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Abstract

Low-rank approximations, of the weight and001
feature space can enhance the performance of002
deep learning models, whether in terms of im-003
proving generalization or reducing the latency004
of inference. However, there is no clear con-005
sensus yet on how, when and why these approx-006
imations are helpful for large language models007
(LLMs). In this work, we empirically study the008
efficacy of weight and feature space decompo-009
sition in transformer-based LLMs. We demon-010
strate that surgical decomposition not only pro-011
vides critical insights into the trade-off between012
compression and language modelling perfor-013
mance, but also sometimes enhances common-014
sense reasoning performance of LLMs. Our015
empirical analysis identifies specific network016
segments that intrinsically exhibit a low-rank017
structure. Furthermore, we extend our investi-018
gation to the implications of low-rank approx-019
imations on model bias. Overall, our findings020
offer a novel perspective on optimizing LLMs,021
presenting the low-rank approximation not only022
as a tool for performance enhancements, but023
also as a means to potentially rectify biases024
within these models.025

1 Introduction026

The mass adoption of Large Language Models027

(LLMs) in various domains has brought to the fore-028

front the critical need to understand and optimize029

their structural and functional properties. This un-030

derstanding is not only crucial from a theoretical031

point of view, but also essential for practical, real-032

world applications. LLMs, characterized by their033

vast size and complexity, present significant chal-034

lenges in terms of resource utilization and opera-035

tional efficiency. In this context, model compres-036

sion has become a crucial topic of research.037

Compression of LLMs is not simply a matter038

of reducing their size, but also about retaining039

functionality and performance in a more resource-040

efficient environment. Traditional compression041

methods, such as quantization, pruning, distillation, 042

low-rank decomposition; have demonstrated con- 043

siderable success in making LLMs practical. How- 044

ever, parametric reduction of LLMs is non-trivial 045

owing to the massive compute required to re-train 046

or fine-tune compressed models. Therefore, tradi- 047

tional compression methodologies, such as pruning 048

and distillation, undergo substantial performance 049

degradation in a training-free compression regime. 050

We hypothesize that the unique advantage of low- 051

rank decomposition in providing direct control over 052

the low-rank factors contributes to a more effective 053

and training-free compression tendency in LLMs 054

and explore this hypothesis in depth. 055

In this work, we delve into the low-rank decom- 056

position properties of LLMs. We meticulously 057

examine and surgically decompose the individual 058

layers of these models with the aim of achieving 059

training-free compression while maintaining or, in 060

some cases, enhancing performance. This layer- 061

wise decomposition approach allows for granular 062

analysis of the model’s components, leading to a 063

more tailored and effective compression strategy. 064

Furthermore, we extend our study to investigate the 065

effects of low-rank decomposition on the intrinsic 066

biases inherent in LLMs. Bias in language models 067

is a topic of growing concern given the widespread 068

application of these models in society. By examin- 069

ing how decomposition influences these biases, we 070

contribute to the broader conversation on ethical 071

AI and responsible model deployment. 072

In summary, this work presents a comprehensive 073

study of low-rank decomposition in LLMs, explor- 074

ing its potential to achieve considerable compres- 075

sion levels and its impact on model performance 076

and biases. Through our empirical analyses, we 077

aim to provide insights that can guide future de- 078

velopments in the field of language model opti- 079

mization. The contributions of this paper can be 080

summarized as follows: 081
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• We introduce Surgical Feature-Space Decom-082

position (SFSD), a simple method for efficient083

LLM compression through precise layerwise084

decomposition of latent features.085

• Our research empirically demonstrates the ef-086

fectiveness of reduced-rank approximations087

on latent features in LLMs, showing its advan-088

tages over traditional weight space approxi-089

mations.090

• We explore the impact of SFSD on the rea-091

soning performance and perplexity of LLMs,092

providing a comparative analysis with a re-093

cent parametric and training-free structured094

pruning method.095

• We additionally study the influence of SFSD096

on the bias of pre-trained LLMs, quantitative097

change in sample predictions and general low-098

rank structures; factors vital for understanding099

and practical application of SFSD.100

2 Related Work101

This work focuses on surgically creating low-rank102

approximations of the feature space for achieving103

efficient and effective compression of LLMs. Fur-104

ther, we also study the behavior of the resultant105

models from a fairness perspective. In this regard,106

we present below an overview of the existing works107

related to these areas of research.108

Surgical fine-tuning. Recent works have shown109

that fine-tuning only specific layers of a deep neural110

network improves adaptations to distribution shifts111

(Lee et al., 2022). (Lodha et al., 2023) provided112

strong empirical results on surgical fine-tuning of113

the BERT (Devlin et al., 2019) model. Their results114

show that fine-tuning only specific layers often sur-115

pass downstream task performance on GLUE and116

SuperGLUE (Wang et al., 2018, 2019) datasets.117

(Shen et al., 2021) adopt an evolutionary search118

mechanism to identify layer-specific learning rates119

and freeze some layers in the process for better per-120

formance on few-shot learning tasks. (Park et al.,121

2024) perform layer wise auto-weighting using the122

Fischer Importance Matrix for test-time adapta-123

tion. In this process, their method even makes124

certain layers nearly frozen to mitigate outliers.125

These works have shown that for any given down-126

stream task, fine-tuning and/or freezing only spe-127

cific layers lead to better performance as compared128

to the full model. We argue that not layers, but129

sub-components in each layer identified through 130

traditional rank decomposition can be surgically 131

eliminated form deep neural networks with mini- 132

mal loss in performance. 133

Model compression. Model compression tech- 134

niques such as network pruning (Frankle and 135

Carbin, 2018; Liu et al., 2018; Tiwari et al., 2020; 136

Chavan et al., 2022a), knowledge distillation (Jiang 137

et al., 2023b; Dasgupta et al., 2023; Hsieh et al., 138

2023), quantization (Dettmers et al., 2022; Xiao 139

et al., 2023; Lin et al., 2023), etc., have been proven 140

instrumental for the practical use of large-scale 141

deep learning models. With the advent rise of 142

LLMs, traditional compression methodologies of- 143

ten fail due to multiple factors including infeasibil- 144

ity for training-aware compression and huge hard- 145

ware costs among others. Specifically for LLMs, 146

fine-tuning/training-free methodologies have been 147

proposed in recent literature (Ma et al., 2023; 148

Dettmers et al., 2022), however they either come 149

with a substantial drop in performance or only work 150

on specific hardware architectures. Additionally 151

most training-free compression methods for LLMs 152

are not data aware making them suboptimal for 153

accurate task-specific compression. In this work, 154

we propose to use feature space decomposition 155

for training-free compression on downstream tasks. 156

Additionally, consistent with previous studies that 157

indicate that model compression serves as an ef- 158

fective regularizer and often improves performance 159

at lower compression levels (Frankle and Carbin, 160

2018; Chavan et al., 2022b), this work also demon- 161

strates a comparable trend in the context of our 162

proposed methodology. 163

Low Rank Approximation. Using low-rank de- 164

composition to compress traditional convolutional 165

neural networks (CNN) has been widely studied in 166

the literature (Denton et al., 2014; Jaderberg et al., 167

2014; Zhang et al., 2016; Yu et al., 2017). More 168

recently, (Phan et al., 2020) attempted to stabilize 169

the low-rank approximation by mitigating the de- 170

generacy in decomposition matrices. (Idelbayev 171

and Carreira-Perpinán, 2020) proposed a mixed 172

discrete-continuous optimization framework to esti- 173

mate the optimal layer-wise ranks for compression. 174

All these methods restrict to weight or CNN ker- 175

nel decomposition, making them oblivious to the 176

data domain, further necessitating the fine-tuning 177

stage of the decomposed networks. Similarly in 178

the domain of NLP, (Hajimolahoseini et al., 2021) 179

proposed progressive SVD-based approximation 180
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of the GPT-2 model (Radford et al., 2019) with181

re-training to achieve much better compression182

rates as compared to distillation based compres-183

sion methods. However, retraining remains piv-184

otal to regaining performance drop during the data-185

free weight decomposition stage. More recently,186

(Li et al., 2023) approximate weight matrices as187

low-rank and sparse approximations jointly. How-188

ever, their method requires heavy fine-tuning on189

each downstream evaluation task. (Chen et al.,190

2021) proposed a data-aware low rank approxima-191

tion method for model compression. They em-192

ploy a dual SVD on model weights and inputs re-193

spectively, and propose a closed form solution to194

the data-aware low rank approximation problem.195

Their motivation on having data-aware compres-196

sion closely aligns with ours; however, they show197

limited evaluation on discriminative language mod-198

els.199

Bias and Fairness. (Gallegos et al., 2023) provide200

a detailed survey on bias and fairness in large lan-201

guage models. In the context of this work, (Ramesh202

et al., 2023) provided an initial study on the impact203

of model compression on the fairness and bias of204

language models. However, their study was only205

restricted to discriminative models and tasks. Simi-206

larly, (Gonçalves and Strubell, 2023) provided solid207

observations like longer pre-training and larger208

models have more social biases as compared to209

the compressed counterparts, among others. In this210

work, we also focus on understanding the effect of211

a low-rank approximation on the biases of LLMs.212

3 Low-Rank Decomposition of LLMs213

Before describing low-rank decomposition of214

LLMs, we first present here a brief understanding215

of the LLM structure. Any LLM typically involves216

a deep neural network architecture based on the217

Transformer model. Without loss of generality,218

any transformer model has Multi-Head Self Atten-219

tion (MHSA) and Multi-Layer Perceptron (MLP)220

blocks repeated across the model depth. We refer221

to a combination of MHSA and MLP blocks as222

a single module. Each MHSA block consists of223

three linear transformation layers corresponding to224

query, key and value. We denote the weight ma-225

trices corresponding to them as Wq, Wk and Wv226

respectively. Additionally, after the attention opera-227

tion, an output linear transformation layer is present228

with weight denoted as Wo. Similarly, MLP block229

typically consists of a gate projection layer, an up230

projection layer and a down projection layer. We 231

denote the weight matrices corresponding to them 232

as Wg, Wu and Wd respectively. 233

Combining the weights from the MHSA and 234

MLP blocks, the weight space of a LLM with L 235

such repeated blocks can be stated as 236

W =

L⋃
l=1

Wl = W1 ∪W2 ∪ . . . ∪WL 237

Here, Wl = {Wlq,Wlk,Wlv,Wlo,Wlg,Wlu,Wld} 238

denotes the weight space for the lth block. 239

3.1 Weight Space Decomposition 240

It refers to taking a simplified approximation of the 241

weight matrices that can lead to reduced computa- 242

tional complexity of the associated mathematical 243

operations. For the reduction of the weight space, 244

we employ Singular Value Decomposition (SVD) 245

on the individual weight matrices. For any par- 246

ticular Wi ∈ W where Wi ∈ Rd2×d1 , the SVD 247

formulation can be stated as: 248

Wi = UΣV T . (1) 249

where U ∈ Rd2×d2 ,Σ ∈ Rd2×d1 , and V T ∈ 250

Rd1×d1 are the resultant matrices. 251

For any desired parametric budget β ∈ (0, 1), 252

the total number of final parameters should be β × 253

d2 × d1 where d2 × d1 are the original number 254

of parameters. This information is then used to 255

calculate the rank of the system that would satisfy 256

the prescribed budget. 257

For a given rank r, we define Ur ∈ Rd2×r,Σr ∈ 258

Rr×r, and V T
r ∈ Rr×d1 as the resultant matrices 259

that approximate Wi as: 260

W̃i = UrΣrV
T
r = WdWu (2) 261

where Wd = UrΣr ∈ Rd2×r; Wu = V T
r ∈ Rr×d1 . 262

Based on this, the relation between the compression 263

budget and system rank can be stated as follows. 264

d2 × r + r × d1 = β × d2 × d1 =⇒ 265

r = β × (d2 × d1)/(d2 + d1) = β × κ. (3) 266

Eq. 3 can be used to estimate the rank r for any 267

desired compression budget β. 268

3.2 Feature Space Decomposition 269

It is important to note that the above decomposition 270

is not data-aware, it can provide a general approxi- 271

mation of any given set of weights. The distribution 272

3



of input features of each layer follows a specific pat-273

tern, which can be directly influenced by the input274

samples (Schwarzenberg et al., 2021). Thus, fea-275

ture space decomposition can help mitigate errors276

introduced by general low-rank approximations.277

Similar to PCA (Shlens, 2014), we employ Eigen-278

value Decomposition on the covariance matrix of279

the output features. Assuming Xi ∈ Rd1×D is the280

input to any Wi ∈ W, where D is the number of281

calibration data samples; the decomposition can be282

stated as:283

Yi = WiXi and ΣY = YiY
T
i284

ΣY = V ΛV T285

where V ∈ Rd2×d2 and Λ ∈ Rd2×d2 is a diago-286

nal matrix. Assuming that r satisfies the budget287

constraint β, Yi can be approximated as:288

Ỹi = VrV
T
r WiXi = WdWuXi289

where Wd = Vr ∈ Rd2×r and Wu = V T
r Wi ∈290

Rr×d1 . To minimize the error introduced by the291

low-rank approximation, we need to identify highly292

stable eigenvectors that have a minimum output293

variance across samples. Highly stable eigenvec-294

tors can be replaced by a static bias term, while295

unstable eigenvectors must be retained. Since296

eigenvectors are orthonormal; the output can be297

represented as Yi =
∑

k V
t
kVkWiXi. The output298

variance of any given eigenvector Vk can be repre-299

sented as:300

Sk = V ar(Yi|Vk)301
302

=
1

N − 1

D∑
j=1

(V t
kVkWiXj −

1

N

D∑
j=1

V t
kVkWiXj)303

The lower the value of Sk, the higher the sta-304

bility of the k-th eigenvector. Co-incidently, Sk is305

numerically equal to the eigenvalue corresponding306

to the k-th eigenvector. Hence, eigenvectors with307

low eigenvalues can be replaced by a static bias308

term, while eigenvectors corresponding to higher309

eigenvalues are retained.310

Low-rank bias compensation. In the case of fea-311

ture space decomposition, we compensate for the312

lost information by an additional bias term. Assum-313

ing that Vrc denotes the eliminated eigenvectors,314

we can approximate Yi by using the orthogornal315

property of V :316

Yi = Ỹi + VrcV
T
rcWiXi317

We approximate VrcV
T
rcWiXi by taking a mean 318

over the calibration data samples: 319

bi = VrcV
T
rcWiX̄i (4) 320

321
Finally, Ỹi = WdWuXi + bi (5) 322

This bias compensation helps in approximating the 323

highly stable eigenvectors through a static bias cal- 324

culated over the calibration data samples without 325

any need to change the original layer. Note that 326

a similar bias compensation cannot be formulated 327

for weight space decomposition as it is data-free, 328

and no mean approximation can be carried out of 329

the stable singular vectors. 330

3.3 Surgical Rank Search 331

Algorithm 1 SFSD Rank Search
Require: Pre-trained model f , P (Performance

Metric), β ∈ {0.1, 0.2, . . . , 0.9}
Ensure: R

1: Initialize R as an empty list to store ranks
2: for each layer L ∈ f , starting from the last

layer do
3: for each budget βi in the set of β do
4: ri← Determine rank corresponding to βi

using Eq. 3
5: Li ← Decompose L with rank ri using

Eq. 5
6: Overwrite f with Li

7: if f meets or exceeds P then
8: Append r to R
9: break and proceed to the next layer

10: end if
11: end for
12: end for
13: return R

We estimate the decomposition ranks for each 332

layer by employing a simple linear search mech- 333

anism. For each layer, we search for the lowest 334

possible value of β ∈ {0.1, 0.2, ..., 0.9} and the 335

corresponding rank r which satisfies a pre-defined 336

performance metric; more information on the rela- 337

tionship between different values of β, correspond- 338

ing rank r and the final budget is provided in the 339

Appendix B. We surgically follow this process for 340

each layer starting from the last layer and sequen- 341

tially moving to the previous layers. This order is 342

followed throughout our experiments on the basis 343

that the last layers are more susceptible to compres- 344

sion as compared to the earlier layers (Ma et al., 345
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Table 1: Performance of LLaMA-7B model, with weight space and activation space decomposition. Average
denotes average performance across the given downstream tasks.

Decomposition #Params (B) MACS BoolQ PIQA HellaSwag WinoGrande ARC-e ARC-c Average
Baseline 6.7 423.93 75.04 78.67 76.22 70.00 72.85 44.88 69.61
Feature Space 5.4 339.99 74.34 74.86 66.72 67.40 66.33 39.42 64.68
Weight Space 5.4 339.99 62.20 62.57 43.91 58.80 44.95 30.03 50.41
LLM-Pruner 5.4 339.60 57.06 75.68 66.80 59.83 60.94 36.52 59.47
Feature Space 3.4 215.61 62.02 61.37 34.64 56.43 40.32 28.75 47.25
Weight Space 3.4 215.61 62.08 53.59 27.88 48.46 27.15 27.05 41.10
LLM-Pruner 3.4 206.59 52.32 59.63 35.64 53.20 33.50 27.22 43.58

2023). We employ two types of performance met-346

rics for search, one targeted at preserving the gen-347

eral Wikitext-2 (Merity et al., 2016) perplexity and348

another targeted at maximizing the downstream349

commonsense reasoning task performance. In both350

cases, we used 20% data for search and finally eval-351

uate the compressed models on the unseen 80%352

data. The exact algorithm is outlined above. Once353

we surgically decompose the network, each linear354

layer is replaced by two low-rank linear layers op-355

erating sequentially. Thus reducing the parameters356

and FLOPs of the pre-trained network directly.357

4 Experimental Analysis358

Here, we offer various insights into the analysis of359

LLMs, focusing specifically on experiments con-360

ducted with LLaMA-7B (Touvron et al., 2023) and361

Mistral-7B models (Jiang et al., 2023a). Our exper-362

iments are centered on downstream common-sense363

reasoning tasks, with detailed task descriptions364

available in the Appendix A. Throughout our ex-365

periments, we utilize a calibration dataset compris-366

ing 512 samples, each with a maximum sequence367

length of 128. Importantly, this data is randomly368

selected from the train splits of the downstream369

datasets, ensuring no data leakage. It is worth not-370

ing that the results demonstrated at the ∼7B scale371

tend to extrapolate more effectively to larger-scale372

models (Frantar and Alistarh, 2023). Decompo-373

sition is carried out on a CPU machine and rank374

search is done on a single L4 GPU with 24GB of375

VRAM for faster evaluations during search. It is a376

possibility that a larger size of calibration data with377

longer sequence lengths can further provide better378

low-rank approximations.379

4.1 Weight Space vs. Feature Space380

First, we compare weight space and feature space381

decomposition methods and determine the pre-382

ferred choice for downstream tasks. To ensure383

fairness in the comparison, no surgical strategy 384

is employed. We employ two parametric budgets 385

of 80% and 50% in line with existing works. To 386

achieve a parametric budget of 80% overall, we 387

decompose the last 12 out of 32 modules with a 388

constant β = 0.46; similarly for 50% budget, we 389

decompose last 24 of the 32 modules with a con- 390

stant β = 0.33. Note that the above choices are 391

made to avoid instability in the network due to com- 392

pression of the layers at the start of the network, as 393

also observed in pruning (Ma et al., 2023). 394

Table 1 presents the performance results for 395

weight space and feature space decomposition. It 396

is clearly evident that feature space decomposi- 397

tion can better retain the performance across down- 398

stream tasks. We additionally compare the de- 399

composition methods with LLM-Pruner (Ma et al., 400

2023) to understand how they fair against struc- 401

tured pruning. From the results shown in Table 402

1, it is clear that feature space decomposition is 403

consistently superior over model pruning for the 404

same level of training-free compression. Note that 405

for these cases, β is constant across layers, yet fea- 406

ture space decomposition is still able to outperform 407

network pruning by large margins. 408

4.2 Task-Specific Decomposition 409

Having demonstrated the superiority of feature 410

space decomposition, we employ here an end-to- 411

end surgical decomposition strategy across the com- 412

plete model. The extensive results are presented 413

in Figure 1. For each downstream task, we search 414

based on the 20% subset and report performance 415

on the 80% unseen subset. 416

At a relatively lower compression budget, SFSD 417

can retain and even surpass the performance of the 418

base model. This behaviour is consistent across the 419

LLaMA and Mistral models. This makes SFSD a 420

powerful tool for quickly gaining speedups without 421

compromising performance in task-specific envi- 422
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Figure 1: Surgical Feature Space Decomposition (SFSD) of LLaMA-7B and Mistral-7B models with task-spcific
accuracy used as rank search metric. Horizontal lines indicate the performance of the baseline pre-trained model.

ronments. Note that owing to the surgical task-423

specific search mechanism, SFSD automatically424

estimates and eliminates low-rank eigenvectors per425

layer depending on the complexity of the target426

task, while reducing the overall final parameter427

count dynamically.428

Further, we note that the plots shown in Figure 1429

exhibit a generalization vs. compression trend sim-430

ilar to those of classical pruning literature (Frankle431

and Carbin, 2018). In most cases, models general-432

ize better than the baseline model at minimal com-433

pression levels and undergo performance degrada-434

tion at higher levels of compression. Note that the435

proposed approach operates without training and436

gradients, with the potential for lost performance437

to be regained through fine-tuning the preserved438

eigenvectors. However, fine-tuning the resultant439

models is outside the scope of this study.440

4.3 Surgical Decomposition using Perplexity441

We have demonstrated above the efficacy of SFSD442

for task-specific compression. Next, we investigate,443

how the compressed models obtained from SFSD 444

fair when no task-specific information is employed. 445

We present here insights obtained from SFSD- 446

based compression of the models using Wikitext-2 447

(Merity et al., 2016) perplexity as the performance 448

metric. Resultant models are then evaluated on 449

commonsense reasoning tasks and an average per- 450

formance over the six chosen tasks is presented. 451

The results for LLaMA-7B and Mistral-7B are 452

presented in Figure 2. In line with existing works, 453

the perplexity undergoes substantial degradation 454

as the compression level increases. However, it is 455

noteworthy that average downstream task perfor- 456

mance does not degrade substantially. This shows 457

that even if the perplexity deteriorates, the model 458

can retain common sense reasoning to a reasonable 459

extent. Note that across different parameter counts, 460

SFSD beats LLM-Pruner substantially on average 461

downstream task performance; 65.4 % vs. 59.5 462

% at 5.4B parameter count (80% budget) on the 463

LLaMA-7B model. Mistral-7B exhibits a slower 464

parameter reduction and hence a higher overall per- 465
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Figure 2: Surgical Feature Space Decomposition (SFSD) of LLaMA-7B and Mistral-7B models with perplexity
used as the rank search metric. The decomposed models are evaluated at regular interval on commonsense reasoning
tasks and average accuracy is reported.

formance. The relative drop in perplexity and aver-466

age accuracy is similar to LLaMA-7B considering467

the parameter reduction.468

4.4 Effect on Model Bias469

Table 2: ICAT Score for baseline and SFSD models.
Budget indicates the overall parametric budget post de-
composition. A higher ICAT score indicates a less bi-
ased model.

Model Budget Gender Profession Race Religion Overall

100% 56.85 66.75 60.81 75.02 63.14
LLaMA-7B

90% 58.50 68.08 62.60 78.85 64.84
80% 59.31 70.50 65.73 78.30 67.28

100% 52.03 66.43 62.63 79.79 63.45
Mistral-7B

90% 54.93 68.22 62.94 87.03 64.87
80% 59.05 68.12 65.99 84.68 66.90

For a holistic evaluation, we also analyse the470

change in model’s bias post SFSD. We evaluate471

the baseline model and the compressed models on472

StereoSet (Nadeem et al., 2020) - a standard bench-473

mark to measure stereotypical biases in pre-trained474

language models. We use the generic perplexity-475

based SFSD models as discussed in the previous476

section. The Idealized Context Association Test477

(ICAT) scores are presented in Table 2. A higher478

ICAT score indicates a less biased model.479

It is noteworthy that SFSD substantially re-480

duces bias in the pre-trained LLMs across multiple481

stereotypes. This observation is consistent across482

LLaMA-7B and Mistral-7B. This makes SFSD an483

attractive choice for compression since it reduces484

intrinsic bias in LLMs in contrast to distillation485

and pruning which have been shown to increase the486

bias in pre-trained language models (Ramesh et al.,487

2023).488

5 Discussion and Analysis 489

5.1 Decomposed Model Visualisation 490

To further study the low-rank structures in SFSD 491

models, we plot the final parameter budget β av- 492

eraged across the six surgical searches shown in 493

Figure 1. A detailed visualization is provided in 494

Figure 3. The module number indicates the loca- 495

tion of each module in the network architecture, 496

and the number inside each grid indicates the % of 497

parameters retained by SFSD as compared to the 498

original pre-trained model parameters. 499

Some intrinsic patterns can be seen across 500

datasets, and specifically some layers are consis- 501

tently intact with respect to the pre-trained model. 502

These layers are pivotal to model performance, 503

hence SFSD prefers to retain these layer completely. 504

We also see some layers undergoing extreme rank 505

reduction, and the average compression across the 506

datasets is relatively very high for them. We ob- 507

serve that compared to MLP layers, attention layers 508

(query, key and value) are more prune to compres- 509

sion through SFSD. More specifically, query pro- 510

jection either undergoes substantial compression 511

or stays completely intact. Additionally, the out- 512

put projection layer in MHSA undergoes minimum 513

compression and stays intact almost half the times. 514

5.2 Learning - Unlearning in SFSD 515

To study the drift in learning mechanism post 516

SFSD, we analyse the disagreement between base- 517

line pre-trained model and the corresponding 518

perplexity-based SFSD model. The disagreement 519

and the difference in performance of the two mod- 520

els are presented in Table 3. It is surprising to note 521

that the disagreement is much higher than the per- 522

formance difference, indicating that SFSD under- 523

goes substantial learning and unlearning process. 524

Specifically, for harder tasks like Arc-Challenge, 525
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Figure 3: Final Parametric Budget β averaged across six commonsense reasoning tasks. 100% indicates an intact
layer exactly similar to the pre-trained model. LLaMA-7B consists of a total of 32 modules; with each module
having query (q), key (k), value (v), output (o), gate (g), up (u) and down (d) projection layers.

Table 3: Accuracy and disagreement between the 90%
budget model (LLaMA-7B) and the baseline predictions
across multiple datasets. Disagreement refers to % data
points whose predictions differ between the pre-trained
and the SFSD models.

Dataset SFSD (%) Pre-trained (%) Delta (%) Disagree. (%)

PIQA 77.26 78.67 -1.41 5.33
Winogrande 69.53 70.01 -0.48 9.16
BoolQ 73.24 75.05 -1.81 8.41
ARC-e 72.90 75.38 -2.48 8.80
ARC-c 40.35 41.80 -1.45 10.24
Hellaswag 54.37 56.96 -2.56 4.61

the disagreement is notably higher indicating that526

SFSD is able to recover representations inherently527

hidden in the network. However, this comes at the528

cost of unlearning representations already present529

in the pre-trained model. By designing search met-530

rics targeted at unlearning or debiasing, SFSD un-531

locks a promising direction to recover hidden rep-532

resentations present in the network and mitigate533

targeted biases.534

5.3 The Why, When and How of SFSD535

Why? SFSD offers an alternative and efficient536

method for model compression without the need537

for fine-tuning. We demonstrate that feature space538

decomposition is superior over weight space de-539

composition, and SFSD performs feature decom-540

position in a very effective manner. SFSD also541

outperforms current structured pruning methods542

on various commonsense reasoning tasks. Beyond543

the standard performance measures, the resultant544

compressed models obtained from SFSD exhibit545

relatively lower intrinsic model bias, with regard546

to ethical concerns. The multifold advantages of547

SFSD over other compression methods clearly put548

it forward as a preferred choice for building effi-549

cient LLMs.550

When? SFSD presents numerous advantageous551

scenarios where its utility becomes very clear. 552

Firstly, its notably lower computational complexity 553

renders it as the preferred choice in contexts where 554

extensive re-training or fine-tuning of models isn’t 555

feasible. Despite the potential memory constraints 556

of full-scale decomposition, SFSD operates on a 557

layerwise basis, mitigating memory load signifi- 558

cantly. Moreover, SFSD proves beneficial when the 559

primary objective is to reduce model size without 560

sacrificing performance on reasoning tasks. Addi- 561

tionally, SFSD demonstrates marginal performance 562

enhancements even at modest compression levels, 563

making it a viable option for post-processing to 564

boost model performance. Lastly, SFSD serves 565

a crucial role in the development of compressed 566

LLMs, inherently mitigating model bias and ad- 567

dressing ethical considerations. 568

How? In simple terms, SFSD implemented layer- 569

wise eigenvalue decomposition in the feature space, 570

achieving bias compensation and low-rank approx- 571

imation. The approach involves surgical feature- 572

space decomposition, which enables the extrac- 573

tion of models with varying parameters from a pre- 574

trained LLM while minimizing performance drops. 575

The decomposition is started from the last layer 576

and moved iteratively towards the first. Detailed 577

description has been presented in Algorithm 1. 578

With our comprehensive exploration of SFSD’s 579

merits in terms of efficiency and ethical AI devel- 580

opment, we’ve firmly established its value in con- 581

structing effective LLMs. Its adaptability to various 582

contexts, including memory limitations and ethi- 583

cal considerations, underscores its significance and 584

potential impact. Consequently, SFSD emerges 585

as a promising method for compression of LLMs 586

without the need for extensive training, opening av- 587

enues for further research in efficient and ethically 588

conscious model optimization. 589
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6 Limitations590

While we have sufficiently demonstrated the effi-591

cacy of SFSD in compressing and building efficient592

LLMs, there are still a few limitations that need593

to be overcome before SFSD can be looked at the594

preferred full-blown solution for improving LLMs595

from the efficiency perspective.596

First is the scale of experimentation. While we597

have observed ourselves from very early experi-598

ments that SFSD works well on LLMs with pa-599

rameters above 20B, the extensive experimentation600

presented in the paper is on 7B models, and for601

unhindered generalization, additional experiments602

with more parameters might be needed.603

Next, our rank search strategy is currently sur-604

gical, and it is not clear yet whether it exploits the605

best out of the proposed method. This might be606

clearly limiting the extent of compression that can607

be achieved with minimal performance drop, and a608

better choice in terms of a first-principled approach609

might be able to develop more efficient LLMs.610
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Appendix 830

A Dataset Descriptions 831

In our analysis, we focus on two sets of data: the 832

calibration dataset selection and the test split of the 833

dataset which is used for the surgical rank selection 834

process. 835

A.1 Calibration Dataset 836

The model’s performance is dependent on the 837

choice of the calibration dataset, as it directly af- 838

fects the computation of the covariance matrix 839

through the activations of samples, which is sub- 840

sequently utilized in the eigenvalue decomposi- 841

tion process. We experimented with a variety 842

of calibration datasets including the six common- 843

sense reasoning tasks (BoolQ(Clark et al., 2019), 844

PIQA(Bisk et al., 2020), Arc-Challenge(Clark 845

et al., 2018), Arc-Easy(Clark et al., 2018), Wino- 846

grande(Sakaguchi et al., 2021), Hellaswag(Zellers 847

et al., 2019)), WikiText-2 (Merity et al., 2016), 848

and a combination of all the six aforementioned 849

common-sense reasoning tasks wherein each batch 850

in the calibration dataset contains an equal num- 851

ber of samples from each task. The samples for 852

the calibration dataset in each setting are chosen 853

from a distinct set, separate from the split used 854

for model evaluation and the presentation of our 855

results. Thus we ensure that there is no data leak 856

between the calibration dataset and the evaluation 857

split. In our initial experiments we observed that 858

the combination dataset has superior generalization 859

on downstream tasks as compared to a task-specific 860

calibration dataset, hence all our subsequent experi- 861

ments as well as the results mentioned in this paper 862

use models decomposed on the basis of the combi- 863

nation dataset. Further, the superior generalization 864

of the model with the combination dataset can be 865

attributed to the fact that our approach to obtaining 866

low-rank matrices benefits from greater variability 867

among the samples within the calibration batch. 868

A.2 Surgical Rank Search Dataset 869

In the task-specific compression for common sense 870

reasoning tasks, the test dataset is divided into two 871

parts: one containing 20% of the samples and the 872

other comprising 80% of the samples. In the rank 873

selection process for a specific layer,the objective 874

is to identify the minimum rank that ensures perfor- 875

mance maintenance across the chosen 20% valida- 876

tion split. The reported results for all task specific 877

compression experiments are on the disjoint 80% 878
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Dataset BoolQ PIQA HellaSwag WinoGrande ARC-e ARC-c

Search Split (20%) 654 367 2008 253 475 234
Eval. Split (80%) 2616 1470 8034 1013 1901 938

Table 4: Distribution of sample data used for search and evaluation on task-specific SFSD models.

split of the test dataset.879

Additionally, the common sense reasoning scores880

for a model compressed based on perplexity are881

derived from the evaluation of the model on the882

complete test split of the corresponding common883

sense reasoning task.884

B Layerwise β, Rank and Budget885

Assuming a set of layerwise budgets β ∈886

{β1, β2, ..., βN} where N is the total number of887

linear layers. The final parametric budget can be888

estimated by
∑N

i=1 βipi∑N
i=1 pi

, where pi denotes number889

of parameters in the ith layer. Equation 3 can be890

directly used to estimate the rank of any particular891

layer given a value of β.892
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