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Abstract

Weather prediction is a critical task for human society, where impressive progress
has been made by training artificial intelligence weather prediction (AIWP) meth-
ods with reanalysis data. However, reliance on reanalysis data limits the ATWPs
with shortcomings, including data assimilation biases and temporal discrepancies.
To liberate AIWPs from the reanalysis data, observation forecasting emerges as
a transformative paradigm for weather prediction. One of the key challenges
in observation forecasting is learning spatiotemporal dynamics across disparate
measurement systems with irregular high-resolution observation data, which con-
strains the design and prediction of AIWPs. To this end, we propose our DAWP as
an innovative framework to enable AIWPs to operate in a complete observation
space by initialization with an artificial intelligence data assimilation (AIDA) mod-
ule. Specifically, our AIDA module applies a mask multi-modality autoencoder
(MMAE) for assimilating irregular satellite observation tokens encoded by mask
ViT-VAEs. For AIWP, we introduce a spatiotemporal decoupling transformer with
cross-regional boundary conditioning (CBC), learning the dynamics in observation
space, to enable sub-image-based global observation forecasting. Comprehensive
experiments demonstrate that AIDA initialization significantly improves the roll-
out and efficiency of AIWP. Additionally, we show that DAWP holds promising
potential to be applied in global precipitation forecasting. Code will be available at
this github repo.

*Equal Contribution
TCorresponding Authors: Ben Fei (benfei@cuhk.edu.hk) and Lei Bai (bailei@pjlab.org.cn)

39th Conference on Neural Information Processing Systems (NeurIPS 2025).


https://github.com/jasong-ovo/DAWP-NIPS25

1 Introduction

Weather prediction is a critical task that significantly impacts various socioeconomic aspects, including
transportation, agriculture, and public safety. Traditional numerical weather prediction (NWP)
systems rely on intricate human-designed workflows [[L, 2], such as numerical assimilation systems
and physical solvers, to generate global precipitation predictions.

Recently, transformative progress has been made by artificial intelligence weather prediction (AIWP)
models. These AIWP models now achieve forecast skill scores comparable to or even surpassing those
of leading physics-based NWP systems [3| 4, |5, 16]. To learn the atmospheric dynamics, reanalysis
products are widely used [7, 18} 9, [10]].

However, reanalysis data, generated by numerical data assimilation, introduce intrinsic limitations in
AIWP models built upon them. (I) Data Assimilation Biases: (Re)analysis products are synthesized
by numerical data assimilation (DA), where direct observations are blended with a physics-based
forecast. During DA, information loss of direct observation occurs due to the limited utilization
of raw observational data and the preprocessing that resamples observations to regular grids of
reanalysis data format with finite resolution [11} 12} 13} |14]. Additionally, the incomplete physical
process modeling and uncertainty parameterizations in physics-based forecast systems also introduce
biases, which could hinder learning the actual dynamics of the atmosphere [15]. (II) Temporal
Discrepancies: The temporal lag between direct observation acquisition (nearly real-time) and
analysis data generation (up to six hours) severely degrades the quick response ability of AIWP
models [2,116]. These limitations may be further exacerbated by the discrepancy between real-world
observation space and physical forecasting space which is required by NWP systems to implement
dynamic equations of atmospheric [17]. As AIWP models do not require physical solvers to predict
the evolution of the atmosphere, there is potential for them to directly predict atmosphere states in
real-world observation space.
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We propose our DAWP, an AI-DOP system composed of an observation space data assimilation
(AIDA) module and an ATWP module, to learn the spatiotemporal dynamics between various satellite
observations with irregular and high-resolution characteristics. To begin with, a transformer VAE
encoder/decoder is designed with observation masks to regionally encode high-resolution irregular
direct earth observations for efficient I/O and computation. Then, we implement a sub-image-based
AIDA module for observation space data assimilation by a multi-modal masked autoencoder with en-



coded observation tokens. By learning the spatiotemporal correlations between various observations
in the AIDA initialization, irregular observations are transformed into a uniform completed observa-
tion space. In this imputed space, we train our sub-image-based AIWP module with Cross-regional
Boundary Conditioning (CBC), which could forecast observations with a global state cache providing
atmospheric states of neighbours. Finally, a combination of mapping operators is used to obtain
global observation predictions or precipitation variables. We conduct comprehensive experiments to
demonstrate the effectiveness of our DAWP framework for global direct observation predictions. We
summarize the contributions of this paper as follows:

* Innovative framework integrating AIDA and AIWP methods for direct observation pre-
dictions: We propose a brand-new framework that leverages an observation space AIDA
module, transforming irregular observations into a uniform observation space, with AIWP
modules to achieve skillful direct observation predictions, bypassing the limitations of
reanalysis data.

* High-resolution global forecasting for observation and precipitation: We introduce a mask
ViT-VAE and a spatiotemporal transformer with cross-regional boundary information for
encoding high-resolution irregular observations, and implement global forecasting efficiently
on sub-images of global observations.

* Comprehensive experiments: We organize a composite satellite observation dataset with
a size of over 35TB, which has a spatiotemporal resolution of 12x1152x2304. Compre-
hensive experiments and reanalyses are presented, demonstrating the effectiveness of our
DAWP framework and the potential of direct observation predictions.

2 Related work

Weather prediction with deep learning. Recent studies have demonstrated that machine learning
systems can produce accurate medium-range forecasts, comparable to physics-based models, for
key weather parameters [3} 14,16} (5, [19] 20l 21} 22]]. FourcastNet was the first to propose using deep
neural networks to learn global atmospheric dynamics [23]]. By scaling up the training stage, Pangu-
Weather [3] and GraphCast [4] simultaneously achieved accuracy levels comparable to those obtained
by the operational IFS systems at ECMWF. Other works extend the ATWP from aspects including
forecasting skill [5} |6]], resolution [[19], probabilistic modelling [24], and physics informed [25]].
Although impressive progress has been made, previous AIWP methods still rely on reanalysis
data, which introduces inherent limitations, including temporal lag, limited observation use, and
dependency on NWP systems.

Direct observation prediction. Direct observation prediction holds transformative potential
for overcoming the dependency on reanalysis, enabling the forecasting of weather using direct
observations. Although the concept of direct observation prediction has been widely applied in fields
such as precipitation nowcasting, where radar echoes are utilized for short-term forecasting [26, 27,
28,1291 1301, its application in global weather prediction remains limited. In contrast to gridded radar
observations, direct observations of the global atmosphere are irregular and non-gridded, making
global weather DOP challenging. Transformer-DOP proposes using a transformer with mask tokens
to handle the irregular global Earth observations [17]. Simultaneously, Graph-DOP employs graph
neural networks to flexibly encode direct observations [18]]. EarthNet proposes pretraining the
backbone with an observation assimilation task and then finetuning it with a prediction task [31].
Although they successfully apply irregular global observation for prediction, these designs suffer
from rollout distribution and ineffective spatiotemporal learning as the input space is discrete while
the output space is dense. We propose applying AIDA to transform the input space into a dense one,
thereby solving the misalignment between input and output.

3 Method

Our DAWP is designed for global observation forecasting in a uniform satellite observation space.
The key components of DAWP are an observation space data assimilation module and a cross-regional
boundary conditioning weather prediction module. Additionally, we introduce the mask ViT-VAE to
encode observations and produce precipitation variables. Our DAWP is illustrated in Figure
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Figure 2: The framework of our DAWP. There are two stages in our DAWP: (1) Initialization and (2)
Forecasting.

3.1 Initialization: observation space assimilation by multi-modal masked autoencoder

The missing and sparse observations, attributed to the inherent characteristics of orbital motion,
present an irregular input observation space, as shown in the left column of Figure[2J] Directly taking
these satellite observations as inputs not only restricts the network design for spatiotemporal modeling
but also leads to a distribution shift when implementing rollout forecasting, as the output space is
required to be a regular one. To meet the gap, we propose using observation space assimilation with a
Multi-modal Masked Autoencoder (MMAE) as the initialization stage for direct observation
predictions. The MMAE fills in missing areas by leveraging contextual information from different
sensors and spatiotemporally nearby observations.

The core of our assimilation module is a naive MAE that imputes masked multi-modal satellite
tokens following [34,[32, [31]]. Since imputation mainly relies on space-time nearby observations
from multiple satellite observations, our MMAE sub-regionally processes data from multiple sources
within a fixed time window of 12 and a sub-image of 144 x 144. Observations in the time window
are tokenized frame by frame by pretrained satellite-specific mask ViT encoders, where missing
patches are ignored. Remaining spatiotemporal tokens from each satellite are concatenated and
passed through MAE for complete missing information in the observation space. For MAE training,
we randomly mask a given number of tokens from the whole concatenated remaining tokens and
reconstruct the left observed but masked tokens. As the number of observed tokens from different
time windows can vary, we flexibly pad [EOS] tokens to maintain a uniform sequence length for
efficient attention computation. In the inference stage, masks for MAE are released to utilize as many
available observations as possible.

3.2 Forecasting: cross-regional boundary conditioning direct observation prediction

After AIDA, we implement an efficient weather prediction module for direct observation prediction
through cross-regional boundary conditioning in the imputed observation space, initialized by our
assimilation module. For efficiently integrating with the assimilation module pretrained by sub-
images, our weather prediction module is also applied to sub-images generated by the assimilation
module. Since sub-images only contain local atmospheric states, predictions on sub-images require
cross-regional information interaction for continuous spatiotemporal modeling. We introduce a global
state cache to store observation states for cross-regional boundary conditioning during forecasting.

With the global state cache, our weather prediction module achieves efficient cross-regional boundary
conditioning observation forecasting by applying spatiotemporal decoupling attention structure. In
the forecasting stage, the assimilated observations simplify the prediction task into a standardized
spatiotemporal forecasting problem, which is widely explored [35} 36 [37]]. We follow the concept of
spatiotemporal decoupling in spatiotemporal forecasting [35}30]. Specifically, our weather prediction



Table 1: Dataset overview.

Modality/Sensor Satellite Channels Level Period

Advanced Microwave Sounding Unit-A (AMSU-A) [40] NOAA18 & 19 Microwave radiance 15 bands 1B 2007-2023
Advanced Technology Microwave Sounder (ATMS) [41/42] NPP & NOAA20  Brightness temperature 9 bands 1C 2012-2023
High Resolution Infrared Radiation Sounder (HIRS) [40] NOAA18 & 19 Infrared radiance 20 bands 1B 2007-2023
Microwave Humidity Sounder (MHS) [40 NOAA18 & 19 Microwave radiance 5 bands 1B 2007-2023
ATMS-Precipitation [43144] NPP & NOAA20 Precipitation product 2 channels ~ 2A  2012-2023

module is composed of N Temporal-Spatial (TS) attention blocks [37,136]. Attention blocks have
the advantages of simplicity and scalability, while the TS spatiotemporal decoupling reduces the
sequence length of spatiotemporal tokens for efficient computation. Utilizing the efficiency of TS
decoupling, we simply pad tokens from neighbouring areas to the tokens of the prediction region
as SD3 [38]] and Flux [39] do. In this way, cross-regional boundary information of the border area
is passed to the center forecasting region. To forecast multistep global observations, we maintain
a global state cache during the inference phase, ensuring consistent updates for subsequent steps.
Specifically, when forecasting observations of center sub-images, current adjacent sub-images are
queried as conditions from the state cache according to the relative coordinates. After one step of
global prediction has been completed, the global state cache is updated with the subsequent 12 hours
prediction to support rollout forecasting. More details can be found in the Appendix

3.3 Encoding and precipitation mapping via mask ViT-VAE

In our DAWP, we introduce a mask ViT-VAE both for encoding and mapping multiple-channel
satellite observations with missing values. The mask ViT-VAE consists of a vision transformer
(ViT) encoder/decoder with masks enabling the model to ignore patches without sufficient observa-
tions. The ViT encoder/decoder provides better compression capability, as detailed in Appendix
compared to SD-VAE for satellite observations, which typically have more channels than natural
images. Moreover, it explicitly maintains spatial consistency between tokens and pixels by position
embeddings and mitigates the influence of missing values through mask attention. With our mask
Vit-VAE, encoding/decoding is pretrained as a reconstruction task, while the precipitation mapping is
trained with ATMS inputs and ATMS-precipitation outputs.

4 Experiments

In the experiment part, a comprehensive analysis of our DAWP is presented. First, we introduce
the composition of our data and training details. Based on the observation data, a comparison of
our DAWP with other AI-DOP methods is implemented. Further, we evaluate the precipitation
forecasting skill of these AI-DOP methods by applying a precipitation mapping network. In addition
to evaluating DAWP’s capabilities of forecasting capabilities, we also conducted ablation studies to
validate the effectiveness of our modular designs. Finally, the importance of each satellite for DOP is
tested by ablating the input modalities of the assimilation module.

4.1 Experimental Setups

Data. The top four datasets listed in Table |I| are used for training our DAWP, while ATMS-
precipitation is used to train the precipitation mapping with ATMS. We generate hourly, 0.16°
resolution composites by interpolating and reprojecting the raw data as detailed in Appendix [E]
Additional information for dataset split and introduction is presented in Appendix [F

Training details. The training details are presented in Appendix |G| Training our mask ViT-VAE,
MMAE AIDA, and TS decoupling AIWP takes about 1 day, 5 days, and 4 days, respectively. Besides,
our DAWP is compared with the persistence model, using our AIDA module for completion of
missing values, as mentioned in [35]. We replicate the EarthNet [31]] and Transformer-DOP [26]
models on our composite dataset, as their codes and data are closed source.



Table 2: MAE error of forecasting during 3 lead time periods (0-12h, 12-24h, and 24-36h) for
different channels of the satellite data. We use the unit of 1le-5 for AMSU-A, 1e-4 for MHS, and 1e-0

for both ATMS and HIRS.

. AMSU-A ATMS HIRS MHS

Methods Leadtime | ;6 "chl | ch0  chl | ch9 chl0 | ch0  chl

Persistence 586 9.15 | 1437 11.69 | 1243 221 | 7.01 14.74
EarthNet [37]] 0-12h 293 4.89 6.96 6.14 9.15 1.39 | 396 9.65
Transformer-DOP : 2.67 448 | 640 5.61 922 142 | 391 948
Ours 1.92 3.39 3.36 3.27 7.70 1.12 | 3.07 791
Persistence [33]] 435 6.94 | 1040 8.86 13.58 2.30 | 6.07 15.09
EarthNet 12-24h 412 6.65 | 11.25 9.00 11.14 198 | 546 13.11
Transformer-DOP . 3.84 6.14 | 10.04 8.04 11.08 1.95 | 5.19 12.65
Ours 3.11 5.12 7.35 6.35 9.57 1.54 | 451 10.54
Persistence [33]] 639 984 | 1537 1252 | 1461 2.61 8.00 17.86
EarthNet 24-36h 5.17 8.14 | 12.52 10.08 | 1237 236 | 6.41 15.08
Transformer-DOP 491 7.54 | 11.35 9.07 1239 227 | 6.22 14.70
Ours 3.66 5.80 7.84 6.81 10.71 1.79 | 515 1222
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Figure 3: Curves of MAE for the prediction of different modalities. The max leadtime is 72h with a
1h temporal resolution.

4.2 Direct observation prediction

We compare our DAWP with other AI-DOP methods to evaluate the ability to predict direct ob-
servations. The metric for evaluation is the mean absolute error (MAE) between the predictions
and observed values. The baselines are also trained with sub-images as our DAWP. Among them,
persistence is a naive method that uses the last observation as the prediction of the next one.

The time-averaged MAEs within fixed time windows of 0-12h, 12-24h, and 24-36h are presented in
Table[2] We select two channels with meaningful patterns of each modality observation to calculate
the MAE. The results show that our DAWP significantly outperforms other methods. Specifically,
our DAPW’s MAE on AMSU-A among 24-36h is 3.66 and 5.80, which not only outperforms those
of EarthNet and Transformer-DOP, but also surpasses EarthNet’s (3.84 and 6.14) and Transformer-
DOP’s (4.12 and 6.65) MAEs on AMSU-A among 12-24h. It is the same when comparing our
DAWP with baselines on other modalities. These results indicate our DAWP has a 12-hour lead time
advantage in direct observation prediction. To provide a more detailed analysis of the observation
prediction, we present the MAE figure in a time range of 0-72h in Figure[3] It can be observed that the
1h temporal resolution of the figure depicts the periodicity of the prediction errors. This periodicity is
attributed to the strip-scanning characteristics of polar-orbiting satellites, which generate periodic
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Table 3: Forecasting skills in 12 hours on precipitation-related variables Total Column Water Vapor
(TCWYV) and Surface Precipitation (SP). CSI and FAR scores are calculated on different thresholds.

Method TCWV (mm) SP (mm/h)

CSI-10  CSI-20 CSI-30 | FAR-10 FAR-20 FAR-30 | CSI-0.5 CSI-1.0 CSI-2.0 | FAR-0.5 FAR-1.0 FAR-2.0
Persistence [35] 0.853 0.702  0.636 0.121 0.266 0.332 0.110 0.073 0.031 0.844 0.861 0.655
EarthNet [31] 0909  0.822  0.786 0.047 0.130 0.172 0.127 0.050 0.008 0.666 0.692 0.180
Transformer-DOP 0.905 0.822  0.789 0.053 0.130 0.169 0.136 0.057 0.010 0.655 0.685 0.214
Ours 0917  0.841 0.807 0.034 0.088 0.120 0.197 0.102 0.035 0.529 0.577 0.283

observations. Although there is periodicity in the MAE, our DAWP consistently outperforms other
methods, establishing a lead time advantage from the beginning. Specifically, in subfigure (a), at the
beginning of the prediction, our DAWP’s MAE is about 3.5 while the MAE of EarthNet is about 6.8,
which is almost 2 times larger than ours. In addition, EarthNet is surpassed by the naive persistent
baseline at the lead time of 16h, but our DAWP doesn’t meet the persistent baseline until about 64h.

In Figure[d] we visualize the prediction results of these methods at different lead times. At the lead
time of 12 hours (the first prediction step), our DAWP exhibits a slightly better prediction than others.
When the lead time increases, a significant distortion appears in the predictions of EarthNet and
Transformer-DOP, while our DAWP maintains a relatively stable structure. It has the same trend as
the MAE curve in Figure 3] indicating that our DAWP is more robust in rollout predictions.

The results of direct observation prediction indicate that our DAWP outperforms other methods in the
0-72h time range and selected channels, demonstrating the effectiveness of our method in both initial
prediction and rollout prediction. More evaluations on other channels are shown in the Appendix|[l]

4.3 Global precipitation forecasts

In this section, we evaluate the potential of AI-DOP methods for global precipitation forecasting.
A precipitation mapping network is trained to transform observation predictions into precipitation
products. It is worth noting that in this way, our DAWP does not require satellite precipitation
products as input, making the forecasting a quick response to observations.

The precipitation skill is evaluated by the Critical Success Index (CSI) and False Alarm Ratio
(FAR) [46] metrics on observed points in a time range of 0-12h. CSI measures the ability of the model
to correctly identify precipitation events, while FAR assesses the reliability of the model’s predictions.
The combined application of CSI and FAR enables a comprehensive precipitation forecasting skill
assessment. We present a detailed definition of CSI and FAR in Appendix [H]



Table 3| presents the quantitative results of the precipitation forecasting skill of AI-DOP methods on
total column water vapor index (TCWYV) and surface precipitation (SP). The thresholds for TCWV
and SP are set to [10mm, 20mm, 30mm] and [0.5mm/h, 1.0mm/h, 2.0mm/h], respectively. On variable
TCWY, our DAWP achieves a slight advantage in CSI over other methods. Specifically, our DAWP’s
achieves 0.807 on CSI-30, while Earthnet and transformer-dop achieve 0.786 and 0.789, respectively.
This advantage is maintained across all thresholds. In terms of FAR, our DAWP is significantly
lower than other methods. It indicates that our DAWP predicts more accurate TCWV with lower
false alarm rates than baseline methods, demonstrating the reliability of our DAWP. We also analyze
the forecasting skill on SP variable. The CSI of our DAWP is significantly higher than that of other
methods on CSI-0.5 and CSI-1.0, achieving 0.197 and 0.102. Compared with transformer-dop, our
DAWP increases CSI-0.5 and CSI-1.0 by 44.8% and 78.9%. Another observation about CSI is a
decreasing trend with increasing thresholds. Especially, when the threshold increases to 2.0, the CSI of
EarthNet and transformer-dop are even lower than that of the naive persistent model. Only our DAWP
maintains a slightly higher forecast skill on CSI 2.0. The decrease of forecasting skill is caused by the
temporal decay of prediction intensity [26} 29], which could further hamper the mapping network’s
performance. When evaluating FAR on threshold 2.0mm/h, our DAWP uncommonly surpasses
Earthnet and transformer-dop slightly. It could be explained by considering the CSI-2.0 results, as it
is difficult for EarthNet and transformer-dop to produce predictions greater than 2.0mm/h, resulting
in few false alarms. Besides, compared to the persistent baseline with a comparable CSI-2.0 skill,
our DAWP has a FAR score which 57.8% lower than persistent’s, showing stronger reliability. The
evaluation of CSI and FAR scores demonstrates the potential of our DAWP for global precipitation
forecasting, simultaneously increasing the accuracy and reliability for precipitation forecasting skill
of AI-DOP methods.

4.4 Ablation study
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Gains of cross-regional boundary conditioning. We compare the observation predictions with
and without cross-regional conditions by training a DAWP without neighbour regions as inputs. This
ablation study is conducted to verify the effect on the accuracy and spatial continuity of the prediction.

The convergence loss of our DAWP with and L . o o
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regions improves the prediction accuracy. In this
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is 0.106, which is significantly than that of the Figure 7: A visualization of forecasting results
neighbour area. Besides, it also significantly With(w/0) Cross-regional Boundary Conditioning.
outperforms the DAWP without CBC on the

centre area by about 15.6%. This result validates the necessity of cross-regional conditions for
weather prediction, as the boundary information of atmospheric physical motion is crucial for
accurate weather forecasting.

Another benefit of cross-regional conditions is the improvement of prediction continuity, as shown
in Figure[7] The first and second rows show the predictions of ATMS channel 0 at a lead time of 6
hours without and with CBC, respectively. It can be observed in the black box that the continuity of
the adjacent regions is improved, which is helpful for keeping the atmospheric structure.

Modality sensitivity analysis. We introduce Table 4: Converged loss of our DAWP with and
the experiment of using different modality com- without CBC module. The average loss is calcu-
binations for multistep observation prediction to lated by averaging the loss of all four modalities.
gain insight into the importance of each modal- ;.. | .. Modalitiy

ity’s data. As shown in Figure 8] a drop one and e Al(\fggs'A Aoﬁhgf glzlgg 1(;411-151 0T
a keep one combination are explored. The set-  “°CBC | coner | 0063 0101 0236 0.111 | 0.128
ingof drop one means removing one modality's v cnc | | 06] o021 oL
observation before AIDA initialization and con-

ducting multi-step prediction, while in the keep one setting, we only keep one modality’s observation
before AIDA initialization for forecasting. We evaluate the influence of each modality by calculating
the relative MAE error ratios between the MAE of DAWP with completed modality inputs.

Avg.

The result of drop one is shown in the left of Figure 8] Row names of the figure indicate the modality
that is dropped, while columns sequentially included in a modality name represent the relative MAE
error ratio of this modality in time windows 0-12h, 12-24h, and 24-36h. The overall trend of the
drop one setting demonstrates that dropping any modality’s data leads to an increase of MAE error.
Besides, it’s observed that for the rollout predictions, the MAE error ratio is gradually decreasing,
indicating the insufficient usage of observations for multistep predictions. When focusing on single
modalities, we find that HIRS and MHS can still achieve a relatively low MAE error ratio when their
own data is dropped, indicating that they have redundant information for the prediction.



The error ratio matrix of keep one setting is also shown in Figure[§] When only keeping ATMS
observation, other modalities” MAE error ratios of predictions are the lowest, which are even lower
than keeping the satellites themselves. This indicates that ATMS has a substantial amount of
information for prediction. In contrast, for predicting one modality itself, AMSU-A exhibits the
highest MAE error ratio, showing that it has the least spatiotemporal dynamics information.

5 Conclusion

In this paper, we propose DAWP, a novel framework using AIWP for observation prediction with an
AIDA module as initialization. Comprehensive experiments are conducted to validate the efficiency
and potential of our DAWP framework for observation forecasting and downstream applications
such as precipitation forecasting. Broader Impacts&Future Work: First, our framework readily
integrates variable observations, demonstrating its potential as an implicit Earth system modeling
framework. Second, our framework has broad application prospects. It can seamlessly adapt to diverse
downstream tasks-such as surface parameter estimation, wildfire monitoring, and sea ice mapping-
whenever observations or retrieval operators are available, similar to precipitation forecasting. Third,
our framework holds a promising potential for directly predicting physical variables by integrating
observations of weather variables such as station data. Limitations: Although our DAWP framework
improves the observation forecasting, the sources of observation are still homogeneous in satellite
observations. More observation sources will be integrated with DAWP in the future.
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

¢ You should answer [Yes] , ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (14AS2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.
* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: We clarify our contributions in the abstract and introduction.
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We discuss the limitations of our work in the conclusion section.

15



Guidelines:
* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.
* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

 If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA],
Justification: This is a paper for applications.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: We provide all experimental settings for reproductivity.
Guidelines:

* The answer NA means that the paper does not include experiments.
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* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We train our model on ATMS, AMSU-A, MHS, and HIRS, which could be
obtained publicly on their websites. The detailed settings for data resampling are provided
in supplemental material. We will release our code on github.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so AAIJN0AAI is an acceptable answer. Papers cannot be rejected simply for
not including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The complete experimental settings, including the dataset, hyperparameters,
type of optimizer, etc, are provided in the Experiments section and supplemental materials.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:
Justification: The paper does not report error bars, like other related work.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The sufficient information on the computer resources is provided in the
Experimets section

Guidelines:

* The answer NA means that the paper does not include experiments.
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9.

10.

11.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We perform this work following the NeurIPS Code of Ethics exactly.
Guidelines:

» The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss both potential positive societal impacts and negative societal
impacts of the work performed in the conclusion section.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
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Justification: This work does not involve such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

» Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The original papers or websites that produced the code or dataset are properly
cited and we use an open-source dataset for our experiments.

Guidelines:

* The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The code in the paper is well documented and the documentation is provided
alongside the code.

Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
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15.

16.

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer:
Justification: The paper has no crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Global state cache

In this section, we clarify the design of the global state cache. It is composed of a current cache and a
previous cache. The current one is used to store the predicted sub-images of T79;.12(;+1), and the
previous one, storing sub-images of T'3(;_1):12; is used to provide neighbour information for the

prediction.

class GlobalStateCache:

def

def

__init__(self, domains, domain_Chs, time_window,):
self.domains = domains

self.time_window = time_window
self.domain_Chs = domain_Chs
self.cur_cache = self.init_cache ()
self .prev_cache = self.init_cache()

init_cache (self):

domain_cache = {}
for domain in self.domains:
domain_Ch = self.domain_Chs[domain]

# original image size is 1152x2304.

# 8x16 subimages with the size of 144x144.

# 9x9 1is the number of tokens in a subimage.

domain_cache [domain] = /

torch.zeros ((8, 16, self.time_window, domain_Ch, 9, 9))
return domain_cache

The main operators of the global state cache are query neighbors and update cache. Query neighbors
is used to get the adjacent sub-images as conditions for the prediction of central areas. Update cache
is used to update the previous and current cache with the subsequent 12 hours predictions.

def

def

query_neighbours(self, rel_coordinate):
neighbour_coords = self._get_8_neighbour_coord(rel_coordinate)
neighbours = {}
for domain in self.domains:
neighbours [domain] = []
for coord in neighbour_coords:
neighbours [domain] .append(
self .prev_cache[domain] [coord[0], coord[1]]
)

return neighbours

update_cache (self, rel_coordinate, pred_subimg):
for domain in self.domains:

coords = rel_coordinate[0], rel_coordinate[1]

self.cur_cache[domain] [coords] = pred_subimg[domain]
if have_pred_whole_img:

self .prev_cache = self.cur_cache

return None

To get the neighbour coordinates from a Plane Rectangular Coordinate System, we utilized a
_get_8_neighbour_coord function that incorporates Earth’s spherical geometry, specifically han-
dling the left-right and top-bottom boundaries of the image.

def

_get_8_neighbour_coord(self, rel_coordinate, h=8, w=16):

nnn

h, w is the height and width of the image

r, ¢ is the coordinate of the pixel

case 1: if the pixel is in the center of the image, return all
8 neighbours

case 2: if the pixel in w border, treat the image as h border
is connected
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case 3: if the pixel in h border, symmetrically get the
neighour

case 4: if the pixel in corner, use the rule of both w border
and h border

ret:

8 neighbours ordered as [up_left, up, up_right, left, right,
down_left, down, down_right

1
nmiumnn
r, ¢ = rel_coordinate[0], rel_coordinatel[1]
assert r >= 0 and r < h
assert ¢ >= 0 and ¢ < w
w_border_flag = (c == 0 or ¢ == w - 1)
h_top_border_flag = (r == 0)
h_bottom_border_flag = (r == (h - 1))

neighbours = []
if not (h_top_border_flag or h_bottom_border_flag):

up_left = ((r - 1) % h, (c - 1) % w)

up = ((r - 1) % h, c)

up_right = ((r - 1) % h, (c + 1) % w)

left = (r, (c - 1) % w)

right = (r, (¢ + 1) % w)

down_left = ((r + 1) % h, (c - 1) % w)

down = ((r + 1) % h, <)

down_right = ((r + 1) % h, (c + 1) % w)
elif h_top_border_flag:

up_left = (r, (c + 1 + w//2) % w)

up = (r, (c + w // 2)% w)

up_right = (r, (¢ - 1 + w//2) % w)

left = (r, (c - 1) % w)

right = (r, (c + 1) % w)

down_left = ((r + 1) % h, (c - 1) % w)

down = ((r + 1) % h, c)

down_right = ((r + 1) % h, (c + 1) % w)
elif h_bottom_border_flag:

up_left = ((r - 1) % h, (c - 1) % w)

up = ((r - 1) % h, ()% w)

up_right = ((r - 1) % h, (c + 1) 7 w)

left = (r, (c - 1) % w)

right = (r, (¢ + 1) % w)

down_left = (r, (c + 1 + w//2) % w)

down = (r, (c + w//2)% w)

down_right = (r, (¢ - 1 + w//2) % w)
else:

raise NotImplementedError

neighbours.append (up_left)
neighbours.append (up)
neighbours.append (up_right)
neighbours.append(left)
neighbours.append (right)
neighbours.append(down_left)
neighbours.append (down)
neighbours.append(down_right)
return neighbours

B Artificial intelligence data assimilation

The development of data assimilation has also been revolutionized by artificial intelligence. Xiao
et al. [47]] were the first to apply the popular traditional numerical data assimilation method, Four-
Dimensional Variational, to the AIWP model FengWu. Furthermore, researchers have explored the
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development of artificial intelligence assimilation methods, such as FNP [48] and DiffDA [49], which
could be applied to both NWP and AIWP models. Although impressive progress has been made,
these methods remain limited by reanalysis data and NWP models, which require transforming the
observations into physical space. Unlike previous methods, EarthNet [31] proposes implementing ob-
servation space data assimilation with masked reconstruction. We are motivated to use an observation
AIDA model for formulating a complete observation space.

C Comparisons with spatiotemporal learning methods

Table 5: More results on spatiotemporal methods. MAE error of forecasting during 3 lead time
periods (0-12h, 12-24h, and 24-36h) for different channels of the satellite data. We use the unit of
le-5 for AMSU-A, le-4 for MHS, and 1e-0 for both ATMS and HIRS.

. AMSU-A ATMS HIRS MEHS
Methods Leadtime | 40" " chi | ch0  chl | ch9 chl0 | ch0  chl
Persistence [35] 586 915 | 1437 1169 | 1243 221 | 701 1474
ConvLSTM [50] 127.82 20890 | 7321 78.44 | 7740 11.05 | 6227 158.57
PredRNN [51] 295 496 | 699 621 | 926 142 | 411 1020
et Tessiiese [ 57 395 652 | 908 805 | 1041 163 | 498 11.69
BarthFormer [[3] opon | 1897 3394|3733 3875 | 2249 362 | 1800 55.04
SimVP [53] 361 602 | 729 661 | 984 153 | 468 1135
TAU [54] 384 631 | 770 686 | 994 158 | 487 1142
EarthNet [31] 203 489 | 696 614 | 915 139 | 396 965
Transformer-DOP [7] 267 448 | 640 561 | 922 142 | 391 948
oS 192 339 | 336 327 | 770 112 | 307 791
Persistence [35] 435 694 | 1040 886 | 1358 230 | 607 1509
ConvLSTM [30] 128.13 21114 | 8122 82.60 | 71.64 9.98 | 5926 14544
PredRNN [51] 385 626 | 1114 882 | 1092 184 | 548  13.16
et Homiie| 9 1146 1572 | 1943 1776 | 1875 328 | 1174 32.10
EarthFormer [3) loan | 1898 3396 | 3733 3876 | 2250 362 | 1801 55.03
SimVP [53] 483 774 | 1148 910 | 1149 202 | 643 1420
TAU [54] 446 721 | 1146 906 | 11.65 204 | 624 13.94
EarthNet [31] 412 665 | 1125 900 | 1114 198 | 546 1311
Transformer-DOP [T7] 384 614 | 1004 804 | 11.08 195 | 519 1265
Ours 3] 311 502 | 735 635 | 957 154 | 451 1054
Persistence [35] 639 984 | 1537 1252 | 1461 261 | 800 17.86
ConvLSTM [30] 12842 21183 | 8203 85.17 | 72.62 10.15 | 6044 148.62
PredRNN [51] 458 723 | 1218 969 | 1203 208 | 624 1504
RainFormer [52) 2480 3234 | 3549 3654 | 3078 492 | 2151  69.68
EarthFormer [B3) visen | 1898 3396 | 3734 3877 | 2251 363 | 1802 5504
SimVP [53] 572 891 | 1293 1033 | 1271 232 | 7395 1599
TAU [54] 561 876 | 1323 1053 | 1298 234 | 7.15 1585
EarthNet [31] 517 814 | 1252 1008 | 1237 236 | 641 1508
Transformer-DOP [T} 491 754 | 1135 907 | 1239 227 | 622 1470
T 366 580 | 7.84 681 | 1071 179 | 515 1222

As shown in Table[5] we compare DAWP with more spatiotemporal methods including RNN-based
(501, [51]), CNN-based ( [53]], [54]), and transformer-based ( [52], [35]). Our DAWP maintains a
significant advantage over these methods, demonstrating the effectiveness of our AIDA module in
improving the roll-out and efficiency of AIWP.

We present implementation details of EarthNet and Transformer-DOP here. There is no open-sourced
code for EarthNet [31] or Transformer-DOP [17]. For EarthNet [31]], it follows the implementation
of MultiMAE [32] as detailed in EarthNet’s Appendix C and D. Therefore, we reproduce it on our
datasets following MultiMAE. As for Transformer-DOP, since the original paper presents only a
sketch without details, we implemented it according to our best available understanding. Specifically,
EarthNet is reproduced as a 12-layer encoder (hidden dimension 768) paired with an 8-layer decoder
(hidden dimension 512), and Transformer-DOP is implemented as a transformer consisting of 18
layers (hidden dimension 1024). We employ sub-images because the full 12-hour global observation
sequence would result in 124k-token sequence, which is computationally infeasible.
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Table 6: Reconstruction error of various VAEs on different modalities. The column of Improvement
represents relative average improvement over SD-VAE.

Modality reconstruction error

VAEs AMSU-A (1e-3)  ATMS (1e2) HIRS (Ie-3)  MIIS (1e-2) | \™mPprovement
SD-VAE [55] 1.07 1.26 5.84 228 .
Mask-SD-VAE | 121(-13.1%)  1.31(-4.0%)  5.60(+4.1%) 2.35(-3.1%) -4.1%

ViT-VAE [56] 0.92(+14.0%) 1.36(-7.9%)  4.28(+26.7%) 2.45(-7.4%) +6.3%
Mask-ViT-VAE | 0.78(+27.1%) 1.29(-2.3%) 4.11(+29.6%) 2.41(-5.7%) +12.2%

D VAE comparison

We explore the ability of our mask ViT-VAE to compress satellite data with multiple channels and
missing values by comparing it with other VAEs.

The results are shown in Table [6] where we compare the reconstruction loss of different VAEs.
First, VAEs with ViT structure are more effective for reconstructing modality data with multiple
channels, such as HIRS and AMSU-A, while on modalities with fewer channels, there is only a slight
increase in reconstruction loss. Another observation is that the application of a mask consistently
increases VAEs’ reconstruction ability on HIRS. For ViT-VAE, it is beneficial to use the mask for the
computation of attention between patch tokens, as it could directly weaken the influence of missing
tokens.

E Satellite data preprocessing

Preprocessing: The original satellite observation data points are extremely sparse and irregular. To
spatially align different observation sources and channels for model training, a remapping procedure
is performed beforehand. The pseudocode for the preprocessing algorithm is given in algorithm|[I]

Algorithm 1: Remapping Satellite Observation

Input: target resolution R, observation D,, corresponding latitudes Cj,; and longitudes Cj,y,
Output: remapped observation data points Dg,;4 on desired global grid
Generate global grid Cr of desired resolution R that follows Equirectangular projection;
Assign latitudes and longitudes (Cq4¢,Clon ) to the nearest coordinates (C},,,C},,,) on grid Cg;
Dyiq < NaN with the shape of Cr;
D ount < Zeros with the shape of Cg;
for d,.c) ;. ¢}, in Do,Cl,,.Cl,,, do
Locate corresponding data point dg,;q4 of Dg,;q according to coordinates (c;at,cgon);
Locate corresponding point counter deoynt Of Deount according to coordinates (cj,;,¢j,,):
if dgyiq equals NaN then

‘ dgrid < do;
else

‘ dgrid — (dgrid + do);
end

end
Average each dg,.;q where deouns > 1

Normalization: We normalize each modality for efficient convergence. The direct observation
modalities are normalized by:

M oM — Mean(z™M) )
norm Std(xM) ’

where M represents the modality M. For ATMS-precipitation, we first implement the log-
transformation as:

Zprec = log (x/a +b), 2)
to alleviate long-tail distribution, and then normalize these variables like other modalities. Specifically,
we select a = le — 7, b = 1e2 for SP channel, and choose a = 1, b = 1 for TCWYV channel. The
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Figure 9: Distribution of ATMS precipitation productions. SP(log) indicates applying a log-transform
on SP. It is the same for TCWV(log).

distribution shift is shown in Figure[9] The original distributions also motivate us to choose a threshold
list of [0.5 mm/h, 1 mm/h, 2 mm/h] for SP.

F Dataset introduction

The four sensors below are organized into a satellite observation dataset for direct observation
forecasting. This composite dataset has a training split with data from January of 2012 to June of
2022 for training and a testing split composed of data from May of 2023 to July of 2023. We present
detailed introductions to these sensors.

AMSU-A: The Advanced Microwave Sounding Unit-A (AMSU-A) is a 15-channel microwave
radiometer used for measuring global atmospheric temperature profiles and will provide information
on atmospheric water in all of its phases (with the exception of small ice particles, which are
transparent at microwave frequencies). AMSU-A will provide information even in cloudy conditions.
AMSU-A measures Earth radiance at frequencies (in GHz) as listed under the instrument channel
information. Level 1B data was collected from EUMETSAT athttps://archive.eumetsat.int/
usc/UserServicesClient.html.

ATMS: The Advanced Technology Microwave Sounder (ATMS) and the Cross-track Infrared Sounder
(CrIS) work together to provide global high-resolution profiles of temperature and moisture. These
advanced atmospheric sensors create cross-sections of storms and other weather conditions, helping
with both short-term nowcasting and long-term forecasting. Level 1C data was collected from GES
DISC athttps://disc.gsfc.nasa.gov/datasets?page=1,

HIRS: The High Resolution Infrared Sounder (HIRS) operates at 20 channels (19 channels in the
infrared and one in the visible). Its main purpose is to provide input for the vertical temperature
and humidity profile retrievals. In addition, the HIRS pixel resolution serves as the standard grid
resolution for all ATOVS level 2 products. Level 1B data was collected from EUMETSAT at
https://archive.eumetsat.int/usc/UserServicesClient.html.

MHS: The Microwave Humidity Sounder (MHS) is a 5 channel instrument used to provide input to
the retrieval of surface temperatures, emissivities, and atmospheric humidity. In combination with
AMSU-A information it can also be used to process precipitation rates and related cloud properties,
as well as to detect sea ice and snow coverage. Level 1B data was collected from EUMETSAT at
https://archive.eumetsat.int/usc/UserServicesClient.html,

ATMS-Precipitation: The ATMS-Precipitation is one of the products of the Global Precipitation
Measurement (GPM) mission. It is based on the L1C-level calibrated brightness temperature data
of the ATMS sensor and extracts information such as precipitation rate and precipitation type
through a physical inversion algorithm. Level 2A data was collected from GES DISC at https:
//disc.gsfc.nasa.gov/datasets?page=1,

G Training details

Our DAWP framework is trained in 3 stages on 4 A100 80G GPUs, including training mask ViT-
VAEs for encoding and mapping, an MMAE for data assimilation in observation space, and a
spatiotemporal transformer for direct observation prediction. Specifically, these modules are all
trained within 144 x 144 sub-images. The encoder and decoder of the mask ViT-VAE use the same
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Table 7: Hyperparameters for training the mask ViT-VAE of DAWP on the composite dataset.

Hyper-parameter \ Value
Learning rate 0.0001
B1 0.9

Ba 0.999
Weight decay 0.00001
Batch size 200
Training steps 200000
Warm up percentage 10%
Warmup learning rate | 0.000001
Learning rate decay Cosine
Min learning rate 0.000001
KL-loss weight 0.000001

Table 8: Hyperparameters for training the AIDA module of DAWP on the composite dataset.

Hyper-parameter \ Value
Learning rate 0.0001
B1 0.9
Ba 0.999
Weight decay 0.00001
Batch size 48
Training steps 200000
Warm up percentage 10%
Warmup learning rate | 0.000001
Learning rate decay Cosine
Min learning rate 0.000001

Table 9: Hyperparameter for training the AIWP module of DAWP on the composite dataset.

Hyper-parameter | Value
Learning rate 0.0001
51 0.9

Ba 0.999
Weight decay 0.00001
Batch size 8
Training steps 200000
Warm up percentage 10%
Warmup learning rate | 0.000001
Learning rate decay Cosine
Min learning rate 0.000001

transformer structure with a patch size of 16 and a hidden dimension of 768. It is trained with a
reconstruction MAE loss and a KL loss weight of 0.000001 for robust representation. We freeze
the pretrained mask ViT-VAE as the encoders for each modality in our MMAE. Each modality
observation with a 12h time window in a 144 x 144 sub-image is tokenized into 972 spatiotemporal
tokens. Thus, our MMAE totally received 3888 tokens. We randomly select 128 observed tokens
of them ( 3.3%) to reconstruct the remaining observed tokens via MAE training. Given the 144 x
144 sub-images assimilated by MMAE, our spatiotemporal transformer is trained. It is structured
with 12 TS spatiotemporal decoupling blocks, whose hidden dimension is 768. The hyperparameters
for optimizing these modules are similar. All of them use the AdamW optimizer with Sy = 0.9,
B1 = 0.999, and a learning rate of 0.0001. The learning rate is scheduled by a cosine scheduler,
warming up 10k steps, step by step.

In the table we present the computation cost.
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Table 10: The details of the mask ViT-VAE model on different satellite datasets. Conv16 x 16 is the
2D convolutional layer with 16 x 16 kernel. The FFN consists of two Linear layers separated by a
GeLU activation layer [S7]. The operator SamplePosterior samples a latent representation from p and
o as SD did [55]].

Module | Layer \ Resolution | Channels
Input - 144 x 144 c
Conv16 x 16 9%x9 c— 768
PatchEmbed Flatten 9x9—81 768
PosEmbed 81 768
LayerNorm 81 768
Trnasformer Block x 10 ﬁ;zﬁ;zi?mn 2} ;gg
FFN 81 768
TransformerBlock 81 768
TransformerBlock 81 768
Qauntify Concat 81 768 — 1536
Linear 81 1536 — 8¢
SamplePosterior 81 8c — 4c
Linear 81 4c — 768
LayerNorm 81 768
Trnasformer Block x 12 g;;léﬁ;zj;tlon 21 ;gg
FFN 81 768
Rearrange 81 =-9x9 768
Out Convl x 1 9%x9 768 — 256¢
Rearrange 9x9— 144 x 144 256¢c — ¢
Conv3 X 3 144 x 144 c

H Metrics defination

H.1 CSIand FAR

For the evaluation of global precipitation variables, the metrics include the Critical Success Index
(CSD) and False Alarm Ratio (FAR). They are core binary classification evaluation metrics that
quantify the detection accuracy and reliability of precipitation events. In the field of meteorology,
these metrics assess the consistency and accuracy between precipitation predictions and observed
results, quantitatively evaluating the performance of models. To measure the accuracy of prediction for
precipitation with different intensities. Before calculating these metrics, we transform the predicted
pixel values and ground truth into binary values (0 or 1) using a given threshold 7. The value is set
to 0 if it is less than 7; otherwise, it is set to 1. These binary values enable us to determine the true
positive (TP), false positive (FP), false negative (FN), and true negative (TN) counts. CSI, HSS, and
FSS are calculated by these counts as follows:

1) Critical Success Index. CSI is a metric that evaluates the proportion of correctly predicted events
of hits among conditions, including hits (TP), false alarms (FN), and misses (FP). The formulation of
CSlis:

B TP
 TP+FN+FP

CSI 3)

The value of CSI ranges from 0 to 1. Higher values indicate better prediction accuracy.

2) False Alarm Ratio. The FAR metric quantifies the proportion of predicted positive events that were
actually negative in meteorological verification, emphasizing the reliability of alarm triggers. It is
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Table 11: The details of the MMAE on encoded multimodal tokens within a sub-image in a time
window 12. Conv1l X 1 is the 2D convolutional layer with 1 x 1 kernel. (c1, co, ¢3,c4) means a
multimodal input list with input channels ¢y, c2, c3, and c¢4. The MaskTokens is similar to the
function of random_mask in [34] , while adding the [EOS] tokens to keep the sequences from
different samples the same length. The operator of PaddingTokens fills the feature map as [34] did.
The FFN consists of two Linear layers separated by a GeLU activation layer [S7].

Module | Layer | Resolution | Channels
Multimodal Input - 9x9x12 (c1,co,c3,c4)
Convl x 1 9x9x12 (c1,c2,c3,cq) — (768,768,768,768)
Flatten 9x9x12—81x 12 (768,768, 768, 768)
. PosEmbed 81 x 12 (768,768, 768, 768)
Multimodal PatchEmbed | 1 =0 o1 prpeq 81 x 12 (768, 768, 768, 768)
Rearrange 81 x 12 — 3888 (768,768, 768, 768) — 768
Random Masking MaskTokens 3888 — 128 768
LayerNorm 128 768
MaskAttention 128 768
Trnasformer Block x 12 LayerNorm 198 768
FFN 128 768
Linear 128 768 — 512
PaddingTokens 128 — 3888 512
- Rearrange 3888 — 81 x 12 x 4 512
Feature Map Filling PosEmbed 81x 12 x 4 512
TemporalEmbed 81 x 12 x4 512
Rearrange 81 x 12 x 4 — 3888 512
LayerNorm 3888 512
Attention 3888 512
Trnasformer Block x 8 LayerNorm 3838 512
FFN 3888 512
Rearrange 3888 — 972 (512,512,512, 512)
Multimodal Out LayerNorm 972 (512,512,512,512)
Linear 972 (c1,c2,c3,c4)
Rearrange 972 - 9 x 9 x 12 (c1,ca,c3,¢4)

Table 12: The details of our AIWP module training in the assimilated space. The inputs of this
module are sub-images with 8 neighbours in a multimodal way. (¢, ¢a, ¢3, ¢4) means a multimodal
input list with input channels c1, c2, ¢3, and ¢q. Tview and Sview indicate the temporal dimension
and the spatial dimension as the sequence, respectively. The FFNwithSwiGLU consists of two Linear
layers separated by a SwiGLU activation layer [58]].

Module | Layer | Resolution | Channels

Input with Conditions | - 27 x 27 x 12 (c1,¢2,¢3,¢4)
Concat 27 x 27 x 12 (c1,¢2,¢3,¢4) > €1+ Ca+c3+cy
Linear 27 x 27 x 12 c1+co+c3+cg — 768

PaichEmbed Rearrange 97 x 27 x 12 = 729 x 12 768
PosEmbed 729 x 12 768
Tview 720 X 12 = (729%)12 763
Attention (729x)12 768
LayerNorm (729%)12 768
FFNwithSwiGLU (729x)12 768
LayerNorm 729x)12 768

TS Block > 12 Sview (729><)(12 a)(12><)729 768
Attention (12x)729 768
LayerNorm (12x)729 768
FFNwithSwiGLU (12x)729 768
LayerNorm (12x)729 768
Rearrange (12%x)729 — 7 x 27 x 12 768

Multimodal Out LayerNorm 7T x27x12 768
Linear 972 (c1,c2,c3,¢4)
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Table 13: Computation cost during inference.

Inference time(ms) | Parameters(MB) | Memory(MB) | Batch size(per GPU)
Mask-ViT-VAE 53 96 7262 50
AIDA 310 105 18242 12
AIWP 491 216 47134 2
defined as: 7p
FAR= ———— 4
FP+TP @

where FP denotes false positive predictions (e.g., forecasted rainfall with no ground observation)
and TP represents true positives (correctly predicted rainfall events). FAR ranges from O (perfect
reliability) to 1 (all alarms are false), with lower values indicating better prediction specificity.

H.2 MAE
To evaluate the accuracy of direct observation predictions, we use a pointwise Mean Absolute Error
(MAE) as the metric to calculate errors on the ground truth with variable missing values. It is worth

noting that the MAE is calculated with the raw observation point by point to ignore the influence of
missing values. It is defined as:

N
1 ,
MAE—NZ;lyZ-—yA 5)

N is the total number of points with observation, y; is the ground truth at the ith location, and y; 18
the prediction.

I More results of direct observation predictions
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Figure 11: Curves of MAE for the prediction of different channels in sensor ATMS. The max leadtime
is 72h with a 1h temporal resolution.
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Figure 12: Curves of MAE for the prediction of different channels in sensor HIRS. The max leadtime
is 72h with a 1h temporal resolution.
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Figure 13: Curves of MAE for the prediction of different channels in sensor MHS. The max leadtime
is 72h with a 1h temporal resolution.
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Figure 14: A visualization of rollout predictions for channel 0 of AMSU-A. From top to bottom are
the results of ground truth, Transformer-DOP, EarthNet, and DAWP (ours).
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Figure 15: A visualization of rollout predictions for channel 9 of HIRS. From top to bottom are the
results of ground truth, Transformer-DOP, EarthNet, and DAWP (ours).
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Figure 16: A visualization of rollout predictions for channel 0 of MHS. From top to bottom are the
results of ground truth, Transformer-DOP, EarthNet, and DAWP (ours).
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Figure 17: A visualization of rollout predictions for channel 1 of ATMS. From top to bottom are the
results of ground truth, Transformer-DOP, EarthNet, and DAWP (ours).
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Figure 18: A visualization of rollout predictions for channel 1 of AMSU-A. From top to bottom are
the results of ground truth, Transformer-DOP, EarthNet, and DAWP (ours).
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Figure 19: A visualization of rollout predictions for channel 10 of HIRS. From top to bottom are the
results of ground truth, Transformer-DOP, EarthNet, and DAWP (ours).

MHS chO@lead time:12hour MHS chO@lead time:24hour MHS chO@lead time:36hour MHS chO@lead time:48hour

Figure 20: A visualization of rollout predictions for channel 1 of MHS. From top to bottom are the
results of ground truth, Transformer-DOP, EarthNet, and DAWP (ours).
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