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Abstract
Deep Operator Networks are an increasingly popular paradigm for solving regression in in-1

finite dimensions and hence solve families of PDEs in one shot. In this work, we aim to2

establish a first-of-its-kind data-dependent lowerbound on the size of DeepONets required3

for them to be able to reduce empirical error on noisy data. In particular, we show that4

for low training errors to be obtained on n data points it is necessary that the common5

output dimension of the branch and the trunk net be scaling as Ω (√n). This inspires our6

experiments with DeepONets solving the advection-diffusion PDE, where we demonstrate7

the possibility that at a fixed model size, to leverage increase in this common output di-8

mension and get monotonic lowering of training error, the size of the training data might9

necessarily need to scale quadratically with it.10

1 Introduction11

Data-driven approaches to analyze, model, and optimize complex physical systems are becoming more12

popular as Machine Learning (ML) methodologies are gaining prominence. Dynamic behaviour of such13

systems is frequently characterized using systems of Partial Differential Equations (PDEs). A large body of14

literature exists for using analytical or computational techniques to solve these equations under a variety15

of situations, such as various domain geometries, input parameters, and initial and boundary conditions.16

Very often one wants to solve a “parametric” family of PDEs i.e have a mechanism of quickly obtaining17

new solutons to the PDE upon variation of some parameter in the PDE like say the viscosity in a fluid18

dynamics model. This is tantamount to obtaining a mapping between the space of possible parameters and19

the corresponding solutions to the PDE. The cost of doing this task with conventional tools such as finite20

element methods (Brenner & Carstensen, 2004) is enormous since distinct simulations must be run for each21

unique value of the parameter, be it domain geometry or some input or boundary value. Fortuitously, in22

recent times there have risen a host of ML methods under the umbrella of “operator learning” to achieve23

this with the promise of providing better speed-accuracy trade-offs than conventional methods, (Ray et al.,24

2023)25

26

A reviewed in (Ray et al., 2023), we recognize that operator learning is itself a part of the larger program of27

rapidly increasing interest, “physics informed machine learning” (Karniadakis et al., 2021). This program28

encompasses all the techniques that are being developed to utilize machine learning methods, in particular29

neural networks for the numerical solution of dynamics of physical systems, oftenn described as differential30

equations. Notable methodologies that fall under this ambit are, Physics Inspired Neural Nets (Raissi &31

Karniadakis, 2018), DeepONet (Lu et al., 2019), Fourier Neural Operator (Li et al., 2020b), Wavelet Neural32

Operator (Tripura & Chakraborty, 2022) etc.33

34

Physics-Informed Neural Networks (PINNs) have emerged as a notable approach when there is one specific35

PDE of interest that needs to be solved. To the best of our knowledge some of the earliest proposals of36

this were made in, (Dissanayake & Phan-Thien, 1994; Lagaris et al., 1998; 2000). The modern avatar of37

this idea and the naming of PINNs happened in (Raissi et al., 2019). This learning framework involves38

minimizing the residual of the underlying partial differential equation (PDE) within the class of neural39

networks. Notably, PINNs are by definition an unsupervised learning method and hence they can solve40

PDEs with no need for knowing any sample solutions. They have demonstrated significant efficacy and41

computational efficiency in approximating solutions to PDEs, as evidenced by (Raissi et al., 2018), (Lu42
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et al., 2021), (Mao et al., 2020), (Pang et al., 2019), (Yang et al., 2021), (Jagtap & Karniadakis, 2021),43

(Jagtap et al., 2020), (Bai et al., 2021), A detailed review of this field can be seen at, (Cuomo et al., 2022).44

45

As opposed to the question being solved by PINNs, Deep Operator Networks train a pair of nets in tandem to46

learn a (possibly nonlinear) operator mapping between infinite-dimensional Banach spaces - which de-facto47

then becomes a way to solve a family of parameteric PDEs in “one-shot”. Its shallow version was proposed48

in (Chen & Chen, 1995b) and more recently its deeper versions were investigated in (Lu et al., 2019) and its49

theoretical foundations laid in (Lanthaler et al., 2022a).50

Till date numerous variants of DeepONet models (Park et al., 2023), (Liu & Cai, 2021), (Hadorn, 2022),51

(Almeida et al., 2022), (Lin et al., 2022), (Xu et al., 2022), (Tan & Chen, 2022), (Zhang et al., 2022),52

(Goswami et al., 2022) have been proposed and this training process takes place offline within a predetermined53

input space. As a result, the inference phase is rapid because no additional training is needed as long as the54

new conditions fall within the input space that was used during training.55

Other such neural operators like FNO (Li et al., 2020b), WNO[(Tripura & Chakraborty, 2022) enable effi-56

cient and accurate solutions to complex mathematical problems, opening up new possibilities for scientific57

computing and data-driven modeling. They have shown promise in various scientific and engineering appli-58

cations including physics simulations (Choubineh et al., 2023), (Gopakumar et al., 2023), (Li et al., 2022b),59

(Lehmann et al., 2023), (Li et al., 2022a), image processing (Johnny et al., 2022), (Tripura et al., 2023), and60

weather-modelling (Kurth et al., 2022), (Pathak et al., 2022).61

A deep mystery with neural nets is the effect of their size on their performance. On one hand, we know62

from various experiments as well as theory that the asymptotically wide nets are significantly weaker than63

actual neural nets and they have very different training dynamics than what is true for practically relevant64

nets. But, it is also known that there are specific ranges of overparametrization at which the neural net65

performs better than at any lower size. Modern learning architectures exploit this possibility and they are66

almost always designed with a large number of training parameters than the size of the training set. It seems67

to be surprisingly easy to find overparametrized architectures which generalize well. This contradicts the68

traditional understanding of the trade-off between approximation and generalization, which suggests that69

the generalization error initially decreases but then increases due to overfitting as the number of parameters70

increases (forming a U-shaped curve). However, recent research has revealed a puzzling non-monotonic71

dependency on model size of the generalization error at the empirical risk minimum of neural networks.72

This curious pattern is referred to as the “double-descent” curve,(Belkin et al., 2019). Some of the current73

authors had pointed out (Gopalani & Mukherjee, 2021), that the nature of this double-descent curve might74

be milder (and hence the classical region exists for much large range of model sizes) for DeepONets - which75

is the focus of this current study.76

It is worth noting that this phenomenon has been observed in decision trees and random features and in77

various kinds of deep neural networks such as ResNets, CNNs, and Transformers (Nakkiran et al., 2021).78

Also, various theoretical approaches have been suggested towards deriving the double-descent risk curve,79

(Belkin et al., 2018a), (Belkin et al., 2018b), (Deng et al., 2022), (Kini & Thrampoulidis, 2020).80

In recent times, many kinds of generalization bounds for neural nets have also been derived, like those based81

on Rademacher complexity (Sellke, 2023), (Golowich et al., 2018), (Bartlett et al., 2017) which are uniform82

convergence bounds independent of the trained predictor or results as in (Li et al., 2020a) and (Muthukumar83

& Sulam, 2023) which have developed data-dependent non-uniform bounds. These help explain how the84

generaliation error of deep neural nets might not explicitly scale with the size of the nets. Some of the85

current authors had previously shown (Gopalani et al., 2022) the first-of-its-kind Rademacher complexity86

bounds for DeepONets which does not explicitly scale with the width (and hence the number of trainable87

parameters) of the nets involved. Despite all these efforts, to the best of our knowledge, it has generally88

remained unclear as to how one might explain the necessity for overparameterization for good performance89

in any such neural system.90

In light of this, a key advancement was made in, (Bubeck & Sellke, 2023). They showed, that with high91

probability over sampling n training data in d dimensions, if there has to exist a neural net f of depth D and92
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p parameters such that it has empirical squared-loss error below a measure of the noise in the labels then it93

must be true that, Lip(f) ≥ Ω̃ (
√

nd
Dp
). This can be interpreted as an indicator of why large models might be94

necessary to get low training error on real world data. Building on this work, we prove the following result95

(stated informally) for the specific instance of operator learning as we consider,96

Theorem 1.1 (Informal Statement of Theorem 4.2). Suppose one considers a DeepONet function class at97

a fixed bound on the weights and the total number of parameters and both the branch and the trunk nets98

ending in a layer of sigmoid gates. Then with high probability over sampling a n−sized training data set, if99

this class has to have a predictor which can achieve empirical training error below a label noise dependent100

threshold, then necessarily the common output dimension of the branch and the trunk must be lower bounded101

as Ω (√n).102

And notably, the prefactors suppressed by Ω scale inversely with the bound on the weights and the size of the103

model.104

Thus, to the best of our knowledge, our result here makes a first-of-its-kind progress with explaining the size105

requirement for DeepONets and in particular how that is related to the available size of the training data.106

Further, motivated by the above, we shall give experiments to demonstrate that at a fixed model size, for107

DeepONets to leverage an increase in the size of the common output dimension of branch and trunk, the108

size of the training data might need to be scaled quadratically with that.109

The proof in (Bubeck & Sellke, 2023) critically uses the Lipschitzness condition of the predictors to leverage110

isoperimetry of the data distribution. And that raises a fundamental mismatch with the setup of operator111

learning - since DeepONets are not Lipschitz functions. Thus our work embarks on a program to look for112

an analogous insight as in (Bubeck & Sellke, 2023) that applies to DeepONets.113

1.1 The Formal Setup of DeepONets114

We recall the formal setup of DeepONet (Ryck & Mishra, 2022). Given T > 0 and D ⊂ Rd compact, consider115

functions u ∶ [0, T ] ×D → Rm, for m ≥ 1, that solve the following time-dependent PDE,116

La(u)(t, x) = 0 and u(x, 0) = u0 ∀(t, x) ∈ [0, T ] ×D

Let H be the function space of PDE solutions ofthe above. Define a function space Y s.t u0 ∈ Y ⊂ L2(D) be117

the space of initial conditions and La ∶ H → L2([0, T ] ×D) is a differential operator that can depend on a118

parameter (function) a ∈ Z ⊂ L2(D).119

Corresponding to the above we have the solution operator G ∶ X → L2(Ω) ∶ f ↦ u, where f ∈ {u0, a}120

X ∈ {Y,Z}, f ∈K where K ⊂ C(D), with D compact domain in Rd1 , and Ω =D or Ω = [0, T ] ×D.121

The DeepONet architecture as shown in Figure 1 consists of two nets, the Branch Net, is a neural net denoted122

by NB that performs the mapping Rd1 → Rq - which in use will take as input a d1 point discretization of123

a real valued function f as a vector, f = (f(x1), f(x2), ..., f(xd1)) corresponding to some arbitrary choice124

of “sensor points” {xj ∣ 1 ≤ j ≤m} ⊂ D. On the other hand, the Trunk Net, denoted by NT, performs the125

mapping Rd2 → Rq which takes evaluation points at the domain of solution space of PDE. Then the final126

output is127

Gθ

⎛
⎜⎜
⎝

f ((x1) , f (x2) ,⋯, f (xm))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

s

⎞
⎟⎟
⎠
(p) ∶= ⟨NB(f),NT(p)⟩

Given m, fixed sensor locations {xj ∣ j = 1, . . . , m} ⊂ D and the corresponding sensor values128

{f (xj) ∣ j = 1, . . . , m} as input, and input location p ∈ U where U compact domain in Rd2 , the objec-129

tive of a DeepONet is to approximate the value G(f)(p) by Gθ (f (x1) , f (x2) ,⋯, f (xm)) (p)). where130

([f (x1) , f (x2) ,⋯, f (xm)] are discrete representations of f .131
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Figure 1: A Sketch of the DeepONet Architeture
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Review of the Universal Approximation Property of DeepONets An universal approximation132

theorem for shallow DeepONets was established in (Chen & Chen, 1995a). A more general version of it was133

established in (Lanthaler et al., 2022b) which we shall now briefly review.134

Consider two compact domains, D ⊂ Rd and U ⊂ Rn, and two compact subsets of infinite dimensional135

Banach spaces, K1 ⊂ C(D) and K2 ⊂ C(U), where C(D) represents the collection of all continuous functions136

defined on the domain D and similarly for C(U). We then define a (possibly nonlinear) continuous operator137

G ∶K1 →K2.138

Theorem 1.2. (Restatement of a key result from (Lanthaler et al., 2022b) on Generalised Universal Ap-139

proximation for Operators). Let µ ∈ P(C(D)) be a probability measure on C(D). Assume that the mapping140

G ∶ C(D) → L2(U) is Borel measurable and satisfies G ∈ L2(µ). Then, for any positive value ε, there exists141

an operator G̃ ∶ C(D) → L2(U), such that142

∥G − G̃∥L2(µ) = (∫
C(D)

∥G(u) − G̃(u)∥2L2(U)dµ(u))
1/2
< ε

In other words, G̃ can approximate the original operator G arbitrarily close in the L2(µ)-norm with respect143

to the measure µ. The above approximation guarantee between DeepONets (G̃) and solution operators of144

differential equations (G) clearly motivates the use of DeepONets for solving differential equations.145

2 Related Works146

(Lanthaler et al., 2022b) have defined the DeepONet approximation error as follows,147

Ê = (∫
C(D)

∫
U
∣G(u)(y) −N(u)(y)∣2 dy dµ(u))

1/2
,

where the DeepONet approximates the underlying operator G ∶ C(D) → C(U) and µ being as defined148

previously. To the best of our knowledge, the following is the only DeepONet size lowerbound proven149

previously,150

Theorem 2.1. Let µ ∈ P (L2(T)). Let u ↦ G(u) denote the operator, mapping initial data u(x) to the151

solution at time t = π/2,for the Burgers’ PDE (Hon & Mao, 1998). Then there exists a universal constant152

C > 0 (depending only on µ, but independent of the neural network architecture), such that the DeepONet153

approximation error Ê is,154

Ê ⩾ C
√

p

where, p is the size of the trunk net.155

Firstly, from above it does not seem possible to infer any direct connection between the net’s architecture156

size required for any specified level of performance and training data size that is available to use. And that157

is a key connection that is being established in our work. Secondly, it is not obvious as to how one can158

infer any constraint on the branch net’s size from the above - while our bound jointly constraints both the159

nets’ architecture. Thirdly, the above-mentioned lower bound theorem is specific to Burger’s PDE, while160

our theorem is PDE-independent.161

Organization Starting in the next section we shall give the formal setup of our theory. In Section 4 we162

shall give the full statement of our theorem, in Section 5 we shall state all the intermediate lemmas that163

we need. In Section 6 we give the proof of our main theorem and in Section 7 we give the proofs of all164

the lemmas that are needed. Motivated by the theoretical results, in Section 8 we give an experimental165

demonstration revealing a property of DeepONets about how much training data is required to leverage any166

increase in the common output dimension of the branch and the trunk. We conclude in Section 9 delineating167

some open questions.168
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3 Our Setup169

In this section we will give all the definitions about the training data and the function spaces that we shall170

need to state our main results.171

Definition 1. Training Datasets172

(yi, (si, pi)) be i.i.d. sampled input-output pairs and yi ∈ [−B, B], ∀i and we define the conditional random173

variable g(si, pi) ∶= E[y ∣ (si, pi)]174

Definition 2. Branch Functions & Trunk Functions175

B ∶= {Bw a function with ≤ dB parameters ∣ Bw ∶ Rd1 → Rq, Lip(Bw) ≤ LB & ∥w∥2 ≤WB & ∥Bw∥∞ ≤ C}

T ∶= {Tw a function with ≤ dT parameters ∣ Tw ∶ Rd2 → Rq, Lip(Tw) ≤ LT & ∥w∥2 ≤WT & ∥Tw∥∞ ≤ C}

The functions in the set B shall be called the “Branch Functions” and the functions in the set T would be176

called the “Trunk Functions”.177

The bound of C in the above definitions abstracts out the model of the branch and the trunk functions being178

nets having a layer of bounded activation functions in their output layer - while they can have any other179

activation (like ReLU) in the previous layers.180

Definition 3. DeepONets181

H ∶= {hwb,wt = h(wb,wt) ∣ Rd1 ×Rd2 ∋ (s, p) ↦ hwb,wt(s, p) ∶= ⟨Bwb
(s), Twt(p)⟩ ∈ R, Bwb

∈ B & Twt ∈ T }

Further, note that ∀θ > 0 ∃ a “θ-cover” of this function space Hθ such that, ∀hwb,wt ∈ H, ∃h(w
b, θ

2
,w

t, θ
2
) ∈ Hθ182

s.t ∥wb −wb, θ
2
∥ ≤ θ

2 and ∥wt −wt, θ
2
∥ ≤ θ

2 and wb, θ
2

and wt, θ
2

being elements of the θ
2 covering space of the183

set of branch and trunk weights respectively.184

It’s easy to see how the above definition of H includes functions representable by the architecture given in185

Figure 1. Now we recall the following result about neural nets from (Bubeck & Sellke, 2023).186

Lemma 3.1. Let fw be a neural network of depth D, mapping into R with the vector of parameters being187

w ∈ Rp and all the parameters being bounded in magnitude by W i.e the set of neural networks parametrized188

by w ∈ [−W, W ]p. Let Q be the maximum number of matrix or bias terms that are tied to a single parameter189

wa for some a ∈ [p]. Corresponding to it we define, B(w) ∶= ∏j∈[D]max (∥Wj∥op , 1), where Wj is the matrix190

in the jth−layer of the net.191

Let x ∈ Rd such that ∥x∥ ≤ R, and w1, w2 ∈ Rp such that B (w1) , B (w2) ≤ B̄. Then one has192

∣fw1(x) − fw2(x)∣ ≤ B̄2QR
√

p ∥w1 −w2∥ .

Moreover for any w ∈ [−W, W ]p with W ≥ 1, one has, B(w) ≤ (W
√

pQ)D.193

In light of the above, we define J as follows,194

Definition 4 (Defining J). Given any two valid weight vectors w1 and w2 for a “branch function” B we195

assume to have the following inequality for some fixed J > 0,196

sup
s
∥Bw1(s) −Bw2(s)∥∞ ≤ J ⋅ ∥w1 −w2∥
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And similarly for the trunk functions.197

One can see that the above inequality is easy to satisfy if the space of inputs to the branch or the trunk is198

bounded. Thus invocation of this inequality implicitly constraints the support of the data distribution.199

4 Main Theorem200

In the setup of the definitions given above, now we can state our main result as follows,201

Theorem 4.1. ∀δ ∈ (0, 1) and an arbitrary positive constant Q and ∀θ ≤ Q
q2 , if we are to ensure that with202

probability at least 1−δ with respect to the sampling of the data {(yi, (si, pi)) ∣ i = 1, . . . , n}, n ≥ 288⋅B2

θ2 ⋅log 4
1−δ

,203

∃hwb,wt ∈ H s.t204

1
n

n

∑
i=1
(yi − hwb,wt(si, pi))2 ≤ σ2 −Q(1 + C ⋅ J ⋅ (B + 2 ⋅ C2))

then,205

q ≥ θ√
32 ⋅B ⋅ C2

⋅
¿
ÁÁÁÁÀ

n

log(1 + (2
2(dB+dT )⋅(WB

√
dB)

dB ⋅(WT

√
dT )

dT )
θ(dB+dT )

) + loge
4

1−δ

(1)

where σ2 ∶= 1
n ∑

n
i=1 E [(yi − g (si, pi))2] and g(s, p) = E [y ∣ (s, p)].206

The proof of the above can be seen in Section 6. For further insight we now specialize our Theorem 4.1 to207

using C = 1 – which then encompasses the case that we shall do experiments with that of having DeepONets208

whose branch and trunk nets end in a sigmoid gate.209

Theorem 4.2. (Lowerbounds for DeepONets Whose Branch and Trunk End in Sigmoid Gates)210

Let C = 1. Then ∀δ ∈ (0, 1) and an arbitrary positive constant Q and ∀θ ≤ Q
q2 , if we are to ensure that with211

probability at least 1−δ with respect to the sampling of the data {(yi, (si, pi)) ∣ i = 1, . . . , n}, n ≥ 288⋅B2

θ2 ⋅log 4
1−δ

,212

∃hwb,wt ∈ H s.t,213

1
n

n

∑
i=1
(yi − hwb,wt(si, pi))2 ≤ σ2 −Q(1 + J ⋅ (B + 2))

then,214

q ≥ θ√
32 ⋅B

⋅
√

n√
log (1 + ( 4

θ
)dB+dT + (WB

√
dB)

dB ⋅ (WT

√
dT )

dT ) + loge
4

1−δ

where σ2 ∶= 1
n ∑

n
i=1 E [(yi − g (si, pi))2] and g(s, p) = E [y ∣ (s, p)].215

To interpret the above theorem consider a sequence of DeepONet training being done for fixed training data216

(and hence a fixed n) and on different architectures having the same weight bound and the same number217

of parameters - but allowing for variations in q, the common output dimension of the branch and the trunk218

functions. Now we can see how the above theorem reveals a largeness requirement for DeepONets - that219

if there has to exist an architecture which can get the training error below a certain label-noise dependent220

threshold then necessarily the branch/trunk output dimension q has to be Ω(
√

training−data−size).221

Later, in Section 8, we shall conduct an experimental study motivated by the above and reveal something222

more than what the above theorem guarantees. We will see that over a sequence of training being done on223

7
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different DeepONet architectures (and a fixed PDE) having nearly the same number of parameters, one can224

get monotonic improvement in performance upon increasing training data size n if it is accompanied by an225

increase in q s.t q√
n

is nearly constant. We also show that a slightly smaller rate of growth for n for the226

same sequence of qs would break this monotonicity. Thus it reveals a “scaling law” for DeepONets - which227

is not yet within the ambit of our theoretical analysis.228

5 Lemmas Towards Proving Theorem 4.1229

Lemma 5.1. Recall from Definition 2, that dB and dT are the total number of parameters in any function
in the sets B and T respectively. Let WB ⊆ RdB , WT ⊆ RdT and WH = WB ×WT denote the sets of allowed
weights of B, T , and H (Definition 3), respectively. Then the following three bounds hold for any θ > 0,

N(θ,WB) ≤
⎛
⎝

2WB

√
dB

θ

⎞
⎠

dB

N(θ,WT ) ≤
⎛
⎝

2WT

√
dT

θ

⎞
⎠

dT

N(θ,WH) ≤ N(θ/2,WB) ⋅N(θ/2,WT )

In above for any space X with Euclidean metric, we have denoted as N(θ, X) the covering number of it at230

scale θ.231

The proof of the above Lemma is given in Section 7.1232

Lemma 5.2. We recall the definition of H from Definition 3, B as given in Defintion 1 & J from Definiton233

4, Then, ∀θ > 0 we have,234

R̂(h(w
b, θ

2
,w

t, θ
2
)) ≤ R̂(h(wb,wt)) + qCJθ ⋅ (B + 2qC2)

and wb, θ
2

and wt, θ
2

be s.t. ∥wb −wb, θ
2
∥ ≤ θ

2 and ∥wt −wt, θ
2
∥ ≤ θ

2 and for any h and any training data of the235

form as given in Theorem 4.1, R̂(h) ∶= 1
n ∑

n
i=1(yi − h(si, pi))2236

Thus we see that it is quantifiable as to how much is the increment in the empirical risk when for a given237

training data a DeepONet is replaced by another with weights within a distance of θ from the original - and238

that this increment is parametric in θ. The proof of the above lemma is given in Section 7.2.239

Lemma 5.3. We recall the definition of Hθ from Definition 3; dB, dT , WB, WT , C & q from Defintion 2
and B as given in Defintion 1. Then ∀θ > 0, and for zi ∶= yi − g (si, pi);

P(∃ h(w
b, θ

2
,w

t, θ
2
) ∈ Hθ ∣

1
n

n

∑
i=1

h(w
b, θ

2
,w

t, θ
2
) (si, pi) zi ≥

θ

4
)

≤ 22(dB+dT )+1

θ(dB+dT )
⋅ (WB

√
dB)

dB

⋅ (WT

√
dT )

dT

⋅ exp(− 2nθ2

84 ⋅ (B ⋅ qC2)2 )

+ 2 exp( −nθ2

83 ⋅B2 ⋅ q2 ⋅ C4 )

The proof of the above lemma is given in Section 7.3240

Lemma 5.4. We continue in the same setup as in the previous lemma and further recall the definition of σ241

as in Theorem 4.1. Then ∀θ > 0242

243

P(∃ hwb,wt ∈ H ∣
1
n

n

∑
i=1
(yi − hwb,wt(si, pi))2 ≤ σ2 − θ) ≤ 2 exp(− nθ2

288B2 )+P(∃ hwb,wt ∈ H ∣
1
n

n

∑
i=1

h (si, pi) zi ⩾
θ

4
)

8
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The above lemma reveals an intimate connection between the empirical error of DeepONets and the corre-244

lation of its output with label noise. The proof of the above lemma is given in Section 7.4245

6 Proof of the (Main)Theorem 4.1246

A careful study of the proof of Lemma 5.4 would reveal that it can as well be invoked on Hθ. And doing so247

we get,248

P(∃h(w
b, θ

2
,w

t, θ
2
) ∈ Hθ ∣

1
n

n

∑
i=1
(yi − h(w

b, θ
2

,w
t, θ

2
)(si, pi)) ≤ σ2 − θ)

≤ 2 exp(− nθ2

288 ⋅B2 ) + P(∃h(wb, θ
2

,w
t, θ

2
) ∈ Hθ ∣

1
n

n

∑
i=1

h(w
b, θ

2
,w

t, θ
2
) (si, pi) zi ⩾

θ

4
)

Using Lemma 5.3,

≤ 2 exp(− nθ2

288 ⋅B2 ) +
22(dB+dT )+1

θ(dB+dT )
⋅ (WB

√
dB)

dB

⋅ (WT

√
dT )

dT

⋅ exp(− 2nθ2

84 ⋅ (B ⋅ qC2)2 )

+ 2 exp(− nθ2

83 ⋅ (B ⋅ q ⋅ C2)2 )

(2)

Invoking θ ≤ Q
q2 as assumed in the theorem and using Lemma 5.2 and recalling that the q ≥ 1 we have,

R̂(h(w
b, θ

2
,w

t, θ
2
)) ≤ R̂(h(wb,wt)) + C ⋅ J ⋅ Q ⋅ (B + 2 ⋅ C2) (3)

With respect to random sampling of the training data we define two events E1 (corresponding to the function249

class H) and E2 (corresponding to the θ−cover of H),250

E1 ∶= {∃h(wb,wt) ∈ H ∣ R̂(h(wb,wt)) ≤ σ2 − θ − C ⋅ J ⋅ Q ⋅ (B + 2 ⋅ C2)}

251

E2 ∶= {∃h(w
b, θ

2
,w

t, θ
2
) ∈ Hθ ∣ R̂(h(w

b, θ
2

,w
t, θ

2
)) ≤ σ2 − θ}

Thus if E1 is true, we can invoke the above inequality to get,

R̂(h(w
b, θ

2
,w

t, θ
2
)) ≤ R̂(h(wb,wt)) + C ⋅ J ⋅ Q ⋅ (B + 2 ⋅ C2)

≤ σ2 − θ − C ⋅ J ⋅ Q ⋅ (B + 2 ⋅ C2) + C ⋅ J ⋅ Q ⋅ (B + 2 ⋅ C2) ≤ σ2 − θ

Thus we observe that, E1 Ô⇒ E2 and thus P(E1) ≤ P(E2) and noting that θ ≤ Q, we can invoke equation252

2 to get,253

9



Under review as submission to TMLR

P

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

∃h(wb,wt) ∈ H ∣
1
n

n

∑
i=1
(yi − hwb,wt(si, pi))2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
R̂(h(wb,wt)

)

≤ σ2 −Q(1 + C ⋅ J ⋅ (B + 2 ⋅ C2))

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

≤ P

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

∃h(wb,wt) ∈ H ∣
1
n

n

∑
i=1
(yi − hwb,wt(si, pi))2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
R̂(h(wb,wt)

)

≤ σ2 − θ − C ⋅ J ⋅ Q ⋅ (B + 2 ⋅ C2)

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

≤ 2 exp(− nθ2

288 ⋅B2 ) +
22(dB+dT )+1

θ(dB+dT )
⋅ (WB

√
dB)

dB

⋅ (WT

√
dT )

dT

⋅ exp(− 2nθ2

84 ⋅ (B ⋅ qC2)2 ) (4)

+ 2 exp( −nθ2

83 ⋅B2 ⋅ q2 ⋅ C4 )

Hence if the required probability has to be at least 1 − δ, its necessary that we have,254

(1 − δ) ≤ 2 exp(− nθ2

288 ⋅B2 )+
22(dB+dT )+1

θ(dB+dT )
⋅(WB

√
dB)

dB

⋅(WT

√
dT )

dT

⋅exp(− 2nθ2

84 ⋅ (B ⋅ qC2)2 )+2 exp( −nθ2

83 ⋅ (B ⋅ qC2)2 )

Rearranging the above we can read a necessary condition for the above to be,255

q ≥
√

2 ⋅ θ
82 ⋅B ⋅ C2 ⋅

¿
ÁÁÁÁÀ

n

log(1 + (2
2(dB+dT )⋅(WB

√
dB)

dB ⋅(WT

√
dT )

dT )
θ(dB+dT )

) + loge
1

( 1−δ
2 −exp(− nθ2

288⋅B2 ))

(5)

Now invoking the largeness assumption on the size of the training data, as given in the preamble of the256

theorem, we arrive at the largeness requirement on q as stated in the theorem.257

7 Proofs of the Lemmas258

7.1 Proof of Lemma 5.1259

Proof. The first two equations are standard results, Example 27.1 of (Shalev-Shwartz & Ben-David, 2014)260

261

Further define d(x, y) = ∣∣x − y∣∣2. Then, let S ⊂ RdB be a witness for N(θ/2,WB), that is, for all wb ∈ WB,
there is some s ∈ S such that d(wb, s) ≤ θ/2. Similarly, let P ⊂ RdT be a witness for N(θ/2,WT ). Then for
all wb ∈ WB, wt ∈ WT , there exist a corresponding cover point s ∈ S and p ∈ P . And since (wb, wt) ∈ WH:

d((wb, wt), (s, p)) ≤ d((wb, wt), (s, wt)) + d((s, wt), (s, p)) (by triangle inequality)
= d(wb, s) + d(wt, p) (under d ∼ l2-norm)
≤ θ (by definition of S and P )

Hence, S × T is an θ-cover of WH.262

263

264

10
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7.2 Proof of Lemma 5.2265

Proof. Given an θ > 0 and a h(wb,wt) ∈ H, let wb, θ
2

and wt, θ
2

be s.t. ∥wb −wb, θ
2
∥ ≤ θ

2 and ∥wt −wt, θ
2
∥ ≤ θ

2 .266

Then from the definition of J in Definition 4, the following inequalities hold,267

sup
s
∥Bwb

(s) −Bw
b, θ

2
(s)∥

∞
≤ J.

θ

2
and sup

p
∥Twt(p) − Tw

t, θ
2
(p)∥

∞
≤ J.

θ

2

Further, we can simplify as follows, for any valid (s, p) input to the function hwb,wt = ⟨Bwb
, Twt⟩ and268

similarly for hw
b, θ

2
,w

t, θ
2

.269

∣⟨Bwb
(s), Twt(p)⟩ − ⟨Bw

b, θ
2
(s), Twt, θ

2
(p)⟩∣

=∣⟨Bwb
(s), Twt

(p)⟩ − ⟨Bwb
(s), Tw

t, θ
2
(p)⟩ + ⟨Bwb

(s), Tw
t, θ

2
(p)⟩ − ⟨Bw

b, θ
2
(s), Tw

t, θ
2
(p)⟩∣

≤∣⟨Bwb
(s), Twt(p) − Tw

t, θ
2
(p)⟩∣ + ∣⟨Tw

t, θ
2
(p), Bwb

(s) −Bw
b, θ

2
(s)⟩∣

To upperbound the above we recall (a) the definition of C from Definitions 2 and (b) that for any two270

q−dimensional vectors a and b we have, ∣⟨a, b⟩∣ ≤ ∑q
i=1 ∣ai∣∣bi∣ ≤ (maxi=1,...,q ∣bi∣)∑q

i=1 ∣ai∣. Thus we have,271

∀(s, p), ∣⟨Bwb
(s), Twt(p)⟩ − ⟨Bw

b, θ
2
(s), Twt, θ

2
(p)⟩∣ ≤ 2 ⋅ (Jθ

2
⋅ q ⋅ C) (6)

Ô⇒ ∀(s, p), ∣hwb,wt(s, p) − hw
b, θ

2
,w

t, θ
2
(s, p)∣ ≤ q ⋅ C ⋅ Jθ (7)

Define, r1,i ∶= (yi − h(w
b, θ

2
,w

t, θ
2
)(si, pi)) and r2,i ∶= (yi − h(wb,wt)(si, pi))272

Now,

r2
1,i − r2

2,i = (h(wb, θ
2

,w
t, θ

2
)(si, pi)2 − h(wb,wt)(si, pi)2) + 2yi (h(wb,wt)(si, pi) − h(w

b, θ
2

,w
t, θ

2
)(si, pi))

≤ (∣h(wb,wt)(si, pi) − h(w
b, θ

2
,w

t, θ
2
)(si, pi)∣) (h(wb,wt)(si, pi) + h(w

b, θ
2

,w
t, θ

2
)(si, pi)) + 2 ⋅B ⋅ q ⋅ C ⋅ Jθ

≤ (h(wb,wt)(si, pi) + h(w
b, θ

2
,w

t, θ
2
)(si, pi)) ⋅ q ⋅ C ⋅ Jθ +B ⋅ q ⋅ C ⋅ Jθ

≤ q ⋅ C ⋅ Jθ ⋅ ((h(wb,wt)(si, pi) + h(w
b, θ

2
,w

t, θ
2
)(si, pi) +B)

Averaging the above over all training data we get,273

1
n

n

∑
i=1

r2
1,i ≤

1
n

n

∑
i=1

r2
2,i +

1
n

n

∑
i=1

q ⋅ C ⋅ Jθ ⋅ ((h(wb,wt)(si, pi) + h(w
b, θ

2
,w

t, θ
2
)(si, pi)) +B) (8)

Using Cauchy-Schwarz over the inner-product in the definition of h, we get,274

∣h(wb,wt)(si, pi)∣ ≤
√

qC ⋅ √qC ≤ q ⋅ C2 Ô⇒ ((h(wb,wt)(si, pi) + h(w
b, θ

2
,w

t, θ
2
)(si, pi))) ≤ 2q ⋅ C2 (9)

11
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Substituting the above into equation 8 and invoking the definition of R̂,275

R̂(h(w
b, θ

2
,w

t, θ
2
)) ≤ R̂(h(wb,wt)) +

1
n

n

∑
i=1

q ⋅ C ⋅ Jθ ⋅ ((h(wb,wt)(si, pi) + h(w
b, θ

2
,w

t, θ
2
)(si, pi)) +B)

≤ R̂(h(wb,wt)) + (q ⋅ C ⋅ Jθ ⋅B) + (q ⋅ C ⋅ Jθ) ⋅ (2q ⋅ C2)
≤ R̂(h(wb,wt)) + qCJθ ⋅ (B + 2qC2)

The above is what we set out to prove.276

277

7.3 Proof of Lemma 5.3278

Proof. Recall that for each data i, we had defined the random variable, zi ∶= yi − g (si, pi). Since g(s, p) =279

E[y ∣ (s, p)], we can note that E[zi] = 0. Further,280

z2
i = (yi − g (si, pi))2 ≤ y2

i − 2 ⋅ yi ⋅ g(si, pi) + g(si, pi)2 ≤ 4B2 (10)

Recall from equation 9. that ∣h(w
b, θ

2
,w

t, θ
2
)(si, pi)∣ ≤ q ⋅ C2

281

For each data i, we further define the random variable, Yθ,i ∶= ((h(w
b, θ

2
,w

t, θ
2
) (si, pi) −E[h(w

b, θ
2

,w
t, θ

2
)])zi)282

Now note that,283

E[Yθ,i] = E [(h(w
b, θ

2
,w

t, θ
2
) (si, pi) −E[h(w

b, θ
2

,w
t, θ

2
)])zi]

= E [h(w
b, θ

2
,w

t, θ
2
) (si, pi) ⋅ yi] −E [h(w

b, θ
2

,w
t, θ

2
) (si, pi) ⋅ g (si, pi)]

Next, we use the tower property of conditional expectation to expand the first term,284

E [h(w
b, θ

2
,w

t, θ
2
) (si, pi) ⋅ yi] = E [E[h(w

b, θ
2

,w
t, θ

2
) (si, pi) yi ∣ (si, pi)]] = E[h(w

b, θ
2

,w
t, θ

2
) (si, pi)E [y ∣ (si, pi)]]

= E [h(w
b, θ

2
,w

t, θ
2
) (si, pi) ⋅ g (si, pi)]

Substituting this back into the previous equation, we get,285

E[Yθ,i] = 0

Further,286

∣Yθ,i∣ = ∣h(w
b, θ

2
,w

t, θ
2
) (si, pi) −E[h(w

b, θ
2

,w
t, θ

2
)]∣ ⋅ ∣zi∣ ≤ (∣h(w

b, θ
2

,w
t, θ

2
)(si, pi)∣ + ∣E[h(w

b, θ
2

,w
t, θ

2
)]∣) ⋅ 2B

≤ 4 ⋅ C2 ⋅B ⋅ q

12
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Applying Hoeffding’s inequality 1 on Yθ,i, we will get,287

P( 1
n

n

∑
i=1
((h(w

b, θ
2

,w
t, θ

2
) (si, pi) −E[h(w

b, θ
2

,w
t, θ

2
)])zi) ≥ t) ≤ exp(− 2nt2

(8 ⋅B ⋅ qC2)2 ) (11)

We choose t = θ
8 to get,288

P(∣ 1
n

n

∑
i=1
((h(w

b, θ
2

,w
t, θ

2
) (si, pi) −E[h(w

b, θ
2

,w
t, θ

2
)])zi)∣ ≥

θ

8
) ≤ 2 ⋅ exp(− 2nθ2

84 ⋅ (B ⋅ qC2)2 )

We define two events,289

E5 ∶= {∣
1
n

n

∑
i=1

zi∣ ≥
θ

8 ⋅ qC2} & E6 ∶= {∃ h(w
b, θ

2
,w

t, θ
2
) ∈ Hθ ∣

1
n

n

∑
i=1

E[h(w
b, θ

2
,w

t, θ
2
)]zi ≥

θ

8
}

Recalling the bound on the h function we have, 1
q⋅C2 ⋅ ∣E[h(w

b, θ
2

,w
t, θ

2
)]∣ ∈ [0, 1], we have that if Ec

5 happens290

then for such a sample of {zi, i = 1, . . . , n},291

∀h(w
b, θ

2
,w

t, θ
2
) ∈ Hθ,

θ

8 ⋅ qC2 > ∣
1
n

n

∑
i=1

zi∣ ≥
1

q ⋅ C2 ⋅ ∣E[h(wb, θ
2

,w
t, θ

2
)]∣ ∣

1
n

n

∑
i=1

zi∣ ≥
1

n ⋅ qC2

n

∑
i=1

E[h(w
b, θ

2
,w

t, θ
2
)]zi

Hence Ec
5 Ô⇒ Ec

6 and hence P (E6) ≤ P (E5) i.e292

P(∃ h(w
b, θ

2
,w

t, θ
2
) ∈ H ∣

1
n

n

∑
i=1

E[h(w
b, θ

2
,w

t, θ
2
)]zi ≥

θ

8
) ≤ P(∣ 1

n

n

∑
i=1

zi∣ ≥
θ

8 ⋅ q ⋅ C2 ) (12)

Recalling that (∣zi∣ ≤ 2B), by Hoeffding’s inequality we have,293

P(∣ 1
n

n

∑
i=1

zi∣ ≥
θ

8 ⋅ q ⋅ C2 ) ≤ 2 exp( −nθ2

83 ⋅B2 ⋅ q2 ⋅ C4 ) (13)

Now we define three events E7,E8 and E9 as follows,294

E7 ∶= {∀ h(w
b, θ

2
,w

t, θ
2
) ∈ Hθ,

1
n

n

∑
i=1
(h(w

b, θ
2

,w
t, θ

2
) (si, pi) −E[h(w

b, θ
2

,w
t, θ

2
)]) zi ≤

θ

8
}

1

Theorem 7.1. (Hoeffding’s inequality). Let Z1, . . . , Zn be independent bounded random variables with Zi ∈ [a, b] for all i,
where −∞ < a ≤ b < ∞. Then

P( 1
n

n

∑
i=1
(Zi − E [Zi]) ≥ t) ≤ exp(− 2nt2

(b − a)2
)

and
P( 1

n

n

∑
i=1
(Zi − E [Zi]) ≤ −t) ≤ exp(− 2nt2

(b − a)2
)

for all t ≥ 0.

13
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295

E8 ∶= {∀ h(w
b, θ

2
,w

t, θ
2
) ∈ Hθ,

1
n

n

∑
i=1

E[h(w
b, θ

2
,w

t, θ
2
)]zi ≤

θ

8
}

296

E9 ∶= {∀ h(w
b, θ

2
,w

t, θ
2
) ∈ Hθ,

1
n

n

∑
i=1

h(w
b, θ

2
,w

t, θ
2
) (si, pi) zi ≤

θ

4
}

Observe that, if E7 and E8 hold then E9 will also hold.297

Hence,298

P(E7 ∩E8) ≤ P(E9) Ô⇒ P(Ec
9) ≤ P(Ec

7) + P(Ec
8)

Thus, we can invoke equations 12 and 13 to get,299

P(∃h(w
b, θ

2
,w

t, θ
2
) ∈ Hθ ∣

1
n

n

∑
i=1

h(w
b, θ

2
,w

t, θ
2
) (si, pi) zi ≥

θ

4
)

≤ P(∃h(w
b, θ

2
,w

t, θ
2
) ∈ Hθ ∣

1
n
∣

n

∑
i=1
(h(w

b, θ
2

,w
t, θ

2
) (si, pi) −E[h(w

b, θ
2

,w
t, θ

2
)]) zi∣ ≥

θ

8
) + P(∣ 1

n

n

∑
i=1

zi∣ ≥
θ

8 ⋅ q ⋅ C2 )

≤ P
⎛
⎜⎜
⎝

⋃
h(w

b, θ
2

,w
t, θ

2
)∈Hθ

{ 1
n
∣

n

∑
i=1
(h(w

b, θ
2

,w
t, θ

2
)(si, pi) −E[h(w

b, θ
2

,w
t, θ

2
)])zi∣ ≥

θ

8
}
⎞
⎟⎟
⎠
+ 2 exp( −nθ2

83 ⋅B2 ⋅ q2 ⋅ C4 )

≤ ∑
h(w

b, θ
2

,w
t, θ

2
)∈Hθ

P( 1
n
∣

n

∑
i=1
(h(w

b, θ
2

,w
t, θ

2
)(si, pi) −E[h(w

b, θ
2

,w
t, θ

2
)])zi∣ ≥

θ

8
) + 2 exp( −nθ2

83 ⋅B2 ⋅ q2 ⋅ C4 )

Hence,300

P(∃h(w
b, θ

2
,w

t, θ
2
) ∈ Hθ ∣

1
n

n

∑
i=1

h(w
b, θ

2
,w

t, θ
2
) (si, pi) zi ≥

θ

4
)

≤ 22(dB+dT )

θ(dB+dT )
⋅ (WB

√
dB)

dB

⋅ (WT

√
dT )

dT

⋅ 2 ⋅ exp(− 2nθ2

84 ⋅ (B ⋅ qC2)2 )

+ 2 exp( −nθ2

83 ⋅B2 ⋅ q2 ⋅ C4 )

And the above is what we set out to prove.301

7.4 Proof of Lemma 5.4302

Proof. Recall the definition of zi from the previous proof and and from the assumptions in Theorem 4.2 we303

have, 1
n ∑

n
i=1 E [z2

i ] = σ2. Recalling that zi ∈ [−2B, 2B] and they are i.i.d. we can invoke Hoeffding’s Lemma304

7.1 (with t = θ
6 , b = 2B, a = −2B) to get,305

P( 1
n

n

∑
i=1

z2
i ≤ σ2 − θ

6
) ≤ exp(− nθ2

288B2 ) (14)

Further note that, zi ⋅ g (si, pi) is i.i.d with mean 0 since E [zi ∣ (si, pi)] = 0 and ∣zi ⋅ g (si, pi)∣ ≤ 2B306

Applying Hoeffding’s inequality again,307

14
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P( 1
n

n

∑
i=1

zig (si, pi) ≤ −
θ

6
) ≤ exp(− nθ2

288B2 ) (15)

Given a hwb,wt
∈ H, we define the following vector random variables,308

Z ∶= 1√
n
(z1, z2,⋯, zn) (16)

G = 1√
n
(g (s1, p1) , g (s2, p2) ,⋯, g (sn, pn)) (17)

F = 1√
n
(hwb,wt (s1, p1) , hwb,wt (s2, p2) ,⋯, hwb,wt (sn, pn)) (18)

Note that,

∥G +Z − F ∥2 = ∥ 1√
n
(g (s1, p1) ,⋯, g (sn, pn)) +

1√
n
(z1, . . . , zn) −

1√
n
(hwb,wt(s1, p1),⋯ hwb,wt (sn, pn)) ∥2

(19)

Recalling that zi ∶= yi − g (si, pi) and the definition of the empirical risk of the predictor, R̂(hwb,wt) ∶=309
1
n ∑

n
i=1(yi − hwb,wt(si, pi))2, we realize that,310

∥Z +G − F ∥2 = R̂(hwb,wt)

Suppose, ∥Z∥2 ⩾ σ2 − θ
6 and ⟨Z, G⟩ ⩾ − θ

6 . Then we have,311

∥Z +G − F ∥2 = ∥Z∥2 + 2⟨Z, G − F ⟩ + ∥G − F ∥2 = ∥Z∥2 + 2⟨Z, G⟩ − 2⟨Z, F ⟩ + ∥G − F ∥2

≥ σ2 − θ

6
− 2θ

6
− 2⟨Z, F ⟩ ≥ σ2 − θ

2
− 2⟨Z, F ⟩.

If further we have, ∥Z +G − F ∥2 ≤ σ2 − θ then we have from above, ⟨F, Z⟩ ≥ θ
4312

Motivated by the above, we define the following 4 events, namely Ei, i = 1, . . . , 4313

E1 ∶= {∥Z∥2 ≥ σ2 − θ

6
} , E2 ∶= {⟨Z, G⟩ ≥ −θ

6
} , E3 ∶= {∃ hwb,wt ∈ H ∣ R̂ ≤ σ2 − θ} & E4 ∶= {∃ hwb,wt ∈ H ∣ ⟨F, Z⟩ ≥ θ

4
}

Thus our above argument can be summarized to say that if the events E1, E2 and E3 hold, then E4 will314

also hold. This we can write as, P(E1 ∩E2 ∩E3) ≤ P(E4). This implies, P(E4) ≥ 1 − P((E1 ∩E2 ∩E3)c).315

But, by union bounding, P (Ec
1 ∪Ec

2 ∪Ec
3) ≤ P(Ec

1) + P(Ec
2) + P(Ec

3) ≤ 3 − (P(E1) + P(E2) + P(E3)). Hence316

combining we have, P(E4) ≥ −2 + (P(E1) + P(E2) + P(E3))317

From equations 14 and 15 we obtain, that, (1 − P(E1)) ≤ exp (− nθ2

288B2 ) and similarly for (1 − P(E2)).318

Thus substituting in above we get,319

P(E3) ≤ 2 exp(− nθ2

288B2 ) + P(E4)

Thus we have proven what we had set out to prove,320
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8 The Experiment Set-up321

In this section we shall demonstrate that at a fixed number of total parameters, increasing the output322

dimension(q) arbitrarily high keeps errors down. We shall also show an ablation study on q√
n

323

The advection-diffusion-reaction partial differential equation (PDE) (Rahaman et al., 2022) plays a crucial324

role in modeling various physical, chemical, and biological processes. This PDE is important as it allows us325

to understand and predict the behavior of substances or quantities that are transported, diffused, and react326

within a system.327

A advection-diffusion-reaction system with a source term f(x) is described by328

∂u

∂t
=D

∂2u

∂x2 + ku2 + f(x), x ∈ [0, 1], t ∈ [0, 1]

with zero initial/boundary conditions, where D = 0.01 is the diffusion coefficient, and k = 0.01 is the reaction329

rate. We use DeepONets to learn the operator mapping from f(x) to the PDE solution u(x, t). In this case330

the operator Gθ will map the source terms f(x) to the PDE solution u(x, t). As above. given a choice of m331

sensor points in the domain of the solutions, we shall denote a discretize a f onto the sensor points as the332

vector f ∈ Rm. Recalling the DeepONet operator loss, we realize that minimizing that is trying to induce,333

Gθ(f (i))(x, t) ≈ G(f (i))(x, t) = f (i)(x, t), ∀i.334

Hence each training data can be seen as a 3-tuple, given by (f , p, y), where f = (f(x1), f(x2), ..., f(xm)), For335

sampling f we have considered Gaussian random field(GRF) distribution. Here we have used the mean-zero336

GRF, f ∼ G (0, kl (x1, x2)) where the covariance kernel kl (x1, x2) = exp (−∥x1 − x2∥2 /2l2) is the radial-basis337

function (RBF) kernel with a length-scale parameter l > 0. For our experiments we have taken l = 10−3. After338

sampling f from the chosen function spaces, we solve the PDE by a second-order finite difference method to339

obtain the reference solutions.340

For n training data samples, the ℓ2 empirical loss being minimized is, L̂DeepONet ∶= 1
n ∑

n
i=1 (yi − Gθ (fi) (pi))2,341

where pi is a randomly sampled point in the (x, t) space and yi is the approximate PDE solution at pi342

corresponding to fi – which we recall was obtained from a conventional solver.343

8.1 Implementations & Results344

We created 10 DeepOnet models in each experimental setting such that each model has a depth of 5 and345

width has been varied from 24 to 50 for each layer while keeping the total number of training parameters346

approximately equal for each of those 10 models. For each case the branch input dimension is 40(i.e number347

of sensor points), and trunk input dimension is 2. We have taken the starting value of the training data size348

(n) as 104 and for the rest of the models we have varied the output dimension q. And twice we make this349

choice of 10 different (q, n) parameterized learning setups, once keeping the ratio q√
n

approximately constant350

and then holding the ratio q

n
2
3

) almost fixed.351

The code for this experiment can be found in our GitHub repository (link). The DeepONet model is trained352

by stochastic Adam optimizer353

Experiment in q√
n

fixed setting. In this setting, the q value was varied from 5 to 50, in increments of354

5. We have taken the starting value of n as 104. In Figure 2 we have plotted the training loss dynamics for355

these 10 models being trained over 200 epochs.356

Experiment in q

n
2
3

setting. We repeat the above experiment but while appproximately fixing the value357

of q

n
2
3

. The corresponding plots are shown in Figure 3.358

We draw two primary conclusions from the above results. Firstly, from Figure 2, we can observe that if q359

and n increase at a fixed q√
n

then performance increases almost monotonically. Secondly, from the Figure360

3 it is clearly visible that the previous monotonicity is breaking - that is the rate of increase of data size in361

the later experiment was not sufficient to leverage the increase in the output dimension size of the branch362

and the trunk as was happening in the first figure.363
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Figure 2: Training Loss vs Epoch in fixed q√
n

setting

Figure 3: Training Loss vs Epoch in fixed q

n
2
3

setting
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9 Discussion364

Our key result Theorem 4.1 shows that a certain data size dependent largeness of q is needed if there has365

to exist a bounded weight DeepONet at that q which can have their empirical error below the label noise366

threshold. From our experiments, we have shown that there is some non-trivial range of q (the common367

output dimension) along which empirical risk improves with q for a fixed model size - if the amount of368

training data is scaled quadratically with q. We envisage that trying to prove this “scaling law” can be a369

very interesting direction for future exploration in theory.370

Secondly, we note that our result hasn’t yet fully exploited the structure of the neural nets used in the371

branch and the trunk. Also, it might be interesting to understand how to tune the argument specifically372

for the different variations of this architecture (Kontolati et al., 2023), (Bonev et al., 2023) that are getting373

deployed, Lastly, we note that our result is currently agnostic to the PDE being attempted to be solved.374

There is a tantalizing possibility, that methods in this proof could be extended to derive bounds which can375

distinguish PDEs that are significantly hard for operator learning.376
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