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ABSTRACT

Expert systems have been developed to emulate human experts’ decision-making.
Once developed properly, expert systems can assist or substitute human experts,
but they require overly expensive knowledge engineering/acquisition. Notably,
deep learning (DL) can train highly efficient computer vision systems only from
examples instead of relying on carefully selected feature sets by human experts.
Thus, we hypothesize that DL can be used to build expert systems that can learn
human experts’ decision-making from examples only without relying on overly
expensive knowledge engineering. To address this hypothesis, we train DL agents
to predict optimal strategies (actions or action sequences) for the popular game
‘Angry Birds’, which requires complex problem-solving skills. In our experi-
ments, after being trained with screenshots of different levels and pertinent 3-star
guides, DL agents can predict strategies for unseen levels. This raises the possi-
bility of building DL-based expert systems that do not require overly expensive
knowledge engineering.

1 INTRODUCTION

To assist our decision-making, knowledge engineering has been developed to code human experts’
knowledge into artificial expert systems, which have been successfully applied to multiple do-
mains (Buchanan & Smith, 1988; Russell & Norvig, 1995; Kiritsis, 1995). For instance, MYCYN
(Buchanan & Shortliffe, 1984) can provide medical advice on infectious diseases, and XCON (Mc-
Dermott, 1980) can help users to find right computer components. However, knowledge engineer-
ing requires expensive and complex engineering, limiting the expert systems’ utilities (Buchanan &
Smith, 1988; Kiritsis, 1995). Notably, DL can enable artificial agents to automatically learn general
rules essential for complex tasks from examples without human experts’ instructions (LeCun et al.,
2015; Hertz et al., 1991). This leads to the hypothesis that we can use DL to build expert systems
without expensive knowledge engineering (Tan, 2017). Indeed, a line of study already explores DL
agents’ utility in diagnosing diseases based on medical images, for which traditional expert systems
were used; see (Litjens et al., 2017) for a review.

However, it should be noted that most humans’ decisions involve a sequence of actions, each of
which has a subgoal. Thus, sequence learning can be a key component in building artificial in-
telligent agents that mimic human experts’ decision-making (Sun & Giles, 2001; Boddy, 1996).
Traditionally, symbolic planning is used to mimic humans’ goal-directed high-level planning, which
repeatedly creates sub-goals necessary to accomplish higher level goals until a subgoal can be ac-
complished in a single action, and deploying symbolic planning requires ‘substantial prior knowl-
edge’ and highly computational complexity (Sun & Giles, 2001). That is, the cost of symbolic
planning can be as high as that of other expert systems.

In this study, we explored if DL can be used to learn high-level planning essential for human ex-
perts’ decision-making. We note that deep Q learning (Mnih et al., 2015) has demonstrated impres-
sive achievements in learning optimal sequences of actions for games (Silver et al., 2016) and that
recurrent neural networks have been used to model time series (Hertz et al., 1991). Our goal differs
from these traditional DL approaches, in that we aim to model high-level planning more directly.
To this end, we asked if deep neural networks (DNNs, agents trained by DL) can learn to predict
strategies written by human experts for the popular game ‘Angry Bird’ (AB) (Contributors, 2021;
Renz et al., 2019) from examples. To clear each stage, players must destroy all pigs in each stage.
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As the pigs within the game are protected by piles of objects or stay inside towers, a single attack
is often not enough to destroy all the pigs in each stage. Instead, players must sequentially orga-
nize subgoals to destroy all pigs efficiently, making AB an ideal testbed for high-level planning.
Thus, we trained DNNs to predict human experts’ AB game strategies available at AB wiki pages
(Contributors, 2021); the AB strategies will be referred to as 3-star guides (3SG) hereafter.

In the experiments, we asked three questions. First, can DL learn the functional relationships be-
tween screenshots (still images) of the stages and 3SG (human experts’ strategies)? Second, can
an attention-based image captioning (ABIC) system, previously proposed (Xu et al., 2015), learn to
create verbal strategies, which would sound reasonable to human players? Third, can ABIC predict
a sequence of strategies (high-level planning) appropriate to clear a stage? Due to the lack of proper
evaluation metric, we qualitatively evaluate the outcomes of the answers after training ABIC; the
evaluation metrics of the language model is the topic of active research (Sellam et al., 2020; Pap-
ineni et al., 2001; Chen et al., 1998). Our empirical studies suggest that ABIC can learn to create
verbal strategies after training and that it can predict a sequence of actions, not just a single action.
They also support our hypothesis that DL can learn high-level planning from examples and that it
can be used to build expert systems to assist human decision making without relying on overly ex-
pensive and complex knowledge engineering. Thus, our study indicates that DL can help us deploy
expert systems into more domains.

2 DL AGENTS TO PREDICT OPTIMAL STRATEGIES OF ANGRY BIRDS (AB)

To clear each level of AB, players use birds to destroy the pigs that are scattered around and protected
by towers or piles of wood, glass (or ice) and stone blocks. Each level provides a fixed sequence of
birds and a unique challenging environment, and the players need to find an effective sequence of
actions that can destroy all pigs in each level. The scores are estimated using various factors such
as incurred damages and the number of birds used. When players obtain sufficiently high scores,
they receive 3 stars. Any experienced game player (i.e., an expert) can devise good strategies (i.e.,
sequence of actions) to clear even the unseen levels, and conversely, the accuracy/efficiency of the
plans can indicate the players’ ability/efficiency. Therefore, we ask if DL could predict optimal
actions (or action sequence) from given screenshots of levels. We use the 3SG available at the wiki
page (Contributors, 2021) as optimal strategies for DL to predict them.

2.1 FUNCTIONAL CORRELATIONS BETWEEN SCREENSHOTS AND 3SG

In principle, we can consider an expert system as an unknown functional mapping function that
can identify an optimal relationship between problems/situations (i.e., screenshots in this study) to
decisions/solutions (i.e., 3SG in this study); see Fig. 1A. If the mapping does exist, it would be
possible to build expert systems. Thus, we first investigate functional correlations between screen-
shots and 3SG. Since a multilayer perceptron (MLP) has been considered a universal problem solver
(Hertz et al., 1991), we assume that a trained MLP can predict the embeddings of 3SG (word embed-
dings) from the embeddings of screenshots (image embeddings), if the functional mappings from
the screenshots to 3SG exist.

Based on this assumption, we train MLPs, which contain 100 hidden neurons in single hidden layers,
with 80% levels (out of 327) randomly selected and test them with the remaining (test) levels. The
image embeddings are created using the ResNet18 (Safka, 2021), and the word embeddings are
generated using Hugging Face’s BERT model (Wolf et al., 2020). We first use image embeddings
as inputs and word embeddings as outputs (Fig. 1B) and train MLP to minimize the mean squared
error (MSE). A open-source ML library Pytorch (Paszke et al., 2017) is used to construct MLPs,
and its built-in function (MSELoss) is used to estimate MSE. The word embeddings are projected
to the PCA space, which is spanned by various numbers of principal axes, using a python package
‘Scikit-learn’ (Pedregosa et al., 2011). In the experiments, we repeat the same experiment 5 times
with different random seeds and display the mean and standard deviations of them in Fig. 1C. As
the number of principal axes increases, MLPs’ errors are reduced, and the magnitudes of reduction
grow bigger; see the blue line in Fig. 1C. Interestingly, when the word and image embeddings are
used as inputs and outputs, MLP cannot predict the outputs anymore (the orange line in Fig. 1C).
These results suggest that functional mappings from screenshots to 3SG exist, but not vice versa.
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Figure 1: Functional mapping between image embeddings and word embeddings. (A), Schematics
of expert system. (B), Diagram of MLP trained to detect functional mappings. In MLPs, single
hidden layers contain 100 neurons. (C), MSE error ratio between before and after training. The
MSE error estimated after training is normalized to that estimated before training. Blue and Orange
represent error ratios for experiments ‘img-to-word’ and ‘word-to-img’, respectively.

2.2 EXPERT SYSTEMS OF AB

Encouraged by the results above, we ask if DL can directly predict human instructions from screen-
shots. Here, we train the attention-based image-captioning system (ABIC) (Xu et al., 2015) to
predict 3SG from the screenshots. In the original form, ABIC uses convolutional networks as an
encoder and recurrent networks as a decoder. The encoder extracts 14-by-14 annotation vectors, and
the decoder uses annotation vectors to predict word sequences after training. They further proposed
that the attention network, which determines the region of interest, can help the encoder-decoder
system learn to produce captions. We refer to the original study for more details (Xu et al., 2015).

In this study, we adopted Pytorch implementation of ABIC from a public github repository (Vinod-
ababu, 2021) and train it to predict 3SG from the screenshots using the default setting of the imple-
mentation. This adopted Pytorch implementation uses ResNet101 (He et al., 2015) as a encoder and
the long short term memory (LSTM) (Hochreiter & Schmidhuber, 1997) as a decoder. Specifically,
ResNet101 produces 2048 annotation vectors (14-by-14 pixels), the attentional network transforms
annotation vectors using weighted sum, and LSTM selects the best word with previously selected
word and weighted annotation vectors. In the experiments, we randomly select 70% of the levels
as training examples, 15% as validation examples, and 15% as test examples. The number of total
levels used here is 359. ResNet101 was adopted from TorchVision (Marcel & Rodriguez, 2010) and
frozen during training, whereas both LSTM and the attentional network were trained.

2.2.1 ABIC CAN BE AN AB EXPERT

We note that ABIC was trained to produce a single sentence caption after being trained with multiple
captions for a single image (Xu et al., 2015). To test the potential of AIBC as an AB expert, we
mimic this baseline training of AIBC by ignoring the fact that 3SG describe the sequence of actions.
Instead, we treat them as independently generated guides for the same stage and use them to train
AIBC as an expert system of Angry Birds (EAB) to predict a single action. With this setting, we
also effectively increase the number of training examples.

In AB and its wiki page (Contributors, 2021), levels are grouped into multiple stages, and the two
consecutive numbers are used to refer to each level. For instance, level ‘12-03’ refers to the third
level in the 12th stage, and the same type of reference is used to clarify the levels below. In the
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experiments, 253 levels are randomly chosen as training and 50 levels as test examples (i.e., levels).
We edit the guides slightly for clarification and remove irrelevant descriptions. Many instructions
explain the bird types, while most screenshots do not include the birds. Thus, we augment the
screenshots by inserting the circles that represent the first birds in the levels via colors in the top-left
corners (Fig. 2).

A B

Figure 2: Prediction of EAB on the single action. (A), Examples of screenshots augmented with
bird symbols; see top-left corers. (B), Example of outputs of ABIC trained as EAB.

With the edited guides and augmented screenshots, we train EAB and evaluate its predicted actions
for test (unseen) screenshots. Fig. 2B shows an example of EAB outputs. As shown in the fig-
ure, the model utilizes attention to create a strategy (sentence). Table 1 shows some examples of
EAB’s predicted actions/strategies for the unseen test levels (i.e., screenshots). Here, we make a
few observations. First, although the guides describe the sequence of actions, most EAB outputs
appear to describe only the first action. Second, EAB selects the correct birds to create predic-
tions on strategies for 10 test levels. Third, a few of the predicted strategies are consistent with the
guides. Fourth, the 3SG have diverse writing styles, making the quantitative evaluation of predicted
strategies extremely difficult.

These results raise the possibility that DL can learn to predict an optimal action from examples only.
Due to EAB’s low precision, we tested if EAB’s performance can be further improved..

2.2.2 EAB BECOMES MORE ACCURATE WITH BETTER OBJECT DETECTION UNITS

In the experiments mentioned above, the screenshots are fed to the image encoder (ResNet101)
trained with ImageNet (Xu et al., 2015; Vinodababu, 2021). However, it should be noted that the
visual objects used in AB are abstract and substantially different from real world objects in the
ImageNet, which could reduce the quality/precision of visual embeddings of the ResNet101 and
consequently the precision of EAB. Thus, we ask if better image embeddings can improve EAB’s
accuracy. In doing so, we build customized detectors of the objects in the game, which use color
templates of pigs, glass/ice, wood and stone blocks. Specifically, we use OpenCV’s ‘inRange’ func-
tion (Itseez, 2015; Its, 2014) to find candidate areas for the objects and scipy.ndimage’s ’find object’
(Virtanen et al., 2020) to test if the areas contain actual objects. For more accurate detection, we
manually adjust the templates of individual stages and use a few simple error correction rules. After
detecting the objects, we use them to synthesize functional screenshots of the stages (Fig. 3B).

After training EAB with synthesized (reconstructed) screenshots and 3SG of 249 training levels, we
qualitatively evaluate EAB’s predictions for 58 test levels. We first select the predictions that artic-
ulate the correct birds and categorize them into 3 different categories, not-related strategy (NRS),
probable strategy (PS), consistent strategy (CS). NRS indicates strategies not relevant to the levels,
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A B C

Figure 3: Detection of game objects. (A), Examples of detected pigs (top-row) and wood blocks
(bottom-row). Our detectors can distinguish the size of pigs. Blue and red boundary boxes refer to
mid and small pigs. (B) and (C), Examples of raw screenshots (top-row) and reconstructed images
(bottom-row).

PS indicates strategies reasonable (not necessarily good) for the levels, and CS indicates strategies
consistent with 3SG. We note that some CS do not specify targets and thus code them as CS-ND
(consistent strategies without detailed targets).

We found that 41 levels have the correct birds. 6 levels are evaluated as CS; 16 levels as PS, 5 levels
as CS-ND amd 14 levels as NRS. Table 2 shows the examples of all 4 categories.

2.2.3 EAB CAN PROPOSE MULTIPLE ACTIONS

In AB, players can obtain optimal results by strategically organizing sequential actions. Thus, as
the final test, we ask if EAB can learn to create a sequence of actions. Specifically, we remove
the ‘end’ token from 3SG to build embeddings of action sequences. After training EAB with 253
training levels, we evaluate the predicted sequence for 50 test levels and make a few observations
(Table 3). First, EAB predicts multiple actions for most levels—1 action in 10 levels, 36 actions in
and 3 actions for 4 levels. Second, EAB can choose a sequence of birds properly in some levels.
Specifically, it selects two first birds correctly for 13 levels, 3 first birds correctly for 2 levels, and
2 birds for 5 levels. Third, the accuracy of the predicted sequence of actions is low, but EAB still
predicts action sequences consistent with 3SG for 3 levels. EAB also suggests probable action
sequences for 6 levels. For 5 levels, one of the predicted actions includes some minor errors. For
instance, EAB proposes to aim ‘wooden triangle’ for level ‘4-04’, but it does not exist in this level.
We also found some predicted actions do not specify the targets for 3 levels. We categorize them
into CS, PS, PS without targets (PS-ND) PS with minor errors (CS-me). Table 3 list the examples
of CS, PS, PS-ND, PS-me and NRS.

3 DISCUSSION

In this study, we used the popular game Angry Bird to study the plausibility of DL-based expert sys-
tems. Specifically, we trained an off-shelf model (ABIC) to predict human players’ strategies (i.e.,
experts). Even though the strategies are written by many players, and thus they are heterogeneous in
styles and vocabularies, ABIC was able to predict optimal strategies for given screenshots of stages.
This result raises the possibility that DL can be used to build expert systems without overly expen-
sive knowledge engineering and make the expert systems more affordable and deployable to more
domains.
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Further, our results suggest that DL can encode human experts’ knowledge/skills from their verbal
explanations, leading us to speculate that DL can be used to quantify or better understand human
behaviors. Below we briefly discuss two possible scenarios.

3.1 IMPLICATION FOR INTENTION DETECTION

By predicting others’ intentions, we can make decisions and take actions. When we detect dangerous
behavioral cues from someone approaching us, we natively predict hostility and coordinate our
actions accordingly. If an advanced surveillance camera can detect hostile intentions in public, they
may proactively alert authorities to prevent criminal activities or neutralize threats. However, the
behavioral cues that we rely on remain poorly understood, making the explicit design of intention
detectors extremely challenging. Based on our experiments suggesting that DL can learn to predict
humans’ decision-making process from examples, we argue that DL can be used to build intention
detectors such as advanced surveillance systems.

3.2 IMPLICATION FOR TRAINING

To become experts, students need extensive training and experience. However, teaching requires ex-
perts to translate their experience/knowledge into standard and quantifiable languages. This remains
a challenging process in many domains. Our results (Fig. 1C) suggest that we could build functional
mappings between experts’ behaviors and tasks. If we could build DL agents to capture functional
relationships between expert’s decisions and tasks’ components, we could use them to translate ex-
perts’ knowledge into quantifiable forms, which can facilitate students’ learning. For instance, we
can build an expert system that can faithfully predict veteran pilots’ decisions and use it to analyze
the influence of aircrafts’ sensors on their decisions. The discovered correlations between aircrafts’
sensors and pilots’ decisions will prepare student pilots more effectively.

3.3 LIMITATION AND FUTURE DIRECTION

Our EAB is trained to predict the optimal strategy (either a single action or a sequence of actions)
for the level, but multiple strategies can be used to accomplish the same goal, and the best or optimal
choice varies depending on contexts. Therefore, real world expert systems must learn various types
of strategies to choose the optimal strategy. To this end, we need to build multiple agents specializing
in individual strategies and develop dynamic evaluation systems that can flexibly choose the best
agent from the available pool. In the future, we plan to seek such multi-agent expert systems.
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Table 1: This table lists predicted actions with the correct bird and bad predictions. We also list the
first action in 3SG for comparison.

Predictions with the correct bird
levels Predicted action First action in 3SG
8-07 Fire the first Black Bird into the

left side of the main structure.
Fire the Black bird into the hol-
low stone square of the first
tower, pushing both stone towers
to the right and popping all pigs
on the right side.

12-05 Fire the first Big Brother Bird to
the left side of the second struc-
ture.

Fire Big Brother through the top
half of the first wooden wheel.

12-09 Fire the first Red bird into the
top of the left tower, causing the
structure to fail to the left.

Fire Big Brother through the
horizontal wooden plank above
the first pig.

15-02 Fire the first Black Bird into
the horizontal stone plank on the
right side.

Shoot the Black Bird in the mid-
dle of the level to activate the
TNT.

4-04 First, fire the Yellow Bird so
he <unk>hits the second stone
plank

First, send the Yellow Bird
through the second angled
wooden plank.

5-11 Fire the first Yellow Bird into the
first horizontal stone plank.

First, fire the Yellow Bird so
he breaks the horizontal wood
plank supporting the stone plank

2-06 Lob the first Black bird into the
hollow stone square of the right
side of the level

Shoot the first Black Bird so that
it lands directly to the right of the
highest pig.

10-13 Fire the first Big Brother into
the bottom-left of the main struc-
ture.

Fire the first Big Brother into
the middle of the all-stone tower
(which has the Medium Pig and
a round wooden ball under the
tower).

11-11 Fire the first Big Brother through
the horizontal wooden plank be-
tween the first <unk>.

Fire the first Big Brother into the
horizontal stone planks in front
of the slingshot platform.

9-08 Fire the first Big Brother into the
top of the left tower

First, fire the first Big Brother
Bird head-on into the top-left
pig.

Bad examples
Prediction First action in 3SG

13-05 Fire the first Red bird into the
leftmost structure, spinning it
back through the the TNT in the
right.

Lob one or both Brothers high
in the air, crashing through the
middle of the structure.

15-10 Fire the first Red bird into the
leftmost structure, spinning it
back through the the TNT in the
right.

Fire the first Yellow bird through
the wooden block (not the hol-
low square) on the left side.

1-03 The first Red Bird at the
<unk>of the <unk>pig.

Fire the first Red Bird into the
wooden sphere (ball) on top of
the hill.
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Table 2: Below we list all CS and CS-ND and some examples of PS and NRS. EV and LV refers to
evaluation and level.

EV Predicted action First action in guide LV
CS Fire the Boomerang bird into the main

structure, spinning it back into the
TNT.

Fling the Boomerang bird over the
main structure, spinning it back into
the TNT.

22-
02

CS Fire the first Red bird into the horizon-
tal stone block on the first structure.

Fire the Red bird into the top of the
left structure, pushing its roof to the
right.

12-
03

CS Launch the first Blue bird into the
middle of the ice tower.

Shoot the Blue Bird at the glass house
to the right.

15-
04

CS Shoot the White Bird at the top of the
structure, bombing as late as possible.

Shoot the first White Bird’s egg at the
stone blocks to the right of the TNT.

2-
20

CS Launch the first Big Brother into the
bottom of the ice tower.

Fire the Big Brother Birds straight
ahead, aiming for the TNT beneath the
boat.

10-
14

CS Fire the first Big Brother into the bot-
tom of the first tower, taking it to the
right.

Fire the Red bird through the first hor-
izontal wooden plank, causing the first
column to collapse.

12-
08

CS-
ND

Shoot the first Black Bird through the
gap between the two towers.

Loft the Black bird to land dead-
center on the bridge.

12-
15

CS-
ND

Fire the first Yellow Bird into the left
side of the first structure.

Shoot the Yellow Bird at the lone
wood block surrounded by stone.

2-
13

CS-
ND

Shoot the Red Bird at the middle of
the structure.

Launch the Big Brother Bird through
the first pig and into the first horizon-
tal stone block and the entire structure
will crumble.

9-
04

CS-
ND

Use the Boomerang bird over the main
structure, spinning it back through the
stone blocks on the right side.

Launch a Boomerang Bird. with per-
fect timing, boomerang it into a stone
brick on the upper ”cannon” to ram
the stone into the TNT, killing the
Medium pig.

6-
06

PS Fire the first Big Brother through the
horizontal wooden block anove the
first structure

Launch Big Brother Bird through the
small ice square in the top-left of the
structure.

9-
05

PS Fire the Yellow bird horizontally into
the gap in the middle of the level

Fire the first Yellow bird into the top-
left TNT.

17-
14

PS Fire the first Big Brother through the
top of the small wooden squares on
the bottom-of the structure.

Use the Red bird to topple the stones
atop the tower, clearing the pigs on the
right side of the level.

22-
08

PS Loft the Yellow Bird to break the TNT
In the <unk>of the <unk>.

Loft a Yellow bird and accelerate
through the middle structure.

12-
04

PS Fire the first Big Brother into the bot-
tom of the first tower.

fire Big Brother through the horizontal
wooden plank above the first pig.

12-
09

NRS Fire the first Big Brother through the
top of the small wooden squares on
the bottom-of the structure.

Use the Red bird to topple the stones
atop the tower, clearing the pigs on the
right side of the level.

22-
08

NRS Fire the first Black bird into the top of
the pig, causing the TNT to the right

Fire the Black bird downward into the
pile of square stones, launching them
rightward and popping all pigs on the
left side of the level.

13-
02

NRS Shoot the Yellow Bird so that it so that
it hits the TNT in the middle of the
level.

First, shoot the Yellow Bird through
the second level of the triangle block,
eliminating the first pig.

4-
06

NRS Use the Boomerang bird to blast the
wood blocks <unk>.

Launch the first Hal upwards.
With precise timing, activate the
boomerang mode to hit the middle
layer of wood.

6-
05
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Table 3: We list examples of prediction of sequence of actions. All 3 CS are displayed.
EV Predicted action Action sequence in guide LV
CS Fire the first Yellow Bird into the mid-

dle of the right tower. Use the next Yel-
low bird through the wooden plank in the
middle of the structure. Use the next Yel-
low Bird to take the remaining pigs on
the left side.

Fire the first Yellow bird through the
wooden block (not the hollow square) on
the left side. Launch the next Yellow bird
through the wood in the middle of the
level. If pigs remain, you have a Yellow
bird and Big Brother to clean up.

15-
10

CS Fire the first Black bird into the top of the
structure, causing the main tower to fall.
Then use the next Black bird, landing it
to clear the remaining pigs.

Fling the bomb bird directly into the
left helmet pig, and trigger upon impact.
Then drop the second bomb bird in the
gap between the two lower structures.

23-
03

CS First, use the White Bird to bomb the
middle of the structure, bombing as late
as possible. Then use a Yellow Bird
through the wooden blocks in the middle
of the level.

Shoot the first White Bird’s egg at the
stone blocks to the right of the TNT.

2-
20

PS First, fire the Yellow Bird to the left of
the left structure. Then, shoot the Yellow
Bird through the middle of the structure,
popping all three pigs.

Shoot the first Yellow Bird next to the
Small Pig that stands next to the TNT at
the top. Shoot the second Yellow Bird to
the remaining pigs to clear the level.

14-
01

PS Fire the first Big Brother through the
highest wooden block on the right side
of the tower to fall.

Fire Big Brother straight ahead. Use the
Boomerang bird to attack the right side
of the level from behind, then fire an-
other Brother forward to pop all remain-
ing pigs.

13-
15

PS Lob the first Black bird into the gap be-
tween the first two towers. Fire the next
Black bird into the left side of the struc-
ture, causing it to topple. Fire the next
Black bird into the left side of the struc-
ture, causing it to topple.

Fire the first Black bird into the bottom-
left support. Arc the next Black bird into
the small pig in the top-right and the ex-
plosion should topple everything that re-
mains.

16-
05

PS-
me

Fire the first Red Bird so he lands in the
middle of the structure, causing it to top-
ple. Fire the next Black bird through the
stone triangle of the structure to finish.

Fire Big Brother through the horizontal
wooden plank above the first pig. Fire
the first Black bird along a similar trajec-
tory, blasting the left side of the second-
tallest tower. Launch the last Black
bird a little lower, under the overhanging
plank and into the base of the tall tower.

12-
09

PS-
me

First, fire the Yellow Bird at the left hol-
low wooden squares. Then shoot the Yel-
low Bird at the top hollow stone squares.

Shoot the first blue bird into the air, then
aim it so it hits the wood between the first
couple of stone blocks and the boulder.

1-
20

PS-
ND

Send the White bird towards the top
structure. Then use the White bird to the
right tower.

Use the White Bird’s ability to reach the
stone blocks hanging by string. Shoot
the next White Bird to the wood ”house”
closest to the slingshot. Before you get
hit, use the egg bomb. Shoot the Yellow
Bird at the TNT. Shoot the Red Bird then
to the last pig in the stone house.

15-
05

NRS Shoot the first Black Bird so that it hits
the first pig. Shoot the next Black bird
through the gap, spinning it back through
the small wooden block above the next
two pigs.

Shoot the first Black Bird so that it lands
directly to the right of the highest pig.

2-
06

NRS Fire the Blue bird to break the two
wooden blocks in the bottom-left of the
structure. Fire the Blue bird through
the left side of the structure, causing the
TNT within.

Fling the Red bird into the ice leg of the
rightmost tower. There can be an ex-
treme amount of secondary destruction.
In some cases, only one or two pigs re-
mained.

13-
04

9
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