Under review as a conference paper at ICLR 2026

REFLEX-MED: REINFORCEMENT WITH LABEL-FREE
EXPLAINABILITY FOR UNIFIED MEDICAL REASONING

Anonymous authors
Paper under double-blind review

ABSTRACT

Clinicians urgently need explanations they can audit, not merely fluent chains. Yet prevail-
ing practices conflate interpretability with subjective human/LLM rationales, with post-
hoc visuals loosely aligned to answers, or with answer rationale consistency. These prox-
ies are annotation-hungry, bias-prone, and crucially do not certify process verifiability:
where the model looked and why it looked there. Meanwhile, reinforcement learning from
feedback excels at answer verifiability but offers little support for constraining the prove-
nance of attention or penalizing visually ungrounded reasoning. We introduce REFLEX-
Med, a reinforcement framework that instantiates label-free explainability through two
verifiable prerequisites: (i) faithful visual grounding that is text-conditioned localization
in the image, and (i) bi-directional cross-modal provenance, that is a cycle of mutual
traceability across image-text and text-text semantics. REFLEX-Med couples curriculum
GRPO with two frozen rewards computed by a medical vision-language encoder: a vi-
sual fidelity reward aligning text-conditioned saliency between the model’s own answer
and an anchor text, and a bi-modal provenance reward enforcing image-text and text-text
consistency in embedding space. Together with standard format and semantic-matching
rewards, REFLEX-Med resists large VLM hallucination and attention-think drift, improv-
ing both answer quality and auditable faithfulness on unified medical reasoning (open and
close-ended VQA) all without human or LLM rationale annotations.

1 INTRODUCTION
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Reinforcement learning from human feedback (RLHF) (Kaufmann et al., 2024) has recently delivered strong
gains on answer verifiability by optimizing rule-verifiable objectives (DeepSeek-Al, 2025). However, cur-
rent RL pipelines provide little support for explanation verifiability: they rarely constrain the provenance of
attention (Miao et al., 2024), nor do they penalize semantically plausible yet visually ungrounded reasoning
(answer-right, look wrong). These LVLMs are vulnerable to hallucination (Wu et al., 2025b) and what we
term attention-think drift: fluent chains of thought unmoored from the visual evidence (Shao et al., 2024).

We address this gap with REFLEX-Med (Reinforcement for Label-Free Explainability in Unified Medical
Reasoning), a reinforcement framework that makes explanation auditable and label free. Our premise is to
ground explainability in two verifiable prerequisites:

1. Faithful visual grounding (where): text-conditioned localization in the image should align with
the evidence implicated by the answer.

2. Bi-directional cross-modal provenance (why): image-text and text-text semantics must close a
mutual traceability loop, so that the answer’s language and an anchor description point to each
other and to the same image evidence.

Operationally, REFLEX-Med couples curriculum reinforcement learning with auditable judges. We com-
pute two label-free' rewards: (i) a Visual Fidelity Reward aligning text-conditioned saliency between the
model’s answer and anchor text via IoU of binarized saliency maps; (ii) a Bi-modal Provenance Reward en-
forcing high-level embedding-space agreement marginalized for stability. These explanation rewards com-
plement standard format and semantic matching rewards in medical VQA, and crucially, the frozen judges
prevent reward hacking and non-stationarity without human or LLM rationale labels. Our core goal is to
verify if injecting human-like perceptual label-free explainability can make LVLMs more like human experts.
To align with clinical practice, we cast the task as Unified Medical Reasoning, one policy handling both
close-ended and open-ended VQA. By optimizing process verifiability directly, REFLEX-Med must not
only produce correct answers but also ground them and close the provenance loop across modalities. Our
contributions are summarized as follows:

* We put forward a label-free and auditable notion of explainability for medical reasoning based on
verifiable prerequisites: faithful visual grounding and bi-directional cross-modal provenance, re-
framing explanation from subjective rationales to evidence that can be checked without new labels.

e We introduce REFLEX-Med, which integrates two explanation rewards, visual fidelity and bi-
modal provenance reward, into curriculum reinforcement learning, thereby optimizing process ver-
ifiability alongside answer quality.

* We show that using frozen medical vision language encoders as immutable judges resists large
LVLM hallucination and attention-think drift, avoiding non-stationarity and reward hacking while
requiring no human/LLM rationale annotations.

2 RELATED WORK

Reinforcement Learning in LLMs/LVLMs. Recent work has scaled outcome-driven RL beyond super-
vised instruction tuning for text-only LLMs and vision-language models. Group-relative policy optimiza-
tion (GRPO) (DeepSeek-Al, 2025) emerged as a value-free PPO variant and has boosted symbolic and
mathematical reasoning. Subsequent analyses (Du et al., 2025; Wang et al., 2025; Huang et al., 2025) and
variants explore off-policy estimation and theoretical properties, positioning GRPO as a practical backbone
for reasoning-oriented RL fine-tuning. In parallel, industry-scale efforts (Team, 2025) show RL can close

'Throughout, “label-free” means we do not use human-annotated rationales (e.g., boxes/masks or chains of thought)
nor LLM-generated rationales for supervision.
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Reinforcement for Label-Free Explainability in Unified Medical Reasoning
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Figure 2: Overview of REFLEX-Med. Visual Fidelity Reward (IoU between explainability masks from the
model and anchor statements) and Bi-modal Provenance Reward (agreement of image-to-text and text-to-
text embeddings), combined with format and answer rewards, yield unified medical reasoning.

much of the gap between smaller models and very large proprietary reasoners. Beyond outcome-only re-
wards, preference data alignment continues to evolve. RLAIF-V (Yu et al., 2025) adapts Al feedback-based
RL to large hallucination reductions. Our method follows this post-instruction alignment wave but differs in
using rewards focused on explanation verifiability not just answer correctness.

Multimodal Medical Reasoning. Medical LVLMs have advanced from domain-adapted instruction tuning
to broader foundation modeling, but most optimize answer utility (Lai et al., 2025; Pan et al., 2025) with-
out auditable visual grounding or process verifiability constraints. Early systems like LLaVA-series (Liu
et al., 2024; Li et al., 2023) and Med-Flamingo (Moor et al., 2023) adapted general VLMs to biomedical
images via large-scale instruction data and few-shot workflows. Recent medical work adds larger corpora,
architectures (Chen et al., 2024; Zhang et al., 2025), and evaluations covering multi-image reasoning and
3D modalities. Very recent work (Pan et al., 2025; Wu et al., 2025a) uses GRPO-style reinforcement fine-
tuning for medical reasoning, reporting in-domain/out-of-domain gains. Our study follows this paradigm but
focuses on process verifiability in a unified setting evaluating both close- and open-ended medical reasoning.

3 METHODOLOGY

We implement REFLEX-Med with curriculum reinforcement learning. The method is guided by two au-
ditable desiderata, faithful visual grounding (where) and Bi-directional cross-modal provenance (why), to
make explanations label-free and process verifiable. Concretely, we (i) convert heterogeneous VQA formats
into canonical statements, (7i) obtain explainability masks and semantic embeddings from a frozen mmed-
ical vision-language encoder, (iii) optimize two explanation rewards, Visual Fidelity Reward and Bi-modal
Provenance Reward, and (iv) train from close-ended to open-ended, enabling unified medical reasoning.
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3.1 UNIFIED INTERFACE AND FROZEN JUDGES

To evaluate explanations in a format-agnostic, auditable way, we declarativize each question—answer into a
canonical statement with decl(-, -). Let I be the image, ¢ the question, and a the policy’s answer from 7.
The deterministic operator maps polar, multi-choice, and open-ended prompts to concise factual assertions
for the frozen judge to assess localization and semantics. The anchor uses the dataset answer a*, i.e.,
ty = decl(q, a*), requiring no rationale labels and preserving our label-free, process-verifiable design.

1 = decl(q, a), th = decl(q, a*), decl: QxA — T. (1)
S~~~ S~——
model statement anchor statement

The frozen medical vision-language encoder (@img, @Prext) provides (i) unit-norm image and text embeddings
capturing high-level medical semantics, and (ii) a text-conditioned saliency map indicating where a state-
ment attends in the image. We binarize saliency with a quantile threshold to fix coverage and make masks
comparable across images and statements, which is crucial for auditable, label-free localization

V= img(1) €RY, ug = prexi(tr) € R (ke{1,2}),  IVlla = lluella =1, S(I,1) € [0, 1]V, (2)

Specifically, the image embedding v and the text embeddings uy (for #; and #;) are Lp-normalized. The
text-conditioned saliency is S(7,¢) € [0, 1]7*W. We obtain a discrete explainability mask by thresholding
at the p-quantile, as formalized below:

T (1,1) = Quant,(S(1,1)), M(I,1) =1[S(1,1) > 7,(I,1)], 3)

where I[-] is indicator the function and Quant,, returns the p-th percentile and p=0.5 by default. The tuple
(ur, M(I,tr)) is the auditable evidence for why and where.

3.2 VISUAL FIDELITY REWARD (VFR): FAITHFUL VISUAL GROUNDING

Clinical users must verify where a conclusion comes — _______ Q: What is the largest organ in the picture?
from. To encode faithful visual grounding, we require anchor statement | model statement
Lung It is lung It is heart

the model’s focus to spatially coincide with the anchor’s
focus on /. Using the explainability masks M and M,
from Equation 3 (Figure 3 show the logic for deter-
mining whether a model should be rewarded), we com-
pute their intersection-over-union (IoU), which quan-
tifies the proportion of shared visual evidence relative
to the joint support; this directly operationalizes the
“answer-right, look-right” criterion that process verifia- Figure 3: Mask M, /2 (red) and whether rewarded.
bility demands:

Label-Free Explainability Mask with Reward no Reward

My 0 M|

IOU(Ml,Mz) = |M] U le

€ [0,1], M, =M(I,t1), M2=M(1,l2). (4)

The Visual Fidelity Reward grants a discrete bonus when spatial agreement exceeds a clinically meaningful
margin (default 1,y=0.5). Discreteness stabilizes group-standardized advantages in GRPO:
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Ryrr = 1] IoU(M{, M>) > 110y |, Tou = 0.5. (5)

Intuitively, Equations 4 and 5 reward policies that “look where the evidence lives” and penalize visually
ungrounded shortcuts. This directly targets the introduction’s failure mode (answer-right, look-wrong) and
makes the where-axis of process verifiability auditable without human/LLM rationale supervision.

3.3 BI-MODAL PROVENANCE REWARD (BPR): BI-DIRECTIONAL CROSS-MODAL PROVENANCE

Auditable explanations also require why the statement is semantically supported by both the image and
the anchor language. We enforce bi-directional cross-modal provenance as a two-link loop: (i) text—text
agreement between the model statement and the anchor, and (ii) image—text agreement between the model
statement and the image. Each link is measured by cosine similarity in the frozen vision and language
encoder space, providing label-free yet clinically grounded semantics:

S = (U, uz), sic = (v,ur), U = drext(t1), U2 = drext(2), v = Pimg(1). (6)

We require each similarity to exceed a margin that captures language specificity and imaging variability.
BPR awards two half-credits when these thresholds are met, discouraging fluent but ungrounded statements
and mitigating the attention—think drift highlighted in the introduction.

1 1
Rppr = 3 I[se > 7] + 3 I[sie > 7iel, T = 0.8, 7y = 0.5. @)

We summarize the loop tightness by a marginized score that vanishes unless both links are satisfied; it mirrors
the intuition that provenance should close across modalities and language, strengthening the definition of
process verifiability without introducing any new supervision channels or proxy labels:

LoopTight(Z, g, a) = (min { Stt — Tits Sit — Tit })+, (1)+ = max(0, -). ®)

Together, Equations 6 to 8 realize the why-axis of process verifiability: the model’s claim must be se-
mantically traceable to both the anchor and the image via a frozen, auditable judge. This resists LVLM
hallucination by making it costly to produce language that is decoupled from clinical evidence.

3.4 REINFORCEMENT LEARNING WITH CURRICULUM FOR UNIFIED MEDICAL REASONING

We integrate explanation and utility under reinforcement learning, following recent GRPO-style fine-tuning
while preserving our label-free, auditable design. Alongside Rypr and Rppr, we include a format reward
Rimt € {0, 1} for the <think>/<answer> schema and an answer reward R, (exact match for close-ended
and BLEU/ROUGE/BERTScore for open-ended) ensuring that the agent remains clinically useful rather
than over-optimized for explanations alone.

RREFLEX-Med = Rans + Rmt + RvFR + RppR. 9

For each prompt (1, ), we sample a group {y; = (c;, al-)}fi1 ~mg(- | I,q), compute {R;} via Equation 9,
standardize within-group to A; = (R; — u)/o, and update using a clipped, reference-conditioned objective
with KL regularization, stabilizing exploration and mitigating degenerate drift while the frozen judge keeps
rewards stationary and auditable
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Table 1: Performance of our REFLEX-Med and different type of VLM on three in/out-of-domain datasets.
c.: close-end accuracy; o.: open-ended metrics; R: reasoning; U: understanding.

In-domain test Out-of-domain test
Model VQA-RAD SLAKE Path-VQA Avg. Quilt-VQA PMC MedXpert Avg
c. 0. c. 0. C. 0. C. 0. c. R.c. Uc
General VLM
Yi-VL-34B 53.0 224 589 339 473 129 38.1 56.0 13.2 39.5 199 20.7 29.9
LLaVA-v1.6-7B 52.6 198 579 376 479 12.6 38.1 583 87 355 20.7 20.6 28.8
LLaVA-v1.6-13B 55.8 24.0 589 445 519 12.8 41.3 574 245 36.6 19.5 18.1 31.2
LLaVA-v1.6-34B 58.6 24.1 673 44.6 59.1 15.0 44.8 624 237 444 20.6 25.5 35.3
Qwen2.5-VL-7B 67.3 322 71.6 40.2 655 17.2 49.0 54.8 29.0 504 20.6 23.1 35.6
Finetuned VLM

Qwen2.5-VL-7B (SFT) 713 27.8 78.6 50.8 87.8 33.6 583 609 89 492 202 204 319
Qwen2.5-VL-7B (GRPO) 70.5 29.8 79.3 40.2 82.8 27.8 55.1 50.2 284 51.2 21.2 21.7 345

Medical VLM
Med-Flamingo-7B 454 29.3 43.5 30.1 54.7 28.7 38.6 62.1 223 233 19.0 20.0 29.3
RadFM-13B 50.6 34.0 34.6 442 387 19.9 37.0 60.7 21.5 259 19.8 19.6 29.5
LLaVA-Med-7B 51.4 10.1 486 6.6 56.8 8.4 30.3 63.0 29.3 24.7 20.5 19.5 314
HuatuoGPT-Vision-8B 63.8 36.0 74.5 47.0 599 232 50.7 63.9 38.5 52.7 204 229 39.6
REFLEX-Med-3B 723 35.6 80.1 61.8 83.0 26.8 60.0 64.2 37.1 54.0 22.8 22.1 404
REFLEX-Med-7B 782 41.1 80.9 66.3 84.0 30.3 63.4 70.2 40.0 54.5 24.0 23.9 42.5

G
1 . . /s i 13
Lgrro = I Zmln(riAi, clip(r;, 1-€, 1+€) Ai)—ﬂKl(ﬂe(' | 1,q) || meet(- | 1, C[))’ ri = M-
= mret(Yi | 1, q)
(10)

Training uses a two-phase curriculum for unified medical reasoning. Phase I (close-ended) uses low-variance
exact-match R,y to establish reliable decision boundaries. Phase II (open-ended) introduces semantic Ryps
(BLEU/ROUGE/BERTScore). This schedule reduces variance and gradient conflict between discrete and
continuous signals while continuously rewarding faithful visual grounding and bi-directional cross-modal
provenance, addressing the process verifiability requirement in the introduction.

4 EXPERIMENTS

Datasets and Benchmarks. To ensure direct comparability, we follow the data recipe of previous
works (Rui et al., 2025; Chen et al., 2024). The training pool is the union of VQA-RAD (Lau et al., 2018),
SLAKE (Liu et al., 2021), and PathVQA (He et al., 2020), totaling ~ 27k close- and open-ended QA pairs.
We use the official splits and do not add rationale labels or external supervision. For evaluation we use in-
domain test sets (VQA-RAD, SLAKE, PathVQA) and out-of-domain suites including PMC-VQA (Zhang
et al., 2023), Quilt-VQA (Seyfioglu et al., 2024), the multimodal MedXpertQA subset (Zuo et al., 2025),
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and the MMMU Health & Medicine track (Yue et al., 2024). This setup probes answer quality and the two
explanation desiderata, faithful visual grounding and bi-directional cross-modal provenance.

Baselines. We compare against general vision-language models such as Yi-VL (Young et al., 2024),
LLaVA-v1.6 (Liu et al., 2024) with multiple sizes, and Qwen2.5-VL (Bai et al., 2025), medical vision-
language models such as Med-Flamingo (Moor et al., 2023), RadFM (Wu et al., 2023), LLaVA-Med (Li
et al., 2023), and HuatuoGPT-Vision (Chen et al., 2024), and backbone-controlled finetunes on Qwen2.5-
VL (Bai et al., 2025) including supervised fine-tuning and vanilla GRPO. All baselines use the same data,
splits, and metrics. Our method is REFLEX-Med, which augments GRPO with the Visual Fidelity Reward
and the Bi-modal Provenance Reward while keeping the medical judge frozen and label-free.

Implementation Details. The backbone is Qwen2.5-VL (Bai et al., 2025)-7B-Instruct, with a 3B variant
used for scale ablations. Training is in PyTorch using verl (Sheng et al., 2024) for GRPO and vLLM (Kwon
et al., 2023) on NVIDIA RTX 5880x8. The medical judge is a BioMedCLIP (Zhang et al., 2024a) kept
frozen. GRPO settings: group size 8, temperature 1.0, batch 64, learning rate 1 X 107, reference KL weight
B = 0.01. Outputs follow the <think> / <answer> schema. The curriculum runs close to open, one
epoch per phase under the same RL budget as previous work (Rui et al., 2025).

4.1 MAIN RESULTS

In-Domain and Out-of-Domain Generalization. REFLEX-Med-7B achieves the best averages in Table 1,
with an in-domain average of 63.4% and an out-of-domain average of 42.0%. Compared with standard
GRPO on the same backbone, the in-domain score rises from 55.1% to 63.4%, while the out-of-domain
score increases from 34.5% to 42.5%, indicating reduced hallucination and more stable reasoning. The
model also excels on open-format reasoning, reaching 66.3% on SLAKE open questions, which supports
genuine open-world inference rather than memorization. These gains stem from declarativized statements
judged by a frozen medical encoder together with the Visual Fidelity Reward and the Bi-modal Provenance
Reward, which align attention to image evidence and enforce semantic traceability.

s Qwen2.5-VL-7B (GRPO)  mmm w/o R-VFR + R-BPR W REFLEX-Med
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Figure 4: Cross-modal performance on SLAKE (Liu et al., 2021), where each model is trained on a single
modality and evaluated across all modalities to enable in-modal and cross-modal comparison.

Cross-Modal Generalization. We train on one modality and test on the other two to probe transfer across
MRI, CT, and X-ray. REFLEX-Med-7B is consistently the top curve: training on MRI yields 62.3% on
X-ray, training on CT yields 69.0% on X-ray, and training on X-ray yields 73.5% on CT. The ablation
without the VFR and the BPR falls between vanilla GRPO and REFLEX-Med, showing that faithful visual
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Table 2: Zero-shot generalization for the selected Health&Medicine track of MMMU (Yue et al., 2024), cov-
ering category-wise and overall accuracy. The abbreviations are defined as: BMS (Basic Medical Science),
CM (Clinical Medicine), DLM (Diagnostics and Laboratory Medicine), P (Pharmacy), PH (Public Health).

MMMU
Model BMS CM DLM P PH Health & Medicine
General VLM
Yi-VL-34B 494 489 432 405 320 41.5
LLaVA-v1.6-7B 405 369 321 323 269 33.1
LLaVA-v1.6-13B 53.6 46.7 333 222 40.0 39.3
LLaVA-v1.6-34B 56.4 560 469 467 41.7 48.8
LLaVA-v1.5-LLaMA3-8B | 423 44.0 370 347 352 38.2
Qwen2.5-VL-7B 50.0 633 333 593 533 51.7
Finetuned VLM
Qwen2.5-VL-7B (SFT) 46.4 467 400 556 50.0 51.7
Qwen2.5-VL-7B (GRPO) 57.1 66.7 30.0 704 633 57.2
Medical VLM
Med-Flamingo 20.6 28.1 248 253 312 28.3
RadFM 27.5 268 258 247 29.1 27.0
LLaVA-Med-7B 399 39.1 346 374 340 36.9
HuatuoGPT-Vision-8B 61.0 588 50.0 447 38.7 49.1
REFLEX-Med-7B 573 67.0 403 73.5 67.6 61.1

grounding and bi-directional cross-modal provenance additively enhance transfer. Declarativized statements
judged by a frozen medical encoder provide a label-free, modality-agnostic signal, aligning attention with
evidence and enforcing semantic traceability. These results indicate that the policy acquires transferable,
process-verifiable reasoning rather than memorizing modality-specific patterns.

Zero-Shot Generalization. As shown in Table 2, on the Health & Medicine track, REFLEX-Med-7B
achieves strong zero-shot transfer: Clinical Medicine 67.0%, Pharmacy 73.5%, and Diagnostics and Lab-
oratory Medicine 40.3%. Diagnostics improves by 10.3% versus the GRPO baseline, showing substantial
gain on a hard subtask. These results mirror our in- and out-of-domain findings and suggest that declara-
tivized statements judged by a frozen medical encoder, together with the VFR and the BPR, yield label-free,
process-verifiable shaping that improves open-world medical reasoning.

Reasoning Quality. Figure 5 illustrates typical out-
puts under our structured format with <think> and
<answer>. In the open-ended case (a), the chain
explicitly performs comparative localization (“more
prominent on the patient’s left side”) and ties the con-
clusion to the larger, more defined structure. In the
closed-ended case (b), the chain justifies a negative de-
cision by referencing relevant anatomy (temporal re-
gion, sphenoid sinus, skull base) and the absence of
disruption, rather than resorting to generic negations.
Qualitatively, the chains are concise, evidence-citing,
supporting our claim that REFLEX-Med optimizes pro-

Q: On which side is the colon more prominent in the patient?

g

A: <think>Based on the CT scan of the abdomen, the colon
appears to be more prominent on the patient's left side.
The left side of the image shows a larger, more defined
structure compared to the right side. </think>

<answer>left</answer>

Q: Are the temporal bones fractured?

A: <think>Based on the CT scan of the brain, the temporal bones appear
o be intact without any visible fractures. The structures within the
temporal region, such as the sphenoid sinus and parts of the skull base,
do not show signs of disruption that would indicate a fracture.</think> o

<answer>no</answer>

Figure 5: Qualitative results of (a) open-ended and
(b) close-ended VQA reasoning.



Under review as a conference paper at ICLR 2026

cess verifiability and produces grounded reasoning in-
stead of template-like or speculative narratives.

4.2 ABLATION STUDY AND ANALYSIS

Ablation on Model Size and Components. As shown in Table 1, REFLEX-Med-3B achieves 60.0% in-
domain and 40.4% out-of-domain, while HuatuoGPT-Vision-8B reports 50.7% and 39.6%, indicating that
our label-free, process-verifiable shaping is effective even at small scale. Removing the key components
(w/o Ryrr and Rppr) weakens cross-modal transfer in Figure 4; for example, CT— X-ray records 67.8%
under ablation and 69.0% with the full model, and X-ray—CT records 72.5% under ablation and 73.5% with
the full model. Across panels, the ablated variant typically lies between vanilla GRPO and REFLEX-Med,
underscoring the contribution of grounding and provenance constraints.

awzs-w rrecwdor - Apalysis on Internal Attention. Figure 6 contrasts internal attention maps from
the vanilla Qwen2.5-VL and REFLEX-Med on CT and chest X-ray. The baseline
exhibits diffuse, scattered activations over background structures, a signature of at-
tention—think drift. In contrast, REFLEX-Med produces compact, high-confidence
foci that coincide with the clinically implicated region in each case, yielding visibly
higher overlap with the anchor’s focus and fewer spurious hotspots. We attribute
this behavior to our label-free, process-verifiable shaping. Qualitatively, the maps
are sharper and sparser, indicating lower attention entropy and stronger localization
faithfulness. These observations support our claim that REFLEX-Med grounds its
answers in image evidence rather than relying on fluent but unmoored chains, tight-
ening the provenance loop central to our motivation.

Ground Truth = Lung

Figure 6: Attention.

Visual Fidelity Reward

Analysis on Dynamics of Ryrr and Rppr. Figure 7 shows three
reward traces. All three follow a similar pattern: rapid gains in early
training followed by slower, steady increases. The concurrent upward
trends indicate these signals are complementary rather than compet-
ing. Each curve approaches its empirical maximum, suggesting the
model increasingly depends on semantic and localization cues and
produces more correct, grounded outputs. This steady progression
of rewards also aligns with the model’s growing ability to meet the
explainability requirements for medical VQA tasks. The lack of di-
vergence or collapse indicates no obvious reward hacking, supporting Figure 7: Reward dynamics.
the stability and effectiveness of the label-free explainability reward design.

Bi-modal Provenance Reward

5 CONCLUSION

We presented REFLEX-Med, a reinforcement framework that makes explanation auditable and label-free for
unified medical reasoning; our core goal with this framework is to verify if injecting human-like perceptual
label-free explainability can make LVLMs more like human experts. Instead of supervising text rationales
or post-hoc heatmaps, REFLEX-Med optimizes two verifiable rewards: a Visual Fidelity Reward that aligns
model saliency with text anchors, and a Bi-modal Provenance Reward that enforces mutual traceability
between image—text and text—text semantics. With curriculum reinforcement learning and frozen medical
VLM judges, the training signal remains stationary and resists attention—think drift. Across in-domain and
out-of-domain evaluations, REFLEX-Med improves answer utility and explanation faithfulness, with strong
zero-shot transfer across MRI/CT/X-ray and health benchmark; ablations show both rewards are necessary.
By optimizing verifiable criteria rather than labels, the method narrows the gap between answer accuracy
and explanation reliability and slots into existing RLHF pipelines with minimal changes.
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A APPENDIX

Use Of LLMs. We use large language models solely for language polishing of the final
manuscript—correcting grammatical errors and refining expression. The models play no part in concep-
tualization, experimental design, theoretical analysis, or any substantive writing. All scientific viewpoints
and results remain our sole responsibility.
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