

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 PiCa: PARAMETER-EFFICIENT FINE-TUNING WITH COLUMN SPACE PROJECTION

Anonymous authors

Paper under double-blind review

ABSTRACT

Fine-tuning large foundation models is essential for building expert models tailored to specialized tasks and domains, but fully updating billions of parameters is computationally prohibitive. Reducing the number of trainable parameters using parameter-efficient fine-tuning is therefore crucial not only to reduce training costs but also to mitigate storage, caching, and serving overheads during deployment. Prior works, such as Singular Vectors-guided Fine-Tuning, have shown that exploiting the geometry of pre-trained weights can significantly improve parameter-efficiency, but they lack a solid theoretical foundation. In this paper, we introduce Parameter-efficient Fine-tuning with Column Space Projection (PiCa), a novel theoretically grounded PEFT method. We prove that projecting gradients onto the principal column space of pre-trained weights provides an effective inductive bias for adaptation and further enhance parameter efficiency through a novel weight-sharing strategy. Across diverse NLP and vision tasks, PiCa consistently outperforms state-of-the-art baselines under comparable or smaller parameter budgets, demonstrating both theoretical rigor and practical effectiveness.

1 INTRODUCTION

Fine-tuning large foundation models is essential for building expert models tailored to specialized tasks and domains. However, fully fine-tuning billions of parameters is often computationally prohibitive in terms of both training and deployment cost. Parameter-Efficient Fine-Tuning (PEFT) (Houlsby et al., 2019) addresses this challenge by adapting models with only a small number of trainable parameters while keeping the pre-trained backbone frozen. In particular, minimizing the number of trainable parameters is critical in practical scenarios where multiple adapters must be deployed simultaneously (Chen et al., 2024). In such cases, numerous sets of fine-tuned parameters for different tasks, models, and checkpoints per user must be stored separately from the pre-trained models, leading to significant storage, caching, and serving overheads.

A prominent line of research is low-rank adaptation (LoRA) (Hu et al., 2022), known for its simplicity and strong empirical performance. While reducing its rank lowers the number of trainable parameters, it inevitably causes significant performance degradation. To address this, DoRA (Liu et al., 2024a) introduces weight decomposition into LoRA, achieving stronger performance at a fixed rank and often matching or surpassing LoRA while requiring only half the trainable parameters. VeRA (Kopiczko et al., 2023) further reduces parameter budgets by training small scaling vectors, demonstrating that comparable or superior performance to LoRA can be obtained with up to $4\times$ fewer trainable parameters.

Furthermore, recent studies (Lingam et al., 2024; Han et al., 2023; Mantri et al., 2025) have shown that leveraging the geometry of pre-trained weights, particularly their spectral structure, can lead to further parameter-efficiency without performance degradation. For instance, Singular Vectors-guided Fine-Tuning (SVFT) (Lingam et al., 2024) constructs a sparse, weighted combination of a model’s pre-trained singular vectors to achieve strong performance with fewer trainable parameters. However, despite their empirical success, these SVD-based approaches (Lingam et al., 2024; Han et al., 2023; Mantri et al., 2025) lack theoretical foundation for their approaches and leave open why using the spectral structure of pre-trained weights constitutes an effective inductive bias for fine-tuning.

In this work, we propose **Parameter-efficient Fine-tuning with Column Space Projection (PiCa)**, a new theoretically grounded PEFT method that leverages the geometry of pre-trained weights. Our theoretical analysis demonstrates that projecting gradients onto the principal column space spanned by pre-trained weights can lead to effective adaptation. This gradient projection is effectively paired with our novel weight sharing method for further parameter efficiency. With this approach, we can significantly reduce the number of trainable parameters, even using less than the most parameter-efficient configurations of other methods (e.g., rank-1 LoRA and DoRA), while achieving significantly better performance. Our extensive experiments across various models and datasets demonstrate that PiCa consistently outperforms all baseline methods under comparable parameter budgets, as illustrated in Fig 1.

Our contributions can be summarized as follows:

- We introduce **PiCa**, a **theoretically grounded PEFT method** that explicitly exploits the geometry of pre-trained weights. We provide a **theoretical foundation** showing that projecting gradients onto the principal column space of pre-trained weights enables effective adaptation. For further parameter efficiency, PiCa also introduces a **novel weight-sharing approach** that can be paired with gradient projection.
- **PiCa consistently achieves competitive or superior performance with significantly fewer parameters** compared to other baselines. In particular, it **outperforms state-of-the-art baselines**, SVFT^R and SVFT^B, across all datasets and models under smaller parameter budgets.
- Our experiments span a **wide range of NLP tasks** including mathematical reasoning, common-sense reasoning, and natural language understanding with different language models, as well as **diverse vision tasks** such as visual adaptation on 19 VTAB datasets with vision transformers and subject-driven generation on DreamBooth with text-to-image diffusion models. We also conduct **comprehensive ablation studies** to better understand the individual components of our method and their effects.

2 RELATED WORK

Parameter-efficient fine-tuning In adapting large foundation models for downstream tasks, while full fine-tuning often yields superior performance on these tasks, its prohibitive computational overheads have motivated the development of various PEFT methods that aim to achieve comparable performance with much fewer number of trainable parameters. Recently highlighted approaches include low rank approximation (Hu et al., 2022; Liu et al., 2024a; Kopitzko et al., 2023), orthogonal reparametrization (Qiu et al., 2023; Liu et al., 2024b), and Singular Value Decomposition (SVD)-based approaches (Lingam et al., 2024; Han et al., 2023; Mantri et al., 2025).

In particular, LoRA and its variants (Hu et al., 2022; Liu et al., 2024a; Kopitzko et al., 2023) have significant attention due to its simplicity and efficiency, based low-rank decomposition. DoRA (Liu et al., 2024a) decomposes weights and achieves stronger performance at a fixed rank, often matching or surpassing LoRA while requiring only half the trainable parameters. VeRA (Kopitzko et al., 2023) further reduces parameter budgets by training small scaling vectors.

On the other hand, methods leveraging the structure of pre-trained weights, specifically through their SVD components, have been explored (Lingam et al., 2024; Han et al., 2023; Mantri et al., 2025). SVFT (Lingam et al., 2024) utilizes the entire singular vectors of pre-trained weights as a basis and employs a sparse matrix for updates. SVDiff (Han et al., 2023) has demonstrated fine-tuning only

108 the singular values of pre-trained weight matrices is effective in personalization of text-to-image
 109 diffusion models. Similarly, DiTASK (Mantri et al., 2025) has shown that preserving singular vectors
 110 and enabling task-specific adaptations through neural diffeomorphic transformations of the singular
 111 values can be effective for dense prediction tasks.

112 Although these SVD-based methods have shown empirical success, they often lack a strong theoretical
 113 foundation that provides an analytical justification for their methods, and only few works has
 114 attempted to analyze the change in spectral structure after fine-tuning (Shuttleworth et al., 2024). In
 115 contrast, we develop a method based on a theoretical proof that the optimal rank- r approximation
 116 of ΔW can be achieved by the singular vectors of the pre-trained weights, which aligns with
 117 our empirical findings. We further validate this theoretical result through extensive experiments,
 118 demonstrating its effectiveness.

119 **Weight sharing** Prior research has explored weight sharing to reduce the number of parameters
 120 in neural networks (Press & Wolf, 2017; Inan et al., 2016). More recently, this concept of weight
 121 sharing has been adapted within the LoRA framework (Kopitzko et al., 2023; Renduchintala et al.,
 122 2023; Zhou et al., 2025; Shen et al., 2024; Song et al., 2024). For instance, VeRA (Kopitzko et al.,
 123 2023) introduces a frozen random projection matrix shared across all layers, combined with trainable
 124 scaling vectors. Furthermore, recent works (Renduchintala et al., 2023; Song et al., 2024) explore
 125 different strategies of combining freezing, training, and sharing both projection matrices and scaling
 126 vectors. While demonstrating progress in parameter reduction, these prior approaches tend to be
 127 highly sensitive to randomly initialized projection matrices and often their performance is below that
 128 of standard LoRA. However, in PiCa, we construct projection matrix based on structure of pre-trained
 129 weights for each layer and share trainable weights across layers with the same function role. This
 130 approach allows significant reduction of trainable parameters without performance degradation.

3 METHODOLOGY

131 In this section, we introduce our novel PEFT method, PiCa. (1) We first discuss how fine-tuning
 132 relates to singular vectors and introduces Theorem 1, which shows that the principal subspace of
 133 pre-trained weights offers an effective space for adaptation (Section 3.1). (2) We develop this idea in
 134 the context of PEFT settings, showing that sequentially projecting gradients onto this subspace offers
 135 a theoretically grounded way to perform fine-tuning under parameter constraints (Section 3.2). (3) On
 136 top of these insights, we finally present our algorithm, PiCa, which integrates sequential projection
 137 with weight sharing for further parameter-efficient adaptation (Section 3.3).

3.1 FINE-TUNING AND COLUMN SPACE PROJECTION

138 “Fine”-tuning is, by definition, the process of making a relatively small update
 139 from the pre-trained weights W_0 to the
 140 fine-tuned weights W^* , in order to adapt
 141 a model to a specific downstream task
 142 with a much smaller dataset. As large
 143 foundation models are pre-trained on vast,
 144 diverse corpora, good optima tend to lie
 145 in a small-update neighborhood of W_0 .
 146 Therefore, in the context of fine-tuning
 147 of large foundation models, it is natural
 148 to assume that $\Delta W = W^* - W_0$ with
 149 $\|W_0\| \gg \|\Delta W\|$. Lemma 3.1 indicates
 150 that, when this change is small, the leading
 151 singular structures of W_0 and W^* remain
 152 closely aligned.

153 **Lemma 3.1** (Wedin (1972)). *Let $W_0, W^* \in \mathbb{R}^{m \times n}$ with $W^* = W_0 + \Delta W$. Let U_r, U_r^* denote the
 154 top- r left singular-vector matrices of W_0 and W^* . Define the gap*

$$155 \delta := \min \left\{ \sigma_r(W_0) - \sigma_{r+1}(W^*), \sigma_r(W^*) - \sigma_{r+1}(W_0) \right\}.$$

156 Figure 2: Distribution of perturbations E_{ij}^P and E_{ij}^Q
 157 across all weight matrix elements using DeBERTaV3_{base}.
 158 Most values are tightly concentrated around zero, validating
 159 that $\mathcal{O}(\epsilon)$ is negligible in practice.

162 Then for any unitarily invariant norm,

$$164 \quad \| \sin \Theta(U_r, U_r^*) \| \leq \frac{\|\Delta W\|}{\delta}. \\ 165$$

166 Building on this insight, Theorem 1 expresses the relation between W_0 and W^* in a form that involves
 167 a small deviation E , and uses this to analyze how the update ΔW can be captured within the column
 168 space of U_r . Empirical results in Fig. 2 support this view, showing that the entries of E are tightly
 169 concentrated near zero.

171 **Theorem 1** (Approximation error of projection onto U_r). *Let $W_0 = U\Sigma V^\top \in \mathbb{R}^{m \times n}$ be the Singular
 172 Value Decomposition (SVD) of W_0 . Suppose the fine-tuned matrix $W^* \in \mathbb{R}^{m \times n}$ has the form*

$$174 \quad W^* = (UP)\Sigma^*(VQ)^\top, \\ 175$$

176 where:

- 178 • $U^* = UP$ and $V^* = VQ$ are the left and right singular vectors of W^* , respectively,
- 179 • $\Sigma^* = \text{diag}(\sigma_1(W^*), \dots, \sigma_{\min(m,n)}(W^*))$,
- 180 • $P = I_m + E^P$, $Q = I_n + E^Q$, with $|E_{ij}^P| < \epsilon$, $|E_{ij}^Q| < \epsilon$.

183 Let $\Delta W = W^* - W_0$, and let $U_r \in \mathbb{R}^{m \times r}$ be the top- r left singular vectors of W_0 . Then, the
 184 approximation error incurred by projecting ΔW onto the subspace spanned by U_r satisfies
 185

$$186 \quad \|\Delta W - U_r U_r^\top \Delta W\|_F^2 \leq \sum_{i=r+1}^{\min(m,n)} \sigma_i^2(\Delta W) + \mathcal{O}(\epsilon). \\ 187 \\ 188$$

189 The complete proof of Theorem 1 is detailed in Appendix B.

190 Theorem 1 indicates that the update ΔW can be well captured within the principal column space
 191 of W_0 . The first term on the right-hand side, $\sum_{i=r+1}^{\min(m,n)} \sigma_i^2(\Delta W)$, corresponds to the rank- r
 192 approximation error of ΔW given by the Eckart–Young theorem (Eckart & Young, 1936). The
 193 additional $\mathcal{O}(\epsilon)$ term reflects the small deviation introduced through E^P and E^Q , and empirical
 194 evidence in Fig. 2 suggests that the $\mathcal{O}(\epsilon)$ term is negligible in practice. Appendix C.3 provides further
 195 observations on large-scale models, which is consistent with this view.

196 Theorem 1 shows that the dominant directions of the resulting update ΔW are well captured within
 197 the pre-trained column space U_r of W_0 . This implies that by keeping U_r fixed and learning only a
 198 small set of coefficients that determine the task-specific choice of how to move inside this space,
 199 we can substantially reduce the number of trainable parameters, which is precisely the notion of
 200 parameter efficiency we target.

201 Theorem 1 is not meant to show that U_r projection is globally optimal or that projection alone
 202 guarantees task-optimal performance. Other projection spaces may also reach good optima, which
 203 does not contradict our claims. Rather, our contribution is to provide theoretical support for why this
 204 particular projection can work well, whereas most prior methods are justified only empirically.

207 3.2 SEQUENTIAL GRADIENT PROJECTION

209 Theorem 2 shows that the principal column space in Theorem 1 can be naturally incorporated into
 210 PEFT by projecting gradients onto the subspace at each step. This provides a practical way to exploit
 211 the same effective space throughout training, offering a simple and theoretically supported view of
 212 how sequential updates can operate within the projection framework.

213 **Definition 1** (L-smoothness for matrix-valued functions). A differentiable function $\ell : \mathbb{R}^{m \times n} \rightarrow \mathbb{R}$
 214 is *L-smooth* (w.r.t. $\|\cdot\|_F$) if

$$215 \quad \|\nabla \ell(W_1) - \nabla \ell(W_2)\|_F \leq L \|W_1 - W_2\|_F \quad \text{for all } W_1, W_2 \in \mathbb{R}^{m \times n}.$$

Algorithm 1: Adam with PiCa

Input: rank r ; learning rate η ; decay rates β_1, β_2 ; small $\varepsilon > 0$.

Setup / Notation. For each group $f \in \mathcal{F}$ and layer i : compute SVD $W_0^{f,i} = U^{f,i} \Sigma^{f,i} (V^{f,i})^\top$ and set $P^{f,i} \leftarrow U_{[:,1:r]}^{f,i}$; // Layer-wise fixed projector

Set $W^{f,i} \leftarrow W_0^{f,i}$;

For each group f : set shared compact states $\theta_0^f, M_0^f, V_0^f \in \mathbb{R}^{r \times n} \leftarrow 0$; set $t \leftarrow 0$;

Elementwise ops: \odot (Hadamard), \oslash (elementwise divide), $\sqrt{\cdot}$ (elementwise).

repeat

$t \leftarrow t + 1$;

foreach group f do

// (1) Project layer-wise gradients & aggregate

$R_t^f \leftarrow \sum_i (P^{f,i})^\top \left(-\nabla_{W^{f,i}} \ell_t(W^{f,i}) \right)$;

// (2) Adam update in compact space

$M_t^f \leftarrow \beta_1 M_{t-1}^f + (1 - \beta_1) R_t^f$;

$V_t^f \leftarrow \beta_2 V_{t-1}^f + (1 - \beta_2) (R_t^f \odot R_t^f)$;

$\hat{M}_t^f \leftarrow M_t^f / (1 - \beta_1^t)$; $\hat{V}_t^f \leftarrow V_t^f / (1 - \beta_2^t)$;

$\Delta\theta_t^f \leftarrow \hat{M}_t^f \oslash (\sqrt{\hat{V}_t^f} + \varepsilon)$; $\theta_t^f \leftarrow \theta_{t-1}^f + \eta \Delta\theta_t^f$;

// (3) Decompress shared update to each layer

foreach layer i do

$W^{f,i} \leftarrow W^{f,i} + \eta P^{f,i} \Delta\theta_t^f$;

until convergence;

return $\{\theta_T^f\}_{f \in \mathcal{F}}$ // Final shared compact parameters

Theorem 2 (Sequential projection approximates accumulated projection). *Let $\ell : \mathbb{R}^{m \times n} \rightarrow \mathbb{R}$ be L -smooth with $\|\nabla \ell(W)\|_F \leq G$. Define the unprojected gradient descent path*

$$Z_{t+1} = Z_t - \eta \nabla \ell(Z_t).$$

Let the accumulated-projection iterate be

$$W_T = W_0 - \eta \Pi_{U_r} \left(\sum_{t=0}^{T-1} \nabla \ell(Z_t) \right),$$

and the sequential-projection iterates

$$P_{t+1} \equiv P_t - \eta \prod_{U'} \nabla \ell(P_t), \quad \quad P_0 \equiv W_0.$$

where $\Pi_{U_r} = U_r U_r^\top$ is the fixed rank- r projector.

Then, for any T , the difference satisfies

$$\|W_T - P_T\|_F \leq \frac{\eta^2}{2} LGT(T-1) + O((\eta LT)^3).$$

Proof is provided in Appendix B

3.3 PICa: PEFT WITH COLUMN SPACE PROJECTION

Based on the preceding results, we propose PiCa that projects gradients onto the principal column space spanned by pre-trained weights for each update. This gradient projection is effectively paired with our novel weight sharing method for further parameter efficiency. For clarity, we describe PiCa in Algorithm 1 using Adam, though the approach is not limited to this optimizer.

270 In Algorithm 1, each functional group $f \in \mathcal{F} = \{\text{query}, \text{key}, \text{value}, \dots\}$ is associated with a single
 271 trainable matrix $\theta^f \in \mathbb{R}^{r \times n}$, which is shared across all layers $i = 1, \dots, L$ of the same group. The
 272 projection matrices $P^{f,i}$ remain layer-specific, leveraging the geometry of each pre-trained weight
 273 $W_0^{f,i}$. The gradients of each layer i are first projected onto $P^{f,i}$ defined by the top- r singular vectors
 274 of the corresponding pre-trained weight, $U_r^{f,i}$. The updates are then accumulated in this compact
 275 space as shared parameters θ^f . Momentum and variance statistics are also updated in this compact
 276 space. Then, the shared update is mapped back to each layer through its layer-specific projector $U_r^{f,i}$.
 277

278 Unlike prior approaches (Kopczko et al., 2023; Renduchintala et al., 2023) that primarily rely
 279 on random projection matrices for weight sharing, our method leverages layer-specific projection
 280 matrices $U_r^{f,i}$ derived from the structure of the pre-trained weights $W_0^{f,i}$ for each layer i of group
 281 f . This allows us to capture the distinct characteristics and pre-trained knowledge encoded in each
 282 $W_0^{f,i}$. Given the use of unique projection matrices per layer, we posit that the trainable parameter θ^f
 283 can be effectively shared across layers with the same functionality, facilitating efficient adaptation
 284 to downstream tasks. Our extensive experiments demonstrate the effectiveness of weight sharing
 285 in PiCa, which reduces the number of trainable parameters by up to $7 \times$ without compromising
 286 performance (see Sec. 4.3 for details).
 287

288 4 EXPERIMENTS

290 4.1 EXPERIMENTAL SETTINGS

291 We evaluate the effectiveness of PiCa across a diverse set of Natural Language Processing (NLP) tasks,
 292 covering Mathematical Reasoning, Commonsense Reasoning, and Natural Language Understanding
 293 (NLU). For Mathematical Reasoning tasks, we fine-tune our model on the MetaMathQA-40K
 294 dataset (Yu et al., 2023) and assess its performance on the GSM-8K (Cobbe et al., 2021) and
 295 MATH (Hendrycks et al., 2021) datasets. Furthermore, we conduct evaluations on eight commonsense
 296 reasoning benchmarks: BoolQ (Clark et al., 2019), PIQA (Bisk et al., 2020), SIQA (Sap et al.,
 297 2019), HellaSwag (Zellers et al., 2019), Winogrande (Sakaguchi et al., 2019), ARC-Easy/ARC-
 298 Challenge (Clark et al., 2018), and OpenBookQA (Mihaylov et al., 2018). For NLU tasks, we
 299 utilize the GLUE benchmark (Wang et al., 2018). We report matched accuracy for MNLI, Matthew’s
 300 correlation for CoLA, Pearson correlation for STS-B, and accuracy for all other tasks. We employ
 301 the Gemma-2B/7B (Team et al., 2024), and LLaMA-3-8B (AI, 2024) models for Mathematical
 302 Reasoning tasks and adopt the DeBERTaV3-base (He et al., 2023) model for NLU tasks.
 303

304 Beyond NLP, we also evaluate PiCa on vision tasks. Specifically, we conduct experiments with visual
 305 adaptation using the ViT-B/16 (Dosovitskiy et al., 2021) on 19 different datasets of VTAB-1K (Zhai
 306 et al., 2020), grouped into *Natural*, *Specialized*, and *Structured* categories. Performance is reported
 307 as the average accuracy across these groups. In addition, we evaluate subject-driven generation
 308 tasks with the Stable Diffusion v2.1 (Rombach et al., 2022) on the DreamBooth dataset (Ruiz et al.,
 309 2023), which includes 30 subjects and 25 prompts per subject, totaling 750 different personalization
 310 tasks. Following prior work (Ruiz et al., 2023), we report results using DINO for subject fidelity and
 311 CLIP-T for text fidelity. To ensure a fair comparison, hyperparameters and training protocols are
 312 aligned with those outlined in (Lingam et al., 2024; Cho et al., 2024). Further details are provided in
 313 the Appendix C.
 314

315 4.2 RESULTS

316 For a fair comparison, we follow (Lingam et al., 2024; Dosovitskiy et al., 2021; Cho et al., 2024) and
 317 evaluate the effectiveness of PiCa across three NLP tasks (Mathematical Reasoning, Commonsense
 318 Reasoning, and Natural Language Understanding) and two vision tasks (Visual Adaptation and
 319 Subject-Driven Generation). The baselines include LoRA (Hu et al., 2022), DoRA (Liu et al., 2024a),
 320 BOFT (Liu et al., 2024b), VeRA (Kopczko et al., 2023), and SVFT (Lingam et al., 2024). Full
 321 experimental details are provided in Appendix C.
 322

323 **Mathematical Reasoning** In Table 1, we provide results on mathematical question answering,
 324 comparing our method against baseline PEFT methods across three different base models ranging
 325 from 2B to 8B parameters. Our experiments include two configurations of PiCa: a high-rank setting

324 with fewer trainable parameters than $SVFT^R$, and a low-rank configuration with fewer trainable
 325 parameters than rank 1 LoRA. As shown in Table 1, our high-rank PiCa consistently achieves superior
 326 performance while using the fewest trainable parameters across all models and datasets. In the
 327 low-rank setting, PiCa achieves either the best or second-best performance.
 328

329 Table 1: Performance on Mathematical Reasoning benchmarks (GSM-8K and MATH). #Params
 330 indicates the number of trainable parameters. The best and second-best PEFT methods are highlighted
 331 in **bold** and underlined, respectively. For Gemma-7B, we set $r = 16$ to ensure the number of trainable
 332 parameters remains below that of rank-1 LoRA. For $SVFT_d^R$, we use $d = 16$ for Gemma models
 333 and $d = 12$ for LLaMA-3 models. In the high-rank setting, PiCa consistently achieves the best
 334 performance across all models and datasets, while using the fewest trainable parameters.
 335

Method	Gemma-2B				Gemma-7B				LLaMA-3-8B			
	#Params	GSM-8K	MATH	#Params	GSM-8K	MATH	#Params	GSM-8K	MATH	#Params	GSM-8K	MATH
Full-FT	2.5B	52.69	17.94	8.5B	78.09	<u>30.98</u>	8.0B	76.57	<u>26.12</u>			
BOFT $_{m=2}^{b=8}$	1.22M	36.01	12.13	2.90M	71.79	28.98	4.35M	67.09	21.64			
DoRA $_{r=1}$	1.19M	35.35	13.04	3.26M	74.37	26.28	2.55M	68.30	<u>21.96</u>			
LoRA $_{r=1}$	0.82M	32.97	13.04	0.82M	72.40	26.28	1.77M	68.84	20.94			
VeRA $_{r=1024}$	0.63M	36.77	14.12	0.43M	71.11	27.04	0.98M	63.76	20.28			
SVFT P	0.19M	<u>40.34</u>	<u>14.38</u>	0.43M	73.50	27.30	0.48M	<u>69.22</u>	20.44			
PiCa $_{r=32}$	0.67M	41.32	15.22	0.64M	<u>74.30</u>	<u>28.92</u>	1.38M	73.54	24.14			
LoRA $_{r=32}$	26.2M	43.06	15.50	68.8M	76.57	29.34	56.6M	75.89	<u>24.74</u>			
DoRA $_{r=16}$	13.5M	44.27	<u>16.18</u>	35.5M	74.52	29.84	29.1M	75.66	24.72			
SVFT $_d^R$	6.35M	<u>50.03</u>	15.56	19.8M	<u>76.81</u>	<u>29.98</u>	13.1M	<u>75.90</u>	24.22			
PiCa $_{r=256}$	5.37M	52.77	16.36	10.22M	78.39	30.16	11.01M	76.12	24.88			

351 Table 2: Performance on Commonsense Reasoning benchmarks. #Params refers to the number of
 352 trainable parameters. The best and second-best PEFT methods are highlighted in **bold** and underlined
 353 text, respectively. In the high-rank setting, PiCa achieves state-of-the-art performance on 7 out of 8
 354 datasets, using over $13\times$ fewer parameters than LoRA and about half the parameters of SVFT.
 355

Method	#Params	BoolQ	PIQA	SIQA	HS	WG	ARC-e	ARC-c	OBQA	Avg.
Full-FT	8.5B	72.32	87.32	76.86	91.07	81.76	92.46	82.87	89.00	84.19
DoRA $_{r=1}$	3.31M	<u>68.22</u>	86.72	75.23	<u>91.14</u>	78.13	91.87	83.19	86.20	<u>82.59</u>
VeRA $_{r=2048}$	1.49M	64.25	86.28	74.04	86.96	69.00	<u>92.76</u>	82.33	82.00	79.70
LoRA $_{r=1}$	0.82M	65.44	86.28	75.02	89.91	75.92	91.79	81.91	85.40	81.46
SVFT P	0.51M	67.92	<u>86.45</u>	<u>75.47</u>	86.92	74.03	91.80	81.21	83.00	80.85
PiCa $_{r=16}$	0.64M	70.95	86.29	76.00	91.42	76.32	92.89	83.19	85.60	82.83
LoRA $_{r=32}$	68.8M	71.55	87.95	77.27	91.80	79.71	92.67	82.16	86.40	83.69
DoRA $_{r=16}$	35.5M	71.46	87.59	76.35	<u>92.11</u>	78.29	92.00	80.63	85.60	83.00
SVFT $_{d=8}^B$	9.80M	<u>71.90</u>	86.96	76.28	91.55	78.76	92.80	<u>83.11</u>	85.40	83.35
PiCa $_{r=128}$	5.11M	72.84	87.98	<u>77.79</u>	92.82	<u>79.40</u>	93.14	83.62	88.20	84.47

368 **Commonsense Reasoning** In Table 2, we evaluate commonsense reasoning performance on eight
 369 benchmark datasets using Gemma-7B, following the same experimental setup as in the Mathematical
 370 Reasoning task. We compare both high-rank and low-rank configurations of our method against PEFT
 371 baselines. In both settings, PiCa outperforms all baselines on average across the eight datasets. In the
 372 high-rank setting, our method achieves state-of-the-art performance on seven out of eight datasets
 373 while using over $13\times$ fewer parameters than LoRA, and it consistently outperforms SVFT on all
 374 eight datasets with approximately half the number of parameters. In the low-rank setting, PiCa also
 375 achieves the best average performance, surpassing rank 1 DoRA while using more than $5\times$ fewer
 376 parameters. Compared to SVFT P , our method delivers superior performance on seven out of eight
 377 datasets, with an average improvement of nearly two percentage points. Similar trends are observed
 378 with Gemma-2B (see Appendix C.2).

378
 379 Table 3: Performance of DeBERTaV3_{base} on the GLUE benchmark. #Params refers to the number of
 380 trainable parameters. The best and second-best PEFT methods are highlighted in **bold** and underlined
 381 text, respectively. While using more than $2.5 \times$ fewer parameters than SVFT_{d=2}^R, PiCa outperforms it
 382 on all datasets.

Method	#Params	MNLI	SST-2	MRPC	CoLA	QQP	QNLI	RTE	STS-B	Avg.
Full-FT	183.83M	89.90	95.63	89.46	69.19	92.40	94.03	83.75	91.60	88.25
LoRA _{r=8}	1.33M	90.65	94.95	89.95	69.82	93.87	91.99	85.20	91.60	88.50
LoRA _{r=1}	0.17M	90.12	<u>95.64</u>	86.43	69.13	91.43	94.18	87.36	91.52	88.23
DoRA _{r=4}	0.75M	89.92	95.41	89.10	69.37	91.53	94.14	87.00	<u>91.80</u>	88.53
BOFT ^{P=8} _{m=2}	0.75M	<u>90.25</u>	96.44	92.40	<u>72.95</u>	<u>92.10</u>	<u>94.23</u>	<u>88.81</u>	91.92	89.89
VeRA _{r=1024}	0.09M	89.93	95.53	87.94	69.06	90.40	93.24	87.00	88.71	87.73
SVFT ^P	0.06M	89.69	95.41	88.77	70.95	90.16	94.27	87.24	<u>91.80</u>	88.54
SVFT ^R _{d=2}	0.28M	89.97	95.99	88.99	72.61	91.50	93.90	88.09	91.73	89.10
PiCa _{r=16}	0.11M	90.20	<u>96.00</u>	<u>91.40</u>	73.10	91.60	94.20	89.20	<u>91.80</u>	89.69

393
 394 Table 4: Performance on vision benchmarks. VTAB-1K (ViT-B/16) is averaged over 19 datasets
 395 grouped into *Natural*, *Specialized*, *Structured*. DreamBooth is evaluated with Stable Diffusion
 396 v2.1 using DINO (subject fidelity) and CLIP-T (text fidelity). The best and second-best results are
 397 highlighted in **bold** and underlined, respectively.

VTAB-1K (ViT-B/16)					DreamBooth (Stable Diffusion v2.1)				
Method	#Params	Natural	Specialized	Structured	All	Method	#Params	DINO	CLIP-T
LoRA _{r=8}	1.32M	0.823	0.851	0.508	0.696	LoRA _{r=16}	3.37M	0.618	0.305
DoRA _{r=8}	1.41M	0.827	0.846	0.505	0.695	DoRA _{r=16}	3.42M	0.617	<u>0.306</u>
SVFT ^B _{d=8}	0.93M	0.820	0.844	0.486	0.684	SVFT ^B _{d=12}	2.50M	<u>0.622</u>	0.307
VeRA _{r=4096}	0.45M	0.813	0.845	0.474	0.677	VeRA _{r=13312}	1.80M	0.613	0.305
PiCa _{r=64}	0.44M	<u>0.825</u>	0.851	0.508	0.697	PiCa _{r=128}	1.72M	0.634	0.306

408 **Natural Language Understanding** Table 3 presents the results on the GLUE benchmark using
 409 DeBERTaV3_{base}. Compared to LoRA with rank 8, our method achieves over one percentage point
 410 higher average performance. While using more than $2.5 \times$ fewer parameters than SVFT_{d=2}^R, our
 411 method outperforms it on all datasets. Furthermore, despite using over $7 \times$ fewer parameters than
 412 BOFT, our method achieves comparable average performance.

413 **Vision Experiments** Table 4 reports results on VTAB-1K and DreamBooth dataset. On the VTAB-
 414 1K dataset, PiCa achieves the best overall score while using the fewest trainable parameters. In
 415 particular, PiCa achieves competitive results compared to other baselines while using 2 to $3 \times$ fewer
 416 trainable parameters in VTAB-1K. On the DreamBooth dataset, PiCa achieves a higher DINO score
 417 while maintaining a comparable CLIP-T score, demonstrating strong personalization with fewer
 418 parameters than other baselines. These results highlight that PiCa maintains strong performance on
 419 vision tasks under substantially reduced parameter budgets.

421 4.3 FURTHER ANALYSIS

423 **Ablation study of column space projec-
 424 tion** In Table 5, we compare the effect of
 425 using column space projection versus ran-
 426 dom space projection. We use com-
 427 monsense reasoning benchmarks with Gemma-
 428 2B. The results show that column space
 429 projection improves overall accuracy by
 430 4.42 points compared to random space pro-
 431 jection, demonstrating the effectiveness of
 leveraging the spectral structure of pre-

425 Table 5: Ablation study on projection choice (rank =
 426 256). Average scores are reported across commonsense
 427 reasoning benchmarks using Gemma-2B.

Projection Method	#Params	Avg.
Random Space	5.37M	63.18
Column Space (Ours)	5.37M	67.60

432 trained weights, aligned with the results
 433 in Theorem 1.

435
 436 (a) Accuracy across Commonsense Reasoning datasets
 437 with and without weight sharing. Weight sharing reduces
 438 the number of trainable parameters by up to 7 \times without
 439 compromising performance.

440 (b) Accuracy on GSM-8K under varying rank settings. Weight sharing consistently yields superior
 441 performance under similar parameter budgets.

442 Figure 3: Ablation study of weight sharing across different datasets and rank configurations.

443 **Ablation study of weight sharing** In Fig. 3a, we analyze the impact of weight sharing in PiCa
 444 across eight Commonsense Reasoning datasets using Gemma-7B. By comparing PiCa with its
 445 standard configuration (rank 128 with weight sharing, 5.1M trainable parameters) against a variant without
 446 sharing (rank 16, 35.8M parameters), we find that the default PiCa consistently achieves performance
 447 comparable to its non-sharing variant while requiring about 7 \times fewer trainable parameters. These
 448 results indicate that weight sharing substantially improves parameter efficiency without performance
 449 degradation.

450 Furthermore, we conduct an additional study on the effect of weight sharing under varying rank
 451 settings using the GSM-8K benchmark with Gemma-2B. As shown in Fig. 3b, PiCa consistently
 452 achieves superior performance under similar parameter budgets compared to both its no-sharing
 453 ablation and LoRA.

464 5 DISCUSSION

465 While PiCa significantly reduces the number of trainable parameters required, it introduces a minor
 466 limitation during inference. Specifically, PiCa stores only a small shared matrix θ_f for each functional
 467 group f , but requires to perform an additional SVD on the pre-trained weights W_0 at load time
 468 to recover the projection matrix $P^{f,i} = U^{f,i}$. This presents a trade-off between storage cost and
 469 loading overhead. If the loading overhead is a concern, one can optionally store $U^{f,i}$. Nonetheless,
 470 in scenarios where multiple task-specific adaptations are required from a single base model, PiCa
 471 offers greater scalability: a shared set of task-agnostic $U^{f,i}$ can be pre-computed and paired with
 472 multiple sets of lightweight task-specific θ_f , enabling efficient adaptation across diverse tasks.

476 6 CONCLUSION

477 In this work, we introduced PiCa, a parameter-efficient fine-tuning method that integrates gradi-
 478 ent projection onto the principal column space of pre-trained weights with a novel weight-sharing
 479 mechanism. Our theoretical analysis establishes that column space projection provides an effective
 480 inductive bias for fine-tuning, while the addition of weight sharing offers substantial reductions in
 481 trainable parameters without compromising performance. Through extensive experiments, we demon-
 482 strated that PiCa consistently achieves competitive or superior results compared to state-of-the-art
 483 baselines across a wide spectrum of NLP tasks (Mathematical Reasoning, Commonsense Reasoning,
 484 and Natural Language Understanding) as well as challenging vision tasks (Visual Adaptation and
 485 Subject-Driven Generation).

486 Taken together, our results indicate that PiCa offers a theoretically grounded and empirically validated
487 approach to parameter-efficient adaptation of large models. We hope this work motivates further
488 exploration of theoretically guided approaches that unify geometry-aware design with practical
489 efficiency in fine-tuning large-scale foundation models. In future work, we aim to extend PiCa to
490 more dynamic and practical settings such as multi-task adaptation and continual learning, where
491 efficient and scalable fine-tuning is critical.

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540 REFERENCES
541

542 Meta AI. Introducing meta llama 3: The most capable openly available llm to date. April 2024. URL
543 <https://ai.meta.com/blog/meta-llama-3/>.

544 Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. Piqa: Reasoning about physical
545 commonsense in natural language. In *Thirty-Fourth AAAI Conference on Artificial Intelligence*, 2020.

546 Lequn Chen, Zihao Ye, Yongji Wu, Danyang Zhuo, Luis Ceze, and Arvind Krishnamurthy. Punica: Multi-tenant
547 lora serving. *Proceedings of Machine Learning and Systems*, 6:1–13, 2024.

548 Wonguk Cho, Seocheon Choi, Debasmit Das, Matthias Reisser, Taesup Kim, Sungrock Yun, and Fatih Porikli.
549 Hollowed net for on-device personalization of text-to-image diffusion models. *Advances in Neural Information
550 Processing Systems*, 37:43058–43079, 2024.

551 Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina Toutanova.
552 Boolq: Exploring the surprising difficulty of natural yes/no questions, 2019.

553 Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and Oyvind
554 Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge, 2018.

555 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias Plappert,
556 Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John Schulman. Training verifiers to
557 solve math word problems. *arXiv preprint arXiv:2110.14168*, 2021.

558 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
559 Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An
560 image is worth 16x16 words: Transformers for image recognition at scale, 2021. URL <https://arxiv.org/abs/2010.11929>.

561 Carl Eckart and Gale Young. The approximation of one matrix by another of lower rank. *Psychometrika*, 1(3):
562 211–218, 1936.

563 Ligong Han, Yinxiao Li, Han Zhang, Peyman Milanfar, Dimitris Metaxas, and Feng Yang. Svdiff: Compact
564 parameter space for diffusion fine-tuning. In *Proceedings of the IEEE/CVF International Conference on
565 Computer Vision*, pp. 7323–7334, 2023.

566 Pengcheng He, Jianfeng Gao, and Weizhu Chen. Debertav3: Improving deberta using electra-style pre-training
567 with gradient-disentangled embedding sharing, 2023.

568 Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song, and Jacob
569 Steinhardt. Measuring mathematical problem solving with the math dataset, 2021.

570 Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, Andrea Ges-
571 mundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for nlp. In *International
572 conference on machine learning*, pp. 2790–2799. PMLR, 2019.

573 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu
574 Chen, et al. Lora: Low-rank adaptation of large language models. *ICLR*, 1(2):3, 2022.

575 Hakan Inan, Khashayar Khosravi, and Richard Socher. Tying word vectors and word classifiers: A loss
576 framework for language modeling. *arXiv preprint arXiv:1611.01462*, 2016.

577 Dawid J Kopiczko, Tijmen Blankevoort, and Yuki M Asano. Vera: Vector-based random matrix adaptation.
578 *arXiv preprint arXiv:2310.11454*, 2023.

579 Vijay Chandra Lingam, Atula Neerkaje, Aditya Vavre, Aneesh Shetty, Gautham Krishna Gudur, Joydeep Ghosh,
580 Eunsol Choi, Alex Dimakis, Aleksandar Bojchevski, and Sujay Sanghavi. Svft: Parameter-efficient fine-tuning
581 with singular vectors. *Advances in Neural Information Processing Systems*, 37:41425–41446, 2024.

582 Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-Ting Cheng,
583 and Min-Hung Chen. Dora: Weight-decomposed low-rank adaptation. In *Forty-first International Conference
584 on Machine Learning*, 2024a.

585 Weiyang Liu, Zeju Qiu, Yao Feng, Yuliang Xiu, Yuxuan Xue, Longhui Yu, Haiwen Feng, Zhen Liu, Juyeon Heo,
586 Songyou Peng, Yandong Wen, Michael J. Black, Adrian Weller, and Bernhard Schölkopf. Parameter-efficient
587 orthogonal finetuning via butterfly factorization. In *The Twelfth International Conference on Learning
588 Representations*, 2024b.

594 Krishna Sri Ipsit Mantri, Carola-Bibiane Schönlieb, Bruno Ribeiro, Chaim Baskin, and Moshe Eliasof. Ditask:
 595 Multi-task fine-tuning with diffeomorphic transformations. In *Proceedings of the Computer Vision and*
 596 *Pattern Recognition Conference*, pp. 25218–25229, 2025.

597 Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct electricity? a
 598 new dataset for open book question answering, 2018.

600 Ofir Press and Lior Wolf. Using the output embedding to improve language models. In Mirella Lapata, Phil
 601 Blunsom, and Alexander Koller (eds.), *Proceedings of the 15th Conference of the European Chapter of the*
 602 *Association for Computational Linguistics: Volume 2, Short Papers*, pp. 157–163, Valencia, Spain, April 2017.
 603 Association for Computational Linguistics. URL <https://aclanthology.org/E17-2025/>.

604 Zeju Qiu, Weiyang Liu, Haiwen Feng, Yuxuan Xue, Yao Feng, Zhen Liu, Dan Zhang, Adrian Weller, and
 605 Bernhard Schölkopf. Controlling text-to-image diffusion by orthogonal finetuning. *Advances in Neural*
 606 *Information Processing Systems*, 36:79320–79362, 2023.

607 Adithya Renduchintala, Tugrul Konuk, and Oleksii Kuchaiev. Tied-lora: Enhancing parameter efficiency of lora
 608 with weight tying. *arXiv preprint arXiv:2311.09578*, 2023.

610 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution image
 611 synthesis with latent diffusion models, 2022. URL <https://arxiv.org/abs/2112.10752>.

613 Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and Kfir Aberman. Dreambooth:
 614 Fine tuning text-to-image diffusion models for subject-driven generation, 2023. URL <https://arxiv.org/abs/2208.12242>.

616 Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adversarial
 617 winograd schema challenge at scale, 2019.

618 Maarten Sap, Hannah Rashkin, Derek Chen, Ronan LeBras, and Yejin Choi. Socialiqa: Commonsense reasoning
 619 about social interactions, 2019.

621 Zheyu Shen, Guoheng Sun, Yexiao He, Ziyao Wang, Yuning Zhang, Souvik Kundu, Eric P. Xing, Hongyi
 622 Wang, and Ang Li. Sharelora: Less tuning, more performance for loRA fine-tuning of LLMs, 2024. URL
 623 <https://openreview.net/forum?id=O6QZ4W6Gxt>.

624 Reece Shuttleworth, Jacob Andreas, Antonio Torralba, and Pratyusha Sharma. Lora vs full fine-tuning: An
 625 illusion of equivalence. *arXiv preprint arXiv:2410.21228*, 2024.

627 Yurun Song, Junchen Zhao, Ian G Harris, and Sangeetha Abdu Jyothi. Sharelora: Parameter efficient and robust
 628 large language model fine-tuning via shared low-rank adaptation. *arXiv preprint arXiv:2406.10785*, 2024.

629 Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya Pathak, Laurent
 630 Sifre, Morgane Rivière, Mihir Sanjay Kale, Juliette Love, et al. Gemma: Open models based on gemini
 631 research and technology. *arXiv preprint arXiv:2403.08295*, 2024.

633 Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel Bowman. GLUE: A multi-task
 634 benchmark and analysis platform for natural language understanding. In *Proceedings of the 2018 EMNLP*
 635 *Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP*, pp. 353–355, Brussels,
 636 Belgium, November 2018. Association for Computational Linguistics. doi: 10.18653/v1/W18-5446. URL
 637 <https://aclanthology.org/W18-5446>.

638 Per-Åke Wedin. Perturbation bounds in connection with singular value decomposition. *BIT Numerical*
 639 *Mathematics*, 12(1):99–111, 1972.

640 Hermann Weyl. Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen
 641 (mit einer Anwendung auf die Theorie der Hohlraumstrahlung). *Mathematische Annalen*, 71:441–479, 1912.

643 Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T. Kwok, Zhenguo Li,
 644 Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical questions for large language
 645 models, 2023.

646 Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine really
 647 finish your sentence? In *Proceedings of the 57th Annual Meeting of the Association for Computational*
Linguistics, 2019.

648 Xiaohua Zhai, Joan Puigcerver, Alexander Kolesnikov, Pierre Ruyssen, Carlos Riquelme, Mario Lucic, Josip
649 Djolonga, Andre Susano Pinto, Maxim Neumann, Alexey Dosovitskiy, Lucas Beyer, Olivier Bachem, Michael
650 Tschannen, Marcin Michalski, Olivier Bousquet, Sylvain Gelly, and Neil Houlsby. A large-scale study of
651 representation learning with the visual task adaptation benchmark, 2020. URL <https://arxiv.org/abs/1910.04867>.
652
653 Yuhua Zhou, Ruifeng Li, Changhai Zhou, Fei Yang, and Aimin PAN. Bi-share loRA: Enhancing the parameter
654 efficiency of loRA with intra-layer and inter-layer sharing, 2025. URL <https://openreview.net/forum?id=Thv66GmqZS>.
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

APPENDIX

A PRELIMINARIES

A.1 NOTATION

Notation 1. The following notation is used throughout this paper:

- For any matrix $A \in \mathbb{R}^{m \times n}$, let $\sigma_i(A)$ denote its i -th largest singular value, with $\sigma_1(A) \geq \sigma_2(A) \geq \dots \geq \sigma_{\min(m,n)}(A) \geq 0$.
- $\|A\|_F$: Frobenius norm of matrix A , defined as $\|A\|_F = \sqrt{\sum_{i,j} A_{ij}^2}$.
- $\|A\|_2$: Spectral norm of matrix A , defined as $\|A\|_2 = \sigma_1(A)$.
- A_{ij} : Entry at the i -th row and j -th column of matrix A .
- I_k : Identity matrix of size $k \times k$.
- $\text{diag}(a_1, \dots, a_n)$: Diagonal matrix with entries a_1, \dots, a_n .
- $\sin \Theta(U_r, U_r^*)$: denotes the principal angles between the subspaces $\text{range}(U_r)$ and $\text{range}(U_r^*)$.

A.2 PRELIMINARY RESULTS

Lemma A.1 (Weyl's Inequality (Weyl, 1912)). *For $A, B \in \mathbb{R}^{m \times n}$, and all i ,*

$$|\sigma_i(A + B) - \sigma_i(A)| \leq \|B\|_2.$$

Lemma A.2 (Invariance of Frobenius Norm). *If $A \in \mathbb{R}^{m \times n}$, and U, V are orthogonal matrices, then*

$$\|UAV^T\|_F = \|A\|_F.$$

Lemma A.3 (Orthogonal projection is non-expansive in Frobenius norm). *Let $U_r \in \mathbb{R}^{m \times r}$ have orthonormal columns and let $\Pi_{U_r} = U_r U_r^\top$ be the orthogonal projector onto $\text{range}(U_r)$. Then, for all $X \in \mathbb{R}^{m \times n}$,*

$$\|\Pi_{U_r} X\|_F \leq \|X\|_F$$

B PROOF OF THEOREM

Theorem 1 (Approximation error of projection onto U_r). *Let $W_0 = U \Sigma V^\top \in \mathbb{R}^{m \times n}$ be the Singular Value Decomposition (SVD) of W_0 . Suppose the fine-tuned matrix $W^* \in \mathbb{R}^{m \times n}$ has the form*

$$W^* = (UP)\Sigma^*(VQ)^\top,$$

where:

- $U^* = UP$ and $V^* = VQ$ are the left and right singular vectors of W^* , respectively,
- $\Sigma^* = \text{diag}(\sigma_1(W^*), \dots, \sigma_{\min(m,n)}(W^*))$,
- $P = I_m + E^P$, $Q = I_n + E^Q$, with $|E_{ij}^P| < \epsilon$, $|E_{ij}^Q| < \epsilon$.

Let $\Delta W = W^* - W_0$, and let $U_r \in \mathbb{R}^{m \times r}$ be the top- r left singular vectors of W_0 . Then, the approximation error incurred by projecting ΔW onto the subspace spanned by U_r satisfies

$$\|\Delta W - U_r U_r^\top \Delta W\|_F^2 \leq \sum_{i=r+1}^{\min(m,n)} \sigma_i^2(\Delta W) + \mathcal{O}(\epsilon).$$

756 *Proof.* We derive the inequality through a series of steps, decomposing the perturbation, analyzing
 757 the projection error, and bounding the terms using spectral and entrywise techniques.
 758

759 The perturbed matrix has the form

$$760 \quad W^* = U(I_m + E^P)\Sigma^*(I_n + E^Q)^\top V^\top.$$

762 Subtracting $W_0 = U\Sigma V^\top$ gives

$$763 \quad \Delta W = U[(I_m + E^P)\Sigma^*(I_n + E^Q)^\top - \Sigma]V^\top.$$

764 For notational clarity, define

$$766 \quad H = (I_m + E^P)\Sigma^*(I_n + E^Q)^\top - \Sigma,$$

767 so that $\Delta W = UHV^\top$.

769 Let us expand H explicitly. Multiplying out terms yields

$$770 \quad (I_m + E^P)\Sigma^*(I_n + E^Q)^\top = \Sigma^* + E^P\Sigma^* + \Sigma^*(E^Q)^\top + E^P\Sigma^*(E^Q)^\top.$$

772 Thus

$$773 \quad H = D + E_1 + E_2 + E_3,$$

774 where

$$775 \quad D = \Sigma^* - \Sigma, \quad E_1 = E^P\Sigma^*, \quad E_2 = \Sigma^*(E^Q)^\top, \quad E_3 = E^P\Sigma^*(E^Q)^\top.$$

776 The diagonal matrix D captures the shifts in singular values: $D_{ii} = \sigma_i(W^*) - \sigma_i(W_0)$.

777 The error of projecting ΔW onto U_r is

$$779 \quad \|\Delta W - U_r U_r^\top \Delta W\|_F^2.$$

780 Since $\Delta W = UHV^\top$ and $U_r^\top U = [I_r \ 0]$, we can write

$$782 \quad U_r U_r^\top \Delta W = U \begin{bmatrix} I_r & 0 \\ 0 & 0 \end{bmatrix} H V^\top.$$

784 Subtracting gives

$$785 \quad \Delta W - U_r U_r^\top \Delta W = U(H - P_r H)V^\top,$$

787 where $P_r = \begin{bmatrix} I_r & 0 \\ 0 & 0 \end{bmatrix}$. By invariance of the Frobenius norm,

$$789 \quad \|\Delta W - U_r U_r^\top \Delta W\|_F^2 = \|H - P_r H\|_F^2 = \sum_{i=r+1}^m \sum_{j=1}^n H_{ij}^2.$$

792 For $i > r$, each entry has the form

$$794 \quad H_{ij} = D_{ij} + E_{1,ij} + E_{2,ij} + E_{3,ij}.$$

796 For diagonal terms ($j = i$), we have

$$797 \quad H_{ii} = \sigma_i(W^*) - \sigma_i(W_0) + E_{ii}^P \sigma_i(W^*) + \sigma_i(W^*) E_{ii}^Q + \sum_k E_{ik}^P \sigma_k(W^*) E_{ik}^Q.$$

800 Using $|E_{ij}^P|, |E_{ij}^Q| < \epsilon$, we can bound each component:

$$802 \quad |E_{1,ii}| \leq \epsilon \sigma_i(W^*), \quad |E_{2,ii}| \leq \epsilon \sigma_i(W^*), \quad |E_{3,ii}| \leq \epsilon^2 \min(m, n) \sigma_{\max}(W^*).$$

804 For off-diagonal terms ($j \neq i$), we have

$$805 \quad H_{ij} = E_{ij}^P \sigma_j(W^*) + \sigma_i(W^*) E_{ji}^Q + \sum_k E_{ik}^P \sigma_k(W^*) E_{jk}^Q,$$

808 leading to analogous bounds

$$809 \quad |E_{1,ij}| \leq \epsilon \sigma_j(W^*), \quad |E_{2,ij}| \leq \epsilon \sigma_i(W^*), \quad |E_{3,ij}| \leq \epsilon^2 \min(m, n) \sigma_{\max}(W^*).$$

810 We now square and sum these contributions. For diagonals,
811

$$812 H_{ii}^2 = (\sigma_i(W^*) - \sigma_i(W_0))^2 + 2(\sigma_i(W^*) - \sigma_i(W_0))(E_{1,ii} + E_{2,ii} + E_{3,ii}) + (E_{1,ii} + E_{2,ii} + E_{3,ii})^2.$$

813 Cross term is bounded using Cauchy–Schwarz, and third quadratic term is bounded by $3(E_{1,ii}^2 + E_{2,ii}^2 + E_{3,ii}^2)$. Therefore,
814
815

$$816 \sum_{i=r+1}^{\min(m,n)} H_{ii}^2 \leq \sum_{i=r+1}^{\min(m,n)} (\sigma_i(W^*) - \sigma_i(W_0))^2 + \epsilon C_1 + \epsilon^2 C_2.$$

817 where
818

$$819 C_1 = \sum_{i=r+1}^{\min(m,n)} 2|\sigma_i(W^*) - \sigma_i(W_0)| (2\sigma_i(W^*) + \epsilon \min(m, n) \sigma_{\max}(W^*))$$

$$820 C_2 = \sum_{i=r+1}^{\min(m,n)} 3(2\sigma_i^2(W^*) + \epsilon^2 \min(m^2, n^2) \sigma_{\max}^2(W^*))$$

821 Similar expansions apply for off-diagonal terms, where only E_1, E_2, E_3 contribute. For off-diagonal
822 terms:
823

$$824 \sum_{i=r+1}^m \sum_{\substack{j=1 \\ j \neq i}}^n H_{ij}^2 = \sum_{i=r+1}^m \sum_{\substack{j=1 \\ j \neq i}}^n (E_{1,ij} + E_{2,ij} + E_{3,ij})^2 \leq \sum_{i=r+1}^m \sum_{\substack{j=1 \\ j \neq i}}^n 3(E_{1,ij}^2 + E_{2,ij}^2 + E_{3,ij}^2) \leq \epsilon^2 C_3.$$

825 where
826

$$827 C_3 = \sum_{i=r+1}^m \sum_{\substack{j=1 \\ j \neq i}}^n 3(\sigma_j^2(W^*) + \sigma_i^2(W^*) + \epsilon^2 \min(m^2, n^2) \sigma_{\max}^2(W^*))$$

828 Collecting everything, the sum takes the form
829

$$830 \sum_{i=r+1}^m \sum_{j=1}^n H_{ij}^2 \leq \sum_{i=r+1}^{\min(m,n)} (\sigma_i(W^*) - \sigma_i(W_0))^2 + \epsilon C_1 + \epsilon^2 (C_2 + C_3).$$

831 Recall the decomposition
832

$$833 H = D + E_1 + E_2 + E_3, \quad \Delta W = UHV^\top,$$

834 so that by orthogonal invariance of singular values
835

$$836 \sigma_i(\Delta W) = \sigma_i(H) \quad \text{for all } i.$$

837 Since UP and VQ are the singular-vector matrices of W^* , the factors P, Q are orthogonal. Hence
838

$$839 D = \Sigma^* - \Sigma \Rightarrow \sigma_i(D) = |\sigma_i(W^*) - \sigma_i(W_0)| \quad (\forall i).$$

840 Let $E_{\text{tot}} := E_1 + E_2 + E_3$. By Weyl's inequality applied to $H = D + E_{\text{tot}}$,
841

$$842 |\sigma_i(H) - \sigma_i(D)| = |\sigma_i(\Delta W) - |\sigma_i(W^*) - \sigma_i(W_0)|| \leq \|E_{\text{tot}}\|_2.$$

843 We now bound $\|E_{\text{tot}}\|_2$ piecewise. Using submultiplicativity and $\|E^P\|_2 \leq \|E^P\|_F \leq \sqrt{mn} \epsilon$ (and
844 similarly for E^Q), we get
845

$$846 \|E_1\|_2 = \|E^P \Sigma^*\|_2 \leq \|E^P\|_2 \|\Sigma^*\|_2 \leq \sqrt{mn} \epsilon \sigma_{\max}(W^*),$$

$$847 \|E_2\|_2 = \|\Sigma^* (E^Q)^\top\|_2 \leq \|\Sigma^*\|_2 \|E^Q\|_2 \leq \sqrt{mn} \epsilon \sigma_{\max}(W^*),$$

$$848 \|E_3\|_2 = \|E^P \Sigma^* (E^Q)^\top\|_2 \leq \|E^P\|_2 \|\Sigma^*\|_2 \|E^Q\|_2 \leq mn \epsilon^2 \sigma_{\max}(W^*).$$

849 Therefore
850

$$851 \|E_{\text{tot}}\|_2 \leq 2\sqrt{mn} \epsilon \sigma_{\max}(W^*) + mn \epsilon^2 \sigma_{\max}(W^*).$$

864 Define

865
$$\delta_i := \sigma_i(\Delta W) - |\sigma_i(W^*) - \sigma_i(W_0)|, \quad |\delta_i| \leq \|E_{\text{tot}}\|_2.$$
 866

867 Then

868
$$|\sigma_i(W^*) - \sigma_i(W_0)| = \sigma_i(\Delta W) - \delta_i,$$
 869

870 and squaring gives

871
$$(\sigma_i(W^*) - \sigma_i(W_0))^2 = (\sigma_i(\Delta W) - \delta_i)^2 \leq \sigma_i^2(\Delta W) + 2\sigma_i(\Delta W)\|E_{\text{tot}}\|_2 + \|E_{\text{tot}}\|_2^2.$$
 872

873 Let $\ell := \min(m, n)$. Summing for $i = r+1, \dots, \ell$,

874
$$\sum_{i=r+1}^{\ell} (\sigma_i(W^*) - \sigma_i(W_0))^2 \leq \sum_{i=r+1}^{\ell} \sigma_i^2(\Delta W) + 2\|E_{\text{tot}}\|_2 \sum_{i=r+1}^{\ell} \sigma_i(\Delta W) + (\ell - r)\|E_{\text{tot}}\|_2^2.$$
 875

876 With the bound on $\|E_{\text{tot}}\|_2$ just obtained, this can be written as

877
$$\sum_{i=r+1}^{\ell} (\sigma_i(W^*) - \sigma_i(W_0))^2 \leq \sum_{i=r+1}^{\ell} \sigma_i^2(\Delta W) + \epsilon C_4 + \epsilon^2 C_5,$$
 878

879 where

880
$$C_4 = 2 \left(2\sqrt{mn} \sigma_{\max}(W^*) + mn\epsilon \sigma_{\max}(W^*) \right) \sum_{i=r+1}^{\ell} \sigma_i(\Delta W),$$
 881

882
$$C_5 = (\ell - r) \left(2\sqrt{mn} \sigma_{\max}(W^*) + mn\epsilon \sigma_{\max}(W^*) \right)^2.$$
 883

884 Finally, recalling the earlier analysis, we finally combine the bounds to obtain

885
$$\begin{aligned} \|\Delta W - U_r U_r^\top \Delta W\|_F^2 &\leq \sum_{i=r+1}^{\min(m,n)} \sigma_i^2(\Delta W) + \epsilon C_1 + \epsilon^2 C_2 + \epsilon^2 C_3 + \epsilon C_4 + \epsilon^2 C_5 \\ &= \sum_{i=r+1}^{\min(m,n)} \sigma_i^2(\Delta W) + \epsilon C \end{aligned}$$
 886

887 where

888
$$C = (C_1 + \epsilon C_2 + \epsilon C_3 + C_4 + \epsilon C_5)$$
 889

900 \square 901902 **Theorem 2** (Sequential projection approximates accumulated projection). *Let $\ell : \mathbb{R}^{m \times n} \rightarrow \mathbb{R}$ be*
903 *L -smooth with $\|\nabla \ell(W)\|_F \leq G$. Define the unprojected gradient descent path*

904
$$Z_{t+1} = Z_t - \eta \nabla \ell(Z_t).$$
 905

906 Let the accumulated-projection iterate be

907
$$W_T = W_0 - \eta \Pi_{U_r} \left(\sum_{t=0}^{T-1} \nabla \ell(Z_t) \right),$$
 908

909 and the sequential-projection iterates

910
$$P_{t+1} = P_t - \eta \Pi_{U_r} \nabla \ell(P_t), \quad P_0 = W_0,$$
 911

912 where $\Pi_{U_r} = U_r U_r^\top$ is the fixed rank- r projector.913 Then, for any T , the difference satisfies

914
$$\|W_T - P_T\|_F \leq \frac{\eta^2}{2} L G T (T-1) + O((\eta L T)^3).$$
 915

918 *Proof.* We now prove that the sequentially projected iterates closely approximate the delayed pro-
 919 jection iterate when both use the same fixed projector $\Pi_{U_r} = U_r U_r^\top$. Throughout we work with the
 920 Frobenius norm, and recall from Lemma A.3 that Π_{U_r} is non-expansive in $\|\cdot\|_F$.
 921

922 The delayed projection iterate is defined by

$$923 \quad 924 \quad 925 \quad W_T^{\text{delayed}} = W_0 - \eta \Pi_{U_r} \left(\sum_{t=0}^{T-1} \nabla \ell(Z_t) \right), \quad Z_{t+1} = Z_t - \eta \nabla \ell(Z_t).$$

926 The sequentially projected iterates follow
 927

$$928 \quad P_{t+1} = P_t - \eta \Pi_{U_r} \nabla \ell(P_t), \quad P_0 = W_0.$$

929 Subtracting the two update rules yields
 930

$$931 \quad 932 \quad 933 \quad P_T - W_T^{\text{delayed}} = -\eta \sum_{t=0}^{T-1} \Pi_{U_r} (\nabla \ell(P_t) - \nabla \ell(Z_t)).$$

934 Taking Frobenius norms and using $\|\Pi_{U_r}\|_{F \rightarrow F} \leq 1$,
 935

$$936 \quad 937 \quad 938 \quad \|P_T - W_T^{\text{delayed}}\|_F \leq \eta \sum_{t=0}^{T-1} \|\nabla \ell(P_t) - \nabla \ell(Z_t)\|_F.$$

939 By Definition 1, ℓ is L -smooth w.r.t. $\|\cdot\|_F$, so the gradient is L -Lipschitz:
 940

$$941 \quad \|\nabla \ell(P_t) - \nabla \ell(Z_t)\|_F \leq L \|P_t - Z_t\|_F.$$

942 Denoting $D_t = \|P_t - Z_t\|_F$, we obtain
 943

$$944 \quad 945 \quad 946 \quad \|P_T - W_T^{\text{delayed}}\|_F \leq \eta L \sum_{t=0}^{T-1} D_t.$$

947 To bound D_t , expand one step of the deviation:
 948

$$949 \quad D_{t+1} = \|P_{t+1} - Z_{t+1}\|_F
 950 \quad = \|P_t - \eta \Pi_{U_r} \nabla \ell(P_t) - (Z_t - \eta \nabla \ell(Z_t))\|_F
 951 \quad = \|P_t - Z_t - \eta (\Pi_{U_r} \nabla \ell(P_t) - \nabla \ell(Z_t))\|_F.$$

952 Applying the triangle inequality and splitting terms,
 953

$$954 \quad D_{t+1} \leq D_t + \eta \|\Pi_{U_r} (\nabla \ell(P_t) - \nabla \ell(Z_t))\|_F + \eta \|(I - \Pi_{U_r}) \nabla \ell(Z_t)\|_F.$$

956 For the first term, by non-expansiveness of Π_{U_r} and L -smoothness,
 957

$$958 \quad \|\Pi_{U_r} (\nabla \ell(P_t) - \nabla \ell(Z_t))\|_F \leq \|\nabla \ell(P_t) - \nabla \ell(Z_t)\|_F \leq L D_t.$$

959 For the second term, since $\|\nabla \ell(Z_t)\|_F \leq G$ by assumption,
 960

$$961 \quad \|(I - \Pi_{U_r}) \nabla \ell(Z_t)\|_F \leq \|\nabla \ell(Z_t)\|_F \leq G.$$

962 Hence the recurrence is
 963

$$D_{t+1} \leq (1 + \eta L) D_t + \eta G.$$

965 With $D_0 = 0$, a standard unrolling argument gives
 966

$$967 \quad D_t \leq \frac{G}{L} ((1 + \eta L)^t - 1) \leq \frac{G}{L} (e^{\eta L t} - 1).$$

968 Plugging back into Step 2,
 969

$$970 \quad 971 \quad \|P_T - W_T^{\text{delayed}}\|_F \leq \eta L \sum_{t=0}^{T-1} D_t \leq \eta G \sum_{t=0}^{T-1} (e^{\eta L t} - 1).$$

972 For small ηLT , we use the second-order Taylor expansion of the exponential:
 973

$$974 \quad e^x - 1 = x + \frac{x^2}{2} + O(x^3) \quad \text{as } x \rightarrow 0.$$

975 Applying this with $x = \eta Lt$ yields
 976

$$977 \quad e^{\eta Lt} - 1 = \eta Lt + \frac{1}{2}(\eta Lt)^2 + O((\eta Lt)^3),$$

978 and hence
 979

$$980 \quad \eta L \sum_{t=0}^{T-1} D_t \leq \eta G \sum_{t=0}^{T-1} (e^{\eta Lt} - 1) = \frac{\eta^2 LG}{2} T(T-1) + O((\eta LT)^3).$$

981 Combining all estimates, we conclude
 982

$$983 \quad \|W_T - P_T\|_F \leq \frac{\eta^2 LG}{2} T(T-1) + O((\eta LT)^3),$$

984 which shows that the sequential projection scheme faithfully tracks the delayed projection up to
 985 higher-order error in the learning rate and horizon.
 986

987 \square

988 C IMPLEMENTATION DETAILS AND ADDITIONAL EXPERIMENTS

989 To ensure a direct and unbiased comparison with existing baseline methods, we adopted the same
 990 experimental setup as outlined in SVFT (Lingam et al., 2024) for NLP tasks. For consistency, all
 991 baseline results in NLP tasks were also sourced from (Lingam et al., 2024), enabling a fair evaluation
 992 of our method’s performance. For vision tasks, we follow Dosovitskiy et al. (2021) and Cho et al.
 993 (2024).
 994

1000 C.1 IMPLEMENTATION DETAILS

1001 **Mathematical Reasoning** Table 6 presents the hyperparameter configurations employed for these
 1002 experiments. For the Gemma model family, PiCa is applied to the Q, K, V, U, D matrices, while for
 1003 the LLaMA-3-8B model, the Q, K, V, U, D, O, G matrices are targeted. The experimental codebase
 1004 and evaluation procedures are adapted from [https://github.com/VijayLingam95/SVFT.](https://github.com/VijayLingam95/SVFT.git)
 1005 git, and the fine-tuning dataset are sourced from [https://huggingface.co/datasets/](https://huggingface.co/datasets/meta-math/MetaMathQA-40K)
 1006 [meta-math/MetaMathQA-40K](https://huggingface.co/datasets/meta-math/MetaMathQA-40K).
 1007

1008 Table 6: Hyperparameter setup used for fine-tuning on MetaMathQA-40K.
 1009

1010 Hyperparameter	1011 Gemma-2B	1012 Gemma-7B	1013 LLaMA-3-8B
1014 Optimizer		1015 AdamW	
1016 Warmup Ratio		1017 0.1	
1018 LR Schedule		1019 Cosine	
1020 Max Seq. Len.		1021 512	
1022 # Epochs		1023 2	
1024 Batch Size		1025 64	
1026 Rank	1027 32	1028 16	1029 256
1030 Learning Rate	1031 1E-03	1032 9E-04	1033 1E-04
		1034 5E-05	1035 2E-04
		1036 2E-04	

1020
 1021
 1022 **Commonsense Reasoning** We follow the setting outlined in prior work (Lingam et al., 2024),
 1023 fine-tuning on 15K examples. The hyperparameter configurations for these experiments are de-
 1024 tailed in Table 7. We utilize the same set of matrices as in the Mathematical Reasoning tasks.
 1025 The codebase, including training and evaluation data, is sourced from [https://github.com/](https://github.com/VijayLingam95/SVFT.git)
 1026 [VijayLingam95/SVFT.git](https://github.com/VijayLingam95/SVFT.git).
 1027

Table 7: Hyperparameter setup used for fine-tuning on commonsense-15K.

Hyperparameter	Gemma-2B	Gemma-7B
Optimizer	AdamW	
Warmup Steps	100	
LR Schedule	Linear	
Max Seq. Len.	512	
# Epochs	3	
Batch Size	64	
Rank	32	256
Learning Rate	1E-03	9E-04
		3E-04
		8E-05

Natural Language Understanding We fine-tune DeBERTaV3_{base} (He et al., 2023), applying PiCa to all linear layers within each transformer block. We constrain hyperparameter optimization to moderate adjustments of the learning rate and the number of training epochs. For rigorous comparison, we employ identical model sequence lengths to those reported by (Lingam et al., 2024; Liu et al., 2024b). The precise hyperparameter settings utilized in these experiments are specified in Table 8.

Table 8: Hyperparameter setup used for DeBERTaV3_{base} on the GLUE benchmark.

Method	Dataset	MNLI	SST-2	MRPC	CoLA	QNLI	QQP	RTE	STS-B
	Optimizer				AdamW				
	Warmup Ratio				0.1				
	LR Schedule				Linear				
	Batch Size				32				
	Max Seq. Len.	256	128	320	64	512	320	320	128
PiCa _{r=16}	Learning Rate	3E-04	1E-03	2E-03	8E-4	3E-04	1E-04	1E-03	3E-03
	# Epochs	5	7	35	50	5	15	40	15

Vision Experiments For vision adaptation tasks, we fine-tune ViT-B/16 (Dosovitskiy et al., 2021) by updating all linear layers within each transformer block, using a learning rate of 0.004 for PiCa and LoRA, 0.005 for DoRA, and 0.05 for VeRA and SVFT. For all methods, the classifier learning rate is fixed at 0.005. Fine-tuning is conducted for 10 epochs, and the checkpoint from the best validation epoch is used for testing. The same hyperparameter configurations are applied across all 19 datasets of VTAB-1K (Zhai et al., 2020). For subject-driven generation tasks, we follow training and evaluation protocols of previous works (Lingam et al., 2024; Cho et al., 2024). We use a learning rate of 0.0001 for LoRA and DoRA, 0.0005 for PiCa, 0.001 for SVFT, and 0.005 for VeRA. Other settings remain the same with Cho et al. (2024).

C.2 COMMONSENSE REASONING WITH GEMMA-2B

We evaluate PiCa on commonsense reasoning tasks with Gemma-2B. The results are presented in Table 9. PiCa achieves the highest average performance across both high- and low-rank settings, outperforming the second-best method by approximately 2–3 percentage points.

C.3 EVIDENCE FROM LARGE-SCALE MODELS.

While Fig. 2 provides visual evidence of subspace alignment in moderate-scale settings, here we empirically validate the assumptions underlying Theorem 1 on a larger model. Specifically, we analyze LLaMA3-8B fine-tuned on Commonsense Reasoning benchmarks.

For each pair of pre-trained and fine-tuned weight matrices, we computed the cosine similarity between their singular vectors and defined *Diagonal Similarity* as the average of the diagonal entries of the similarity matrix, aggregated across layers of each module (query, key, and value). The consistently high Diagonal Similarity values reported in Table 10 demonstrate that the leading

1080
 1081 Table 9: Performance on Commonsense Reasoning benchmarks using Gemma-2B. #Params refers to
 1082 the number of trainable parameters. The best and second-best PEFT methods are highlighted in **bold**
 1083 and underlined text, respectively. PiCa achieves state-of-the-art average performance across both
 1084 high- and low-rank settings, outperforming the second-best method by up to 3 percentage points.

Method	#Params	BoolQ	PIQA	SIQA	HS	WG	ARC-e	ARC-c	OBQA	Avg.
Full-FT	2.5B	63.57	74.10	65.86	70.00	61.95	75.36	59.72	69.00	67.45
BOFT _{m=2} ^{b=8}	1.22M	59.23	63.65	47.90	29.93	50.35	59.04	42.66	41.00	49.22
VeRA _{r=2048}	0.66M	62.11	64.31	49.18	32.00	50.74	58.08	42.83	42.60	50.23
LoRA _{r=1}	0.82M	<u>62.20</u>	69.31	56.24	32.47	51.53	<u>69.52</u>	48.80	56.40	<u>55.81</u>
DoRA _{r=1}	1.19M	62.17	68.77	55.93	<u>32.95</u>	<u>51.22</u>	68.81	48.72	55.60	55.52
SVFT _P	0.19M	62.26	70.18	<u>56.70</u>	32.47	47.04	69.31	<u>50.08</u>	<u>58.40</u>	<u>55.81</u>
PiCa _{r=32}	0.67M	62.11	71.76	60.13	36.49	50.59	73.74	52.56	63.20	58.82
LoRA _{r=32}	26.2M	63.11	73.44	63.20	47.79	52.95	74.78	57.16	67.00	62.43
DoRA _{r=16}	13.5M	62.87	<u>73.93</u>	65.34	53.16	55.51	<u>76.43</u>	59.55	68.40	64.40
SVFT _B ^{d=16}	6.35M	<u>63.42</u>	73.72	63.86	<u>71.21</u>	<u>59.58</u>	73.69	54.77	66.60	65.86
PiCa _{r=256}	5.37M	63.91	75.57	<u>64.38</u>	71.75	60.62	77.44	<u>58.70</u>	68.40	67.60

1093 singular subspaces remain well aligned after fine-tuning, thus supporting the subspace stability
 1094 assumption of Theorem 1.

1100 We also extend the analysis of Fig. 2 by reporting the averaged entries of E^P and E^Q across layers.
 1101 As shown in Table 10, these values are tightly concentrated around zero, empirically confirming that
 1102 the additional $\mathcal{O}(\epsilon)$ term in Theorem 1 is negligible in practice.

1104 Table 10: Empirical validation of Theorem 1 assumptions on LLaMA3-8B fine-tuned for Common-
 1105 sense Reasoning. Diagonal Similarity measures alignment of singular vectors between pre-trained
 1106 and fine-tuned weights. The averaged values of E_{ij}^P and E_{ij}^Q are tightly concentrated near zero,
 1107 confirming that the $\mathcal{O}(\epsilon)$ term is negligible.

Layer	Diagonal Similarity	E_{ij}^P	E_{ij}^Q
Query	0.927 ± 0.047	$-2.44e-4 \pm 4.27e-6$	$-2.44e-4 \pm 4.25e-6$
Key	0.998 ± 0.003	$-9.66e-4 \pm 3.76e-5$	$-9.66e-4 \pm 3.76e-5$
Value	0.972 ± 0.011	$-9.69e-4 \pm 2.76e-5$	$-9.66e-4 \pm 2.76e-5$

D LLM USAGE

1116 We used large language models only for minor tasks such as spell-checking, grammar correction, and
 1117 formatting.

E REPRODUCIBILITY STATEMENT

1123 We have made extensive efforts to ensure the reproducibility of our work. All models, datasets,
 1124 training protocols, and hyperparameters required to reproduce our experimental results are described
 1125 in detail in Section 4 and Appendix C.