤ 1,

∥PT −W delayed
T ∥F ≤ η

T−1∑
t=0

∥∇ℓ(Pt)−∇ℓ(Zt)∥F .

By Definition 1, ℓ is L-smooth w.r.t. ∥ · ∥F , so the gradient is L-Lipschitz:

∥∇ℓ(Pt)−∇ℓ(Zt)∥F ≤ L∥Pt − Zt∥F .

Denoting Dt = ∥Pt − Zt∥F , we obtain

∥PT −W delayed
T ∥F ≤ ηL

T−1∑
t=0

Dt.

To bound Dt, expand one step of the deviation:

Dt+1 = ∥Pt+1 − Zt+1∥F
= ∥Pt − ηΠUr

∇ℓ(Pt) − (Zt − η∇ℓ(Zt))∥F
= ∥Pt − Zt − η(ΠUr∇ℓ(Pt)−∇ℓ(Zt))∥F .

Applying the triangle inequality and splitting terms,

Dt+1 ≤ Dt + η ∥ΠUr (∇ℓ(Pt)−∇ℓ(Zt))∥F + η ∥(I −ΠUr )∇ℓ(Zt)∥F .

For the first term, by non-expansiveness of ΠUr and L-smoothness,

∥ΠUr (∇ℓ(Pt)−∇ℓ(Zt))∥F ≤ ∥∇ℓ(Pt)−∇ℓ(Zt)∥F ≤ LDt.

For the second term, since ∥∇ℓ(Zt)∥F ≤ G by assumption,

∥(I −ΠUr
)∇ℓ(Zt)∥F ≤ ∥∇ℓ(Zt)∥F ≤ G.

Hence the recurrence is
Dt+1 ≤ (1 + ηL)Dt + ηG.

With D0 = 0, a standard unrolling argument gives

Dt ≤
G

L

(
(1 + ηL)t − 1

)
≤ G

L

(
eηLt − 1

)
.

Plugging back into Step 2,

∥PT −W delayed
T ∥F ≤ ηL

T−1∑
t=0

Dt ≤ ηG

T−1∑
t=0

(eηLt − 1).

17
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For small ηLT , we use the second-order Taylor expansion of the exponential:

ex − 1 = x+ x2

2 +O(x3) as x→ 0.

Applying this with x = ηLt yields

eηLt − 1 = ηLt+ 1
2 (ηLt)

2 +O
(
(ηLt)3

)
,

and hence

ηL

T−1∑
t=0

Dt ≤ ηG

T−1∑
t=0

(
eηLt − 1

)
=

η2LG

2
T (T − 1) + O

(
(ηLT )3

)
.

Combining all estimates, we conclude

∥WT − PT ∥F ≤
η2LG

2
T (T − 1) + O

(
(ηLT )3

)
,

which shows that the sequential projection scheme faithfully tracks the delayed projection up to
higher-order error in the learning rate and horizon.

C IMPLEMENTATION DETAILS AND ADDITIONAL EXPERIMENTS

To ensure a direct and unbiased comparison with existing baseline methods, we adopted the same
experimental setup as outlined in SVFT (Lingam et al., 2024) for NLP tasks. For consistency, all
baseline results in NLP tasks were also sourced from (Lingam et al., 2024), enabling a fair evaluation
of our method’s performance. For vision tasks, we follow Dosovitskiy et al. (2021) and Cho et al.
(2024).

C.1 IMPLEMENTATION DETAILS

Mathematical Reasoning Table 6 presents the hyperparameter configurations employed for these
experiments. For the Gemma model family, PiCa is applied to the Q,K, V, U,D matrices, while for
the LLaMA-3-8B model, the Q,K, V, U,D,O,G matrices are targeted. The experimental codebase
and evaluation procedures are adapted from https://github.com/VijayLingam95/SVFT.
git, and the fine-tuning dataset are sourced from https://huggingface.co/datasets/
meta-math/MetaMathQA-40K.

Table 6: Hyperparameter setup used for fine-tuning on MetaMathQA-40K.

Hyperparameter Gemma-2B Gemma-7B LLaMA-3-8B
Optimizer AdamW
Warmup Ratio 0.1
LR Schedule Cosine
Max Seq. Len. 512
# Epochs 2
Batch Size 64
Rank 32 256 16 256 32 256
Learning Rate 1E-03 9E-04 1E-04 5E-05 2E-04 2E-04

Commonsense Reasoning We follow the setting outlined in prior work (Lingam et al., 2024),
fine-tuning on 15K examples. The hyperparameter configurations for these experiments are de-
tailed in Table 7. We utilize the same set of matrices as in the Mathematical Reasoning tasks.
The codebase, including training and evaluation data, is sourced from https://github.com/
VijayLingam95/SVFT.git.
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Table 7: Hyperparameter setup used for fine-tuning on commonsense-15K.

Hyperparameter Gemma-2B Gemma-7B
Optimizer AdamW
Warmup Steps 100
LR Schedule Linear
Max Seq. Len. 512
# Epochs 3
Batch Size 64
Rank 32 256 16 128
Learning Rate 1E-03 9E-04 3E-04 8E-05

Natural Language Understanding We fine-tune DeBERTaV3base (He et al., 2023), applying PiCa
to all linear layers within each transformer block. We constrain hyperparameter optimization to
moderate adjustments of the learning rate and the number of training epochs. For rigorous comparison,
we employ identical model sequence lengths to those reported by (Lingam et al., 2024; Liu et al.,
2024b). The precise hyperparameter settings utilized in these experiments are specified in Table 8.

Table 8: Hyperparameter setup used for DeBERTaV3base on the GLUE benchmark.

Method Dataset MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B
Optimizer AdamW
Warmup Ratio 0.1
LR Schedule Linear
Batch Size 32
Max Seq. Len. 256 128 320 64 512 320 320 128

PiCar=16
Learning Rate 3E-04 1E-03 2E-03 8E-4 3E-04 1E-04 1E-03 3E-03
# Epochs 5 7 35 50 5 15 40 15

Vision Experiments For vision adaptation tasks, we fine-tune ViT-B/16 (Dosovitskiy et al., 2021)
by updating all linear layers within each transformer block, using a learning rate of 0.004 for PiCa
and LoRA, 0.005 for DoRA, and 0.05 for VeRA and SVFT. For all methods, the classifier learning
rate is fixed at 0.005. Fine-tuning is conducted for 10 epochs, and the checkpoint from the best
validation epoch is used for testing. The same hyperparameter configurations are applied across all
19 datasets of VTAB-1K (Zhai et al., 2020). For subject-driven generation tasks, we follow training
and evaluation protocols of previous works (Lingam et al., 2024; Cho et al., 2024). We use a learning
rate of 0.0001 for LoRA and DoRA, 0.0005 for PiCa, 0.001 for SVFT, and 0.005 for VeRA. Other
settings remain the same with Cho et al. (2024).

C.2 COMMONSENSE REASONING WITH GEMMA-2B

We evaluate PiCa on commonsense reasoning tasks with Gemma-2B. The results are presented in
Table 9. PiCa achieves the highest average performance across both high- and low-rank settings,
outperforming the second-best method by approximately 2–3 percentage points.

C.3 EVIDENCE FROM LARGE-SCALE MODELS.

While Fig. 2 provides visual evidence of subspace alignment in moderate-scale settings, here we
empirically validate the assumptions underlying Theorem 1 on a larger model. Specifically, we
analyze LLaMA3-8B fine-tuned on Commonsense Reasoning benchmarks.

For each pair of pre-trained and fine-tuned weight matrices, we computed the cosine similarity
between their singular vectors and defined Diagonal Similarity as the average of the diagonal entries
of the similarity matrix, aggregated across layers of each module (query, key, and value). The
consistently high Diagonal Similarity values reported in Table 10 demonstrate that the leading

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 9: Performance on Commonsense Reasoning benchmarks using Gemma-2B. #Params refers to
the number of trainable parameters. The best and second-best PEFT methods are highlighted in bold
and underlined text, respectively. PiCa achieves state-of-the-art average performance across both
high- and low-rank settings, outperforming the second-best method by up to 3 percentage points.

Method #Params BoolQ PIQA SIQA HS WG ARC-e ARC-c OBQA Avg.
Full-FT 2.5B 63.57 74.10 65.86 70.00 61.95 75.36 59.72 69.00 67.45

BOFTb=8
m=2 1.22M 59.23 63.65 47.90 29.93 50.35 59.04 42.66 41.00 49.22

VeRAr=2048 0.66M 62.11 64.31 49.18 32.00 50.74 58.08 42.83 42.60 50.23
LoRAr=1 0.82M 62.20 69.31 56.24 32.47 51.53 69.52 48.80 56.40 55.81
DoRAr=1 1.19M 62.17 68.77 55.93 32.95 51.22 68.81 48.72 55.60 55.52
SVFTP 0.19M 62.26 70.18 56.70 32.47 47.04 69.31 50.08 58.40 55.81
PiCar=32 0.67M 62.11 71.76 60.13 36.49 50.59 73.74 52.56 63.20 58.82

LoRAr=32 26.2M 63.11 73.44 63.20 47.79 52.95 74.78 57.16 67.00 62.43
DoRAr=16 13.5M 62.87 73.93 65.34 53.16 55.51 76.43 59.55 68.40 64.40
SVFTd=16

B 6.35M 63.42 73.72 63.86 71.21 59.58 73.69 54.77 66.60 65.86
PiCa r=256 5.37M 63.91 75.57 64.38 71.75 60.62 77.44 58.70 68.40 67.60

singular subspaces remain well aligned after fine-tuning, thus supporting the subspace stability
assumption of Theorem 1.

We also extend the analysis of Fig. 2 by reporting the averaged entries of EP and EQ across layers.
As shown in Table 10, these values are tightly concentrated around zero, empirically confirming that
the additional O(ϵ) term in Theorem 1 is negligible in practice.

Table 10: Empirical validation of Theorem 1 assumptions on LLaMA3-8B fine-tuned for Common-
sense Reasoning. Diagonal Similarity measures alignment of singular vectors between pre-trained
and fine-tuned weights. The averaged values of EP

ij and EQ
ij are tightly concentrated near zero,

confirming that the O(ϵ) term is negligible.

Layer Diagonal Similarity EP
ij EQ

ij

Query 0.927± 0.047 −2.44e−4± 4.27e−6 −2.44e−4± 4.25e−6
Key 0.998± 0.003 −9.66e−4± 3.76e−5 −9.66e−4± 3.76e−5
Value 0.972± 0.011 −9.69e−4± 2.76e−5 −9.66e−4± 2.76e−5

D LLM USAGE

We used large language models only for minor tasks such as spell-checking, grammar correction, and
formatting.

E REPRODUCIBILITY STATEMENT

We have made extensive efforts to ensure the reproducibility of our work. All models, datasets,
training protocols, and hyperparameters required to reproduce our experimental results are described
in detail in Section 4 and Appendix C.
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