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Abstract

Understanding emerging behaviors of reinforcement learning (RL) agents may
be difficult since such agents are often trained in complex environments using
highly complex decision making procedures. This has given rise to a variety of
approaches to explainability in RL that aim to reconcile discrepancies that may
arise between the behavior of an agent and the behavior that is anticipated by an
observer. Most recent approaches have relied either on domain knowledge, that
may not always be available, on an analysis of the agent’s policy, or on an analysis
of specific elements of the underlying environment, typically modeled as a Markov
Decision Process (MDP). Our key claim is that even if the underlying model is not
fully known (e.g., the transition probabilities have not been accurately learned) or
is not maintained by the agent (i.e., when using model-free methods), the model
can nevertheless be exploited to automatically generate explanations. For this
purpose, we suggest using formal MDP abstractions and transforms, previously
used in the literature for expediting the search for optimal policies, to automatically
produce explanations. Since such transforms are typically based on a symbolic
representation of the environment, they can provide meaningful explanations for
gaps between the anticipated and actual agent behavior. We formally define
the explainability problem, suggest a class of transforms that can be used for
explaining emergent behaviors, and suggest methods that enable efficient search
for an explanation. We demonstrate the approach on a set of standard benchmarks.

1 Introduction

The performance-transparency trade-off is a major challenge with many artificial intelligence (AI)
methods: as the inner workings of an agent’s decision making procedure increases in complexity,
it becomes more powerful, but the agent’s decisions become harder to understand. Accordingly,
interest in explainable AI and the development of transparent, interpretable, AI models has increased
rapidly in recent years [1]. This increase in complexity is particularly prevalent in reinforcement
learning (RL) and deep reinforcement learning (DRL), where an agent autonomously learns how
to operate in its environment. While RL has been successfully applied to solve many challenging
tasks, including traffic control [2], robotic motion planning [3], and board games [4], it is increasingly
challenging to explain the behavior of RL agents, especially when they do not operate as anticipated.
To allow humans to collaborate effectively with RL-based AI systems and increase their usability,
it is therefore important to develop automated methods for reasoning about and explaining agent
behaviors.
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While there has been recent work on explainability of DRL (see [5] for a recent survey), most of these
methods either rely on domain knowledge, which may not be available, or involve post-processing the
policy learned by the agent (e.g., by reasoning about the structure of the underlying neural network
[6]). Moreover, most existing methods for explainability do not fully exploit the formal model that is
assumed to represent the underlying environment, typically a Markov Decision Process (MDP) [7],
and analyze instead one chosen element of the model (e.g., the reward function [8]).

We focus on RL settings in which the model of the underlying environment may be partially known,
i.e., the state space and action space are specified, but the transition probabilities and reward function
are not fully known. This is common to many RL settings in which the action and state spaces are
typically known but the agent must learn the reward function and transition probabilities, either
explicitly as in model-based RL or implicitly as when learning to optimize its behavior in model-free
RL. For example, in a robotic setting, the agent may have some representation of the state features
(e.g., the location of objects) and of the actions it can perform (e.g., picking up an object), but not
know its reward function or the probabilities of action outcomes.

Our key claim is that even if the underlying model is not fully known (or not explicitly learned), it can
nevertheless be used to automatically produce meaningful explanations for the agent’s behavior, i.e.,
even if the agent is using a model-free method, the partial model can be manipulated using a model-
based analysis to produce explanations. Specifically, we suggest producing explanations by searching
for a set of formal abstractions and transforms that when applied to the (possibly incomplete or
approximate) MDP representation will yield a behavior that is aligned with an observer’s expectations.
For this purpose, we exploit the rich body of literature that offers MDP transforms [9, 10, 11, 12, 13,
14] that manipulate different elements of the model by, for example, ignoring the stochastic nature of
the environment, ignoring some of the effects of actions, and removing or adding constraints. While
these methods have so far been used to expedite planning and learning, we use them to automatically
produce explanations. That is, while for planning the benefit of using such transforms is in increasing
solution efficiency, we use them to isolate features of the environment model that cause an agent to
deviate from a behavior that is anticipated by an observer.

Formally, we consider an explainability setting, which we term Reinforcement Learning Policy
Explanation (RLPE), that comprises three entities. The first entity, the actor, is an RL agent that seeks
to maximize its accumulated reward in the environment. The second entity, the observer, expects the
actor to behave in some way and to follow a certain policy, which may differ from the one actually
adopted by the actor. We refer to this as the anticipated policy, and this specifies which actions
an observer expects the actor to perform in some set of states.1 The third entity, the explainer, has
access to a (possibly partial) model of the environment, to the anticipated policy, and to a set of MDP
transforms. The explainer seeks a sequence of transforms to apply to the environment such that the
actor’s policy in the transformed environment aligns with the observer’s anticipated policy.2

Example 1 To demonstrate RLPE, consider Figure 1, which depicts a variation of the Taxi domain
[15]. In this setting, the actor represents a taxi that operates in an environment with a single passenger.
The taxi can move in each of the four cardinal directions, and pick up and drop off the passenger.
The taxi incurs a small cost for each action it performs in the environment, and gains a high positive
reward for dropping off the passenger at her destination. There are walls in the environment that
the taxi cannot move through. The observer has a partial view of the environment and knows which
actions the taxi can perform and how it can collect rewards. With the information available and the,
possibly incorrect, assumptions she makes about the actor’s reasoning, the observer anticipates that
the taxi will start its behavior by moving towards the passenger. This description of the anticipated
behavior over a subset of the reachable states in the environment is the anticipated policy. The prefix
of this policy is depicted by the green arrow in the figure. However, the actual policy adopted by
the actor, for which the prefix is represented by the red arrow, is to visit some other location before
moving towards the passenger.

In order to explain the actor’s behavior, the explainer applies different action and state space transforms
to its model of the environment. The objective is to find a transformed model in which the actor follows

1Our formalism can be extended to support cases in which the observer anticipates any one of a set of policies
to be realized.

2In some settings, the actor and explainer may represent the same entity. We use this structure to separate the
role of an actor from the attempt to explain its behavior.
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Figure 1: Reinforcement Learning Policy Explanation, example (left) and model (right). The policy
prefix of the taxi (yellow square) is depicted in red and leads to the fuel station (purple mark). The
observer, who is not aware of the fuel constraint, anticipates that the taxi heads towards the passenger
(the anticipated policy is depicted in green). An explanation is generated by applying a transform that
removes the fuel constraint.

the anticipated policy. We note that our suggested approach can produce meaningful explanations
only if the explainer uses transforms that are meaningful to the observer. In our example, the
explainer first applies an action transform that allows the taxi to move through walls and trains the
actor in the transformed environment. Since the policy in the transformed model still does not match
the anticipated policy, the explainer can infer that the reason for the discrepancy is not the fact that
the observer may be unaware of the walls in the environment, and therefore this transform would
not represent a meaningful explanation. As a second attempt, the explainer applies a transform that
relaxes the constraint that a car needs enough fuel to be able to move, and allows the taxi to move
regardless of its fuel level. After training, the actor’s policy in the transformed environment aligns
with the anticipated policy. This indicates the observer may not be aware of the fuel constraint, and
does not expect the actor to first drive towards the gas station. This transform is consistent with the
discrepancy between the anticipated and actual policies and represents a suitable explanation, as long
as this constraint can be conveyed to the observer.

Beyond this illustrative example, the ability to understand the “anticipation gap” (the gap between the
anticipated and observed behavior) is important in many applications. Examples include autonomous
driving, where it is critical to know why a vehicle deviates from an anticipated course of action,
medical applications, where it is crucial to explain why an AI system recommends one treatment over
another, and search and rescue missions, where a robot is moving in an unknown environment with
observations that are different from those of its operator and may behave in unpredictable ways.

The translation of the transform sequence that reconciles the gap between the observer and actor to
natural language is beyond the scope of this work. Nevertheless, since the transforms manipulate
the underlying MDP model, they incorporate the symbolic information represented by the MDP
representation, and this can reasonably be expected to translate to an intuitive explanation (e.g.,
notifying the observer about a missing precondition in its model of an action). Thus, our approach
can be used to automatically generate explanations without compromising generality. Moreover,
while we used a single-agent setting to demonstrate the approach, the same ideas can apply to
multi-agent settings, where the set of applicable transforms include, in addition to the transforms
used for single-agent settings, transforms that deal with the multi-agent aspects of the system (e.g.,
shared resource constraints).

The recent interest in explainability in RL has yielded approaches that vary in the kind of questions the
explanations are aimed to address and in the methods applied to find them (e.g., [16, 17, 8, 18, 19]).
Ours is an example of a post-processing approach, accounting here for settings in which the observer
has an anticipated behavior that is not aligned with the actual behavior, and where the objective is to
find an explanation by transforming the underlying environment to one in which the agent behaves as
expected.
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Typically, post-hoc methods focus on a particular element of the model and investigate its effect
on the agent’s behavior. For example, some propose that the reward function be decomposed into
an aggregation of meaningful reward types according to which actions are classified [8], or that
human-designed features, such as the estimated distance to the goal, are used to represent action-value
functions [18]. In other work, human-user studies have been used to extract saliency maps for RL
agents in order to evaluate the relevance of features with regard to mental models, trust, and user
satisfaction [19], while [6, 20] use saliency maps to produce visual explanations. Others suggest
producing a summary of an agent’s behavior by extracting important trajectories from simulated
behaviors [21].

Our approach supports arbitrary transforms and abstractions that can be applied to the environment
model and combined with any learning approach in both single- and multi-agent settings. The variety
of transforms that can be used for generating explanations relies on the various methods suggested
for expediting planning [13] and RL [11]. Previous work has considered an optimal planning agent
in a deterministic environment and suggested learning a partial model of the environment and task,
and identifying missing preconditions to explain the behavior [22]. We generalize this to stochastic
environments with partially-informed RL agents and to arbitrary transforms (beyond only those that
consider action preconditions).

The contributions of this work are threefold. First, we present a novel use of model transforms and
abstractions, formerly mainly used for planning, to produce explanations of RL agent behaviors.
Second, we present a formal definition of the Reinforcement Learning Policy Explanation (RLPE)
problem and specify classes of state and action space transforms that can be used to produce
explanations. Finally, we empirically demonstrate our approach on a set of standard single-agent and
cooperative multi-agent RL benchmarks.

2 Background

Reinforcement learning (RL) deals with the problem of learning policies for sequential decision
making in an environment for which the dynamics are not fully known [23]. A common assumption
is that the environment can be modelled as a Markov Decision Process (MDP) [7], typically defined
as a tuple ⟨S, s0, A,R, P, γ⟩, where S is a finite set of states, s0 ∈ S is an initial state, A is a finite
set of actions, R : S ×A× S → R is a Markovian and stationary reward function that specifies the
reward r(s, a, s′) that an agent gains from transitioning from state s to s′ by the execution of action
a, P : S ×A → P[S] is a transition function denoting a probability distribution p(s, a, s′) over next
states s′ when action a is executed at state s, and γ ∈ [0, 1] is a discount factor. In this work we use
factored MDPs [24], where each state is described via a set of random variables X = X1, . . . , Xn,
and where each variableXi takes on values in some finite domainDom(Xi). A state is an assignment
of a value Xi ∈ Dom(Xi) for each variable Xi. To model a multi-agent setting, we use a Markov
game [25], which generalizes the MDP by including joint actions A = {Ai}ni=1 representing the
collection of action sets Aiz for each of the n agents. We will hereon refer to an MDP as the model of
the underlying environment, and highlight as needed the specific considerations to a Markov game.

A solution to an RL problem is either a stochastic policy, indicated π : S → P[A], representing a
mapping from states s ∈ S to a probability of taking an action a at that state, or a deterministic policy,
indicated π : S → A, mapping from states to a single action. The agent’s objective is to find a policy
that maximizes the expected, total discounted reward.

There are a variety of approaches for solving RL problems [26, 23], these generally categorized
as either policy gradient methods, which learn a numerical preference for executing each action,
value-based methods, which estimate the values of state-action pairs, or actor-critic methods, which
combine the value and policy optimization approaches. Another important distinction exists between
model-based methods, where a predictive model is learned, and model-free methods, which learn a
policy directly. We support this variety by assuming the algorithm that is used by the actor to compute
its policy is part of our input.

3 MDP Transforms

We use MDP transforms to explain the behaviors of RL agents. Given a large set of possible trans-
forms, an explanation is generated by searching for a set of transforms to apply to the environment’s
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model such that the actor’s behavior in the modified model aligns with the observer’s expectations.
Since the transition from the original to the transformed environment is done by manipulating the
symbolic MDP representation of the environment, the difference between the models can help the
observer reason about the actor’s behavior, thus providing an explanation.

In this section, we describe various transforms suggested in the literature for expediting planning and
RL, and that we apply here for the purpose of explainability. We define a transform as any mapping
T : M → M that can be applied to an MDP to produce another MDP. We use the term “transforms"
to refer to various kinds of mappings, including “abstractions" (or “relaxations") that are typically
used to simplify planning, as well as other mappings that may yield more complex environments.
Moreover, the set of transforms used for explanation may modify different elements of the MDP
instead of focusing on a specific element (e.g, the reward function). We provide some examples
of transforms, but our framework is not restricted to particular transforms. We start by defining
transforms that modify the MDP’s state space.

Definition 1 (State Mapping Function) A state-mapping function ϕ : S → Sϕ maps each state
s ∈ S, into a state s′ ∈ Sϕ. The inverse image ϕ−1(s′) with s′ ∈ Sϕ, is the set of states in S that
map to s′ under mapping function ϕ.

When changing the state space of an MDP, we need to account for the induced change to the other
elements of the model. For this, we use a state weighting function that distributes the probabilities
and rewards of the original MDP among the states in the transformed MDP.

Definition 2 (State Weighting Function) [11] A state weighting function of a state mapping func-
tion ϕ is function w : S → [0, 1] where for every s̄ ∈ Sϕ,

∑
s∈ϕ−1(s̄) w(s) = 1.

Definition 3 (State-Space Transform) [11] Given a state mapping function ϕ and a state weighting
function w, a state space transform Tϕ,w maps an MDP M = ⟨S, s0, A,R, P, γ⟩ to T (M) =
⟨S̄, s̄0, A, R̄, P̄ , γ⟩ where:

• S̄ = Sϕ

• s̄0 = ϕ(s0)

• ∀a ∈ A, R̄(s̄, a) =
∑
s∈ϕ−1(s̄) w(s)R(s, a)

• ∀a ∈ A, P̄ (s̄, a, s̄′) =
∑
s∈ϕ−1(s̄)

∑
s′∈ϕ−1(s̄′) w(s)P (s, a, s

′)

State-space transforms can, for example, group states together. In factored representations, this can be
easily implemented by ignoring a subset of the state features. In Example 1, a state-space transform
can, for example, ignore the fuel level, grouping states that share the same taxi and passenger
locations.

Another family of transforms changes the action space.

Definition 4 (Action Mapping Function) An action mapping function ψ : A → Aψ maps every
action in A to an action in Aψ. The inverse image ψ−1(a′) for a′ ∈ Aψ, is the set of actions in A
that map to a′ under mapping function ψ.

Various action space transforms have been suggested in the literature for planning with MDPs
[27, 28]. Since such transforms inherently bear the MDP’s symbolic meaning with regard to the
environment and agent, a sequence of transforms that yields the anticipated policy can provide a
suitable explanation.

As an example, even if the exact transition probabilities of actions are not fully known, it is possible
to apply the single-outcome determinization transform, where all outcomes of an action are removed
(associated with zero probability) except for one, perhaps the most likely outcome or the most
desired outcome [29]. Similarly, the all outcome determinization transform allows a planner to
choose a desired outcome, typically implemented by creating a separate deterministic action for each
possible outcome of the original formulation [29, 27]. If such transforms yield the anticipated policy,
this implies that the observer may not be aware of the alternative outcomes of an action, or of the
stochastic nature of the environment. In settings where actions are associated with preconditions, it
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is possible to apply a precondition relaxation transform, where a subset of the preconditions of an
action are ignored [22]. For example, for MDPs represented via a factored state space, each action a
is associated with a set pre(a) specifying the required value of a subset of its random variables. A
precondition relaxation transform removes the restriction regarding these variables. Similarly, it is
possible to ignore some of an action’s effects, for example by applying a delete relaxation transform
and ignoring an actions’ effect on Boolean variables that are set to false [9]. As another example, a
precondition addition transform would add preconditions to an action, perhaps those that may be
considered by the observer by mistake. In all cases, if one or more transforms produce the anticipated
policy, a plausible explanation is that the observer is not aware of the preconditions or effects of
actions, such as in the setting we describe in regard to fuel in Example 1.

The transforms mentioned above are also applicable to multi-agent settings. In addition, we can
apply multi-agent specific transforms, such as those that allow collisions between agents, or allow for
more flexible communication. In a multi-agent extension of our taxi example, an observer may not
be aware that taxis cannot occupy the same cell—a discrepancy that can be explained by applying a
transform that ignores the constraint (precondition) that a cell needs to be empty for a taxi to be able
to move into it.

4 Transforms as Explanations

We formalize the explainability problem as composed of three entities: an actor, which is an agent
operating in the environment, an observer, which is an agent with some anticipation about the behavior
of the actor, and an explainer, which is an agent that wishes to clarify the discrepancy between the
anticipated and actual behaviors. The input to a Reinforcement Learning Policy Explanation (RLPE)
problem includes a description of the environment (which may be inaccurate), a description of the
behavior (policy) of an RL agent in the environment, the anticipated behavior an observer expects the
actor to follow, and a set of possible transforms that can be applied to the environment.

Definition 5 (RLPE Model) A Reinforcement Learning Policy Explanation (RLPE) model is defined
as R = ⟨M,A, π̃, T ⟩, where

• M is an MDP representing the environment,

• A : M → Π is the actor, which is associated with an RL algorithm that it uses to compute a
policy π ∈ Π ,

• π̃ is the anticipated policy the observer expects the actor to follow, and

• T : M → M is a finite set of transforms.

We assume the actor is a reward-maximizing RL agent3. The anticipated behavior of the observer de-
scribes what the observer expects the actor to do in some subset of the reachable states4. Since we
do not require the anticipated policy to be defined over all states, we refer to this as a partial policy.
The settings of interest here are those in which the actual policy differs from the anticipated policy.
We denote by T the set of all transforms. Each transform T ∈ T is associated with a mapping
function for each of the MDP elements that it alters. We let ϕT and ψT denote the state and action
mapping functions, respectively (when the MDP element is not altered by the transform, the mapping
represents the identity function). When a sequence of transforms is applied, we refer to the composite
state and action mapping that it induces, and define this as follows.

Definition 6 (Composite State and Action Space Function) Given a sequence T⃗ = ⟨T1, . . . , Tn⟩,
Ti ∈ T , the composite state space function of T⃗ , is ϕT⃗ (s) = ϕTn

·, . . . , ·ϕT1
(s). The composite

action space function is ψT⃗ (s) = ψTn
·, . . . , ·ψT1

(s).

The explainer seeks a sequence of transforms that produce an environment where the actor follows
a policy that corresponds to the observer’s anticipated policy. Formally, we seek a transformed
environment where the actor’s policy satisfies the anticipated policy, i.e., for every state-action

3For the multi-agent case, instead of a single agent we have a group of agents. All other elements are
unchanged.

4The model can be straightforwardly extended to support a set of possible anticipated policies.
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pair in the anticipated policy, the corresponding state in the transformed model is mapped to its
corresponding action. Given a policy π, we let S(π) represent the set of states for which the policy is
defined.

Definition 7 (Policy Satisfaction) Given a partial policy π defined over MDP M =
⟨S, s0, A,R, P, γ⟩, a partial policy π′ defined over MDP M ′ = ⟨S′, s′0, A

′, R′, P ′, γ′⟩, a state
mapping function ϕ : S → S′, and an action mapping function ψ : A→ A′, π′ satisfies π, denoted
π′ |= π, if for every s ∈ S(π), we have ϕ(s) ∈ S(π′) and ψ(π(s)) = π′(ϕ(s)).

Intuitively, policy π′ satisfies π if they agree on the agent’s selected action on all states for which π
is defined. We note that our definition above is suitable only if π(s) and π′(ϕ(s)) are well-defined,
i.e., if the policies are deterministic or, if they are stochastic, a deterministic mapping from states to
actions is given (e.g., selecting the maximum probability action).

Clearly, for any two policies, there exist state and action mappings that can be applied to cause
any policy to satisfy another policy. In order to produce valuable explanations, the input needs to
include suitable transforms, i.e., transforms that change the environment in a way that highlights the
elements of the model that cause unanticipated behaviors. In addition, and inspired by the notion of a
Minimal Sufficient Explanation [8], we want to minimize the change that is applied to the environment.
Intuitively, the more similar the original and transformed MDPs are, the better the explanation. We
therefore assume the input to an RLPE problem includes some distance metric, d : M×M → R+,
between a pair of MDPs [30]. In our evaluation, the distance represents the number of atomic changes
that change a single element of the MDP (see the supplementary material for a description of several
other distance metrics from the literature).

The objective of the explainer is to find a sequence of transforms that yield an MDP M ′ such that the
actor’s policy in M ′ satisfies π̃. Among the sequences that meet this objective, we are interested in
sequences that minimize the distance between the original and the transformed MDP. Formally:

Definition 8 [RLPE Problem] Given a RLPE model R and a metric function d : M×M → R+ ,
an RLPE problem seeks a transform sequence T⃗ = ⟨T1, . . . , Tn⟩, Ti ∈ T , s.t.

1. the actor’s policy π′ in T⃗ (M) satisfies π̃, i.e, π′ |= π̃, and

2. among the sequences that satisfy (1.), T⃗ minimizes the distance d(M, T⃗ (M)).

5 Finding Explanations

In an RLPE setting, the explainer has access to a set of transforms, but does not know a priori which
transform sequence will produce meaningful explanations. This means that the explainer may need
to consider a large set of possible transform sequences. This makes a naive approach impractical, as
the number of transform combinations is exponential in |T |.
To address this computational challenge, we offer several approaches for expediting the search.
Inspired by the search for an optimal MDP redesign in [31], a basic approach is a Dijkstra-like search
through the space of transform sequences. Assuming a successor generator is available to provide the
MDP that results from applying each transform, the search graph is constructed in the following way.
The root node is the original environment. Each edge (and successor node) appends a single transform
to the sequence applied to the parent node, where the edge weight represents the distance between
the adjacent MDPs according to the distance measure d. For each explored node we examine whether
the actor’s policy in the transformed MDP satisfies the anticipated policy. The search continues until
such a model is found, or until there are no more nodes to explore. The result is a transform sequence
that represents an explanation. This approach is depicted in Figure 2, where the top of the figure
depicts the search in the transform space and the lower part depicts the MDPs corresponding to each
sequence.

The suggested approach is guaranteed to return an optimal (minimum distance) solution under the
assumption that the distance is additive and monotonic with respect to the transforms in T , in that
a transform cannot decrease the distance between the resulting MDP and the original one. From
a computational perspective, even though in the worst case this approach covers all the possible
sequences, in practice it may find solutions quickly. In addition, in cases where the transforms are
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Figure 2: A search for transform-based explanations in
the transform space. Figure 3: Evaluation domains including

single-agent and multi-agent settings.

independent, in that their order of application does not affect the result, it is possible to expedite the
search by maintaining a closed list that avoids the re-computation of examined permutations. The
depth of the search can also be bounded by a predefined fixed number of transforms.

In spite of these computational improvements, the above solutions require learning from scratch
an actor’s policy in the transformed environment for each explored node. One way to avoid this is
by preserving the agent’s policy in a given environment and using it for bootstrapping re-training
in the transformed environment. Another way to expedite the search is to group together a set of
transforms and examine whether applying the set leads to a change in the actor’s policy. If this
compound transform does not change the actor’s policy, we avoid computing the values of the
individual transforms. This approach is inspired by pattern database (PDB) search heuristics [32], as
well as the relaxed modification heuristic [31]. Even though this heuristic approach compromises
optimality, it can potentially reduce the computational effort in settings in which aggregation can
be done efficiently, such as when transforms have parameterized representations. In our example, if
allowing a taxi to move through (all) walls in a given environment does not change the actor’s policy,
we avoid computing the value of all individual transforms that remove a single wall. Finally, we
examine the efficiency of performing a focused policy update: when applying a transform, instead of
collecting random experiences from the environment and updating the policy for all states, we start
by collecting new experiences from states that are directly affected by the transform, and then follow
the propagated effect of this change. In Example 1, when removing a wall in the taxi domain, we
start by collecting experiences and updating the policy of states that are near the wall, and iteratively
follow the propagated effect of this change on the policy in adjacent cells.

6 Empirical Evaluation

The empirical evaluation was dedicated to examining the ability to produce meaningful explanations
via MDP transforms and to examining the empirical efficiency of the suggested approaches for finding
satisfying explanations. Each RLPE setting included a description of the underlying environment, the
actual policy followed by the actor, and the anticipated policy. We describe each component below,
before describing our results5.

Environments: We conducted experiments with 12 different environments, including both determin-
istic and stochastic domains and single and multi-agent domains (see Figure 3). Frozen Lake [33]
represents a stochastic grid navigation task, with movements in all four cardinal directions and
a probability of slipping (and terminating). As demonstrated in Example 1, Taxi is an extension
of the similar Open-AI domain (which in turn is based on [15]), with a fuel constraint that needs
to be satisfied in order to move and actions that correspond to refueling the car at a gas station.
Apple-Picking is our stochastic extension of the Taxi domain: reward is achieved only when picking
up a passenger (i.e., an ‘apple’) and the session can terminate with some probability when an agent
encounters a thorny wall. We also used seven PDDLGym domains [34]: Sokoban, Blocks World,
Towers of Hanoi, Snake, Rearrangement, Triangle Tireworld, and Exploding Blocks. The PDDLGym

5Additional results and extensions can be found in the supplementary material. Our complete dataset and
code can be found at https://github.com/sarah-keren/RLPE.git
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Figure 4: Single-Agent DQN [36]: Average running time for
finding an explanation for each domain (x-axis), and policy
satisfaction ratio, measuring the ratio of instances for which
a satisfying policy was found (y-axis).

Figure 5: Multi-Agent: Comparing average running time for
finding an explanation for the multi-agent domains (x-axis),
and policy satisfaction ratio (y-axis). The actors are using
PPO [37].

framework aligns with the OpenAI Gym interface while allowing the user to provide a model-based
relational representation of the environments using PDDL [35]. This representation is not available
to the actor, which operates using standard RL algorithms. For multi-agent domains, we created
a two-agent Sokoban in which agents need to avoid colliding with each other and also provide
a Multi-Taxi domain that includes multiple taxis that may collide and need to transport multiple
passengers6. All these domains have delayed rewards and require multi-step reasoning, making them
challenging for standard RL methods.

Observer: We considered a partially informed observer that has access to a subset of the environment
features. For example, in Taxi the observer may be unaware of the fuel constraint or may not be
able to see the walls. For all environments we assume the observer anticipates that the actor follows
a policy that is optimal w.r.t. the observer’s possibly incomplete or inaccurate model. Plans were
produced using [38].

6See https://github.com/sarah-keren/multi_taxi
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Actor: For the single-agent settings, we used DQN [36], CEM [39], and SARSA [23] from the
keras-rl library7, as well as Q-learning [40]. For the multi-agent domains, we used PPO [37] from
keras-rl. Agents were trained for 600,000–1,000,000 episodes in each environment, with a maximum
of 60 steps per episode.

Explainer: We used five paramterized transform types: state space reduction [29], likely outcome
relaxation [29], precondition relaxation [22], all outcome determinization (for stochastic domains)
[41], and delete relaxation [9]. Grounding (i.e., the instantiation of the parameterized representations)
was performed automatically for each transform for all environments in which it is applicable. Each
grounded transform modifies a single action or variable. For the Frozen Lake, Taxi, and Apple
Picking domains, where the dynamics are not defined explicitly, we first learn the transition matrix to
generate the precondition relaxation transform.

We used three methods for searching for explanations. BASE is a Dijkstra search, PRE-TRAIN
is a Dijkstra search using the learned policy in a given environment to bootstrap learning in the
modified environment, and with a focused policy update to avoid iteratively updating the entire policy.
PRE+CLUSTER extends PRE-TRAIN by computing values of groups of transforms (e.g., applying
the delete relaxation to multiple actions) and using them to prune individual transforms for which the
superset did not change the ratio of states for which the anticipated policy is satisfied. Experiments
were run on a cluster using six CPUs, each with four cores and 16GB RAM. We limited the depth of
the search tree to three.

Results: To assess the ability to produce explanations using environment transforms, we measured
the satisfaction ratio of each transform sequence. This measure is defined as the fraction of states for
which the anticipated policy and actor policy agree among all states for which the anticipated policy
is defined, i.e., the number of states s ∈ S(π) for which ϕ(s) ∈ S(π′) and ψ(π(s)) = π′(ϕ(s)). For
distance measure d, we used the length of the explanation, i.e., the number of atomic transforms
(each changing a single element of the MDP) that were applied.

Figure 4 gives the results achieved by each method for the single-agent domains and with an actor
that uses DQN. Figure 5 gives the results for the multi-agent settings, with PPO used by the agents.
Each plot represents, for each domain and each method, the average computation time for finding an
explanation (x axis) and the average satisfaction ratio (y axis), i.e., the average ratio of the expected
policy that was satisfied before the search exhausted the computational resources. Results for the
single agent domains show that while BASE achieves the highest satisfaction ratio (which is to be
expected from an optimal algorithm), its computation time is much higher, requiring more than 7x
the time of PRE+CLUSTER in Triangle Tireworld. In contrast, PRE+CLUSTER outperforms all
other methods in terms of computation time, still with 84% success in the worst case domain, and
with a maximum average variance of 0.03 over the different domains. The results are similar for the
multi-agent settings, where the PRE+CLUSTER approach achieved best run time results on both
domains while compromising the policy satisfaction rate by up to 10%.

7 Conclusion

We introduced a new framework for explainability in RL based on generating explanations through
the use of formal model transforms, which have previously been primarily used for planning. The
empirical evaluation on a set of single and multi-agent RL benchmarks illustrates the efficiency of
the approach for finding explanations among a large set of transforms.

Possible extensions include integrating human users or models of human reasoning into the process
of generating anticipated policies and in the process of evaluating the quality of the explanations
generated by our methods. In addition, while this work uses a restrictive satisfaction relation that
requires a full match between the anticipated policy and the actor’s behavior in discrete domains, it
may be useful to account for continuous domains and to use more flexible evaluation metrics for
satisfaction that allow, for example, finding transforms that get as close as possible to the anticipated
policy. Finally, our current account of multi-agent settings focuses on fully cooperative settings and it
would be interesting to extend this framework to account for adversarial domains.

7https://github.com/keras-rl/keras-rl
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