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Abstract
We study the policy evaluation problem in an
online multi-reward multi-policy discounted set-
ting, where multiple reward functions must be
evaluated simultaneously for different policies.
We adopt an (ϵ, δ)-PAC perspective to achieve
ϵ-accurate estimates with high confidence over
finite or convex sets of rewards, a setting that has
not been systematically studied in the literature.
Building on prior work on Multi-Reward Best
Policy Identification, we adapt the MR-NaS ex-
ploration scheme (Russo & Vannella, 2024) to
jointly minimize sample complexity for evalu-
ating different policies across different reward
sets. Our approach leverages an instance-specific
lower bound revealing how the sample complex-
ity scales with a measure of value deviation, guid-
ing the design of an efficient exploration policy.
Although computing this bound entails a hard
non-convex optimization, we propose an efficient
convex approximation that holds for both finite
and convex reward sets. Experiments in tabu-
lar domains demonstrate the effectiveness of this
adaptive exploration scheme. Code repository:
https://github.com/rssalessio/mu
lti-reward-multi-policy-eval.

1. Introduction
This paper investigates methods for efficiently evaluating
one or more policies across various reward functions in an
online discounted Markov Decision Process (MDP) (Put-
erman, 2014), a key challenge in Reinforcement Learning
(RL) (Sutton & Barto, 2018), where the aim is to compute
the value of each policy. Accurate value estimation serves
many purposes, from verifying a policy’s effectiveness to
providing insights for policy improvement.
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There are several applications where one has multiple poli-
cies to evaluate, e.g., multiple policies arising from using
different hyperparameters (Dann et al., 2023; Chen et al.,
2024; Poddar et al., 2024). Similarly, multiple reward func-
tions often arise in real-world decision-making problems,
making it crucial to evaluate how a policy performs across
diverse objectives. As an example, large language models
(Brown et al., 2020) are fine-tuned on human feedback that
spans a wide range of user preferences and goals (Ziegler
et al., 2019; Rafailov et al., 2024; Poddar et al., 2024), ef-
fectively producing multiple distinct reward signals. Other
applications, similarly, involve multiple rewards, such as:
user-preference modeling, robotics tasks aiming to reach
different goals, or intent-based radio network optimization
(Nahum et al., 2023; De Alwis et al., 2023; Russo & Van-
nella, 2024; Poddar et al., 2024).

In general, it is challenging to efficiently and accurately
evaluate a policy over multiple objectives, potentially for
multiple policies aimed at solving different tasks (Sutton
et al., 2011; McLeod et al., 2021; Jain et al., 2024). In-
deed, when multiple policies and distinct reward sets are
involved, it is not obvious how best to gather data in a way
that balances efficiency and accuracy.

Prior research approached this issue in different ways. One
direction aims to minimize the mean squared error (MSE) of
the value estimator (or the variance of the importance sam-
pling estimator) to guide adaptive exploration. In (Hanna
et al., 2017), this is done for single-reward policy evaluation.
In (Mukherjee et al., 2022) they study single-reward pol-
icy evaluation in tree MDPs, and propose a variance-driven
behavior policy that minimizes the MSE. Similarly, Jain
et al. (2024) propose a variance-driven exploration scheme
for a finite collection of policy–reward pairs. However,
these methods may not always guarantee sample-efficient
exploration or provide (ϵ, δ)-PAC guarantees on the sample
complexity. Weissmann et al. (2025) recently introduced a
sample-efficient behavior-policy design for evaluating mul-
tiple target policies and proved (ϵ, δ) excess-risk guarantees;
their results, however, apply only to single-reward stochastic
bandit models (Lattimore & Szepesvári, 2020). In (Dann
et al., 2023; Chen et al., 2024) the authors address multi-
policy evaluation for a single reward under the (ϵ, δ)-PAC
criteria in episodic MDPs. However, their sample com-
plexity guarantees are instance-dependent in the transition
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dynamics (e.g., dependent on state-action visitation struc-
ture) but not in the reward. Consequently, these bounds do
not characterize how the interaction between rewards and
transitions—such as sparse rewards under specific dynam-
ics—affects evaluation complexity.

To investigate the problem of devising an exploration strat-
egy for this setting, we study the sample complexity of multi-
reward multi-policy evaluation, and adopt an (ϵ, δ)-PAC
viewpoint to achieve ϵ-accurate estimates with confidence
1 − δ over finite or convex sets of rewards. Furthermore,
while prior works focus on estimating the expected value
of a policy under the initial state distribution, our work
evaluates policies across all states (a value vector). This
broader scope is critical for applications requiring reliable
verification of policy behavior and enabling explainable RL
(Puiutta & Veith, 2020; Ruggeri et al., 2025).

Our approach optimizes the behavior policy to maximize the
evidence gathered from the environment at each time-step,
and builds on techniques from the Best Policy Identifica-
tion (BPI) literature (Al Marjani et al., 2021), which itself
draws inspiration from Best Arm Identification techniques
in bandit problems (Garivier & Kaufmann, 2016; Kaufmann
et al., 2016; Russo & Proutiere, 2023b; Russo et al., 2025).
These methods cast the problem of finding the optimal pol-
icy as a hypothesis testing problem. The core insight is
to establish an instance-specific sample complexity lower
bound—formulated as an optimization problem—where its
solution directly yields the optimal exploration distribution.

…

Building on insights from
Multi-Reward BPI (Russo &
Vannella, 2024), which extends
the BPI framework to multi-
ple rewards, we develop an
instance-specific sample com-
plexity lower bound for multi-
reward multi-policy evaluation,
dependent on the dynamics and
the rewards. To our knowledge,

this constitutes the first such bound even for the single-
policy single-reward case. Furthermore, for convex reward
sets, we present an alternative sample complexity characteri-
zation compared to (Russo & Vannella, 2024), which yields
a closed-form solution when the set of rewards includes all
possible rewards.

Our result exhibits a sample complexity that scales with
the worst-case policy-reward pair—rather than the sum
over individual policy-reward pairs—capturing the inher-
ent difficulty of efficiently evaluating all combinations si-
multaneously. Particularly, the complexity scales accord-
ing to a measure of value deviation ρπr (s, s

′) := V πr (s′)−

Eŝ∼P (s,π(s))[V
π
r (ŝ)], similar to the variance of the value:

O

(
sup

π∈Π,r∈Rπ

max
s,s′∈S

γ2|ρπr (s, s′)|2
ϵ2(1− γ)2ω⋆(s, π(s))

)
,

where ω⋆ is the stationary distribution induced by the explo-
ration policy 1.

Finally, we adapt MR-NaS (Russo & Vannella, 2024), an ex-
tension of NaS (Al Marjani et al., 2021), to our setting, and
prove its asymptotic optimality for policy evaluation up to a
constant factor. We further illustrate its practical efficiency
through experiments in various tabular environments.

2. Related Work
Reinforcement Learning (RL) exploration techniques have
typically focused only on the problem of learning the op-
timal policy for a single objective (Sutton & Barto, 2018).
This domain has generated a vast body of work, often
inspired by the multi-armed bandit literature (Lattimore
& Szepesvári, 2020), with approaches ranging from ϵ-
greedy and Boltzmann exploration (Watkins, 1989; Sutton
& Barto, 2018) to more sophisticated methods based on
Upper-Confidence Bounds (UCB) (Auer, 2002), Bayesian
procedures (Osband et al., 2013; Russo et al., 2018) or Best
Policy Identification techniques (Al Marjani et al., 2021;
Wagenmaker et al., 2022; Taupin et al., 2023).

Despite these advances, the challenge of designing explo-
ration strategies for online policy evaluation has received
comparatively little attention. Early work in this direction
examined multi-armed bandit problems (Antos et al., 2008)
and function evaluation (Carpentier & Munos, 2012), show-
ing that efficient exploration requires allocating more sam-
ples where variance is higher. Linke et al. (2020) considered
a bandit setting with a finite number of tasks, and focused
on minimizing the mean squared error. Still within the
bandit setting, Weissmann et al. (2025) recently proposed
a behavior-policy scheme for evaluating n target policies
and established (ϵ, δ) excess-risk guarantees. For σ2-sub-
Gaussian rewards, their sample-complexity bound scales as
O
(
σ2w⋆ log(n/δ)

ϵ2

)
, where w⋆ is the maximal importance-

sampling weight (upper-bounded by n).

For MDPs, Hanna et al. (2017) introduced the idea of op-
timizing the behavior policy (i.e., the exploration strategy)
by directly minimizing the variance of importance sam-
pling—one of the earliest efforts to design an exploration
strategy specifically for policy evaluation in MDPs. In
(Mukherjee et al., 2022) the authors studied single-reward
policy evaluation in tree MDPs, and proposed a variance-
driven behavior policy that minimizes the MSE. Separately,
(McLeod et al., 2021) proposed SF-NR, which uses the Suc-

1In this work, we use the terms “exploration policy” and “be-
havior policy” interchangeably.
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cessor Representation framework (Dayan, 1993) to guide
exploration for value estimation over a finite set of tasks.
Additionally, in another line of research, Papini et al. (2024)
analyzed the behavioral policy optimization problem for
policy gradient methods. More closely related to our work
is (Jain et al., 2024), where the authors tackled the evalu-
ation of a finite set of policy–reward pairs and proposed
GVFExplorer, an adaptive exploration method that op-
timizes the behavior policy with the goal of minimizing
the estimation MSE. Their resulting exploration policy is
variance-driven, and resembles that derived by Mukherjee
et al. (2022). However, these works do not provide PAC
guarantees, nor directly provide a strategy that directly min-
imizes the sample complexity.

In (Dann et al., 2023) they investigated the multi-policy
single-reward evaluation problem in a PAC framework.
They proposed an on-policy method that leverages the fact
that the policies may overlap in a significant way. In (Chen
et al., 2024) the authors designed a behavior policy that op-
timizes the coverage of the target policy set. However, these
works do not provide instance-dependent bounds in terms of
the value of the target policies, nor study the multi-reward
policy evaluation problem.

3. Problem Setting
In this section, we describe the MDP model considered and
the policy evaluation setting.

3.1. Markov Decision Processes (MDPs)

Markov Decision Processes (MDPs) are widely utilized to
model sequential decision-making tasks (Puterman, 2014).
In these tasks, at each time-step t = 1, 2, . . . an agent
observes the current state of the MDP st and selects an
action at to achieve a desired objective. This objective is
encapsulated in terms of a reward rt ∈ [0, 1], observed after
selecting the action. In RL, the primary goal of the agent is
to determine a sequence of actions that maximizes the total
reward collected from an unknown MDP.

Discounted MDPs. We consider a discounted MDP (Put-
erman, 2014) of the type M = (S,A, P, γ), where: S is a
finite state space of size S = |S|; A is a finite action space
of size A = |A|; P : S × A → ∆(S) is the transition
function, which maps state-action pairs to distributions over
states; lastly, γ ∈ (0, 1) is the discount factor. In the follow-
ing we consider also reward functions r : S × A → [0, 1]
that are bounded and deterministic functions of state-action
pairs, and write Mr = (M, r) to denote the MDP M with
reward r. In classical RL, an agent is interested in max-
imizing the total discounted reward collected from Mr:
r1 + γr2 + γ2r3 + . . . . The problem of computing an
optimal sequence of actions (i.e., that maximizes the to-
tal discounted reward) can be reduced to that of finding

a Markovian policy π : S → ∆(A) that maps states to
distributions over actions (Puterman, 2014). For a Marko-
vian policy π we define the discounted value of π in Mr at
state s as V πr (s) := Eπ[

∑
t≥1 γ

t−1r(st, at)|s1 = s], where
st+1 ∼ P (·|st, at) and at ∼ π(·|st) (if π is deterministic,
we write at = π(st)). We also write V πr and omit the depen-
dency onM when it is clear from the context. We also define
V ⋆r (s) := maxπ V

π
r (s) to be the optimal value in s over all

Markovian policies. We further define the action-value func-
tion in Mr as Qπr (s, a) := r(s, a) + γEs′∼P (·|s,a)[V πr (s′)].

Additional notation. For a set U ⊂ Rn, n ∈ N, we
denote by U its closure, and we also define ∆(U) to
be the set of distributions over U . We also denote by
Nt(s, a) =

∑t
n=1 1((sn,an)=(s,a)) the number of times

an algorithm has visited a state-action pair (s, a) up to
time t (sim. we define Nt(s) =

∑
aNt(s, a)). For two

MDPs M,M ′ with transition functions, respectively, P, P ′,
we write KLP |P ′(s, a) to indicate the KL-divergence be-
tween the two transition functions in (s, a) ∈ S × A
(we also write KLM |M ′(s, a)). We denote by kl(x, y) =
x log(x/y) + (1 − x) log((1 − x)/(1 − y)) the Bernoulli
KL-divergence between two parameters x, y ∈ [0, 1].

Assumptions. We consider the problem of evaluating a
finite set of deterministic target policies Π = {π1, . . . , πN}
over finite, or possibly convex, reward sets (we discuss more
on this in the next paragraph). On the MDP M , we impose
the following assumption.
Assumption 3.1. The MDP M is communicating and ape-
riodic under a uniform policy, and the learner has no prior
knowledge of P . The starting state is also arbitrary.

As in (Al Marjani et al., 2021; Russo & Vannella, 2024), we
assume that the MDP is communicating, which avoids the
awkward case where the algorithm could enter a subclass of
states from which there is no possible comeback, and thus
it becomes impossible to identify the value of a policy π to
the desired accuracy. Lastly, the assumption of aperiodicity
can be met by assuming that the exploration policy assigns
positive probability to some state-action pair (s, a) satisfy-
ing P (s|s, a) > 0. Such assumption is needed to ensure
ergodicity of the chain induced by the exploration policy.

Set of Rewards. In the following, we consider sets of
reward functions R that are either finite, or convex, and
assume that these sets are known to the agent beforehand.
For tabular MDPs (i.e., with finite state-action spaces), as-
suming a natural labeling of the states S = {s1, . . . , sS},
we represent a reward r, for a policy π, as a vector in [0, 1]S

(for simplicity, we omit the dependency on π). The i-th ele-
ment of r corresponds to the reward r(si, π(si)). For π, we
indicate the canonical reward set byRπcanon = {e1, . . . , eS}
in RS , with ei being the i-th vector of the canonical basis,
defined as (ei)j = 1(i=j), i, j ∈ {1, . . . , S}. Lastly, we
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denote theR = [0, 1]S case as reward-free since it encom-
passes all possible rewards for π.

3.2. Online Multi-Reward Multi-Policy Evaluation

In an online single-reward Policy Evaluation (PE) set-
ting, the objective is to learn the value vector of a sin-
gle policy–reward pair (π, r). In the multi-reward, multi-
policy case, we aim instead to learn the value vectors for
Θ := {(π,Rπ) : π ∈ Π}, meaning each policy π ∈ Π is
evaluated on every reward in its own reward setRπ , which
can differ across policies.

This setting is closely related to off-policy policy evaluation
(OPE) (Thomas & Brunskill, 2016; Precup, 2000). However,
OPE does not typically focus on the problem of optimizing
the data collection policy. In this work, we study the prob-
lem of devising an optimal data-collection policy that, by
online interactions with the MDP M , permits the agent to
learn the value of pairs (π,Rπ) ∈ Θ as quickly as possible
up to the desired accuracy.

Online Multi-Reward Multi-Policy Evaluation. We for-
malize our objective using the (ϵ, δ)-PAC (Probably Ap-
proximately Correct) framework. In such framework, an
algorithm Alg interacts withM until sufficient data has been
gathered to output the value of π up to ϵ accuracy for any
reward r ∈ Rπ , for all π ∈ Π, with confidence 1− δ.

Formally, an online PE algorithm Alg consists of:

• a sampling rule (at)t≥1: upon observing a state st,
Alg selects an action at, and then observes the next
state st+1 ∼ P (·|st, at).

• a stopping rule τ that dictates when to stop the data
collection process. τ is a stopping rule w.r.t. the filtra-
tion (Ft)t≥1, where Ft = σ({s1, a1, . . . , at−1, st}) is
the σ-algebra generated by the random observations
made under Alg up to time t.

• an estimated value V̂ πr : at the stopping time τ , Alg
returns the estimated value V̂ πr of the policy π ∈ Π in
M for any chosen reward r ∈ Rπ .

Denoting by PM (resp. EM ) the probability law (resp. ex-
pectation) of the data observed under Alg in M , we define
an algorithm to be (ϵ, δ)-PAC as follows.

Definition 3.2 ((ϵ, δ)-PAC algorithm). An algorithm Alg
is said to be multi-reward multi-policy (ϵ, δ)-PAC if, for
any MDP M , policies-rewards set Θ, δ ∈ (0, 1/2) and
ϵ ∈ (0, 1

2(1−γ) ), we have PM [τ < ∞] = 1 (the algorithm
stops almost surely) and

PM
[
∃π ∈ Π,∃r ∈ Rπ : ∥V πr − V̂ πr ∥∞ > ϵ

]
≤ δ. (1)

In other words, with probability at least 1−δ, the algorithm’s
estimate V̂ πr is within ϵ of V πr for every r ∈ Rπ, π ∈ Π.

In the following section, we investigate the sample complex-
ity of this problem and determine the minimal number of
samples required to achieve the (ϵ, δ)-PAC guarantees. Our
analysis reveals that the problem can be more challenging
under certain rewards. In fact, the sample complexity is gov-
erned by the most difficult policy-reward pair in Θ, rather
than the sum of the individual complexities across pairs.

4. Adaptive Exploration through Minimal
Sample Complexity

We seek to design a data collection strategy achieving mini-
mal sample complexity. Building on BPI techniques (Gariv-
ier & Kaufmann, 2016; Al Marjani et al., 2021), we first
derive an instance-specific sample complexity lower bound
for any (ϵ, δ)-PAC algorithm.

This bound, which is posed as an optimization problem,
specifies the optimal exploration policy, enabling the deriva-
tion of an efficient algorithm. The key step lies in bounding
the expected log-likelihood ratio between the true model M
and a carefully constructed “confusing” model M ′.

4.1. Set of Alternative Models

Confusing models are alternative models that are “similar”
to M , but differ in certain key properties. As we see later,
the set of alternative models is crucial for establishing a
lower bound on the sample complexity τ . To prove the
lower bound, we frame the sample complexity problem as
a goodness-of-fit test: does the observed data better align
with the true model M or an alternative model M ′?

We seek a model M ′ that is confusing—that is, it is “sta-
tistically” close to M (in the KL sense), yet differs by at
least 2ϵ in the value of a policy π under some reward r (we
discuss later why we choose 2ϵ and not ϵ). To find M ′, we
first construct the set of alternative models. Formally, for a
policy π ∈ Π, reward r ∈ Rπ, the set of alternative models
in (π, r) is defined as

Altϵπ,r(M) := {M ′
r :M ≪M ′

r, ∥V πMr
− V πM ′

r
∥∞ > 2ϵ},

where M ′
r = (S,A, P ′

r, r, γ) is an alternative MDP, and
we index the transition function P ′

r by the corresponding
reward r for clarity. The notation M ≪ M ′

r means that
P (s, a) is absolutely continuous with respect to P ′

r(s, a) for
all (s, a) (and P is the transition function of M ). We also
denote by Altϵ(M) = ∪π∈Π,r∈Rπ

Altϵπ,r(M) the entire set
of alternative models overR.

From a sample complexity perspective, we can interpret
this set as follows: a larger set of alternative models may
lead to increased sample complexity since it becomes more
likely that one of these models is statistically close to M as
measured by their KL divergence. Hence, we should expect
the learning complexity to be dominated by the “worst”
among such models.
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Note that we require ∥V πMr
− V πM ′

r
∥∞ > 2ϵ, rather than just

ϵ. If the separation were only ϵ, an estimator V̂ πr satisfying
∥V̂ πr −V πMr

∥∞ ≤ ϵ could also be simultaneously ϵ-accurate
for an alternative model M ′ satisfying ∥V πMr

−V πM ′
r
∥∞ > ϵ,

making the models indistinguishable. Requiring 2ϵ separa-
tion prevents this ambiguity. While this choice potentially
weakens the resulting lower bound, we believe the looseness
is at most a constant factor (see Theorem 5.2).

Lastly, consider the case where the set Altϵπ,r(M) is empty
for some pair (π, r). In this situation, any model P ′ sharing
the same support as P yields a value that is 2ϵ-close to the
true value. Thus, the learning challenge for that reward
is rather minimal. Therefore, characterizing when these
sets are empty is crucial in the analysis. In the following,
we denote by Rϵπ = {r ∈ Rπ : Altϵπ,r(M) ̸= ∅} the set
of rewards for which the corresponding set of confusing
models is non-empty.

Value deviation. To analyze these confusing sets, and
their implications for sample complexity, we define the
following instance-dependent quantity, that we refer to as
the one-step value deviation:

ρπr (s, s
′) := V πr (s′)− Eŝ∼P (s,π(s))[V

π
r (ŝ)] ∀s, s′ ∈ S.

This quantity measures how much the value at a state s′

deviates from the expected value under π at s. As we
see later, it is “easier” to construct alternative models if
|ρπr (s, s′)| is large. We also define these quantities in vec-
tor form ρπr (s) :=

[
ρπr (s, s1) . . . ρπr (s, sS)

]⊤
, so that

∥ρπr (s)∥∞ = maxs′ |ρπr (s, s′)| is the maximum one-step de-
viation at s. The deviation ρπr is closely related to the span of
the value function sp(V πr ) := maxs′ V

π
r (s′)−mins V

π
r (s),

but, is in general smaller than the span (see Lemma B.3).

Using this measure of value deviation ρπr , we are able to
provide necessary and sufficient conditions under which
Altϵπ,r(M) is empty or not (see proof in Appendix B.1.1).

Proposition 4.1. Fix a policy π ∈ Π and a re-
ward r ∈ Rπ. We have the following condi-
tions: (1; necessary) if Altϵπ,r(M) ̸= ∅ then

∃s ∈ S : ∥ρπr (s)∥∞ > ϵ(1−γ)
γ ; (2; sufficient) if

∃s ∈ S : ∥ρπr (s)∥∞ > 2ϵ
γ , then Altϵπ,r(M) ̸= ∅.

The proposition offers key insights into the challenges in-
volved in learning the value function:

• As ϵ increases or γ decreases, the necessary condition
in Proposition 4.1 is less likely to be satisfied, poten-
tially leading to a decrease in the number of alternative
models (which suggests a smaller sample complexity).

• The proof highlights the concept of confusing states:
a state s is considered confusing if ∥ρπr (s)∥∞ >

2ϵ
γ . States with smaller values of ∥ρπr (s)∥∞ do not
strongly affect the sample complexity. Additionally,
Lemma B.3 (in the appendix) indicates that the maxi-
mum maxs′ |ρπr (s, s′)| is typically attained at s′ ̸= s.

• Finally, if maxs∈S ∥ρπr (s)∥∞ = 0, the set Altϵπ,r(M)
is empty for any values of ϵ and γ, implying no confus-
ing models exist under such conditions.

Regarding the last point, in the following proposition,
proved in Appendix B.1.3, we provide a sufficient and nec-
essary condition for maxs ∥ρπr (s)∥∞ = 0.

Proposition 4.2. The vectors r for which
maxs ∥ρπr (s)∥∞ = 0 is precisely the set {α1 : α ∈
[0, 1]}, where 1 is the vector of ones.

While it may seem obvious that the all-ones reward cannot
produce an alternative model, it is noteworthy that no other
reward satisfies maxs ∥ρπr (s)∥∞ = 0.

We are now ready to discuss the sample complexity, and we
refer the reader to Appendix B.1.3 for further discussion on
the set of alternative models, including a characterization of
when ρπr (s, s) is identically zero across all states.

4.2. Sample Complexity Lower Bound

As a consequence of Proposition 4.1, the analysis of the
sample complexity must necessarily take into account the
reward sets. However, for clarity, we adopt the assump-
tion that for every state there exists a confusing model (see
Prop. 4.1). While not strictly necessary (one could work
withRϵπ instead), this assumption simplifies our analysis.

Assumption 4.3. For every state s ∈ S there exists π ∈
Π, r ∈ Rπ such that ∥ρπr (s)∥∞ > 2ϵ

γ .

To derive the sample complexity lower bound, we define
the characteristic time Tϵ(ω;M) of a stationary state-action
distribution ω under M :

Tϵ(ω;M)−1 := inf
π∈Π,r∈Rπ,M ′

r∈Altϵπ,r(M)
Eω[KLP |P ′

r
(s, a)],

(2)
where (s, a) ∼ ω. In this optimization problem, we seek an
alternative model M ′ that is confusing, i.e., that minimizes
the statistical difference from the true process M under
some pair (π, r). Conversely, the sampling distribution
ω serves to gather evidence distinguishing M from any
such alternative. Hence, the reciprocal Tϵ(ω;M)−1 can be
interpreted as the information-gathering rate under ω in M .

Consequently, an optimal exploration strategy chooses ω
to maximize this rate. From this perspective, one can show
that, asymptotically, the sample-complexity lower bound
for any (ϵ, δ)-PAC algorithm scales as

T ⋆ϵ (M) = inf
ω∈Ω(M)

Tϵ(ω;M), (3)
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where we denote by ωopt ∈ Ω(M) a solution to
the optimization in Eq. (3), and Ω(M) is defined
as the following set of stationary state-action distribu-
tions: Ω(M) :=

{
ω ∈ ∆(S × A) : (

∑
a ω(s, a) =∑

s′,a′ P (s|s′, a′)ω(s′, a′)∀s) and ω(s, a) > 0 ∀(s, a)
}

.
We have the following asymptotic lower bound, and the
proof of the theorem can be found in Appendix B.2.1.

Theorem 4.4. Under Assumption 4.3, for any (ϵ, δ)-
PAC algorithm we have

lim inf
δ→0

E[τ ]
log(1/δ)

≥ T ⋆ϵ (M). (4)

As discussed earlier, an exploration strategy matching the
information gain T ⋆ϵ (M) maximizes the evidence collected
per time-step required to distinguish between the true model
M and a confusing one.

This problem can be framed conceptually as a zero-sum
game: the explorer seeks to maximize Tϵ(ω;M)−1 over
ω, while an adversary selects a confusing model for some
policy–reward pair to minimize this value. Consequently,
the sample complexity is determined by the most difficult
policy–reward pair to discriminate from the true model.

However, it may seem counterintuitive to use an exploration
strategy that depends on the true model itself M , since it
is unknown. In practice, we use the empirical estimate of
the MDP Mt at time-step t to derive an exploration strategy.
We defer this discussion to Section 5.

Optimality of behavior policies. A natural question is
whether we can use this result to identify when an explo-
ration policy is suboptimal. For instance, consider the MDP
in Figure 1 and the single target policy π(·|s) = a2 ∀s. For
that MDP, it is in general sub-optimal to sample according
to such policy, since under π state s1 becomes transient. In
the following lemma we prove that a necessary condition
for an optimal exploration policy is to guarantee that states
with large deviation gap are visited infinitely often.

Lemma 4.5. Let Tπe be the set of transient states
(i.e., not recurrent) under a behavior policy πe. As-
sume that Tπe ̸= ∅. If there exists sc ∈ Tπe , π ∈
Π, r ∈ Rπ such that ∥ρπr (sc)∥∞ > 2ϵ/γ, then πe
is not optimal, in the sense that

Tϵ(d
πe ;M)−1 = 0, (5)

for any stationary distribution dπe (of the chain
Pπe ) induced by πe.

The proof for this lemma can be found in Appendix B.2.2.

s1 s2

a1 : (r1, p1)

a2 : (r2, p2)

a1 : (r1, 1 − p1)

a1 : (0, p3)

a2 : (0, 1 − p2)

a1 : (0, 1 − p3)
a2 : (0, 1)

Figure 1. In this MDP (v. Example 4.6), in each edge it is indicated
the action and the corresponding reward and transition probability.

This result is general, and also applies to single-policy
single-reward cases. Moreover, we understand that an op-
timal exploration policy needs to frequently sample states
with large deviation gaps ∥ρπr (s)∥∞. This intuition will be
used to devise an exploration policy.

Scaling. Last, but not least, the lower bound expression
does not clearly reveal its scaling behavior or its connection
to the value deviation ρ. While we have briefly touched
upon this relationship, these aspects are explored in greater
depth in the next section, where a convexification of the
problem provides further insights into these properties.

4.2.1. CONVEXITY OF THE LOWER BOUND

We find that it is hard to directly optimize Tϵ(ω;M), since
the optimization over the set of alternative models may be
non-convex. Observe that the set Altϵπ,r(M) can be seen as
the union of two sets {M ′ : maxs V

π
Mr

(s)− V πM ′
r
(s) ≥ 2ϵ}

and {M ′ : maxs V
π
M ′

r
(s) − V πMr

(s) ≥ 2ϵ}. The convexity
of these sets depends on (π, r, P ) and, even if convex, may
be disjoint. The following example illustrates this aspect.

Example 4.6. Consider the MDP in Figure 1 with the target
policy π(s1) = a2 and π(s2) = a1. The value functions are

0.2 0.4 0.6 0.8 1.0
p2

10−2

10−1

100

‖V
π M
r
−
V
π M
′ r(
p 2

)‖
∞

p2a
p2b

p2m

2ε

Figure 2. Plot of ∥V πM − V πM′(p2)∥∞ for varying values of p2 in
M ′ (the other parameters are the same in both MDPs). The param-
eters p2a = 0.56 and p2b = 0.41 are both confusing parameters
for ϵ = 0.03 (above the red line), but their average p2m is not.
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given by V π(s2) = θV π(s1), where θ = γp3
1−γ(1−p3) , and

V π(s1) = p2r2
1−γ(p2+(1−p2)θ) . Using parameters γ = 0.9,

r2 = 1
2 , p3 = 10−2, and p2 = 1

2 in the true model M , con-
sider an alternative model M ′ with the same (p1, r1, r2, γ).
Varying p2 in M ′ shows that p2 = 0.56 and p2 = 0.41 are
both confusing for ϵ = 0.03, whereas their average is not.
This phenomenon is illustrated in Figure 2.

In the next sub-section we explain how to circumvent this
issue by considering a convex relaxation of the optimization
problem in Eq. 2, denoted as the relaxed characteristic time.

4.3. Relaxed Characteristic Time

We proceed with finding a convex relaxation of Tϵ(ω;M)
that holds for all distributions ω ∈ ∆(S × A). Such re-
laxation not only upper bounds Tϵ(ω;M) in terms of Rπ
(instead ofRϵπ), but also allows us to better understand the
scaling of T ⋆ϵ . The proof can be found in Appendix B.2.3.

Theorem 4.7. For all ω ∈ ∆(S × A) we have
Tϵ(ω;M) ≤ Uϵ(ω;M), where

Uϵ(ω;M) := sup
π∈Π,r∈Rπ

max
s∈S

γ2∥ρπr (s)∥2∞
2ϵ2(1− γ)2ω(s, π(s)) ,

(6)
is convex in ω. Let U⋆ϵ (M) = Uϵ(ω

⋆;M) be the
optimal rate, where ω⋆ ∈ arg inf

ω∈Ω(M)
Uϵ(ω;M)

is an Uϵ-optimal allocation.

This theorem exhibits some of the characteristics we men-
tioned before: as expected, the complexity is characterized
by pairs (s, s′) for which the deviation |ρπr (s, s′)| is large,
for some worst-case policy-reward pair. What this result sug-
gests is that sampling should be roughly proportional to the
value deviation (a quantity that is a variance-like measure,
as explained also in (Russo & Proutiere, 2023a)). How-
ever, quantifying the gap |Uϵ(ω;M)− Tϵ(ω;M)| remains
challenging, and we leave this analysis to future work.

Scaling. To better understand the scaling, for exam-
ple, in the generative setting, choosing a uniform
distribution ω(s, π(s)) = 1/S yields a scaling of
O
(
maxπ,r

γ2 |S| maxs ∥ρπr (s)∥2

2ϵ2(1−γ)2
)

. Since ∥ρπr (s)∥∞ ≤
1/(1− γ), we obtain a minimax scaling of O

(
γ2|S|

2ϵ2(1−γ)4
)
,

which is independent of the number of policies or rewards.
Note that this scaling can be misleading: because the sample
complexity scales according to ∥ρπr (s)∥2

∞
ω(s,π(s)) , a small ω does

not necessarily increase sample complexity if ∥ρπr (s)∥2∞ is
also small. In Appendix B.2.5 we depict the scaling on a
simple example for two types of reward sets: reward-free
(i.e., the entire set of rewards) and the circle ∥r∥2 ≤ 1.

4.3.1. OPTIMIZATION OVER CONVEX SETS OF
REWARDS AND REWARD-FREE POLICY
EVALUATION

For a convex reward set Rπ, the maximization over the
rewards in Theorem 4.7 can be cast as a mixed-integer linear
program (MILP). In practice, as shown in Appendix B.2.5,
the same optimum is obtained more efficiently by solving a
finite collection of ordinary convex programs.

In general, the solution is characterized by the matrix
Γπi,j(s) = (Kπ(s)Gπ)i,j , where

Kπ(s) = I − 1P (s, π(s))⊤, Gπ = (I − γPπ)−1.

Γπi,j(s) can be interpreted as the expected discounted num-
ber of visits to state j starting from i after subtracting the
expected number of visits to j starting from s′ ∼ P (s, π(s)).
In other words, Γπ(s) is the analogue of the deviation ρ in
terms of discounted number of visits.

Then, for any convex reward set Rπ the quantity
supr∈Rπ

|ρπr (s, s′)| is simply the larger of the optimal
values of the two convex programs supr∈Rπ

± e⊤s′Γπ(s)r.
Consequently, one only needs to solve a finite collection of
standard convex problems to compute Uϵ(ω;M). We refer
the reader to Appendix B.2.5 for details on how to solve
infω∈Ω(M) Uϵ(ω;M),

Reward-free scenario. Lastly, in the reward-free sce-
nario Rπ = [0, 1]S ,∀π ∈ Π, the optimization in r
admits a closed-form solution, which is determined by
Γπ+(s, s

′) :=
∑
j:Γπ

s′,j(s)>0 Γ
π
s′,j(s), and Γπ−(s, s

′) :=

−∑j:Γπ
s′,j(s)<0 Γ

π
s′,j(s).

Corollary 4.8. IfRπ = [0, 1]S ∀π ∈ Π, then

Uϵ(ω;M) = max
π,s,s′

γ2
[
max

(
Γπ+(s, s

′),Γπ−(s, s
′)
)]2

2ϵ2(1− γ)2ω(s, π(s)) .

See also Appendix B.2.4 for a proof and Appendix B.2.5
for an example showing the reward-free sample complexity
in the Riverswim environment (Strehl & Littman, 2004) for
a single policy π. We are now ready to devise an algorithm
based on the relaxed characteristic rate.

5. MR-NaS for Policy Evaluation
In this section we show how to adapt the MR-NaS (Multi-
Reward Navigate and Stop) algorithm (Russo & Vannella,
2024) for multi-reward multi-policy evaluation based on the
results from the previous section. MR-NaS (Algorithm 1)
is a simple extension of NaS (Al Marjani et al., 2021), and
is designed with 2 key components: (1) a sampling rule and
(2) a stopping rule. We now discuss each of these.
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Sampling Rule. The key idea is to sample according to
the policy induced by ω⋆ ∈ arg inf

ω∈Ω(M)
Uϵ/2(ω;M).

Indeed, sampling actions according to π⋆(a|s) =
ω⋆(s, a)/

∑
b ω

⋆(s, b) guarantees optimality with respect
to U⋆ϵ/2, as the solution ω⋆ matches the relaxed rate in Theo-
rem 4.4. The factor ϵ/2 arises from the lower bound analysis
that requires 2ϵ-separation. By tightening the accuracy to
ϵ/2, we ensure the (ϵ, δ)-PAC guarantee, which would other-
wise be hard to prove. This results in an additional constant
factor 4 in the sample complexity.

However, ω⋆ cannot be computed without knowledge of
the MDP M . As in previous works (Garivier & Kaufmann,
2016; Al Marjani et al., 2021), we employ the certainty
equivalence principle (CEP): plug in the current estimate
at time t of the transition function and compute ω⋆t . The
allocation ω⋆t rapidly eliminates models confusing for Mt,
efficiently determining whether the true model M is non-
confusing–motivating our use of the CEP.

To simplify the analysis, we make the following assumption:

Assumption 5.1. The solution ω⋆ is unique and lies within
the open set Ω(M).

Such assumption prevents: (1) the awkward case where a
solution may belong to the boundary of Ω(M); (2) multiple
optimal solutions forming a convex set. This latter problem
can be addressed using alternative techniques as in (Jedra
& Proutiere, 2020; Russo et al., 2025; Russo & Proutiere,
2023b), which use regularization or the idea of tracking a
convex combination of past solutions.

In summary, the algorithm proceeds as follows: at each
time-step t the agent computes the optimal visitation dis-
tribution ω⋆t = arg inf

ω∈Ω(Mt)
Uϵ/2(ω;Mt) with respect to

Mt, the estimate of the MDP (which is, practically speaking,
the estimate of the transition function). The policy π⋆t (a|s)
induced by ω⋆t is mixed with a forcing policy πf,t(·|s) (e.g.,
a uniform distribution over actions or a distribution that en-
courages to select under-sampled actions; see also (Russo &
Vannella, 2024) or Appendix C.3 for more details) that guar-

Algorithm 1 MR-NaS (Russo & Vannella, 2024)
1: while t < Uϵ/2(Nt/t;Mt)β(Nt, δ) do
2: Compute ω⋆t = arg inf

ω∈Ω(Mt)
Uϵ/2(ω;Mt).

3: Set πt(a|st) = (1 − εt)π
⋆
t (a|st) + εtπf,t(a|st),

where π⋆t (a|s) = ω⋆t (s, a)/
∑
a′ ω

⋆
t (s, a

′).
4: Play at ∼ πt(·|st) and observe st+1 ∼ P (·|st, at).
5: Update MDP estimate Mt and set t← t+ 1.
6: end while

antees all actions are sampled infinitely often. The mixing
factor εt can be chosen as εt = 1/max(1, Nt(st)), where
Nt(s) is the number of visits of state s up to time t. The
resulting exploration policy, πt, is used to sample an action
at, which, together with the communicating assumption and
a forcing policy, yields an ergodic chain. Upon observing
the next state, the transition function is updated using the
empirical average.

Stopping rule. Lastly, the method stops whenever suf-
ficient evidence has been gathered to obtain (ϵ, δ)-PAC
guarantees. This requires approximately U⋆ϵ/2(M) log(1/δ)
samples (by inspecting Theorems 4.4 and 4.7).

This rule is defined by two quantities: (1) a threshold
β(Nt, δ) = log(1/δ)+(S−1)∑s,a log

(
e
[
1 + Nt(s,a)

S−1

])
;

(2) the empirical characteristic time Uϵ/2(Nt/t;Mt). In
both, Nt(s, a) is the number of times action a has been se-
lected in state s up to time t, andNt = (Nt(s, a))s,a. In con-
clusion, we stop as soon as t ≥ Uϵ/2(Nt/t;Mt)β(Nt; δ).
Hence, we have the following guarantees (see proof in Ap-
pendix C.1).

Theorem 5.2. MR-NaS guarantees PM [∀π ∈
Π, r ∈ Rπ : ∥V πr − V̂ πr ∥∞ ≤ ϵ] ≥ 1− δ; PM [τ <

∞] = 1 and lim supδ→0
EM [τ ]

log(1/δ) ≤ 4U⋆ϵ (M).

0.0 0.5 1.0
Time-steps ×106

10−2

10−1
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E
[m
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π
,r
‖V̂

π r
−
V
π r
‖ ∞

] Riverswim
SF-NR GVFExplorer MR-NaS Noisy Policy (unif.) Noisy Policy (visit.)

0.0 0.5 1.0
Time-steps ×106

ForkedRiverswim

0.0 0.5 1.0
Time-steps ×106

DoubleChain

0.0 0.5 1.0
Time-steps ×106

NArms

Figure 3. Multi-policy evaluation over finite set of rewards on different environments. Shaded curves represent 95% confidence intervals.
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Figure 4. Reward-Free multi-policy evaluation. Here we depict the average error over the canonical basisRπcanon for each policy. Shaded
curves represent 95% confidence intervals.

6. Numerical Results
In this section, we present the numerical results of MR-NaS,
and other algorithms, on various environments with different
reward sets (results use 30 seeds).

Settings. We study MR-NaS in 4 different environ-
ments: Riverswim (Strehl & Littman, 2004), Forked
Riverswim (Russo & Proutiere, 2023a), DoubleChain
(Kaufmann et al., 2021) and NArms (Strehl & Littman,
2004) (an adaptation of SixArms). For each environment
we evaluated 3 scenarios: (1) multi-policy evaluation with fi-
nite reward sets for each policy; (2) reward-free multi-policy
evaluation; (3) reward-free single policy evaluation (results
for this one can be found in Appendix C.4).

While our framework supports various settings, we focus
on what we consider to be the most important and novel
scenarios. For multi-policy evaluation, we sampled three
random policies for each seed. These policies were sampled
uniformly from the set of policies optimal for one-hot re-
wards, where each reward equals 1 at a single state-action
pair and 0 elsewhere. In the case of finite reward sets, each
policy was evaluated using the corresponding rewards from
these sets. In the reward-free scenario, evaluations were
conducted across the canonical basisRπcanon for each π.

Algorithms. While our work is one of the first to study
the reward-free evaluation problem, there are some prior
works that study the multi-task policy evaluation. We con-
sider (1) SF-NR (McLeod et al., 2021), an algorithm for
multi-task policy evaluation based on the Successor Rep-
resentation, and we adapted it to also consider the reward-
free setting (see Appendix C for more details). Next, we
consider (2) GVFExplorer (Jain et al., 2024), a variance-
based exploration strategy for learning general value func-
tions (Sutton et al., 2011) based on minimizing the MSE.
However, such exploration strategy is not applicable to
the reward-free setting. We also evaluated (3) Noisy

Policy - Uniform, a mixture of the target policies
πmix(a|s) = |{π∈Π:π(s)=a}|

|Π| , mixed with a uniform policy
πu with a constant mixing factor εt = 0.3. The resulting
behavior policy is πb = (1 − εt)πmix + εtπu. Lastly, (4)
Noisy Policy - Visitation, computes the same
behavior policy as in (3) with a non-constant mixing factor
ϵt = 1/Nt(st), which is based on the number of visits.

Discussion. The results for the first two settings are shown
in Figures 3 and 4 (policy evaluation was performed us-
ing the MDP estimate Mt at each time-step). MR-NaS
achieves good accuracy on all environments. On the
other hand, SF-NR and GVFExplorer have mixed per-
formance. While SF-NR is not designed to optimize a
behavior policy, we note that the exploration strategy used
by GVFExplorer is similar to solving a problem akin to
Equation (2), but neglects the forward equations when opti-
mizing the behavior policy (see also Appendix C.3 for de-
tails). As a result, GVFExplorer tends to perform worse
in environments where certain rewards are hard to obtain
under a uniform policy. Lastly, we refer the reader to Ap-
pendix C.4 for more details, and to the README.md file in
the supplementary material to reproduce the results.

7. Conclusions
In this work, we studied the problem of devising an explo-
ration strategy for online multi-reward multi-policy eval-
uation, accommodating reward sets that are either finite
or convex, potentially encompassing all possible rewards.
Leveraging tools from Best Policy Identification, we derived
an instance-dependent sample complexity lower bound for
the (ϵ, δ)-PAC setting. Based on this bound, we extended
MR-NaS (Russo & Vannella, 2024) to the policy-evaluation
setting, and showed its asymptotic efficiency. Lastly, we
compared MR-NaS against other adaptive exploration meth-
ods across various domains, demonstrating its efficiency.

9



Adaptive Exploration for Multi-Reward Multi-Policy Evaluation

Acknowledgments
The authors are pleased to acknowledge that the computa-
tional work reported on in this paper was performed on the
Shared Computing Cluster which is administered by Boston
University’s Research Computing Services.

The authors would also like to thank Yilei Chen for the
insightful discussions and constructive feedback provided
during the drafting of this manuscript.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning and Reinforcement Learning. There
are many potential societal consequences of our work, none
which we feel must be specifically highlighted here.

References
Achiam, J., Held, D., Tamar, A., and Abbeel, P. Constrained

policy optimization. In International Conference on Ma-
chine Learning, pp. 22–31. PMLR, 2017.

Al Marjani, A. and Proutiere, A. Adaptive sampling for
best policy identification in markov decision processes.
In International Conference on Machine Learning, pp.
7459–7468. PMLR, 2021.

Al Marjani, A., Garivier, A., and Proutiere, A. Navigating to
the best policy in markov decision processes. In Advances
in Neural Information Processing Systems, volume 34,
pp. 25852–25864, 2021.

Antos, A., Grover, V., and Szepesvári, C. Active learning
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A. Additional Notation
In this appendix we introduce some additional notation that is used in the proofs.

Table 1. Table of Notation
Symbol Definition Description

Altϵπ,r(M) Altϵπ,r(M) = {M ′
r :M ≪M ′

r, ∥V πMr
− V πM ′

r
∥∞ > 2ϵ} Set of alternative models in (π, r).

Rπ Rπ ⊆ [0, 1]S Reward space considered for policy π.

Rϵπ Rϵπ = {r ∈ Rπ : Altϵπ,r(M) ̸= ∅} The subset of rewards ofRπ for which the set of
alternative models is not empty.

1 1 =
[
1 . . . 1

]
all-ones vector.

ei ei =

[
0 . . . 1︸︷︷︸

i-th position
0 · · ·

]
i-th element of the canonical basis.

diag(A) diag(A) =
[
A11 . . . Ann

]⊤
Diagonal of a square matrix A ∈ Rn×n.

P (s, a) P (s, a) =
[
P (s1|s, a) . . . P (sS |s, a)

]⊤
Vector of transition probabilities in (s, a).

Pπs Pπs = (P (s′|s, π(s)))s′∈S Vector of transition probabilities under π in s.

Pπ Pπs,s′ = P (s′|s, π(s)), Pπ ∈ RS×S Matrix of transition probabilities under π.

Gπ Gπ = (I − γPπ)−1, Gπ ∈ RS×S Discounted fundamental matrix.

ρπr (s, s
′) ρπr (s, s

′) = V πr (s′)− Eŝ∼P (s,π(s))[V
π
r (ŝ)] One-step value deviation in (s, s′).

ρπr (s) ρπr (s) = V πr − (Pπs )
⊤V πr 1, ρπr (s) ∈ RS Vector of one-step value deviations in s.

ρπr ρπr (s) = 1(V πr )⊤ − (PπV πr )1⊤, ρπr ∈ RS×S Matrix of one-step value deviations.

Kπ(s) Kπ(s) := (IS − 1P (s, π(s))⊤),Kπ(s) ∈ RS×S Deviation weighting matrix in s.

sp(V ) maxs V (s)−mins V (s) Span of a value function.

Γπ(s) Γπ(s) = Kπ(s)Gπ Matrix used to express ρπr (s, s
′) = e⊤s′Γ

π(s)r.

KLP∥P ′(s, a) KL(P (· | s, a) ∥P ′(· | s, a)) KL between next-state kernels at (s, a).

∥q∥TV
1
2∥q∥1 Total variation norm for signed vectors q.

dπ(s) dπ = dπPπ,
∑
s d

π(s) = 1 Stationary state distribution under π.

dπ(s, a) dπ(s)π(a|s) Stationary state–action occupancy.

ω(s, a) ω ∈ ∆(S ×A) Stationary state–action allocation (design
variable).

Nt(s, a)
∑t
n=1 1{(sn,an)=(s,a)} Visit count to (s, a) up to time t.
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B. Theoretical Results
B.1. Alternative Models and Value Deviation

In this section we prove some of the results in Section 4, and provide additional properties on the set of alternative models.

We begin by proving Proposition 4.1 and an additional necessary (minimax) condition for a model M ′ to be an alternative
model.

B.1.1. PROOF OF PROPOSITION 4.1 AND AN ADDITIONAL MINIMAX NECESSARY CONDITION

Proof of Proposition 4.1. We first prove the sufficient condition, and then prove the necessary condition.

Sufficient condition. Let s0, s1 ∈ S , and fix a reward r ∈ R. In the following we omit the subscript r for simplicity. Define
a transition function P

′
so that

P
′
(s′|s, a) =


P (s′|s, a) s ̸= s0,

P (s′|s0, a) s = s0 ∧ a ̸= π(s0),

δ + (1− δ)P (s1|s0, π(s0)) (s, a, s′) = (s0, π(s0), s1),

(1− δ)P (s′|s0, π(s0)) (s, a) = (s0, π(s0)) ∧ s′ ̸= s1,

with δ ∈ (0, 1). Therefore P (s, a)≪ P
′
(s, a) for all (s, a).

Let V πP be the value of π in P , and similarly define V πP ′ . For s ̸= s0 the difference in value ∆V π = V πP − V πP ′ satisfies

∆V π(s) = γPπ(s)⊤∆V π,

where Pπ(s) =
[
P (s′1|s, π(s)) . . . P (s′S |s, π(s))

]⊤
is the vector of transitions over the next state starting from (s, π(s)).

To analyse the case s = s0 we indicate by P
′π(s) the vector of transitions in s for P

′
under π. We obtain the following

sequence of equalities

∆V π(s0) = γPπ(s0)
⊤V πP − γ

∑
s′

P
′
(s′|s0, π(s0))V πP ′(s′),

= γPπ(s0)
⊤V πP − γ(1− δ)

∑
s′ ̸=s1

P (s′|s0, π(s0))V πP ′(s′)− γδV πP ′(s1)− γ(1− δ)P (s1|s0, π(s0))V πP ′(s1),

= γPπ(s0)
⊤V πP − γ(1− δ)

∑
s′

P (s′|s0, π(s0))V πP ′(s′)− γδV πP ′(s1),

= γ[Pπ(s0)
⊤(V πP − (1− δ)V πP ′)− δV πP ′(s1)],

= γ[Pπ(s0)
⊤(V πP − (1− δ)V πP ′)− δV πP ′(s1)± δPπ(s0)⊤V πP ± δV πP (s1)],

= γ[Pπ(s0)
⊤(1− δ)∆V π + δ∆V π(s1) + δ(Pπ(s0)

⊤V πP − V πP (s1))],

= γP
′π(s0)

⊤∆V π + γδ(Pπ(s0)
⊤V πP − V πP (s1))︸ ︷︷ ︸
=:bs0

.

Hence, we can rewrite the expression of ∆V π in matrix form as

∆V π = b+ γP
′π∆V π

where b ∈ RS , equal to bs = 0 for s ̸= s0 and bs0 = γδ
(
Es′∼P (s0,π(s0))[V

π
P (s′)]− V πP (s1)

)
= −γδρπr (s0, s1).

Hence, we find

∥∆V π∥∞ = ∥(I − γP ′π)−1b∥∞,

= |bs0 | ·
∥∥∥∥∥∑

i

(γP
′π)ies0

∥∥∥∥∥
∞
.
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Letting M =
∑
i(γP

′π)ies0 , observe that Ms0 = e⊤s0M represents the (unnormalized) stationary discounted probability of
reaching s0 starting from s0

Ms0 =
∑
i

γie⊤s0(P
′π)ies0 =

∑
i

γiPr(si = s0|s0, π, P
′
) ≥

∑
i

γiP
′π(s0|s0, π(s0))i =

1

1− γP ′π(s0|s0, π(s0))
.

Therefore

∥∆V π∥∞ ≥
γδ|ρπr (s0, s1)|

1− γ(1− δ)P (s0|s0, π(s0))
.

Let pπs0 = P (s0|s0, π(s0)) . Then, we seek a value of δ ∈ (0, 1) so that

γδ|ρπr (s0, s1)|
1− γ(1− δ)pπs0

> 2ϵ.

Some algebra gives that if |ρπr (s0, s1)| − 2ϵpπs0 > 0 and γ|ρπr (s0, s1)| > 2ϵ any value of δ in the range

δ ∈
(

2ϵ(1− γpπs0)
γ(|ρπr (s0, s1)| − 2ϵpπs0)

, 1

)
leads to ∥∆V π∥∞ > 2ϵ, and thus the model is confusing. Since the above conditions can also be written as |ρπr (s0, s1)| >
2ϵmax(pπs0 , 1/γ) = 2ϵ/γ, and one can optimize in s1, we find that a sufficient condition is that

∃s0 : ∥ρπr (s0)∥∞ >
2ϵ

γ
.

Necessary condition. As before, let V πM be the value of π in M with a reward r (we omit the subscript r for simplicity),
and similarly define V πM ′ . If M ′ is confusing for some reward r ∈ R, then we have that there exists a state s0 such that
2ϵ < |∆V π(s0)|, with ∆V π(s) = V πM (s)− V πM ′(s). Note that the following inequalities hold for any s

|∆V π(s)| ≤ γ
∣∣P (s, π(s))⊤V πM − P ′(s, π(s))⊤V πM ′

∣∣ ,
≤ γ

∣∣∆P (s, π(s))⊤V πM + P ′(s, π(s))⊤∆V π
∣∣ ,

≤ γ
∣∣∆P (s, π(s))⊤V πM ∣∣+ γ∥∆V π∥∞.

Since the inequality holds for all s, it implies that 2ϵ < |∆V π(s0)| ≤ ∥∆V π∥∞ ≤ maxs
γ

1−γ
∣∣∆P (s, π(s))⊤V πM ∣∣. We

also denote by smax the state maximizing this last quantity.

Letting e be the vector of ones, and noting that: (1) Es′∼P (s,π(s))[V
π
M (s′)] is a constant and (2) V πM −

Es′∼P (s,π(s))[V
π
M (s′)]e = ρπr (s), then

2ϵ < |∆V π(s0)| ≤
γ

1− γ
∣∣∆P (smax, π(smax))

⊤ρπr (s
′)
∣∣ ,

≤ 2γ

1− γ ∥∆P (smax, π(smax))∥TV max
s′
∥ρπr (s′)∥∞.

Since ∥∆P (s, π(s))∥TV ≤ 1 for any s, we find that a necessary condition for M ′ being a confusing model (for r) is that

∃s : ∥ρπr (s)∥∞ >
ϵ(1− γ)

γ
.

In the following proof we provide an alternative minimax necessary condition for the existence of an alternative model for
(π, r). To derive the result, we use the following lemma.

Lemma B.1 (Lemma 3 (Achiam et al., 2017)). The divergence between discounted future state visitation distribu-
tions, ||dπ′ − dπ||1, is bounded by an average divergence of the policies π′ and π:

||dπ′ − dπ||1 ≤
2γ

1− γEs∼dπ [∥π̄(s)− π̄
′(s)∥TV ]
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Then, we have the following result.

Lemma B.2 (A necessary minimax condition for M ′ to be a confusing model). Consider a reward r and a target
policy π. If M ′ is a confusing model, i.e. ||V πM ′ − V πM ||∞ > 2ϵ, then there ∃s such that

Ea∼π(·|s)[KLP |P ′(s, a)] >
2(1− γ)4

γ2
ϵ2.

Proof. The proof relies on constructing an alternative MDP and a policy π̄ such that we can transform the problem of
evaluating two different transition functions into a problem of comparing two different policies.

For simplicity, we also assume a deterministic policy π, and explain at the end how to extend the argument to a general
stochastic policy.

Imaginary MDP M̄ . We begin by constructing an imaginary deterministic MDP M where the action space is Ā = S . The
transition function of this MDP is P̄ (s′|s, u) = 1{u=s′}, i.e., taking the action u leads the agent to state s′ with probability
1. The reward function instead is r̄(s) = r(s, π(s)).

Define now the policy π(u|s) = P (u|s, π(s)). With M r̄, we can convert the value of the policy under the original MDP
and confusing models to the value of different policies under M r̄. Specifically, the value of the policy π (deterministic)
under the MDP Mr with transitions P is

V πMr
(s) = V π̄M̄r̄

(s).

This follows from the fact that

V π̄M̄r̄
(s) =

∑
s′,u

π̄(u|s)P̄ (s′|s, u)[r̄(s) + γV π̄M̄ r̄(s
′)] =

∑
s′

P (s′|s, π(s))[r(s, π(s)) + γV π̄M̄r̄
(s′)].

Then, by an appropriate application of the Bellman operator one can see that V π̄
M̄r̄

(s) = V πMr
(s)

Bounding using the difference lemma. Consider now a confusing model M ′
r ∈ Altϵπ,r(M) with transition P ′, and define

a policy π̄′(u|s) = P ′(u|s, π(s)). Hence, we have

|V πMr
(s)− V πM ′

r
(s)| = |V π̄M̄r̄

(s)− V π̄′

M̄r̄
(s)|. (7)

Based on Lemma B.1 and Equation (7), we have ∀s
|V πMr

(s)− V πM ′
r
(s)| = |V π̄M̄r̄

(s)− V π̄′

M̄r̄
(s)|, (8)

≤ 1

1− γ ||d
π̄
M̄r̄

(s)− dM̄r̄
(s)π̄

′ ||1, (9)

≤ 2γ

(1− γ)2Es′∼dπM̄r̄
(s)[∥π̄(s)− π̄′(s)∥TV ], (10)

where dπ̄
M̄r̄

(s) denotes the visitation distribution induced by π̄ in M̄r̄ starting from s.

If ∀s, we have ∥π̄(s)− π̄′(s)∥TV ≤ (1−γ)2
γ ϵ, then |V πMr

(s)− V πM ′
r
(s)| ≤ 2ϵ,∀s, i.e. M ′

r is not a confusing model. Hence,
there exists s such that

(1− γ)2
γ

ϵ ≤ ∥π̄(s)− π̄′(s)∥TV = ∥P (s, π(s))− P ′(s, π(s))∥TV ≤
√

1

2
KLP |P ′(s, π(s)).

Extension to a stochastic policy. The extension to a stochastic policy involves a few more steps, and it is omitted for
simplicity. It follows from defining an imaginary MDP M̄ with P̄ (s′|s, u) = 1{u=s′}, r̄(s, u) =

∑
a′ r(s, a

′)π(a′|s) and
π̄(u|s) =∑a P (u|s, a)π(a|s). The argument concludes by noting that if M is confusing then

(1− γ)4
γ2

ϵ2 ≤ ∥π̄(s)− π̄′(s)∥2TV ≤
1

2
KL(π̄(s), π̄′(s)) ≤ 1

2
Ea∼π(·|s)

[
KLP |P ′(s, a)

]
.

by the data-processing inequality.
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B.1.2. ADDITIONAL RESULTS ON THE VALUE DEVIATION ρ

Value deviation. To analyze these confusing sets, and their implications for sample complexity, we define the following
instance-dependent quantity, that we refer to as the one-step value deviation:

ρπr (s, a, s
′) := V πr (s′)− Eŝ∼P (s,a)[V

π
r (ŝ)] ∀s, s′ ∈ S,

ρπr (s, s
′) := ρπr (s, π(s), s

′).

This quantity measures how much the value at s′ differs from the expected value of the next state when starting at s.

We also define these quantities in vector form ρπr (s) :=
[
ρπr (s, s1) . . . ρπr (s, sS)

]⊤
, so that ∥ρπr (s)∥∞ =

maxs′ |ρπr (s, s′)| is the maximum one-step deviation at s (similarly, one defines ρπr (s, a)). The deviation ρπr is closely
related to the span of the value function

sp(V πr ) := max
s′

V πr (s′)−min
s
V πr (s), (11)

but, is in general smaller. In the following lemma we also show that it is unlikely that maxs,s′ ρ
π
r (s, s

′) is achieved for
s′ = s, but rather for s′ ̸= s. Depending on the characteristics of the MDP, it is more plausible that ρπr (s, s) ≈ 0.

Lemma B.3. For any reward vector r ∈ [0, 1]S , states s, s′ ∈ S, we have: (I) |ρπr (s, s)| ≤ 1; (II) |ρπr (s, s′)| ≤
sp(V πr ) and (III)

|ρπr (s, s′)− ρπr (s′, s)| ≤ |∆π
r (s, s

′)|+ Γπs,s′sp(V
π
r ),

where ∆π
r (s, s

′) := r(s, π(s))− r(s′, π(s′)) and Γπs,s′ :=
1+γ
2 ∥P (s, π(s))− P (s′, π(s′))∥1.

Proof of Lemma B.3. First part. For the first part of the lemma, note that

ρπr (s, s) = V πr (s)− P (s, π(s))⊤V πr = r(s, π(s)) + (γ − 1)P (s, π(s))⊤V πr .

Since P (s, π(s))⊤V πr ≥ 0, and γ ∈ (0, 1), then (γ − 1)P (s, π(s))⊤V πr ≤ 0. Using that the reward is bounded in [0, 1], we
obtain ρπr (s, s) ≤ 1.

Then, using that 0 ≤ V πr (s) ≤ 1/(1 − γ) ⇒ −1 ≤ (γ − 1)V πr (s) we also have ρπr (s, s) ≥ r(s, π(s)) − 1 ≥ −1. Thus
|ρπr (s, s)| ≤ 1.

Second part. The second part is rather straightforward, and follows from the definition of span sp(V πr ) = maxs V
π
r (s)−

mins Vrπ(s). Indeed we have

ρπr (s, s
′) = V πr (s′)− P (s, π(s))⊤V πr ≤ max

s
V πr (s)−min

s
V πr (s) = sp(V πr )

and
ρπr (s, s

′) ≥ min
s
V πr (s)−max

s
P (s, π(s))⊤V πr ≥ −sp(V πr ).

Third part. For the third and last part we first note the rewriting

ρπr (s, s
′)− ρπr (s′, s) = V πr (s′)− V πr (s) + [P (s′, π(s′))− P (s, π(s))]⊤ V πr ,

= r(s′, π(s′))− r(s, π(s)) + (γ + 1) [P (s′, π(s′))− P (s, π(s))]⊤ V πr ,

Then, define Z(s, s′) := {z ∈ S : P (z|s′, π(s′)) ≥ P (z|s, π(s))} and

Pπ+(s, s
′) :=

∑
z∈Z(s,s′)

P (z|s′, π(s′))− P (z|s, π(s)), Pπ−(s, s
′) :=

∑
z∈S\Z(s,s′)

P (z|s′, π(s′))− P (z|s, π(s)).
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Also observe Pπ+(s, s
′) = −Pπ−(s, s′), and ∥P (s, π(s))−P (s′, π(s′))∥1 = Pπ+(s, s

′)−Pπ−(s, s′), from which follows that
Pπ+(s, s

′) = 1
2∥P (s, π(s))− P (s′, π(s′))∥1. Then, we have that

[P (s′, π(s′))− P (s, π(s))]⊤ V πr =
∑
z

[P (z|s′, π(s′))− P (z|s, π(s))]V πr (z),

=
∑

z∈Z(s,s′)

[P (z|s′, π(s′))− P (z|s, π(s))]V πr (z)

+
∑

z∈S\Z(s,s′)

[P (z|s′, π(s′))− P (z|s, π(s))]V πr (z),

≤ Pπ+(s, s′)max
s
V πr (s) +

∑
z∈S\Z(s,s′)

[P (z|s′, π(s′))− P (z|s, π(s))]︸ ︷︷ ︸
<0

V πr (z),

≤ Pπ+(s, s′)max
s
V πr (s) +

∑
z∈S\Z(s,s′)

[P (z|s′, π(s′))− P (z|s, π(s))]min
s
V πr (s),

≤ Pπ+(s, s′)max
s
V πr (s) + Pπ−(s, s

′)︸ ︷︷ ︸
=−Pπ

+(s,s′)

min
s
V πr (s),

≤ Pπ+(s, s′)sp(V πr ),

≤ 1

2
∥P (s, π(s))− P (s′, π(s′))∥1sp(V πr ).

By taking the absolute value one obtains the result.

Another useful metric is the dispersion factor λπr , which is defined as

λπr :=
mins V

π
r (s)

maxs V πr (s)
,

from which we see its relationship with the span, i.e., sp(V πr )/maxs V
π
r (s) = 1− λπr .

The parameter λπr measures the spread of the value function across different states. Specifically, a smaller λπr indicates a
greater dispersion of values among states.

Lemma B.4. The dispersion factor λπr satisfies:

1. V πr (s′) ≥ λπrV πr (s) for any pair s, s′ ∈ S.

2. maxs V
π
r (s)− V πr (s′) ≤ (1− λπr )maxs V

π
r (s) for any state s′.

Proof. First, clearly λπr ∈ [0, 1]. Then, the first property is derived from the following inequalities that hold for any pair
(s, s′):

λπrV
π
r (s) ≤ λπr max

s
V πr (s) = min

s
V πr (s) ≤ V πr (s′).

The second statement stems from the simple fact that −V πr (s′) ≤ −mins V
π
r (s) for any s′. Hence:

max
s
V πr (s)− V πr (s′) ≤ max

s
V πr (s)−min

s
V πr (s) = max

s
V πr (s)− λπr max

s
V πr (s).

Using this metric, we are able to provide the following result, providing a bound on ρπr (s, s
′) (note that one could rewrite

the following result in terms of the span).

Lemma B.5. For any reward vector r ∈ [0, 1]S , we have:ρπr (s, s
′) ∈

[
− 1−λπ

r γ
1−γ ,max

(
1,

1−λπ
r

1−γ

)]
for all s, s′ ∈ S .

Furthermore, for λπr = γ we have that |ρπr (s, s′)| ≤ 2 for all s, s′.

20



Adaptive Exploration for Multi-Reward Multi-Policy Evaluation

Proof. First part. For the first part of the lemma, note that

ρπr (s, s) = V πr (s)− P (s, π(s))⊤V πr = r(s, π(s)) + (γ − 1)P (s, π(s))⊤V πr .

Since P (s, π(s))⊤V πr ≥ 0, and γ ∈ (0, 1), then (γ − 1)P (s, π(s))⊤V πr ≤ 0. Using that the reward is bounded in [0, 1], we
obtain ρπr (s, s) ≤ 1.

Then, using that 0 ≤ V πr (s) ≤ 1/(1 − γ) ⇒ −1 ≤ (γ − 1)V πr (s) we also have ρπr (s, s) ≥ r(s, π(s)) − 1 ≥ −1. Thus
|ρπr (s, s)| ≤ 1.

Second part. For the second part of the lemma let Pπs = P (s, π(s)) be the vector of transition probabilities in s under
action π(s). We first prove that V πr (s) ≥ λπrV πr (s′)⇒ (Pπs )

⊤V πr ≥ λπr (Pπs′)⊤V πr . The proof is simple, and follows from
the following inequalities that hold for any pair (s, ŝ) ∈ S2:

(Pπs )
⊤V πr ≥ min

s′
V πr (s′) ≥ λπr max

s′
V πr (s′) ≥ λπr (Pπŝ )⊤V πr .

We can use this fact to prove the result. From the proof of Proposition 4.2 we know that

ρπr = 1(V πr )⊤ − (PπV πr )1⊤ = 1(r + γPπV
π
r )⊤ − (PπV πr )1⊤,

where r is the vector of rewards. Let W = PπV
π
r and note the two facts (1) Ws = (Pπs )

⊤V πr and (2) 0 ≤Ws ≤ 1/(1− γ).
Then, one can see that (ρπr )s,s′ is

(ρπr )s,s′ = ρπr (s, s
′) = r(s′) + γWs′ −Ws.

We prove the statement in two steps:

1. We first prove ρπr (s, s
′) ≤ max

(
1,

1−λπ
r

1−γ

)
. Using that for any pair (s, s′) we have λπrWs′ ≤Ws it follows that

r(s′) + γWs′ −Ws = r(s′) + γWs′ −Ws ± λπrWs′ ,

= r(s′) + (γ − λπr )Ws′ + λπrWs′ −Ws︸ ︷︷ ︸
≤0

,

≤ r(s′) + (γ − λπr )Ws′ ,

≤ 1 + max

(
0,
γ − λπr
1− γ

)
,

≤ max

(
1,

1− λπr
1− γ

)
.

2. We now prove a lower bound on ρπr (s, s
′). The idea is to seek a value of η ≥ 0 such that γWs′ −Ws ≥ (γ − 1)Wsη,

which implies γWs′ − Ws ≥ −η (using that −Ws ≥ −1/(1 − γ)). Then, we find Ws′ ≥ (ηγ−η+1)
γ Ws. Since

Ws′ ≥ λπrWs, we can set
(ηγ − η + 1)

γ
= λπr ⇒ η =

λπr γ − 1

γ − 1
,

(notably, if λπr = γ, then η = 1+ γ ≤ 2). Lastly, we obtain ρπr (s, s
′) ≥ r(s′) + γWs′ −Ws ≥ −η = − 1−λπ

r γ
1−γ , which

concludes the proof.

Hence, if the value is similar across states, we can expect a smaller sample complexity.

B.1.3. PROOF OF PROPOSITION 4.2 AND RELATED RESULTS

In the following, we prove Proposition 4.2, which characterizes the set of rewards for which maxs ∥ρπr (s)∥∞ = 0. In the
proof we define the following deviation matrix

ρπr =
[
ρπr (s1) . . . ρπr (sS)

]⊤
, (12)

that is used to prove the proposition.
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Proof of Proposition 4.2. First, note that

ρπr (s, s
′) = V πMr

(s′)− Eŝ∼P (s,π(s))[V
π
r (ŝ)],

= (es′ − Ps)⊤V πr ,

where es is the s-th element of the canonical basis, Ps = P (s, π(s)). Hence, we can write ρπr (s) as

ρπr (s) = V πr − P⊤
s V

π
r 1

where 1 is the vector of ones. Therefore
ρπr = 1(V πr )⊤ − (PπV πr )1⊤,

where Pπ is a S×S matrix satisfying (Pπ)s,s′ = P (s′|s, π(s)) (and Pπs = (P (s′|s, π(s)))s′∈S ). We consider the condition
ρπr = 0 being identically 0, that is

1(V πr )⊤ = (PπV πr )1⊤ ⇐⇒ V πr = (Pπs V
π
r )1 ∀s ∈ S.

Since (Pπs V
π
r )1 = 1(Pπs )

⊤V πr , letting Mπ
s = 1(Pπs )

⊤, then ρπr = 0 ⇐⇒ V πr = Mπ
s V

π
r for every s ∈ S, that is, V πr

is a right eigenvector of Mπ
s with eigenvalue 1 for all s ∈ S. Since Mπ

s has rank 1 for every s, then V πr is the only right
eigenvector for eigenvalue 1 for all states.

Now, one can easily see that Mπ
s 1 = 1(Pπs )

⊤1 = 1, thus the right eigenvector of Mπ
s associated to the eigenvalue 1 is the

ones vector 1 itself, for all states.

To translate this condition onto a condition on the rewards, we use the fact that V πr = Gπr, with Gπ = (I − γPπ)−1 (which
is invertible). Therefore, we require r to satisfy

∃c ∈ R : c1 = Gπr ⇐⇒ c(I − γPπ)1 = r.

Conclusion. Using that Pπ1 = 1, we conclude that

ρπr = 0 ⇐⇒ r ∝ 1.

The set of all vectors r for which ρπr = 0 is precisely the set {α1 : α ∈ R}. Thus, r must be a scalar multiple of 1.

We conclude this subsection by characterizing in what cases, ρπr (s, s) is identically zero across states. First, note the
following result.

Lemma B.6. Let diag(ρπr ) =
[
ρπr (s1, s1) . . . ρπr (sS , sS)

]⊤
. We have that

diag(ρπr ) = (I − Pπ)(I − γPπ)−1r. (13)

Proof. First, note that

ρπr (s, s
′) = V πMr

(s′)− Eŝ∼P (s,π(s))[V
π
Mr

(ŝ)],

= (es′ − Ps)⊤V πMr
,

= (es′ − Ps)⊤Gπr,

where es is the s-th element of the canonical basis, Ps = P (s, π(s)) and in the last step we used the fact that V πMr
= Gπr

with Gπ = (I − γPπ)−1.

Since for any s we can write ρπr (s, s) = (es − Ps)⊤Gπr, it follows that ρπr (s, s) = [(I − Pπ)Gπr]s, and thus diag(ρπr ) =
(I − Pπ)Gπr.

We now consider a result that permits us to understand when maxs ρ
π
r (s, s) = 0 for any state s, which is the diagonal

of ρπr . In the result, we consider a partition of the set of recurrent states of Pπ into m disjoint closed irreducible sets
C1, . . . , Cm. Then, define τi = inf{t : st ∈ Ci} be the hitting time of Ci, that is, the earliest time Ci is reached, and define
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hπi (s) = Pπ(τi <∞|s) to be the probability of reaching Ci in finite time starting from state s under π. We have then the
following result.

Proposition B.7. Let mπ be the number of disjoint closed irreducible sets C1, . . . , Cmπ in Pπ. Define the vector
hπi ∈ RS as (hπi )s := Pπ(τi <∞|s), which is the probability of reaching Ci in finite time starting from s under π.
Then, for any non-zero reward vector r ∈ RS , we have that:

max
s
|ρπr (s, s)| = 0 ⇐⇒ r ∈ span {hπ1 , . . . , hπmπ} .

In other words, the reward r lies in the span of the mπ vectors (hπi )
mπ

i=1.

In other words, the one-step value deviation at state s is zero provided that the reward function is constant on each irreducible
closed set of Pπ

Proof. From Lemma B.6, we know that

diag(ρπr ) = (I − Pπ)(I − γPπ)−1r.

Then, let x = (I − γPπ)−1r and consider the solutions to (I − Pπ)x = 0. In other words, we are interested in the
real-valued right eigenvectors of Pπ associated to the eigenvalue 1, that is, Pπx = x. Then, for any such right eigenvector
we obtain

(I − γPπ)x = r ⇒ (1− γ)x = r.

Hence, since x is a right eigenvector (Pπx = x), r is also a right-eigenvector of Pπ associated to its eigenvalue 1 (note that
we get Pπr = r).

Therefore, finding the reward vectors satisfying ∥diag(ρπr )∥∞ = 0 amounts to finding the real-valued right eigenvectors of
Pπ associated to its eigenvalue 1.

In general, for an irreducible stochastic transition matrix Pπ it is well-known (Seneta, 2006) that the only real-valued
eigenvector associated to the eigenvalue 1 is the all-ones vector, and thus rλ = λ1 is a solution for any λ ∈ R.

For a generic Pπ, the above argument can be extended by partitioning the set of recurrent states into m disjoint closed
irreducible sets C1, . . . , Cm. Therefore, as shown in (Puterman, 2014), the state space can be rewritten as S = C1 ∪ C2 ∪
. . . Cm ∪ T , where T is the set of transient states. After relabeling the states, we can express the transition matrix Pπ as

Pπ =


P1 0 . . . 0 0
0 P2 . . . 0 0
...

. . .
...

0 0 . . . Pm 0
Q1 Q2 . . . Qm Qm+1


where Pi corresponds to the transition function in Ci, Qi to transitions from states in T to states in Ci, and Qm+1 to
transition between states in T (Puterman, 2014). Moreover, we also know from (Puterman, 2014, Theorem A.5) that the
eigenvalue 1 has multiplicity m.

Note that, since each Pi is an irreducible stochastic matrix, there is only one right eigenvector associated to 1, and it is the
vectors of ones, of size |Ci|. Then, if Qi = 0, then one can conclude that (hi)s = 1(s∈Ci) is a right eigenvector of Pπ.
However, that is not generally the case. Therefore we now derive a general way to find the right eigenvectors.

Define τi = inf{t : st ∈ Ci} be the hitting time of Ci, that is, the earliest time Ci is reached, and define hπi (s) = Pπ(τi <
∞|s), that is, the probability of reaching Ci in finite time starting from state s under π.
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Then, we observe that hπi (s) satisfies a recursive relationship

hπi (s) = Pπ(τi <∞|s1 = s),

=
∑
s′

Pπ(τi <∞, s2 = s′|s1 = s),

=
∑
s′

Pπ(s′|s)Pπ(τi <∞|s2 = s′),

=
∑
s′

Pπ(s′|s)hπi (s′),

where we used the strong Markov property. Therefore hπi = Pπhπi , meaning that hπi is a right eigenvector of Pπ associated
to the eigenvalue 1. Now, observe that hπi (s) = 1 for all s ∈ Ci, and hπi (s) = 0 for all s ∈ Cj , j ̸= i. Because of that, these
vectors are distinct eigenvectors of the eigenvalue 1. Since the eigenvalue 1 has algebraic (and geometric) multiplicity m by
Theorem A.5 in (Puterman, 2014), hence the m independent vectors (hπi )

m
i=1 form a basis of the eigenspace and therefore

span it.

In conclusion, we have that {hπ1 , . . . , hπm} are m linearly independent eigenvectors of Pπ associated to the eigenvalue 1.
Thus, any r ∈ span{hπ1 , . . . , hπm} yields ∥diag(ρπr )∥∞ = 0.

B.2. Sample Complexity Results

Now we provide proofs for the sample complexity lower bound, and related results.

B.2.1. PROOF OF THEOREM 4.4

Proof of Theorem 4.4. The overall proof strategy is to derive a set of constraints on the number of visits Nt(s, a) =∑t
n=1 1((sn,an)=(s,a)) to a state-action pair (s, a) that any (ϵ, δ)-PAC strategy must guarantee. Dividing EM [Nt(s, a)] by

EM [τ ] yields a quantity ω(s, a) that is a distribution over the state-action space, and as δ → 0, ω converges to a stationary
distribution. In the last part of the proof we discuss the ergodicity of the chain induced by this stationary distribution.

Part 1: set of constraints through a change of measure. The initial part of the proof follows the same technique as in
(Al Marjani et al., 2021; Russo & Proutiere, 2023a), and leverages change of measure arguments (Lai & Robbins, 1985;
Garivier & Kaufmann, 2016).

Consider a policy-reward pair π ∈ Π, r ∈ Rπ . For a confusing model M ′
π,r ∈ Altϵπ,r(M) consider the log-likelihood ratio

up to time t of a sequence of observations (z1, z2, . . . ), with zi = (si, ai), under the original MDP Mr and an alternative
model M ′

π,r ∈ Altϵπ,r(M):

Lt,π,r =

t∑
n=1

log
P (sn+1|zn)
P ′
π,r(sn+1|zn)

.

Then, as in (Al Marjani & Proutiere, 2021), one can show that for all t ∈ N the following equality holds

EM [Lt,π,r] =
∑
s,a

∞∑
u=1

PM [Nt(s, a) ≥ u]KLP |P ′
π,r

(s, a),

=
∑
s,a

EM [Nt(s, a)]KLP |P ′
π,r

(s, a).

Now we proceed to lower bound the expected log-likelihood ratio at the stopping time τ . We indicate by PM ′
π,r

the measure
induced by M ′

π,r. Applying the information processing inequality in (Kaufmann et al., 2016), we lower bound the expected
log-likelihood at the stopping time τ as

EM [Lτ,π,r] ≥ kl(PM (E),PM ′
π,r

(E))

for some event E that is Fτ -measurable. Then, define the event E = {∃π ∈ Π, r ∈ Rπ : ∥V πMr
− V̂r∥∞ > ϵ}. By

definition of (ϵ, δ)-PAC algorithm we have PM (E) ≤ δ. If we can show that PM ′
π,r

(E) ≥ 1− δ, then we can lower bound
kl(PM (E),PM ′

π,r
(E)) ≥ kl(δ, 1− δ) by the monotonicity properties of the KL-divergence.
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To show PM ′
π,r

(E) ≥ 1− δ, a few steps are needed:

PM ′
π,r

(E)
(a)

≥ max
π̄∈Π,r̄∈Rπ̄

PM ′
π,r

(∥V π̄Mr̄
− V̂r̄∥∞ > ϵ),

(b)

≥ max
π̄∈Π,r̄∈Rπ̄

PM ′
π,r

(∥V π̄Mr̄
− V π̄M ′

r̄
∥∞ − ∥V π̄M ′

r̄
− V̂r̄∥∞ > ϵ),

≥ PM ′
π,r

(∥V πMr
− V πM ′

r
∥∞ − ∥V πM ′

r
− V̂r∥∞ > ϵ),

(c)

≥ PM ′
π,r

(∥V πM ′
r
− V̂r∥∞ < ϵ),

≥ min
π∈Π,r∈Rπ

PM ′
π,r

(∥V πM ′
r
− V̂r∥∞ < ϵ),

(d)

≥ PM ′
π,r

(∀π ∈ Π, r ∈ Rπ : ∥V πM ′
r
− V̂r∥∞ < ϵ)

= 1− PM ′
π,r

(∃π ∈ Π, r ∈ Rπ : ∥V πM ′
r
− V̂r∥∞ ≥ ϵ) ≥ 1− δ.

where (a) and (d) follow from the Fréchet inequalities; (b) is an application of the triangle inequality; (c) follows from the
fact that M ′

π,r is confusing for (π, r) and the last inequality from the definition of (ϵ, δ)-PAC algorithm. Henceforth, for a
(ϵ, δ)-PAC algorithm one can conclude that EM [Lτ,π,r] ≥ kl(δ, 1− δ).
As the inequality above holds for all π ∈ Π, r ∈ Rπ , we obtain the following set of constraints:

inf
π∈Π,r∈Rπ,M ′

r∈Altϵπ,r(M)

∑
s,a

EM [Nτ (s, a)]KLP |P ′
r
(s, a) ≥ kl(δ, 1− δ).

Part 2: optimizing the stationary distribution.
Now, let n(s, a) = EM [Nτ (s, a)] and ω(s, a) = EM [Nτ (s, a)]/EM [τ ]. We rewrite the constraints above as follows

EM [τ ] inf
π∈Π,r∈Rπ,M ′

r∈Altϵπ,r(M)

∑
s,a

ω(s, a)KLP |P ′
r
(s, a) ≥ kl(δ, 1− δ).

Hence, the optimization problem revolves around optimizing ω in infπ∈Π,r∈Rπ,M ′
r∈Altϵπ,r(M)

∑
s,a ω(s, a)KLP |P ′

r
(s, a).

By Lemma 1 in (Al Marjani et al., 2021) we also know that an algorithm that navigates the MDP needs to satisfy the
constraints ∣∣∣∣∣∣

∑
a

n(s, a)−
∑
s′,a′

P (s|s′, a′)n(s′, a′)

∣∣∣∣∣∣ ≤ 1 ∀s ∈ S.

After normalizing n(s, a) by n(s, a)/ log(1/δ), and using that kl(δ, 1− δ) ∼
δ→0

log(1/δ), as δ → 0 we find the following

lower bound

lim inf
δ→0

EM [τ ]

log(1/δ)
≥ 1

H⋆
ϵ (M)

,

where H⋆ formulates the optimization problem over ω as follows

H⋆
ϵ (M) := sup

ω∈∆(S×A)

inf
π∈Π,r∈Rπ,M ′

r∈Altϵπ,r(M)

∑
s,a

ω(s, a)KLP |P ′
r
(s, a),

subject to ∀s ∈ S,
∑
a

ω(s, a) =
∑
s′,a′

P (s|s′, a′)ω(s′, a′).

Part 3: irreducibility of the stationary distribution. Let Ω0(M) = {ω ∈ ∆(S × A) :
∑
a ω(s, a) =∑

s′,a′ P (s|s′, a′)ω(s′, a′) ∀s ∈ S}. We note that a solution ω⋆ ∈ Ω0(M) to the above problem that characterizes

H⋆
ϵ (M) may not necessarily induce an irreducible chain, i.e., under the induced transition Pω⋆(s′|s) =

∑
a P (s′|s,a)ω⋆(s,a)∑

b ω
⋆(s,b)

some states may not be accessible (s′ is accessible from s if there exists n ∈ N+ such that PM (st+n = s′|st = s, ω⋆) > 0
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for all t under ω⋆ (Puterman, 2014)). Consider an arbitrary starting state s0 (by Assumption 3.1). If a state sc is not
accessible from s0 under ω⋆, then the number of visits to that state is bounded, i.e., supt≥1

∑
a EM [Nt(sc, a)] <∞.

Under Assumption 4.3 there exists π ∈ Π, r ∈ Rπ such that we can build a confusing model M ′
r. In particular, we can build

a confusing model M ′
r as in the proof of Proposition 4.1 (see the “sufficient” part of the proof), satisfying

kl(1− δ, δ) ≤
∑
s,a

EM [Nτ (s, a)]KLP |P ′
r
(s, a),

= EM [Nτ (sc, π(sc))]KLP |P ′
r
(sc, π(sc)),

= EM [Nτ (sc, π(sc))]
[
(1− P (s1|sc, π(sc))) log

(
1

1− λ

)
+ P (s1|sc, π(sc)) log

(
P (s1|sc, π(sc))

λ+ (1− λ)P (s1|sc, π(sc))

)]
,

<∞.

where s1 ∈ argmaxs∈S |ρπr (sc, s)| and λ is a fixed value in (0, 1), independent of δ, taken as in the proof of Proposition 4.1
(in that proof we use δ instead of λ, not to be confused with the confidence parameter). The boundedness of the right-hand
side comes from the boundedness of

∑
a EπM [Nt(sc, a)] <∞ for all t ≥ 1 and that λ is a fixed value in (0, 1). However,

as δ → 0 the left-hand side scales as log(1/δ)→∞, which violates the constraint (and the constraint should hold for all
π ∈ Π, r ∈ Rπ). Since this holds for any pair (s0, sc), and s0 is arbitrary, an optimal solution ω⋆ must induce an irreducible
chain over S.

Remark: in general, note that the set of confusing models puts constraints on pairs (s, π(s))s∈S,π∈Π, but not necessarily on
other state-action pairs. Hence, without further assumptions, we do not have guarantees that an optimal solution yields
an irreducible chain. This is in contrast to previous work (Al Marjani et al., 2021; Russo & Proutiere, 2023a; Russo &
Vannella, 2024), where constraints also affect pairs s, a ̸= π(s).

Last step: ergodicity. This last step, while not necessary, shows that any optimal irreducible allocation can be well
approximated by a solution ω satisfying ω(s, a) > 0 for all (s, a). We show that any ω satisfying this latter property
forms a dense set in Ω0(M) (and, since such ω(s, a) is also irreducible over S, it’s also dense in the set Ω0(M) ∩ {ω :
Pω is irreducible over S}).
Consider any ω⋆ ∈ Ω0(M). Let λ ∈ (0, 1) and ω′ ∈ Ω(M). Define then ωλ = (1− λ)ω⋆ + λω′.

Then, for any convergent sequence (λk)k such that limk→∞ λk = 0, we have that

∥ω⋆ − ωλk
∥ = λk∥ω⋆ − ω′∥ → 0.

Since for every k we have that ωλk
∈ Ω(M), and limit points are in Ω0(M), it follows that Ω(M) is dense in Ω0(M).

B.2.2. OPTIMALITY OF BEHAVIOR POLICIES

An interesting question is to understand in which cases a policy is optimal for exploration. For instance, consider the MDP
in Figure 1 and the single target policy π(·|s) = a2 ∀s. For that MDP, it is in general sub-optimal to sample according to
such policy, since under π state s1 becomes transient. In the following lemma we prove that a necessary condition for an
optimal exploration policy is to guarantee that states with large deviation gap are visited infinitely often.

Lemma B.8. Let Tπe be the set of transient states under an exploration policy πe. Assume that Tπe ̸= ∅. If there
exists sc ∈ Tπe , π ∈ Π, r ∈ Rπ such that ∥ρπr (sc)∥∞ > 2ϵ/γ, then πe is not optimal, in the sense that

Tϵ(d
πe ;M)−1 = 0, (14)

for any stationary distribution dπe (of the chain Pπe ) induced by πe.

Proof of Lemma 4.5. Since sc, by assumption, is transient under πe, the expected number of returns of the Markov chain to
state sc is bounded, i.e., supt≥1

∑
a E

πe

M [Nt(sc, a)] <∞. In other words, we have that dπe(sc) = 0.
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Now, the condition ∥ρπr (sc)∥∞ > 2ϵ/γ guarantees that there exists a confusing model by Proposition 4.1. Let s1 ∈
argmaxs |ρπr (sc, s1)|. Then, one can define an alternative model P

′
as in the proof of Proposition 4.1:

P
′
(s′|s, a) =


P (s′|s, a) s ̸= sc,

P (s′|sc, a) s = sc ∧ a ̸= π(sc),

δ + (1− δ)P (s1|sc, π(sc)) (s, a, s′) = (sc, π(sc), s1),

(1− δ)P (s′|sc, π(sc)) (s, a) = (sc, π(sc)) ∧ s′ ̸= s1.

Then, from the proof of Proposition 4.1 we know that there exists δ ∈ (0, 1) such that P
′

is an alternative model.

Hence, for any stationary distribution dπe induced by πe we obtain∑
s,a

dπe(s, a)KL(P (s, a), P ′(s, a)) =
∑
a

dπe(sc, a)KL(P (sc, a), P
′(sc, a)).

where dπe(s, a) = dπe(s)πe(a|s) (and dπe(s) =
∑
a d

πe(s, a)). But 0 = dπe(sc) =
∑
a d

πe(sc, a). Which, by non-
negativity of dπe , implies that dπe(sc, a) = 0 for every a. Hence∑

s,a

dπe(s, a)KL(P (s, a), P ′(s, a)) = 0.

Since P
′

is an alternative confusing model, we have that

inf
M ′∈Altϵπ,r(M)

∑
s,a

dπe(s, a)KLP |P ′(s, a) = 0,

and thus
(Tϵ(ω

πe ;M))−1 = 0 for any stationary ωπe(s, a) = dπe(s)ω(s, a)

Therefore, one concludes that a necessary condition for an optimal exploration strategy is to guarantee that states with large
deviation gap are visited infinitely often.

We conclude this section with a sufficient condition on the optimality of a general behavior policy πβ , when used to evaluate
a single policy π on a single reward. What the proposition points out is that πβ needs to induce a sampling distribution dπβ

with large sampling rates where ∥ρπr (s)∥∞ is sufficiently large. The extension to multi-reward follows naturally.

Proposition B.9. Consider a behavior policy πβ and a target policy π. Assume that πβ induces an irreducible class
over S (i.e., there are no transient states). Denote by dπβ the stationary distribution induced by πβ , and assume that
πβ satisfies dπβ (s, π(s)) > 0 for all s.
Then, let Scnf = {s ∈ S : ∥ρπr (s)∥∞ > 3ϵ/γ} be the set of confusing states and assume that Scnf ̸= ∅. Define
επ,πβ (s) := max(0, supω∈Ω(M) ω(s)− dπβ (s, π(s))) and ∆π,πβ (s) = dπβ (s, π(s))−mins′ d

πβ (s′, π(s′)).
Then, under the assumption that ϵ ≥ γ/(1− γ)2, we have that the behavioral policy πβ is 2λπ,πβ -optimal in the
following sense

inf
M ′∈Altϵπ,r(M)

∑
s,a

dπβ (s, a)KLP |P ′(s, a) ≥ sup
ω∈Ω(M)

inf
M ′∈Altϵπ,r(M)

∑
s,a

ω(s, a)KLP |P ′(s, a)− 2λπ,πβ ,

where λπ,πβ = mins∈Scnf
(επ,πβ (s) + ∆π,πβ (s)).

Proof. First, note that the first assumption Scnf ̸= ∅ implies that the set of alternative models Altϵr,π is not empty by
Proposition 4.1.

Let s0 ∈ Scnf . Consider an alternative model P ′ similar to the one used in the proof of Proposition 4.1: P ′(s′|s, a) =
P (s′|s, a) for all s ̸= s0, a, s

′, and P ′(s0|s0, a) = δ + P (s0|s0, a)(1− δ), P
′
(s′|s0, a) = (1− δ)P (s′|s0, a) for s′ ̸= s0,

with δ ∈ (0, 1). From the same proposition we also know that if δ ∈ (0, 1) satisfies

γδ∥ρπr (s0)∥∞
1− γ(1− δ)pπs0

> 2ϵ,
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then the model is confusing (where pπs0 = P (s0|s0, π(s0))). Since γδ∥ρπr (s0)∥∞
1−γ(1−δ)pπs0

≥ γδ∥ρπr (s0)∥∞, a simpler way to

guarantee that P ′ is an alternative model is to choose δ satisfying δ > 2ϵ
γ∥ρπr (s0)∥∞

. Setting δ = 2/3, we find

∥ρπr (s0)∥∞ >
3ϵ

γ
,

which is true by assumption. Hence, for δ = 2/3 the model is confusing.

We now proceed with an upper bound of the KL divergence between P and P ′ in s0:

KLP |P ′(s0, a) =
∑
s′

P (s′|s0, a) log
(
P (s′|s0, a)
P ′(s′|s0, a)

)
,

≤ log(
1

1− δ ),

≤ δ

1− δ ,

≤ 2.

The first inequality holds by plugging in the definition of P ′ and noticing log( P (s0|s0,a)
δ+(1−δ)P (s0|s0,a) ) ≤ log( P (s0|s0,a)

(1−δ)P (s0|s0,a) );
the second inequality holds due to log(x) ≤ x− 1; the last inequality uses that δ ≤ 2/3 implies δ/(1− δ) ≤ 2.

Define επ,πβ (s) := max(0, supω∈Ω(M) ω(s)− dπβ (s, π(s))). Then

inf
M ′∈Altϵπ,r(M)

∑
s,a

ω(s, a)KLP |P ′(s, a) ≤
∑
s,a

ω(s, a)KLP |P ′(s, a),

=
∑
a

ω(s0, a)KLP |P ′(s0, a),

≤ 2ω(s0)

≤ 2ω(s0)± 2dπβ (s0, π(s0)),

≤ 2dπβ (s0, π(s0)) + 2[sup
ω∈Ω

ω(s0)− dπβ (s0, π(s0))],

≤ 2dπβ (s0, π(s0)) + 2επ,πβ (s0).

where we used ω(s) :=
∑
a ω(s, a). On the other hand, we have shown above that for a model to be a confusing model,

the necessary condition is ∃ŝ such that KLP |P ′(ŝ, π(ŝ)) ≥ 2(1−γ)4
γ2 ϵ2 (see Lemma B.2). Hence, defining ∆π,πβ (s) =

dπβ (s, π(s))−mins′ d
πβ (s′, π(s′)), we have,

inf
M ′∈Altϵπ,r(M)

∑
s,a

dπβ (s, a)KLP |P ′(s, a) ≥ inf
M ′∈Altϵπ,r(M)

∑
a

dπβ (ŝ, a)KLP |P ′(ŝ, a),

≥ inf
M ′∈Altϵπ,r(M)

dπβ (ŝ)πβ(π(ŝ)|ŝ)KLP |P ′(ŝ, π(ŝ)),

= inf
M ′∈Altϵπ,r(M)

dπβ (ŝ, π(ŝ))KLP |P ′(ŝ, π(ŝ)),

≥ dπβ (ŝ, π(ŝ))
2(1− γ)4

γ2
ϵ2,

≥ 2[dπβ (ŝ, π(ŝ))± dπβ (s0, π(s0))],

≥ 2dπβ (s0, π(s0)) + 2[dπβ (ŝ, π(ŝ))− dπβ (s0, π(s0))],

≥ 2dπβ (s0, π(s0)) + 2[min
s′

dπβ (s′, π(s′))− dπβ (s0, π(s0))],

≥ 2dπβ (s0, π(s0))− 2∆π,πβ (s0).

where we used in the first equality that dπβ (s, a) = dπβ (s)πβ(a|s), and in the third inequality that (1−γ)4
γ2 ϵ2 ≥ 1.
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Conclusively, we have shown that for all ω ∈ Ω(M), s0 ∈ Scnf

inf
M ′∈Altϵπ,r(M)

∑
s,a

dπβ (s, a)KLP |P ′(s, a) ≥ inf
M ′∈Altϵπ,r(M)

∑
s,a

ω(s, a)KLP |P ′(s, a)− 2(∆π,πβ (s0) + επ,πβ (s0)).

Therefore

inf
M ′∈Altϵπ,r(M)

∑
s,a

dπβ (s, a)KLP |P ′(s, a) ≥ inf
M ′∈Altϵπ,r(M)

∑
s,a

ω(s, a)KLP |P ′(s, a)− 2λπ,πβ ∀ω ∈ Ω(M).

The previous results, with the following one, are useful when studying how mixing a target policy with a uniform policy
affects sample complexity. In the following lemma we study the rate of visits at stationarity when the target policy is
mixed with a uniform distribution. Let Pu be the transition function induced by the uniform policy, i.e., Pu(s′|s) =∑
a P (s

′|s, a)/A, and let P ku be the k-th step transition matrix induced by the uniform policy. From the ergodicity of Pu
there exists an integer k0 such that P ku (s

′|s) > 0 for all k ≥ k0 and all (s′, s) ∈ S2 (the existence of k0 is guaranteed by
Levin & Peres (2017, Proposition 1.7)).

Hence, to that end, define
ηk = min

s,s′
P ku (s

′|s),

be the minimal probability of reaching s′ from s in k steps, and let k0 = min{k ∈ N : ηk > 0}. We then have the following
result.

Lemma B.10. Let π = (1− ϵ)πtgt + ϵπu be a mixture policy defined as the mixture between a target policy πtgt
and a uniform policy πu, with mixing coefficient ϵ ∈ (0, 1]. Let dπ(s) denote the average number of visits to state s
under policy π at stationarity. Then, for all states we have

dπ(s) ≥ ϵk0ηk0 . (15)

Proof. In vector form, we can write the stationary equation d = dPπ. Then, we also know that d = dP 2
π , and therefore

d ≥ ϵ2dP 2
u holds element-wise.

d(s) =
∑
s′,s′′

d(s′)Pπ(s
′′|s′)Pπ(s|s′′),

≥
∑
s′,s′′

d(s′)ϵ2Pu(s
′′|s′)Pu(s|s′′),

= ϵ2
∑
s′

d(s′)P 2
u(s|s′) ≥ ϵ2η2.

One can also easily show that this property holds for any k-step, thus proving that d(s) ≥ ϵkηk.

The previous result is important: for environments where k0 is small, and the uniform policy is enough to guarantee high
visitation rates (i.e., ηk0 is not small), then all states are visited regularly.

B.2.3. PROOF OF THEOREM 4.7 (RELAXED CHARACTERISTIC RATE)

Proof of Theorem 4.7. We prove the theorem considering the following general characteristic time

Tϵ(ω;M)−1 := inf
π∈Π,r∈Rϵ

π,M
′
r∈Altϵπ,r(M)

Eω[KLP |P ′
r
(s, a)],

and we also consider the single-policy case, since the extension to multi-policy follows immediately.
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Start by noting that for all r ∈ Rϵπ we have {M ′
r : ∥V πMr

− V πM ′
r
∥∞ > 2ϵ} ⊆ ∪s{M ′

r : |V πMr
(s)− V πM ′

r
(s)| > 2ϵ}. Using

this decomposition, we can show that

Tϵ(ω;M)−1 ≥ inf
r∈Rϵ

π

min
s0

inf
M ′

r:|V π
Mr

(s0)−V π
M′

r
(s0)|>2ϵ

E(s′,a)∼ω[KLP |P ′
r
(s′, a)]

= inf
r∈Rϵ

π

min
s0

inf
M ′

r:|V π
Mr

(s0)−V π
M′

r
(s0)|>2ϵ

∑
s′,a

ω(s′, a)KLP |P ′
r
(s′, a),

= inf
r∈Rϵ

π

min
s0

inf
M ′

r:|V π
Mr

(s0)−V π
M′

r
(s0)|>2ϵ

∑
s

ω(s, π(s))KLP |P ′
r
(s, π(s)),

where we used the fact that the problem is unconstrained for state-action pairs a ̸= π(s). In fact, letting ∆V πr (s) =
V πMr

(s)− V πM ′
r
(s) we have ∆V πr (s) = γ[∆P (s, π(s))⊤V πMr

+ P ′
r(s, π(s))

⊤∆V πr ], which only involves pairs of the type
(s, π(s)). Alternatively, note that one can always claim

inf
M ′

r:|V π
Mr

(s0)−V π
M′

r
(s0)|>2ϵ

∑
s′,a

ω(s′, a)KLP |P ′
r
(s′, a) ≥ inf

M ′
r:|V π

Mr
(s0)−V π

M′
r
(s0)|>2ϵ

∑
s

ω(s, π(s))KLP |P ′
r
(s, π(s)),

due to the non-negativity of the terms involved.

Then, observe the following inequality:

|∆V πr (s)| = γ
∣∣∣P (s, π(s))⊤V πMr

− P ′
r(s, π(s))

⊤V πM ′
r

∣∣∣ ,
= γ

∣∣∆P (s, π(s))⊤V πMr
+ P ′

r(s, π(s))
⊤∆V πr

∣∣ ,
≤ γ

∣∣∆P (s, π(s))⊤V πMr

∣∣+ γ∥∆V πr ∥∞.

Since the inequality holds for all s, we derive |∆V πr (s)| ≤ ∥∆V πr ∥∞ ≤ maxs′
γ

1−γ
∣∣∆P (s′, π(s′))⊤V πMr

∣∣, and thus

4ϵ2 < |∆V πr (s0)|2 ≤ ∥∆V πr ∥2∞ ≤ max
s

γ2

(1− γ)2
∣∣∆P (s, π(s))⊤V πMr

∣∣2 .
Now, note the following equality ∣∣∆P (s, π(s))⊤V πMr

∣∣ = ∣∣∆P (s, π(s))⊤ρπr (s)∣∣ ,
Therefore, using Holder’s inequality, that ∥p∥1 ≤ 2∥p∥TV for a distribution p, and Pinsker’s inequality, we obtain

4ϵ2 ≤ max
s′

4γ2

(1− γ)2 ∥∆P (s
′, π(s′))∥2TV ∥ρπr (s′)∥2∞,

≤ max
s′

2γ2

(1− γ)2KLP |P ′
r
(s′, π(s′))∥ρπr (s′)∥2∞,

= max
s′

2γ2

(1− γ)2KLP |P ′
r
(s′, π(s′))

ω(s′, π(s′))
ω(s′, π(s′))

∥ρπr (s′)∥2∞,

≤ max
s′

2γ2

(1− γ)2KLP |P ′
r
(s′, π(s′))ω(s′, π(s′))max

s

∥ρπr (s)∥2∞
ω(s, π(s))

.

Therefore 2ϵ2(1−γ)2
γ2 mins

ω(s,π(s))
∥ρπr (s)∥2

∞
≤ maxs′ KLP |P ′

r
(s′, π(s′))ω(s′, π(s′)), and thus

∑
s

ω(s, π(s))KLP |P ′
r
(s, π(s)) ≥ max

s′
KLP |P ′

r
(s′, π(s′))ω(s′, π(s′)) ≥ 2ϵ2(1− γ)2

γ2
min
s

ω(s, π(s))

∥ρπr (s)∥2∞
.

Using this inequality in the initial lower bound of Tϵ(ω;M)−1 we find

Tϵ(ω;M)−1 ≥ inf
r∈Rϵ

π

min
s

2ϵ2
(1− γ)2ω(s, π(s))
γ2∥ρπr (s)∥2∞

,

which concludes the proof.

30



Adaptive Exploration for Multi-Reward Multi-Policy Evaluation

B.2.4. PROOF OF COROLLARY 4.8

Proof of Corollary 4.8. We begin by rewriting the following optimization problem of Uϵ(ω;M). Note that

sup
r∈Rπ

max
s
∥ρπr (s)∥2∞ = max

s
sup
r∈Rπ

max
s′
|ρπr (s, s′)|2,

= max
s

max
s′

(
sup
r∈Rπ

|ρπr (s, s′)|
)2

,

= max
s

max
s′

max

(
sup
r∈Rπ

ρπr (s, s
′), sup

r∈Rπ

−ρπr (s, s′)
)2

.

From the proof of Lemma B.6 we can derive the following expression ρπr (s, s
′) = e⊤s′Γ

π(s)r, where

Γπ(s) := Kπ(s)Gπ, Kπ(s) := (I − 1P (s, π(s))⊤), Gπ := (I − γPπ)−1,

and es′ is the s′-th element of the canonical basis in RS . Hence, the optimization problem supr∈R ρπr (s, s
′) is a linear

program.

In the last part of the proof we consider the case whereRπ = [0, 1]S . We exploit the following fact that holds for any vector
y ∈ Rn:maxx∈[0,1]n y

⊤x =
∑
i:yi>0 yi. Then, let Γπij(s) := (Kπ(s)Gπ)ij and define

Γπ+(s, s
′) :=

∑
j:Γπ

s′,j(s)>0

Γπs′,j(s),

and, similarly, Γπ−(s, s
′) := −∑j:Γπ

s′,j(s)<0 Γ
π
s′,j(s). Hence, we have

max
r∈[0,1]S

|ρπr (s, s′)| = max
(
Γπ+(s, s

′),Γπ−(s, s
′)
)
.

B.2.5. COMPUTING THE OPTIMAL RELAXED CHARACTERISTIC RATE U⋆

For a general polytope of rewards, defined by (A, b), one can write the following program to solve vπ(s, s
′) =

supr∈R ρπr (s, s
′):

vπ(s, s
′) := max

r∈[0,1]S ,t∈R
t

subject to e⊤s′Γ
π(s) r ≥ t,

A r ≤ b.
(16)

This formulation is a linear program since the objective and all constraints are linear in the decision variables. The polytope
can represent various convex sets, including hypercubes, simplices, or other polyhedral shapes, depending on the specific
application. In contrast, the optimization for the reward-free case is straightforward, which follows from the result in
Corollary 4.8.

Therefore, given a collection of deterministic target policies {πi}Ni=1 and reward sets {Ri}Ni=1 (finite, or a convex set), we
precompute, for every policy i and state s,

Ai(s) = max
s′

max

(
sup
r∈Ri

e⊤s′Γ
πi(s)r, sup

r∈Ri

−e⊤s′Γπi(s)r

)2

,

The inner sup is solved twice in the general case. For a finite reward set it is a direct maximum, and one can directly
compute Ai(s) = maxs′ maxr∈Ri

|ρπr (s, s′)|2. For the reward free case we can use the result from Corollary 4.8 to obtain
Ai(s) = maxs′ max

(
Γπi
+ (s, s′),Γπi

− (s, s′)
)2

.

Stacking the rows Ai yields a matrix A ∈ RN×|S|. For a stationary occupancy measure ω ∈ Ω(M) we define fi(ω) =

max
s∈S

Ai(s)
γ2

2ϵ2(1− γ)2
1

ω(s, πi(s))
. The optimal relaxed rate is obtained from the convex optimisation problem

U⋆ϵ = min
ω∈∆(S×A)

max
i=1,...,N

fi(ω) s.t.
∑
a

ω(s, a) =
∑
s′,a′

ω(s′, a′)P (s | s′, a′) ∀s.
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Figure 5. Complexity of Riverswim for varying reward sets and state space sizes for a single policy π(·) = a2 that moves towards the
river’s end. Left: complexity for different p values (prob. of moving toward the river’s end). Right: complexity for p = 0.3 with varying
state space sizes. Solid curves evaluate onR = [0, 1]S , dashed curves onR = {r ∈ [0, 1]S : ∥r∥2 ≤ 1}.

We solve this minimax programme with CVXPY, initialising ω from the previous run to warm-start the solver (Diamond &
Boyd, 2016).

Scaling of Reward-free Sample Complexity - An Example As an example, in Figure 5 we show the policy evaluation
sample complexity in the Riverswim environment (Strehl & Littman, 2004) for a single policy π. In this environment the
agent swims towards the river’s end, while the river’s current opposes the movement of the agent. The policy tries to move
the agent toward the river’s end, and, as p (the probability of moving toward the river’s end) decreases, the reward-free
sample complexity increases.
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C. MR-NaS and Numerical Results
C.1. MR-NaS Proof of Theorem 5.2

Proof of Theorem 5.2. Let Cπ,r = {∥V̂ πr − V πr ∥∞ > ϵ} be the event that at the stopping time the value estimate is not
ϵ-accurate in π, r ∈ Rπ . Hence, we have that M ∈ Altϵ/2π,r(Mτ ).

Therefore, we can say that

C = {∃π ∈ Π, r ∈ Rπ : ∥V̂ πr − V πr ∥∞ > ϵ} ⊂ {∃π ∈ Π, r ∈ Rπ :M ∈ Altϵ/2π,r(Mτ )} := B.

Then, we obtain the following chain of inequalities:

PM (τδ <∞, C) ≤ PM
(
∃t ≥ 1 : tUϵ/2(Nt/t;Mt)

−1 ≥ β(Nt, δ),B
)
,

≤ PM
(
∃t ≥ 1 : tTϵ/2(Nt/t;Mt)

−1 ≥ β(Nt, δ),B
)
,

= PM

(
∃t ≥ 1 : inf

π,r∈Rπ,M ′∈Alt
ϵ/2
π,r(Mt)

∑
s,a

Nt(s, a)KLMt|M ′(s, a) ≥ β(Nt, δ),B
)
,

≤ PM

(
∃t ≥ 1 :

∑
s,a

Nt(s, a)KLMt|M (s, a) ≥ β(Nt, δ)
)
,

≤ δ,

where the conclusion follows from Jonsson et al. (2020, Prop. 1).

For the sample complexity, we use the following facts:

1. The forcing policy is chosen as πf,t(·|s) = softmax (−βt(s)Nt(s, ·)) with βt(s) =
β log(Nt(s))

max(1,maxa |Nt(s,a)−minbNt(s,b)|) , β ∈ [0, 1] and (softmax(x))i = exi/
∑
j e
xj for a vector x. This choice encourages

to select under-sampled actions for β > 0, while for β = 0 we obtain a uniform forcing policy πf,t(a|s) = 1/A. We
then mix ω⋆t with πf,t using a mixing factor ϵt = 1/max(1, Nt(st))

α, with Nt(s) =
∑
aNt(s, a). The values α, β

need to guarantee α+ β ≤ 1 (Russo & Vannella, 2024). Under this choice the chain induced by πt is ergodic.

2. We also note that the optimal solution ω⋆ satisfies ω⋆(s, a) > 0 for all (s, a). Then, such solution induces an ergodic
(irreducible and aperiodic) chain by Assumption 3.1 and Assumption 5.1.

3. We note that the solution ω⋆ is unique by Assumption 5.1.

4. Then, the sample complexity results follow from noting that Uϵ/2(ω;M) = 4Uϵ(ω;M) and applying the same methods
as in Russo & Vannella (2024, Theorem 3.3) mutatis mutandis (which follows the proof technique of (Al Marjani et al.,
2021)).

C.2. Environment Details

In this section we delve more into the detail of the numerical results for the tabular case. We focus on different hard-
exploration tabular environments: Riverswim (Strehl & Littman, 2004), Forked Riverswim (Russo & Proutiere,
2023a), DoubleChain (Kaufmann et al., 2021) and NArms (Strehl & Littman, 2004) (an adaptation of SixArms to N
arms). Here we provide a brief description of the environments.

Riverswim. The RiverSwim environment is a classic reinforcement learning benchmark designed to test exploration
(Strehl & Littman, 2004). It consists of a series of states arranged in a linear chain, where an agent can choose to swim right
(downstream) or left (upstream). In the single-reward setting the agent can achieve a positive return by swimming right, but
requires overcoming a strong current, making it a less probable event. Conversely, swimming left generally offers small to
zero rewards, but is easier. This setup requires the agent to balance immediate, safer rewards with potentially higher but
riskier returns. It is exponentially hard for a random uniform agent to reach the final state.

In figure Figure 6 is shown a depiction of the environment. There are n states, and two main parameters, p, p′ ∈ (0, 1), and
their sum psum = p + p′ < 1. In the figure, each tuple (a, p) represents the action a that triggers the transition and the
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probability p of that event. The agent starts in state s0, and in every state can only take two actions {a0, a1}. For small
values of p it becomes difficult for the agent to swim right (i.e., reach sn−1), and larger values of p′ can also hinder the
progress. On the other hand, swimming towards the left is easier, since the probability of P (si−1|si, a0) = 1. For the
experiments, we used n ∈ {15, 20, 30}, p = 0.7, p′ = 6(1− p)/7 .

s0 s2 ... sn−2 sn−1

(a0, 1), (a1, 1 − p)

(a1, p)

(a0, 1), (a1, 1 − psum)

(a1, p
′)

(a1, p)

(a0, 1), (a1, 1 − psum)

(a1, p)

(a0, 1), (a1, 1 − psum)

(a1, p
′)

(a1, p)

(a0, 1), (a1, 1 − p)

(a0, 1), (a1, p)

Figure 6. Riverswim environment (Strehl & Littman, 2004). Each tuple (a, p) represents the action a that triggers the transition and the
probability p of that event.

Forked Riverswim. The Forked RiverSwim environment (Russo & Proutiere, 2023a) is a variation of the traditional
RiverSwim reinforcement learning benchmark, designed to test more complex exploration strategies. In this variant, the
state space branches into multiple paths, resembling a river that forks. At intermediate states the agent can switch between
the forks, while the end states are not connected. This variant requires the agent to make more sophisticated decisions to
explore the environment. This setup increases the sample complexity and challenges the agent’s ability to generalize across
different paths within the environment.

In Figure 7 is shown a depiction of the environment. There are a total of 2n+ 1 states, and two parameters p, p′ ∈ (0, 1), so
that psum = p+ p′ < 1. In the figure, each tuple (a, p) represents the action a that triggers the transition and the probability
p of that event. The agent starts in state s0, and in every state can chose between three actions {a0, a1, a2}. For small values
of p it becomes difficult for the agent to swim right in both forks, and larger values of p′ can also hinder the progress. As in
Riverswim, swimming towards the left is easier, since the probability of P (si−1|si, a0) = 1. For the experiments, we used
n ∈ {8, 10, 15}, p = 0.7, p′ = 6(1− p)/7.

s0 s1 s2 sn−1 sn

s′1 s′2 s′n−1 s′n

...

...

(a0, 1), (a1, 1 − p), (a2, 1)

(a1, p)

(a1, p
′)

(a1, p)

(a2, 1)

(a0, 1), (a1, 1 − psum)

(a1, p
′)

(a2, 1)

(a0, 1), (a1, 1 − psum)

(a1, p
′)

(a1, p)

(a2, 1)

(a1, p), (a2, 1)

(a0, 1), (a1, 1 − p)

(a1, p
′)

(a1, p)

(a0, 1)
(a1, 1 − psum)

(a2, 1)

(a1, p
′)

(a0, 1)
(a1, 1 − psum)

(a2, 1)

(a1, p
′)

(a2, 1)

(a1, p)

(a1, p), (a2, 1)

(a0, 1), (a1, 1 − p)

Figure 7. Forked Riverswim environment (Russo & Proutiere, 2023a). Each tuple (a, p) represents the action a that triggers the
transition and the probability p of that event.

Double Chain. The Double Chain environment (Kaufmann et al., 2021) consists of two chains, similarly to the Forked
Riverswim. The main difference consists in the fact that it is not possible to switch between the two chains, and intermediate
states are transient (there is no parameter p′).

In Figure 8 is shown a depiction of the environment. There are a total of 2n+ 1 states, and one parameters p ∈ (0, 1). In the
figure, each tuple (a, p) represents the action a that triggers the transition and the probability p of that event. The agent
starts in state s0, and in every state can chose between two actions {a0, a1}. For small values of p it becomes difficult for
the agent to move to the end of the chain in both chains. For the experiments, we used n ∈ {8, 10, 15}, p = 0.7.
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s0

s1 sn−1 sn

s′1 s′n−1 s′n

...

...

(a0, 1)

(a1, 1)

(a1, p)

(a0, 1)
(a1, 1 − p)

(a1, p)

(a0, 1), (a1, 1 − p)

(a1, p)

(a0, 1), (a1, 1 − p)

(a1, p)

(a0, 1), (a1, 1 − p)

(a1, p)
(a0, 1)

(a1, 1 − p)

(a1, p)

(a0, 1), (a1, 1 − p) (a0, 1), (a1, 1 − p)

(a1, p)

(a1, p)

(a0, 1), (a1, 1 − p)

Figure 8. Double Chain environment (Kaufmann et al., 2021) . Each tuple (a, p) represents the action a that triggers the transition
and the probability p of that event.

NArms. This environment is an adaptation to N arms of the original 6Arms environment from (Strehl & Littman, 2004).
Differently from the previous environments, this is a bandit-like environment, where the agent is presented with n different
actions (or arms) to choose from. The agent starts in a state s0 and selects an arm ai. Upon selecting an arm, the agent may
transition to corresponding state si. Certain arms are more difficult to observe, in the sense that the transition probability is
lower. This property mimics the probability of collecting a reward in a bandit problem. In Figure 9 is shown a depiction of
the environment. There are a total of n+ 1 states, and one parameters p0 ∈ (0, 1). In the figure, each tuple (a, p) represents
the action a that triggers the transition and the probability p of that event. The notation an0:n0+n indicates all the actions in
{an0

, . . . , an0+n}. The agent starts in state s0, and in every state she can select between n actions {a0, a1, . . . , an−1}. For
small values of p0 it becomes difficult for the agent to move to different states. Similarly, it is harder to navigate to states si
for large values of n. We used p0 = 0.7 and n ∈ {10, 20, 30}.

s0

s1

s2

...

sn

sn−1

(a0, 1)

(a1, p0/2)

(an−1, p0/n)

(an−2, p0/(n− 1))

(ai, 1 − p0/(i+ 1))ni=1

(a1:n, 1)

(a0, 1)

(a2:n, 1)

(a0:1, 1)

(an−1, 1)

(a0:n−2, 1)

(an−2:n, 1)

(a0:n−3, 1)

Figure 9. NArms environment. Each tuple (a, p) represents the action a that triggers the transition and the probability p of that event. In
the figure the notation an0:n0+n indicates all the actions in {an0 , . . . , an0+n}. In state s0 the probability to remain in s0 for any action
ai is P (s0|s0, ai) = 1− p0/(i+ 1), with the exception that P (s0|s0, a0) = 0.

C.3. Algorithm Details

In this section we briefly explain the mechanisms of each algorithm used in the experiments, and, in case, their adaptation.
Note that for all algorithms we evaluated the policies by using the MDP estimate Mt through policy evaluation.
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Noisy Policy (Uniform). This method simply computes a mixture of the target policies πmix(a|s) = |{π∈Π:π(s)=a}|
|Π| ,

which is then mixed with a uniform policy πu with a constant mixing factor εt = 0.3. The resulting behavior policy is
πb = (1− εt)πmix + εtπu.

Noisy Policy (Visitation). This method is similar to the previous one, but the mixing factor is not constant anymore. We
take a mixing factor that is ϵt = 1/Nt(st), which based on the number of visits to state st. The resulting behavior policy is
πb = (1− εt)πmix + εtπu.

SF-NR (McLeod et al., 2021). This is an algorithm for multi-task policy evaluation based on the Successor Representation.
The pseudo-steps of the algorithm can be found in Algorithm 2. The method maintains a successor representation ψπ,t
for each policy π, as well as a behavior policy πβ . These are learned using TD-learning, and the behavior policy uses the
variation between ψβ,t+1 and ψβ,t as a reward. In our experiment we used a temperature T = 2 and a discount factor for
the successor representation γψ = 0.99.

Algorithm 2 SF-NR
Require: Discount factor γ; Temperature T ; Successor discount factor γψ; policy set Π.
1: Set πβ(·|s) = U({1, . . . , A}) for all states s.
2: Set ψπ,1(s, a) = 1 for all (s, a).
3: while not done do
4: Compute π̂β(·|st) = Softmax(πβ(·|st)/T )
5: Sample at from (1− εt)π̂β(·|st) + εt/A and observe st+1 ∼ P (·|st, at).
6: for π ∈ Π do
7: Compute δt = 1 + γψψπ,t(st+1, π(st+1))− ψπ,t(st, at)
8: Set ψπ,t+1(st, at) = ψπ,t(st, at) + αtδt, where αt = 1/Nt(st, at).
9: end for

10: Compute δψ,t = 1/|Π|∑π∈Π ∥Vec(ψπ,t+1)−Vec(ψπ,t)∥1.
11: Update πβ(at|st)← πβ(at|st) + αt (δψ,t + γmaxa πβ(a|st+1)− πβ(at|st)), where αt = 1/Nt(st, at).
12: Update MDP estimate Mt and set t← t+ 1.
13: end while

GVFExplorer (Jain et al., 2024). This method considers variance-based exploration strategy for learning general
value functions (Sutton et al., 2011) based on minimizing the MSE. The pseudo-steps of the algorithm can be found
in Algorithm 3. Given the current estimate of the MDP Mt, the method estimates Varπs,a(t), the variance of the return
Gπ = r1 + γr2 + γ2r3 + . . . under π staring from (s, a), ∀π ∈ Π, (s, a) ∈ S ×A. Then, a behavior policy is computed

as πβ(a|s) =
√∑

π∈Π π(a|s)Varπs,a(t)∑
b

√∑
π∈Π π(b|s)Varπs,b(t)

. Lastly, we mix this policy with a uniform policy. For this method we used a fixed

mixing factor ε = 0.3 (we did not use a visitation based mixing factor because performance deteriorated).

Algorithm 3 GVFExplorer
Require: Mixing factor ε, policy set Π.
1: Set Varπs,a(1) = 1 for all (s, a) ∈ S ×A, π ∈ Π.
2: while not done do
3: Set πβ(a|s) =

√∑
π∈Π π(a|s)Varπs,a(t)∑

b

√∑
π∈Π π(b|s)Varπ

s,b
(t)

4: Sample at from (1− ε)πβ(·|st) + ε/A and observe st+1 ∼ P (·|st, at).
5: Update MDP estimate Mt, variance estimates {Varπ(t)}π∈Π and set t← t+ 1.
6: end while

Note that πβ is similar to the generative solution in Equation (2) (i.e., Ω(M) = ∆(S × A)). In fact, GVFExplorer
neglects the forward equations when deriving πβ . The resulting solution does not take into account the dynamics induced by
the behavior policy, effectively making it a generative method (compare with the generative solution proved in (Al Marjani &
Proutiere, 2021; Russo & Proutiere, 2023a)). We believe this is due to a term being omitted in the proof of Jain et al. (2024,
Theorem 4.1) that accounts for how changes in the state distribution induced by the behavior policy impact the variance.

MR-NaS. For MR-NaS we computed the exploration strategy ω⋆t every 500 steps in the environment, to avoid excessive
computational burden. The policy is then mixed with a forcing policy that is πf,t(·|s) = softmax (−βt(s)Nt(s, ·)) with
βt(s) =

β log(Nt(s))
maxa |Nt(s,a)−minbNt(s,b)| , β ∈ [0, 1] and (softmax(x))i = exi/

∑
j e
xj for a vector x. This choice encourages to
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select under-sampled actions for β > 0, while for β = 0 we obtain a uniform forcing policy πf,t(a|s) = 1/A. We then
mix ω⋆t with πf,t using a mixing factor ϵt = 1/max(1, Nt(st))

α, with Nt(s) =
∑
aNt(s, a). The values α, β need to

guarantee α+ β ≤ 1 (Russo & Vannella, 2024), hence we chose α = 0.99 and β = 0.01.

C.4. Additional Results and Experimental Details

In this sub-section we report additional results. To run reproduce the results, we refer the reader to the README.md file in
the supplementary material. In Figure 10 are reported the results for the multi-reward multi-policy case with various sizes
of the state space. Similarly, in Figure 11 are reported the reward-free results for the multi-policy case, and in Figure 12
the results for the single-policy reward-free case. Experiments were run over 106 time-steps, with 30 seeds. Confidence
intervals were computed using bootstrap (Efron, 1992).

Experimental Details: target policies. In all experiments we fix a discount factor γ and run each simulation for T time
steps. In the multi-policy scenario, for each random seed, we choose m = 3 target policies as follows:

1. Draw without replacement three state-action pairs (s∗i , a
∗
i )

3
i=1 uniformly from S ×A.

2. Define the one-hot reward ri(s, a) = 1{(s, a) = (s∗i , a
∗
i )} and compute the target policy πi is computed via policy

iteration on (M, ri).

On the other hand, in the single-policy scenario we use a default target policy policy πdef that is different for each
environment. Concretely, we solve policy iteration on a fixed one-hot reward rdef where rdef(s, a) = 1{(s,a)=(s⋆,a⋆)} for
some state (s⋆, a⋆). Then, the target policy is computed via policy iteration on (M, rdef).

In particular, for Riverswim we have (s∗, a∗) = (sn−1, a1); for Forked Riverswim we have (s∗, a∗) = (s′n, a1);
for Double chain we have (s∗, a∗) = (s′n, a1); for NArms we have (s∗, a∗) = (sn, an−1). See also Appendix C.2 for
more details on the environments.

Experimental Details: reward sets. We use the following reward sets: finite rewards and the reward-free scenario.

In the finite reward-set scenario, we restrict R = {ri}i to a uniformly chosen subset of size 3 from the canonical basis
Rcanon (sampled without replacement).

In the reward-free scenario, we use MR-NaS with the result in Corollary 4.8 and evaluate the collected data over the entire
basisRcanon for each πi.

Experimental Details: evaluation protocol. During each run of T steps, the agent collects transitions and updates its
empirical model P̂t. Every F steps, we perform a batched evaluation:

1. For each reward set (finite or reward-free) and each policy π, compute the true value V πMr
offline via value iteration on

the known dynamics. For the reward free case we useRcanon to perform evaluation.

2. Compute the estimated value V̂ πr (t) by performing policy evaluation on P̂t over the reward sets.
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Figure 10. Multi-reward multi-policy evaluation for different sizes of the MDPs: from top to bottom the state space size is 15, 20, 30.
Shaded curves represent 95% confidence intervals.
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Figure 11. Reward-Free multi-policy evaluation for different sizes of the MDPs: from top to bottom the state space size is 15, 20, 30.
Here we depict the average error over the canonical basisRcanonical. Shaded curves represent 95% confidence intervals.
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Figure 12. Reward-Free single-policy evaluation for different sizes of the MDPs: from top to bottom the state space size is 15, 20, 30.
Here we depict the average error over the canonical basisRcanonical. Shaded curves represent 95% confidence intervals.
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