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Abstract

LLMs with in-context learning (ICL) obtain001
remarkable performance but are sensitive to002
the quality of ICL examples. Prior works on003
ICL example selection explored unsupervised004
heuristic methods and supervised LLM-based005
methods, but they typically focus on the selec-006
tion of individual examples and ignore corre-007
lations among examples. Researchers use the008
determinantal point process (DPP) to model009
negative correlations among examples to select010
diverse examples. However, the DPP fails to011
model positive correlations among examples,012
while ICL still requires the positive correla-013
tions of examples to ensure the consistency014
of examples, which provides a clear instruc-015
tion for LLMs. In this paper, we propose016
an ICL example selection method based on017
the nonsymmetric determinantal point process018
(NDPP) to capture positive and negative corre-019
lations, considering both the diversity and the020
relevance among ICL examples. Specifically,021
we optimize NDPP via kernel decomposition-022
based MLE to fit a constructed pseudo-labeled023
dataset, where we also propose a low-rank de-024
composition to reduce the computational cost.025
Further, we perform query-aware kernel adapta-026
tion on our NDPP to customize the input query,027
and we select examples via a MAP inference028
based on the adapted NDPP. Experimental re-029
sults show our model outperforms strong base-030
lines in ICL example selection.031

1 Introduction032

Large language models (LLMs) show good perfor-033

mance through in-context learning (ICL) (Brown034

et al., 2020; Wei et al., 2022b,a; Wen et al., 2024;035

Pan et al., 2024). ICL typically uses an example036

set and a task-specific instruction (with the user’s037

query) as a prompt and feeds the prompt into LLMs.038

ICL allows LLMs to perform tasks by observing039

a series of examples without the need to update040

parameters. However, the performance of ICL is041

sensitive to the selection of examples (Liu et al.,042

2022; Zhang et al., 2022; Min et al., 2022; An et al., 043

2023). Recent works (Lu et al., 2022; Cheng et al., 044

2023) also show that different example sets exhibit 045

significant differences in performance, thus being 046

crucial for exploiting the ICL capabilities of LLMs. 047

To select suitable examples for ICL, researchers 048

propose various context-dependent heuristic meth- 049

ods, where they select examples according to the 050

examples’ entropy (Lu et al., 2022), complexity 051

(Fu et al., 2022), perplexity (Gonen et al., 2023), 052

and diversity (Li and Qiu, 2023). These methods 053

outperform random selection, but these methods ig- 054

nore characteristics of the specific input queries and 055

thus cannot customize the ICL example set for the 056

input queries. To consider the query, researchers 057

propose context-aware methods to retrieve similar 058

examples for ICL (Liu et al., 2022; Agrawal et al., 059

2023; Hongjin et al., 2022). They use off-the-shelf 060

retrievers such as BM25 (Robertson et al., 2009) 061

or SBERT (Reimers and Gurevych, 2019) to select 062

examples based on their textual or semantic similar- 063

ity to the query. When applying LLMs to specific 064

tasks, they cannot customize the example selection 065

of ICL for the given task since the ICL example 066

selector (i.e., retriever) is not learnable and cannot 067

learn to tailor to the task-specific data. 068

To leverage task supervision, some recent works 069

(Rubin et al., 2022; Cheng et al., 2023; Li et al., 070

2023; Xiong et al., 2024) use LLMs’ feedback as 071

the task-specific supervisory signal to train the ICL 072

example selectors (i.e., retriever), where the signal 073

is used to rank and label examples. In these meth- 074

ods, the retrievers learn the LLMs’ preference for 075

examples in different tasks and adaptively select 076

examples for each task. However, they typically 077

focus on the selection of each individual example, 078

ignoring the correlations (i.e., inter-relationships) 079

among a set of ICL examples. 080

To consider the correlations among examples for 081

ICL, researchers (Levy et al., 2023; Ye et al., 2023a; 082

Yang et al., 2023) propose to use the determinantal 083

1



point process (DPP) (Kulesza and Taskar, 2012) to084

select examples by balancing the relevance to input085

queries and the diversity among examples. They086

model the relevance to input queries by similar-087

ity between queries and examples, and they model088

the diversity among examples since DPP’s kernel089

matrix L models the negative correlation of data090

points. However, DPP’s kernel matrix L is a sym-091

metric positive semi-definite (PSD) matrix. L re-092

stricts DPP can only model negative correlation 1093

among examples rather than positive correlation.094

It results in DPP ignoring the relevance among095

candidate examples.096

We argue that ICL example selection should not097

only consider the relevance to input queries and the098

diversity among examples, but also cater to the rel-099

evance among examples. Ensuring the consistency100

of ICL examples contributes to providing clear in-101

structions to guide LLMs (Liu et al., 2024a). 2102

In this paper, we propose an ICL example selec-103

tion method for LLM based on the nonsymmetric104

determinantal point process model (NDPP), which105

considers the relevance to input queries, the di-106

versity among ICL examples, and the relevance107

among ICL examples. NDPP’s nonsymmetric prop-108

erty makes the selection consider relevance among109

ICL examples. Specifically, we construct an NDPP110

model with a kernel matrix to capture positive and111

negative correlations among ICL examples. In the112

training stage, we propose a kernel decomposition-113

based maximum likelihood estimation (KD-MLE)114

to train the NDPP by fitting the kernel matrix over115

our constructed pseudo-labeled datasets. To reduce116

the computational cost of KD-MLE, we propose a117

low-rank decomposition of the kernel matrix. In118

the inference stage, to consider the relevance to119

input queries, we propose a query-aware kernel120

adaptation, which adapts the trained NDPP to the121

given query by incorporating the embedding simi-122

larity between examples and queries into the kernel123

matrix. We finally perform maximal a posteriori124

(MAP) inference based on the adapted NDPP to125

select the ICL example set for LLMs. Experiments126

show that our method exceeds baselines on five127

datasets, including open-domain QA, code genera-128

1In DPP, the correlation between examples i and j is ex-
pressed as −LijLji, where L is the kernel matrix. Due to the
symmetric property of PSD matrix, Lij and Lji are always
equal, making the correlation −LijLji always non-positive.

2The relevance and diversity are not conflicting since ICL
needs multiple examples, where some of them may be diverse
and others are relevant so as to provide a comprehensive and
consistent instruction to LLMs.

tion, semantic parsing, and story generation tasks. 129

Our code is released.3 130

Our contributions are: (1) We propose a novel 131

ICL example selection framework based on NDPP, 132

which captures positive and negative correlations 133

among examples and models the composition of 134

ICL examples to select suitable ICL examples for 135

LLM. (2) We propose a query-aware kernel opti- 136

mization to consider the similarity between queries 137

and examples, which enables our method to select 138

customized ICL example sets for different queries. 139

(3) Experiments on five datasets show that our 140

method achieves SOTA on ICL example selection. 141

2 Related Work 142

2.1 Example Selection for ICL 143

ICL example selection methods mainly have three 144

categories: (1) In-context Insensitive Unsuper- 145

vised Methods. These approaches ignore the query 146

information and task supervision. Researchers pro- 147

pose example selection methods based on complex- 148

ity, entropy, diversity, and so on (Fu et al., 2022; 149

Lu et al., 2022; Li and Qiu, 2023). (2) In-context 150

Sensitive Unsupervised Methods. This category 151

considers query information but ignores the task 152

supervision. Researchers find that selecting differ- 153

ent examples can reduce the redundancy of ICL 154

example set (Liu et al., 2022; Agrawal et al., 2023; 155

Hongjin et al., 2022). Wang et al. (2024a) propose 156

a model-specific example selection method and 157

Liu et al. (2024b) select examples with multiple 158

levels of similarity to queries. (3) In-context Sen- 159

sitive Supervised Methods. By introducing task 160

supervision, these methods fine-tune ICL example 161

selectors (i.e., retrievers). Many studies improved 162

the quality of ICL examples by iteratively training 163

retrievers (Rubin et al., 2022; Wang et al., 2024b; 164

Li et al., 2023; Liu et al., 2024b). Xiong et al. 165

(2024) further use chain-of-thought. (Levy et al., 166

2023; Yang et al., 2023; Ye et al., 2023b) use DPP 167

to select diverse example sets. These works only 168

consider relevance to input queries and diversity of 169

examples, our model further considers relevance 170

among examples. 171

2.2 DPP and Its Applications 172

(1) Theoretical studies on DPP. DPP has seen 173

significant development. Johansson et al. (2023) 174

proposed a semi-supervised k-DPP method. Grosse 175

et al. (2024) used a greedy algorithm for k-DPP 176

3https://anonymous.4open.science/r/ICL-NDPP-FB7B
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sampling. Okoth et al. (2022) propose LSMOEA-177

DPP and Ghilotti et al. (2024) propose Anisotropic178

DPP. (2) Applications of DPP in AI. DPP is widely179

used in AI applications, especially for tasks re-180

quiring diverse sets, e.g., neural network training181

(Sheikh et al., 2022), recommendation systems (Liu182

et al., 2024c), video analysis (Chen et al., 2023),183

and abstract summary (Shen et al., 2023). (3) The-184

oretical studies on DPP. Gartrell et al. (2019)185

propose NDPP, a nonsymmetric extension of DPP,186

which can model both positive and negative corre-187

lations among items. Gartrell et al. (2021) reduce188

NDPP’s complexity. Han et al. (2022) propose a189

scalable sampling method for NDPP. Song et al.190

(2024) propose a fast dynamic algorithm for NDPP.191

While current works focus on the application of the192

DPP, we explore the application of the NDPP on193

ICL example selection. See more details of related194

work in App. A.195

3 Preliminary196

Nonsymmetric Determinantal Point Process.197

NDPP is a probabilistic model to model corre-198

lations between items in a set (Gartrell et al.,199

2019). It models a finite ground set D with a ker-200

nel matrix L such that for any subset E ⊆ D,201

PL(E) ∝ det(LE), where LE is the submatrix of202

L indexed by E. Given the kernel matrix L, the203

probability a subset E being selected from D is204

defined as:205

PL(E) =
det(LE)

det(L+ I)
(1)206

where I is a unit matrix. See App. B for more207

details of NDPP and ICL.208

4 Method209

4.1 Overview210

To provide high-quality ICL examples for LLMs,211

we construct an ICL example selection framework212

based on the NDPP model, where the NDPP con-213

sists of a kernel matrix L to model correlations214

among examples. We construct a pseudo-labeled215

training set based on LLMs’ feedback (§ 4.2), and216

use the pseudo-labeled training set to train the217

NDPP model by kernel decomposition-based max-218

imum likelihood estimation (MLE) (§ 4.3). In the219

inference stage, we perform query-aware kernel-220

adaptation on the trained NDPP model to consider221

the relevance to input queries, and select ICL ex-222

amples based on the adapted model through a max-223

imum a posteriori (MAP) inference (§ 4.4).224

4.2 Example Subsets Pseudo-labeling via 225

LLMs’ Feedback 226

Since there is no ground truth of ICL example sets 227

for each training instance, to train the NDPP model 228

in § 4.3 by MLE, we collect the feedback signals 229

from LLMs for scoring the example subsets to con- 230

struct a pseudo training set. 231

Given a task, we construct a pseudo-labeled 232

training set with three steps: (1) Candidate ex- 233

ample retrieval. For each instance (xi, yi) from 234

our training set, we retrieve a candidate example 235

set from the example pool D using the KNN re- 236

triever, which considers the embedding similar- 237

ity between the instance and examples. From 238

the retrieved candidate example set, we randomly 239

sample N non-overlapping subsets, denoted as 240

{Eij}Nj=1. (2) Example subset scoring. We mea- 241

sure the quality of each candidate example subset 242

Eij with a quality score sij , and the scores act 243

as soft pseudo labels of the subsets. To obtain 244

the quality score sij , we concatenate the query xi 245

and examples in the subset Eij , and input the con- 246

catenation into an LLM to obtain the probability 247

PLLM (yi|Eij , xi) of predicting the corresponding 248

ground truth yi of the test query xi, which is for- 249

malized as: sij = PLLM (yi|Eij , xi). (3) Pseudo 250

training set construction. We rank candidate 251

example subsets based on the score sij , and se- 252

lect the top 10% high-scoring subsets for all in- 253

stances to construct a pseudo-labeled training set 254

Dtrain = (Ei)
n
i=1, where n is the subset number. 255

Dtrain is used to train the NDPP model in (§ 4.3). 256

4.3 NDPP Model Optimization with 257

Pseudo-labeled Example Subsets 258

To select high-quality ICL example sets, we train 259

the NDPP model by kernel decomposition-based 260

MLE, which allows the NDPP model to learn the 261

kernel matrix of high-scoring example subsets from 262

the pseudo-labeled training set. The process con- 263

sists of three steps: (1) we first define the NDPP 264

optimization objective, then (2) get the kernel de- 265

composition for NDPP, and finally, (3) we optimize 266

NDPP via the kernel decomposition-based MLE. 267

4.3.1 NDPP Optimization Objective: MLE 268

with Kernel Matrix 269

To capture correlations among ICL examples, we 270

optimize the kernel matrix of the ICL example set 271

to fit the pseudo-labeled training set. The fitted 272

kernel matrix represents the feature of high-scoring 273
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Figure 1: The overview of our framework. In the training stage, we construct a pseudo-labeled training set Dtrain

based on LLMs’ feedback (§ 4.2), and use Dtrain to optimize the kernel matrix L of the NDPP model by kernel
decomposition-based MLE (§ 4.3). In the inference stage, we perform query-aware kernel-adaptation on the trained
NDPP model, and select ICL examples based on the adapted model through MAP inference (§ 4.4).

ICL example sets so that NDPP can select suitable274

examples with the fitted kernel matrix.275

In the NDPP, recall that the probability of se-276

lecting a candidate example subset Ei from the277

example pool D is PL(Ei) =
det(LEi

)

det(L+I) (as shown278

in Eq. 1), where L is the kernel matrix of D and279

LEi is the submatrix of L indexed by Ei. L is con-280

structed by computing the pairwise embedding sim-281

ilarity between two examples ⟨ei, ej⟩ in the exam-282

ple pool D, where Lij = sim(ei, ej). Elements of283

L show correlations among examples in D. Given284

different kernel matrices, NDPP selects different285

ICL example sets with the probability PL(·).286

To select high-quality ICL example sets with287

NDPP, we aim to find a kernel matrix L that max-288

imizes the probability of selecting high-scoring289

ICL example subsets. To achieve it, we opti-290

mize the kernel matrix L of the ICL example set291

to fit the pseudo-labeled training set Dtrain =292

(Ei)
n
i=1. Specifically, we optimize L towards the293

log-likelihood on the training set Dtrain as,294

f̂n(L) =
1

n

n∑
i=1

logPL(Ei) (2)295

Because PL(Ei) =
det(LEi

)

det(L+I) , we have:296

f̂n(L) =
1

n

n∑
i=1

log det(LEi)− log det(L+ I) (3)297

The optimized kernel matrix L̂ is the kernel matrix298

that maximizes the Eq. 3, denoted as:299

L̂ = argmax
L

f̂n(L) (4)300

The convexity analysis of Eq. 4 is provided in301

App. C. The optimized kernel matrix L̂ is the learn-302

able optimal approximation of high-scoring ICL303

example subsets’ kernel matrix, with its elements 304

representing correlations among examples. 305

4.3.2 Kernel Decomposition of NDPP 306

To optimize the kernel matrix L conveniently, we 307

perform a two-step decomposition on the NDPP 308

kernel matrix: we first perform symmetric de- 309

composition on the kernel matrix, which enables 310

NDPP to learn the positive and negative correla- 311

tions among examples independently, and then per- 312

form a low-rank decomposition to reduce the com- 313

putational cost. Details are as follows: 314

Symmetric decomposition. To distinguish the 315

positive and negative correlations among exam- 316

ples (using NDPP’s nonsymmetric property), we 317

decompose the kernel matrix L into the sum of a 318

symmetric matrix S and a skew-symmetric matrix 319

A as in Eq. 5, where A and S denote the positive 320

and negative correlations, respectively. 321

Low-rank decomposition. To reduce the com- 322

putational cost, inspired by Gartrell et al. (2021), 323

we further perform a low-rank decomposition on 324

the symmetric matrix S and the skew-symmetric 325

matrix A as in Eq. 5, which converts the high- 326

dimensional representation of the correlations into 327

a low-dimensional representation. 328

L = S +A,S = V V T ,A = BCBT (5) 329

V ,B ∈ RM×K are low-rank matrices of S and A 330

respectively, where M is the example number in 331

the example pool D and K is the rank of the kernel 332

matrix L. V and B indicate the low-dimensional 333

representation of the negative and positive correla- 334

tions among examples, respectively. C ∈ RK×K 335
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is a block-diagonal matrix with diagonal blocks Σi336

of the form
[

0 λi

−λi 0

]
, where λi > 0. C main-337

tains the skew-symmetric property of A.338

4.3.3 Kernel Decomposition-based MLE339

We perform MLE to fit the kernel matrix L with its340

kernel decomposition form L = V V T +BCBT341

obtained in the above step, where we also apply a342

regularization term to the log-likelihood.343

Step 1: Kernel-decomposed MLE. When we344

optimize the kernel matrix L towards the MLE ob-345

jective, we need to perform the decomposition of346

L to ensure that L captures both positive and neg-347

ative correlations. We recall the log-likelihood of348

L (Eq. 3). Specifically, we use the decomposition349

form L = V V T +BCBT in Eq. 5 to decompose350

L and LEi in the objective function (Eq. 3) to ob-351

tain the kernel-decomposed log-likelihood (Eq. 6),352

ϕ(V ,B,C)

=
1

n

n∑
i=1

log det
(
V EiV Ei

T +BEiCBEi

T
)

− log det
(
V V T +BCBT + I

) (6)353

Eq. 6 allows us to optimize the log-likelihood with354

the decomposed components V , B, C. The ma-355

trices B and V can capture positive and negative356

correlations among examples, respectively. Note357

the second term det(L+ I) in Eq. 3 requires cal-358

culation with complexity O(M3), while the kernel359

decomposition reduce the computational complex-360

ity of the second term in Eq. 6 to O(MK2+nK3).361

The running time linearly scales with the dataset362

size M , and we show the time cost in table 7.363

Step 2: Regularized log-likelihood. To pre-364

vent overfitting, we define a regularization term as365

shown in Eq. 7. We perform L2 regularization for366

each row vector vi and bi of the matrices V and367

B separately, and use hyperparameters α and β368

to control the regularization strength of the matri-369

ces V and B, respectively. Besides, we define a370

weight parameter 1
γi

to control the regularization371

strength for each row vector, where γi denotes the372

occurrences of the ith element appears in Dtrain.373

The regularization term is formally denoted as:374

R(V ,B) = −α

M∑
i=1

1

γi
∥ vi ∥22 −β

M∑
i=1

1

γi
∥ bi ∥22 (7)375

Adding the regularization term (Eq. 7) to the kernel-376

decomposed log-likelihood (Eq. 6), we obtain the377

regularized log-likelihood (Eq. 8): 378

ϕ(V ,B,C)

=
1

n

n∑
i=1

log det
(
V EiV Ei

T +BEiCBEi

T
)

− log det
(
V V T +BCBT + I

)
+R(V ,B)

(8) 379

The practical optimization process of Eq. 8 is pro- 380

vided in App. D. 381

In summary of the processing of § 4.3, we first 382

train the NDPP model on the pseudo-labeled train- 383

ing set Dtrain collected in § 4.2, where we optimize 384

Eq. 8 to find the optimized kernel matrix (§ 4.3.1) 385

L̂ through its kernel decomposition form (§ 4.3.2 386

and§ 4.3.3) as Eq. 5. Then, the optimized kernel 387

matrix can assist the NDPP model to select high- 388

quality ICL example sets. 389

4.4 ICL Example Selection via NDPP for 390

LLMs Inference 391

In the inference stage, to provide customized high- 392

quality ICL examples for different queries, we pro- 393

pose query-aware kernel adaptation to adapt the 394

trained NDPP to specific input queries so as to se- 395

lect ICL examples. To achieve it, we adapt the 396

NDPP to input queries by modeling the similar- 397

ity between examples and queries (§ 4.4.1), and 398

then select ICL examples by maximum a posteriori 399

(MAP) inference using the adapted NDPP (§ 4.4.2). 400

The above operations consider both the relevance 401

to input queries and the relevance among examples. 402

4.4.1 Adapting NDPP to Input Queries 403

To adapt NDPP to input queries, we update its 404

kernel matrix by introducing the similarity between 405

examples and input queries into the kernel matrix. 406

For each query, we update the kernel matrix 407

with three steps: (1) Similarity Score Compu- 408

tation. We encode the query x via a query encoder 409

EQ(·) and encode the example ei via an exam- 410

ple encoder EP (·). We obtain the similarity score 411

ri via the inner product of their encoder outputs: 412

ri = sim(x, ei) = EQ(x)
TEP (ei). (2) Similar- 413

ity Matrix Construction. Using similarity scores 414

r = [r1, r2, ..., rM ] for all M examples in the ex- 415

ample pool D, we construct a diagonal similar- 416

ity matrix R ∈ RM×M : R = Diag(r), where 417

Diag(·) is the diagonal matrix operator. The di- 418

agonal of R consists of r, while all off-diagonal 419

elements are 0. (3) Kernel Matrix Adaptation. 420

We adapt the optimized kernel matrix to the given 421
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input query by incorporating the above similarity422

matrix R with the optimized kernel matrix L̂ ob-423

tained in § 4.3. That is, we obtain the adapted424

kernel matrix L′ as: L′ = R · L̂ ·R.425

4.4.2 Query-Oriented Example Selection via426

MAP Inference427

To select the ICL example set for queries with the428

adapted NDPP, rather than selecting the most rel-429

evant k examples (Rubin et al., 2022; Wang et al.,430

2024b), we conduct the MAP inference, the stan-431

dard subset sampling method for NDPP when the432

application requires a single output set(Gartrell433

et al., 2021), to select examples one by one from434

the example pool D via a greedy algorithm. The435

goal of MAP inference is to select the high-quality436

ICL example set Smap of size k from D for the437

current query. In the adapted NDPP, given the ker-438

nel matrix L′, Smap is the example subset of size439

k from D that maximizes PL′(S) among all possi-440

ble subsets S of size k. Recall that the probability441

PL′(S) is proportional to the determinant of the442

sub-kernel matrix L′
S , Smap is the example subset443

of D that maximizes det(L′
S) among all subsets S444

of size k. Formally, we define the MAP inference445

of the example selection with adapted NDPP as:446

Smap = argmax
S⊆D,|S|=k

log det(L′
S) (9)447

However, the MAP inference above has been448

proved to be NP-hard4 (Ko et al., 1995; Kulesza and449

Taskar, 2012). To reduce the computational cost, a450

common approach is to approximate the MAP in-451

ference using greedy algorithms (Nemhauser et al.,452

1978; Gillenwater et al., 2012; Chen et al., 2018).453

To reduce the cost, we first select a candidate exam-454

ple set Z, |Z| = m,m < M with a KNN retriever455

to reduce the size of candidate examples. Then,456

following Gartrell et al. (2021), we approximate457

MAP inference using a greedy algorithm with the458

complexity of O(mKk+mK2) : starting from an459

empty set Smap, we iteratively select examples one460

by one until we obtained k examples, approximat-461

ing the global optimum by solving local optima at462

each iteration. At each iteration, for all examples463

4Such MAP inference requires finding all subsets S, |S| =
k of the example pool D, |D| = M and computing their de-
terminants. The example pool D, |D| = M has C(M,k)
subsets S, |S| = k in total, and the computational complex-
ity of each subset determinant is O(k3). The cost of the
MAP inference is O(Mk · k3) in total, which is unafford-
able as the size of the example pool D increases. And the
function logdet(L′

S) is proved to be submodular, and the un-
constrained optimization problem for submodular is NP-hard.

i in the candidate example set Z that are not in- 464

cluded in Smap, we compute the increment of the 465

log-determinant logdet(·) of the sub-kernel matrix 466

L′
Smap

after adding example i to the set Smap. We 467

select the example j with the largest increment as 468

the local optimum and add it into Smap: 469

j = argmax
i∈Z\Smap

log det
(
L′

Smap
⋃
{i}

)
−log det

(
L′

Smap

) (10) 470

App. E provides a proof of a lower bound on the 471

approximation quality of the greedy algorithm. Fi- 472

nally, we concatenate the query and the ICL exam- 473

ple set Smap as the input prompt of LLMs. 474

5 Experiments 475

5.1 Experimental Settings 476

Following (Ye et al., 2023b; Li et al., 2023), we 477

use five datasets: GeoQuery (Shaw et al., 2020), 478

NL2Bash (Lin et al., 2018), MTOP (Li et al., 479

2020), WebQs (Berant et al., 2013) and RocEnd 480

(Mostafazadeh et al., 2016). We use three met- 481

rics: Exact Match (EM) (Rajpurkar et al., 2016) for 482

GeoQuery, MTOP, and WebQs, BLEU-1 (Papineni 483

et al., 2002) for RocEnd, and BLEU-4 (Papineni 484

et al., 2002) for NL2Bash. We compare with two 485

types of methods: (1) Unsupervised Methods: 486

Random and BM25 (Robertson et al., 2009). (2) 487

Supervised Methods: EPR (Rubin et al., 2022), 488

CEIL (Ye et al., 2023b), and TTF (Liu et al., 2024b). 489

See details of datasets, metrics, baselines, and im- 490

plementation in App. F. 491

5.2 Overall Performance 492

Table 1 shows the overall results of ICL example 493

selection methods across five datasets. Notably, 494

while prior studies (Ye et al., 2023a) primarily fo- 495

cus on smaller models like GPT-Neo (2.7B), we 496

extend the evaluation to the SOTA LLM GPT-45. 497

The results demonstrate that our method outper- 498

forms all baseline methods on both GPT-neo (2.7B) 499

and GPT-4 models , indicating the effectiveness of 500

NDPP for ICL example selection. 501

Compared to random selection, our method 502

shows over 20% average improvement on both 503

models. All designed selection methods outper- 504

form random selection (except GPT-4 on RocEnd), 505

5Due to the limitations of black-box models like GPT-4
(which only expose log probabilities for the first five tokens),
our framework cannot directly construct pseudo-labeled train-
ing sets based on full token probabilities. To address this, we
transfer the retriever trained on GPT-Neo (2.7B) directly to
GPT-4 for ICL example selection.

6



Model Method GeoQuery
(EM)

MTOP
(EM)

NL2Bash
(BLEU-4)

WebQs
(EM)

RocEnd
(BLEU-1)

GPT-Neo (2.7B)

Random 33.57 0.67 34.35 4.87 57.58
BM25 62.86 53.24 58.98 16.68 58.65
EPR 71.07 60.36 56.82 17.91 59.12
CEIL* 70.71 63.40 53.66 17.08 59.72
TTF* 68.93 54.05 56.11 16.14 /
Our 73.21 65.37 61.01 18.90 60.33

GPT-4
Random 71.43 21.48 67.45 34.49 58.34
EPR 88.93 78.61 73.63 50.32 54.70
CEIL 91.07 78.70 73.95 46.75 56.24
Our 91.43 79.02 73.96 52.95 62.81

Table 1: ICL example selection experiment results. "/" indicates that the method is not open source and does not
give results of the dataset in the corresponding paper and "Bold" indicates optimal results. All results are averaged
over 3 runs.We reference results from the previous work (Liu et al., 2024b), marked by *. Our improvements are
significant under the t-test with p < 0.05 (See details in App. G).

Settings GeoQuery
(EM)

MTOP
(EM)

NL2Bash
(BLEU-4)

WebQs
(EM)

RocEnd
(BLEU-1)

Ours(Full Model) 73.21 65.37 61.01 18.90 60.33
w/o Scoring 72.36 65.19 59.32 17.91 59.09
w/o Regularization 71.43 65.28 60.25 18.75 59.94
w/o Adaptation 71.64 65.28 59.56 18.45 60.33

Table 2: Ablation study. w/o Scoring: remove the LLM scoring when construct the training set; w/o Regularization:
remove the regularization term in the log-likelihood; w/o Adaptation: remove query-aware kernel adaptation on the
trained NDPP.

highlighting the value of careful example selection.506

We observe that the improvement of our method is507

more pronounced on GPT-neo (2.7B) compared to508

GPT-4, likely due to the latter’s inherently stronger509

inference capability. This finding is consistent with510

previous research (Zhang et al., 2022). Notably, on511

Geoquery, Mtop, and RocEnd, our method on GPT-512

neo (2.7B) outperforms random example selection513

on GPT-4, demonstrating the effectiveness of our514

method in enhancing the ICL capability of LLMs.515

Furthermore, our method consistently outperforms516

CEIL on all datasets, suggesting the benefits of517

capturing positive correlations among examples for518

ICL example selection.519

5.3 Ablation Studies520

Table 2 presents results of the ablation study. Our521

complete model performs excellently across all five522

datasets, and removing any single module leads to523

a decrease in performance, validating the effective-524

ness of each component. Specifically: (1) w/o Scor-525

ing: We remove the step of scoring with LLM and526

instead use all the example subsets as the training527

set. We observe that although performance slightly528

declined, our model still maintains relatively good529

performance on some tasks. This suggests that our530

model is still able to model correlations among ex-531

amples to some extent, but is disturbed by noise in532

low-scoring ICL example subsets. (2) w/o Regu- 533

larization: We removed the regularization term in 534

Eq. 8, and the performance of our model deterio- 535

rates on certain tasks. Without regularization, our 536

model exhibits a tendency to overfit, which results 537

in a decrease in generalization ability on test data. 538

(3) w/o Adaptation: We remove the query-aware 539

kernel adaptation and observe a performance drop, 540

which demonstrates the importance of considering 541

the relevance between queries and examples. 542

5.4 Analysis studies 543

Performance Over Different Example Order. 544

Previous work (Lu et al., 2022) showed that ICL is 545

sensitive to the order of examples when selecting 546

examples randomly. We conduct experiments to 547

investigate the effect of ordering on ICL examples 548

retrieved by our method. Specifically, we provide 549

8 examples with 10 different random orderings for 550

each dataset. We present the best (Best Random- 551

Order) and worst (Worst Random-Order) results 552

and the variance of the results over 10 runs. Re- 553

sults in Table 3 show that performance fluctuates 554

somewhat across different orderings, but the vari- 555

ation is relatively small and within a controllable 556

range. This suggests that although examples’ or- 557

der does have some impact on the performance 558

of our model, the effect is limited. This finding 559

7



Figure 2: Performance over different example numbers.

is consistent with previous research (Li and Qiu,560

2023), which indicates that high-quality examples561

can reduce ICL sensitivity to the order of examples.562

GeoQuery MTOP WebQs RocEnd

Best Random-Order 69.29 62.64 14.86 59.50
Worst Random-Order 66.43 61.48 13.24 58.10
VAR 0.78 0.13 0.21 0.19

Table 3: Performance over different example orders.

Performance Over Different Example Num-563

bers. Many LLMs are constrained by limited in-564

put lengths, which restricts the maximum number565

of ICL examples that can be provided. To ana-566

lyze the impact of example quantity on ICL per-567

formance, we compared three methods across four568

tasks, and the results are shown in Figure 2. Our569

key observations are as follows: Increasing the570

number of examples enhances ICL performance,571

as additional examples enable LLMs to better un-572

derstand the task objectives and output patterns.573

Method GeoQuery MTOP NL2Bash WebQs RocEnd

MCMC 53.21 62.19 52.83 15.11 57.09
Our 73.21 65.37 61.01 18.90 60.33

Table 4: Performance over different example selection
methods in the inference stage.

Performance Over Different Example Selection574

Methods. We compare two ICL example selec-575

tion methods (i.e., MCMC sample and greedy576

(our)) in the inference stage on the GPT-Neo(2.7B)577

model. MCMC sample (Gartrell et al., 2021) ex-578

plores the subset space through random walking579

and probabilistic acceptance mechanisms. Results 580

in Table 4 show that the quality of the ICL example 581

set selected by our greedy algorithm is better than 582

the set selected by the MCMC sample method, in- 583

dicating the effectiveness of our greedy algorithm. 584

Performance Over Different Regularization Hy- 585

perparameters. We analyze varying regulariza- 586

tion parameters α and β across datasets. The ex- 587

perimental results in Table 6 show that: (1) the 588

combination of α, β we used performs best. (2) 589

The RocEnd dataset is almost unaffected by the reg- 590

ularization parameter. This may be due to the fact 591

that the RocEnd dataset has a much larger amount 592

of data than the other datasets, and the risk of model 593

overfitting is very low. 594

Method GeoQuery MTOP NL2Bash WebQs RocEnd
CEIL 82.14 81.12 72.93 30.59 59.50
Our 87.86 81.79 73.33 31.59 60.03

Table 5: Experimental results on Gemini-2.0-flash.

Generalization on other LLMs. To validate 595

the effectiveness of our method on LLMs beyond 596

the GPT family, we conduct experiments on the 597

Gemini-2.0-flash model. We compared our method 598

with the best-performing baseline CEIL, and the 599

results show that our method outperforms the base- 600

line on all datasets, demonstrating the consistent 601

superiority of our method across different models. 602

The results are shown in Table 5. 603

6 Conclusion 604

In summary, we proposed an NDPP-based frame- 605

work for ICL example selection. Our framework 606

first constructs a pseudo-labeled training set based 607

on LLM feedback, and then uses the set to train 608

the NDPP model by kernel decomposition-based 609

MLE. Finally, in the inference stage, we perform 610

query adaptation on the NDPP model, followed by 611

MAP inference to select suitable and customized 612

ICL example sets for different queries. Our exper- 613

iments on five datasets across four domains show 614

that our framework achieves SOTA performance in 615

ICL example selection. 616

Limitations 617

The pseudo-labeled training dataset we construct 618

relies on LLM feedback, which may be subject to 619

inherent biases within the LLM. To address this 620

limitation, future work could explore integrating 621
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fairness-aware mechanisms into the LLM feedback622

process, such as debiasing techniques, fairness con-623

straints, or adversarial training, to mitigate poten-624

tial biases.625

Our framework constructs pseudo-labeled626

datasets based on token probabilities from LLM627

feedback, which inherently limits its compatibil-628

ity with black-box models (e.g., GPT-4), as they629

only expose log probabilities for the top five to-630

kens. However, our experiments demonstrate that631

a retriever trained on white-box models (e.g., GPT-632

Neo) can be effectively transferred to black-box633

models, achieving competitive performance. In634

future work, we plan to explore alternative ap-635

proaches for constructing pseudo-labeled datasets636

that are universally applicable, including black-box637

LLMs.638

References639

Sweta Agrawal, Chunting Zhou, Mike Lewis, Luke640
Zettlemoyer, and Marjan Ghazvininejad. 2023. In-641
context examples selection for machine translation.642
In Findings of the Association for Computational643
Linguistics: ACL 2023, pages 8857–8873.644

Shengnan An, Zeqi Lin, Qiang Fu, Bei Chen, Nan-645
ning Zheng, Jian-Guang Lou, and Dongmei Zhang.646
2023. How do in-context examples affect compo-647
sitional generalization? In Proceedings of the 61st648
Annual Meeting of the Association for Computational649
Linguistics (Volume 1: Long Papers), pages 11027–650
11052.651

Maurice Stevenson Bartlett. 1937. Properties of suffi-652
ciency and statistical tests. Proceedings of the Royal653
Society of London. Series A-Mathematical and Phys-654
ical Sciences, 160(901):268–282.655

Jonathan Berant, Andrew Chou, Roy Frostig, and Percy656
Liang. 2013. Semantic parsing on freebase from657
question-answer pairs. In Proceedings of the 2013658
conference on empirical methods in natural language659
processing, pages 1533–1544.660

Tom Brown, Benjamin Mann, Nick Ryder, Melanie661
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind662
Neelakantan, Pranav Shyam, Girish Sastry, Amanda663
Askell, et al. 2020. Language models are few-shot664
learners. Advances in neural information processing665
systems, 33:1877–1901.666

Laming Chen, Guoxin Zhang, and Eric Zhou. 2018.667
Fast greedy map inference for determinantal point668
process to improve recommendation diversity. Ad-669
vances in Neural Information Processing Systems,670
31.671

Xiwen Chen, Huayu Li, Rahul Amin, and Abolfazl672
Razi. 2023. Rd-dpp: Rate-distortion theory meets673

determinantal point process to diversify learning data 674
samples. arXiv preprint arXiv:2304.04137. 675

Daixuan Cheng, Shaohan Huang, Junyu Bi, Yuefeng 676
Zhan, Jianfeng Liu, Yujing Wang, Hao Sun, Furu 677
Wei, Weiwei Deng, and Qi Zhang. 2023. Uprise: 678
Universal prompt retrieval for improving zero-shot 679
evaluation. In Proceedings of the 2023 Conference 680
on Empirical Methods in Natural Language Process- 681
ing, pages 12318–12337. 682

Wei Duan, Junyu Xuan, Maoying Qiao, and Jie Lu. 683
2022. Learning from the dark: boosting graph convo- 684
lutional neural networks with diverse negative sam- 685
ples. In Proceedings of the AAAI Conference on 686
Artificial Intelligence, volume 36, pages 6550–6558. 687

Yao Fu, Hao Peng, Ashish Sabharwal, Peter Clark, and 688
Tushar Khot. 2022. Complexity-based prompting for 689
multi-step reasoning. In The Eleventh International 690
Conference on Learning Representations. 691

Mike Gartrell, Victor-Emmanuel Brunel, Elvis Dohma- 692
tob, and Syrine Krichene. 2019. Learning nonsym- 693
metric determinantal point processes. Advances in 694
Neural Information Processing Systems, 32. 695

Mike Gartrell, Insu Han, Elvis Dohmatob, Jennifer 696
Gillenwater, and Victor-Emmanuel Brunel. 2021. 697
Scalable learning and {map} inference for nonsym- 698
metric determinantal point processes. In Interna- 699
tional Conference on Learning Representations. 700

Lorenzo Ghilotti, Mario Beraha, and Alessandra 701
Guglielmi. 2024. Bayesian clustering of high- 702
dimensional data via latent repulsive mixtures. 703
Biometrika, page asae059. 704

Jennifer Gillenwater, Alex Kulesza, and Ben Taskar. 705
2012. Near-optimal map inference for determinantal 706
point processes. Advances in Neural Information 707
Processing Systems, 25. 708

Hila Gonen, Srini Iyer, Terra Blevins, Noah A Smith, 709
and Luke Zettlemoyer. 2023. Demystifying prompts 710
in language models via perplexity estimation. In 711
Findings of the Association for Computational Lin- 712
guistics: EMNLP 2023, pages 10136–10148. 713

Julia Grosse, Rahel Fischer, Roman Garnett, and Philipp 714
Hennig. 2024. A greedy approximation for k- 715
determinantal point processes. In International Con- 716
ference on Artificial Intelligence and Statistics, pages 717
3052–3060. PMLR. 718

Insu Han, Mike Gartrell, Jennifer Gillenwater, Elvis 719
Dohmatob, and Amin Karbasi. 2022. Scalable sam- 720
pling for nonsymmetric determinantal point pro- 721
cesses. arXiv preprint arXiv:2201.08417. 722

SU Hongjin, Jungo Kasai, Chen Henry Wu, Weijia Shi, 723
Tianlu Wang, Jiayi Xin, Rui Zhang, Mari Ostendorf, 724
Luke Zettlemoyer, Noah A Smith, et al. 2022. Selec- 725
tive annotation makes language models better few- 726
shot learners. In The Eleventh International Confer- 727
ence on Learning Representations. 728

9

https://openreview.net/forum?id=HajQFbx_yB
https://openreview.net/forum?id=HajQFbx_yB
https://openreview.net/forum?id=HajQFbx_yB


Simon Johansson, Ola Engkvist, Morteza Haghir729
Chehreghani, and Alexander Schliep. 2023. Diverse730
data expansion with semi-supervised k-determinantal731
point processes. In 2023 IEEE International Con-732
ference on Big Data (BigData), pages 5260–5265.733
IEEE.734

Chun-Wa Ko, Jon Lee, and Maurice Queyranne. 1995.735
An exact algorithm for maximum entropy sampling.736
Operations Research, 43(4):684–691.737

Alex Kulesza and Ben Taskar. 2012. Determinantal738
point processes for machine learning.739

Itay Levy, Ben Bogin, and Jonathan Berant. 2023. Di-740
verse demonstrations improve in-context composi-741
tional generalization. In Proceedings of the 61st An-742
nual Meeting of the Association for Computational743
Linguistics (Volume 1: Long Papers), pages 1401–744
1422.745

Haoran Li, Abhinav Arora, Shuohui Chen, Anchit746
Gupta, Sonal Gupta, and Yashar Mehdad. 2020.747
Mtop: A comprehensive multilingual task-oriented748
semantic parsing benchmark. arXiv preprint749
arXiv:2008.09335.750

Xiaonan Li, Kai Lv, Hang Yan, Tianyang Lin, Wei751
Zhu, Yuan Ni, Guotong Xie, Xiaoling Wang, and752
Xipeng Qiu. 2023. Unified demonstration retriever753
for in-context learning. In Proceedings of the 61st754
Annual Meeting of the Association for Computational755
Linguistics (Volume 1: Long Papers), pages 4644–756
4668.757

Xiaonan Li and Xipeng Qiu. 2023. Finding support758
examples for in-context learning. In Findings of the759
Association for Computational Linguistics: EMNLP760
2023, pages 6219–6235, Singapore. Association for761
Computational Linguistics.762

Xi Victoria Lin, Chenglong Wang, Luke Zettlemoyer,763
and Michael D Ernst. 2018. Nl2bash: A cor-764
pus and semantic parser for natural language inter-765
face to the linux operating system. arXiv preprint766
arXiv:1802.08979.767

Haoyu Liu, Jianfeng Liu, Shaohan Huang, Yuefeng768
Zhan, Hao Sun, Weiwei Deng, Furu Wei, and769
Qi Zhang. 2024a. se2: Sequential example selection770
for in-context learning. In Findings of the Associa-771
tion for Computational Linguistics ACL 2024, pages772
5262–5284.773

Hui Liu, Wenya Wang, Hao Sun, Chris Xing Tian,774
Chenqi Kong, Xin Dong, and Haoliang Li. 2024b.775
Unraveling the mechanics of learning-based demon-776
stration selection for in-context learning. arXiv777
preprint arXiv:2406.11890.778

Jiachang Liu, Dinghan Shen, Yizhe Zhang, William B779
Dolan, Lawrence Carin, and Weizhu Chen. 2022.780
What makes good in-context examples for gpt-3?781
In Proceedings of Deep Learning Inside Out (Dee-782
LIO 2022): The 3rd Workshop on Knowledge Extrac-783
tion and Integration for Deep Learning Architectures,784
pages 100–114.785

Yuli Liu, Christian Walder, and Lexing Xie. 2024c. 786
Learning k-determinantal point processes for person- 787
alized ranking. In 2024 IEEE 40th International Con- 788
ference on Data Engineering (ICDE), pages 1036– 789
1049. IEEE. 790

Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel, 791
and Pontus Stenetorp. 2022. Fantastically ordered 792
prompts and where to find them: Overcoming few- 793
shot prompt order sensitivity. In Proceedings of the 794
60th Annual Meeting of the Association for Compu- 795
tational Linguistics (Volume 1: Long Papers), pages 796
8086–8098. 797

Sewon Min, Mike Lewis, Luke Zettlemoyer, and Han- 798
naneh Hajishirzi. 2022. Metaicl: Learning to learn 799
in context. In Proceedings of the 2022 Conference 800
of the North American Chapter of the Association 801
for Computational Linguistics: Human Language 802
Technologies, pages 2791–2809. 803

Nasrin Mostafazadeh, Nathanael Chambers, Xiaodong 804
He, Devi Parikh, Dhruv Batra, Lucy Vanderwende, 805
Pushmeet Kohli, and James Allen. 2016. A corpus 806
and cloze evaluation for deeper understanding of 807
commonsense stories. In Proceedings of the 2016 808
Conference of the North American Chapter of the 809
Association for Computational Linguistics: Human 810
Language Technologies, pages 839–849. 811

George L Nemhauser, Laurence A Wolsey, and Mar- 812
shall L Fisher. 1978. An analysis of approximations 813
for maximizing submodular set functions—i. Mathe- 814
matical programming, 14:265–294. 815

Michael Aggrey Okoth, Ronghua Shang, Licheng Jiao, 816
Jehangir Arshad, Ateeq Ur Rehman, and Habib 817
Hamam. 2022. A large scale evolutionary algorithm 818
based on determinantal point processes for large scale 819
multi-objective optimization problems. Electronics, 820
11(20):3317. 821

Shilong Pan, Zhiliang Tian, Liang Ding, Haoqi Zheng, 822
Zhen Huang, Zhihua Wen, and Dongsheng Li. 2024. 823
POMP: Probability-driven meta-graph prompter for 824
LLMs in low-resource unsupervised neural machine 825
translation. In Proceedings of the 62nd Annual Meet- 826
ing of the Association for Computational Linguis- 827
tics (Volume 1: Long Papers), pages 9976–9992, 828
Bangkok, Thailand. Association for Computational 829
Linguistics. 830

Kishore Papineni, Salim Roukos, Todd Ward, and Wei- 831
Jing Zhu. 2002. Bleu: a method for automatic evalu- 832
ation of machine translation. In Proceedings of the 833
40th annual meeting of the Association for Computa- 834
tional Linguistics, pages 311–318. 835

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and 836
Percy Liang. 2016. SQuAD: 100,000+ questions for 837
machine comprehension of text. In Proceedings of 838
the 2016 Conference on Empirical Methods in Natu- 839
ral Language Processing, pages 2383–2392, Austin, 840
Texas. Association for Computational Linguistics. 841

10

https://doi.org/10.18653/v1/2023.findings-emnlp.411
https://doi.org/10.18653/v1/2023.findings-emnlp.411
https://doi.org/10.18653/v1/2023.findings-emnlp.411
https://doi.org/10.18653/v1/2024.acl-long.537
https://doi.org/10.18653/v1/2024.acl-long.537
https://doi.org/10.18653/v1/2024.acl-long.537
https://doi.org/10.18653/v1/2024.acl-long.537
https://doi.org/10.18653/v1/2024.acl-long.537
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264


Nils Reimers and Iryna Gurevych. 2019. Sentence-842
BERT: Sentence embeddings using Siamese BERT-843
networks. In Proceedings of the 2019 Conference on844
Empirical Methods in Natural Language Processing845
and the 9th International Joint Conference on Natu-846
ral Language Processing (EMNLP-IJCNLP), pages847
3982–3992, Hong Kong, China. Association for Com-848
putational Linguistics.849

Stephen Robertson, Hugo Zaragoza, et al. 2009. The850
probabilistic relevance framework: Bm25 and be-851
yond. Foundations and Trends® in Information Re-852
trieval, 3(4):333–389.853

Ohad Rubin, Jonathan Herzig, and Jonathan Berant.854
2022. Learning to retrieve prompts for in-context855
learning. In Proceedings of the 2022 Conference856
of the North American Chapter of the Association857
for Computational Linguistics: Human Language858
Technologies, pages 2655–2671.859

Peter Shaw, Ming-Wei Chang, Panupong Pasupat, and860
Kristina Toutanova. 2020. Compositional general-861
ization and natural language variation: Can a seman-862
tic parsing approach handle both? arXiv preprint863
arXiv:2010.12725.864

Hassam Sheikh, Kizza Frisbee, and Mariano Phielipp.865
2022. Dns: Determinantal point process based neural866
network sampler for ensemble reinforcement learn-867
ing. In International Conference on Machine Learn-868
ing, pages 19731–19746. PMLR.869

Jianbin Shen, Junyu Xuan, and Christy Liang. 2023. A870
determinantal point process based novel sampling871
method of abstractive text summarization. In 2023872
International Joint Conference on Neural Networks873
(IJCNN), pages 1–8. IEEE.874

Zhao Song, Junze Yin, Lichen Zhang, and Ruizhe875
Zhang. 2024. Fast dynamic sampling for determi-876
nantal point processes. In International Conference877
on Artificial Intelligence and Statistics, pages 244–878
252. PMLR.879

Huazheng Wang, Jinming Wu, Haifeng Sun, Zixuan Xia,880
Daixuan Cheng, Jingyu Wang, Qi Qi, and Jianxin881
Liao. 2024a. Mdr: Model-specific demonstration882
retrieval at inference time for in-context learning. In883
Proceedings of the 2024 Conference of the North884
American Chapter of the Association for Computa-885
tional Linguistics: Human Language Technologies886
(Volume 1: Long Papers), pages 4189–4204.887

Liang Wang, Nan Yang, and Furu Wei. 2024b. Learn-888
ing to retrieve in-context examples for large language889
models. In Proceedings of the 18th Conference of890
the European Chapter of the Association for Compu-891
tational Linguistics (Volume 1: Long Papers), pages892
1752–1767.893

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel,894
Barret Zoph, Sebastian Borgeaud, Dani Yogatama,895
Maarten Bosma, Denny Zhou, Donald Metzler, et al.896
2022a. Emergent abilities of large language models.897
Transactions on Machine Learning Research.898

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten 899
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, 900
et al. 2022b. Chain-of-thought prompting elicits rea- 901
soning in large language models. Advances in neural 902
information processing systems, 35:24824–24837. 903

Zhihua Wen, Zhiliang Tian, Zexin Jian, Zhen Huang, 904
Pei Ke, Yifu Gao, Minlie Huang, and Dongsheng Li. 905
2024. Perception of knowledge boundary for large 906
language models through semi-open-ended question 907
answering. In Advances in Neural Information Pro- 908
cessing Systems, volume 37, pages 88906–88931. 909
Curran Associates, Inc. 910

Jing Xiong, Zixuan Li, Chuanyang Zheng, Zhijiang 911
Guo, Yichun Yin, Enze Xie, Zhicheng YANG, Qingx- 912
ing Cao, Haiming Wang, Xiongwei Han, Jing Tang, 913
Chengming Li, and Xiaodan Liang. 2024. DQ-lore: 914
Dual queries with low rank approximation re-ranking 915
for in-context learning. In The Twelfth International 916
Conference on Learning Representations. 917

Zhao Yang, Yuanzhe Zhang, Dianbo Sui, Cao Liu, Jun 918
Zhao, and Kang Liu. 2023. Representative demon- 919
stration selection for in-context learning with two- 920
stage determinantal point process. In Proceedings 921
of the 2023 Conference on Empirical Methods in 922
Natural Language Processing, pages 5443–5456. 923

Jiacheng Ye, Zhiyong Wu, Jiangtao Feng, Tao Yu, and 924
Lingpeng Kong. 2023a. Compositional exemplars for 925
in-context learning. In Proceedings of the 40th Inter- 926
national Conference on Machine Learning, volume 927
202 of Proceedings of Machine Learning Research, 928
pages 39818–39833. PMLR. 929

Jiacheng Ye, Zhiyong Wu, Jiangtao Feng, Tao Yu, and 930
Lingpeng Kong. 2023b. Compositional exemplars 931
for in-context learning. In International Conference 932
on Machine Learning, pages 39818–39833. PMLR. 933

John M Zelle and Raymond J Mooney. 1996. Learn- 934
ing to parse database queries using inductive logic 935
programming. In AAAI/IAAI, pages 1050–1055, Port- 936
land, OR. AAAI Press/MIT Press. 937

Yiming Zhang, Shi Feng, and Chenhao Tan. 2022. Ac- 938
tive example selection for in-context learning. In Pro- 939
ceedings of the 2022 Conference on Empirical Meth- 940
ods in Natural Language Processing, pages 9134– 941
9148. 942

A Full Version of Related Work 943

A.1 Example Selection for ICL 944

The ICL performance of LLMs depends on the se- 945

lection of examples. Depending on whether the 946

query information and the task supervision were 947

considered, ICL example selection methods can be 948

divided into three categories: (1) In-context Insen- 949

sitive Unsupervised Methods. These approaches 950

ignore the query information and task supervision. 951

11

https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://proceedings.neurips.cc/paper_files/paper/2024/file/a1e0d6fa0c30b7d4f75dd9c7ed6189f2-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/a1e0d6fa0c30b7d4f75dd9c7ed6189f2-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/a1e0d6fa0c30b7d4f75dd9c7ed6189f2-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/a1e0d6fa0c30b7d4f75dd9c7ed6189f2-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/a1e0d6fa0c30b7d4f75dd9c7ed6189f2-Paper-Conference.pdf
https://openreview.net/forum?id=qAoxvePSlq
https://openreview.net/forum?id=qAoxvePSlq
https://openreview.net/forum?id=qAoxvePSlq
https://openreview.net/forum?id=qAoxvePSlq
https://openreview.net/forum?id=qAoxvePSlq
https://proceedings.mlr.press/v202/ye23c.html
https://proceedings.mlr.press/v202/ye23c.html
https://proceedings.mlr.press/v202/ye23c.html
http://www.cs.utexas.edu/users/ai-lab?zelle:aaai96
http://www.cs.utexas.edu/users/ai-lab?zelle:aaai96
http://www.cs.utexas.edu/users/ai-lab?zelle:aaai96
http://www.cs.utexas.edu/users/ai-lab?zelle:aaai96
http://www.cs.utexas.edu/users/ai-lab?zelle:aaai96


α β GeoQuery MTOP NL2Bash WebQs RocEnd
0.005 0.01 72.71 65.28 59.30 17.91 60.33
0.005 0.05 72.36 65.14 59.76 18.11 60.33
0.005 0.005 72.00 65.32 59.82 18.11 59.94
0.01 0.01 73.21 65.37 61.01 18.90 60.33
0.01 0.05 72.36 65.19 60.07 18.21 59.94
0.01 0.005 72.00 65.28 59.79 18.36 59.94
0.05 0.01 72.71 65.37 60.03 17.72 60.33
0.05 0.05 71.29 65.28 60.03 18.06 59.94
0.05 0.005 71.24 65.32 58.69 18.21 59.94

Table 6: Experimental results comparing different α and β parameter combinations across multiple datasets.

GeoQuery NL2Bash MTOP WebQs RocEnd

dataset size 404 15564 7441 3778 87319
train cost(s) 61.51 863.48 370.38 155.61 7052.34
inf cost(s) 21 180 34 120 1922

Table 7: The time cost of our method.

Fu et al. (2022) propose a complexity-based ex-952

ample selection method. Lu et al. (2022) Propose953

an entropy-based approach to mitigate example954

order sensitivity. Li and Qiu (2023) use a diversity-955

guided example search strategy to select examples.956

(2) In-context Sensitive Unsupervised Methods.957

This category considers query information but ig-958

nores the task supervision. Researchers find that959

selecting different examples can reduce the redun-960

dancy of ICL example set (Liu et al., 2022; Agrawal961

et al., 2023; Hongjin et al., 2022). Wang et al.962

(2024a) further propose a model-specific example963

selection method based on feature evaluation to im-964

prove ICL performance during inference. Similarly,965

Liu et al. (2024b) select examples with multiple966

levels of similarity to queries. (3) In-context Sen-967

sitive Supervised Methods. By introducing task968

supervision, these methods fine-tune ICL example969

selectors (i.e., retrievers) for more precise exam-970

ple selection. Many studies have improved the971

quality of ICL examples by iteratively training re-972

trievers (Rubin et al., 2022; Wang et al., 2024b; Li973

et al., 2023; Liu et al., 2024b). Besides, Xiong et al.974

(2024) use chain-of-thought generated by LLMs to975

refine the retriever. Fu et al. (2022) optimize the976

retriever by calculating semantic similarity, exam-977

ple diversity, and event correlation. To consider978

diversity, Levy et al. (2023); Yang et al. (2023); Ye979

et al. (2023b) employ DPP to select diverse exam-980

ple sets. These works only consider relevance to981

input queries and diversity of examples, our frame-982

work further considers relevance among examples.983

A.2 Determinantal Point Process (DPP) and 984

Its Applications 985

Determinantal Point Process (DPP) is a probabilis- 986

tic model that can select diverse subsets by captur- 987

ing negative correlations among items of the set. 988

DPP has seen significant development. Johans- 989

son et al. (2023) proposed a semi-supervised k- 990

DPP method. Grosse et al. (2024) used a greedy 991

algorithm for k-DPP sampling. To reduce compu- 992

tational complexity, more inference methods were 993

proposed, such as LSMOEA-DPP (Okoth et al., 994

2022) and Anisotropic DPP (Ghilotti et al., 2024). 995

DPP is widely used in AI applications, especially 996

for tasks that require diverse sets, such as neural 997

network training (Sheikh et al., 2022), recommen- 998

dation systems (Liu et al., 2024c), video analysis 999

(Chen et al., 2023), and abstract summary (Shen 1000

et al., 2023). DPP also been used to optimize GNN 1001

on graph-structured data. (Duan et al., 2022). 1002

Gartrell et al. (2019) propose an extension of 1003

DPP called nonsymmetric determinantal point pro- 1004

cesses (NDPP), which can model both positive and 1005

negative correlations among a set of items. Gartrell 1006

et al. (2021) reduce NDPP’s complexity via kernel 1007

decomposition. Han et al. (2022) propose a scal- 1008

able sampling method for NDPP. Song et al. (2024) 1009

propose a fast dynamic algorithm for resampling 1010

distributions of NDPP to shorten the sampling time. 1011

B Full Verion of Preliminary 1012

B.1 More about ICL 1013

In-Context Learning (ICL) (Brown et al., 2020) 1014

prompts are usually sequences of examples. Given 1015

test instance (xtest, ytest), LLMs predicts ŷ with 1016
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k-shot ICL prompt :1017

ŷ = LLM(e1⊕, ...,⊕ek ⊕ xtest) (11)1018

Where ei = (xi, yi)
k
i=1 is the ith example, and ⊕1019

is the concatenation operation. The objective of1020

ICL example selection task is to select k examples1021

from a pre-constructed example pool such that the1022

predicted value ŷ matches its ground truth ytest.1023

B.2 Validity of NDPP’s Probability Function1024

In Eq. 1, the denominator det(L + I) =1025 ∑
E⊆D

det(LE), i.e., the sum of the determinants1026

of the corresponding sub-kernel matrix of all sub-1027

sets E ⊆ D, must be greater than the numera-1028

tor det(LE). According to (Gartrell et al., 2019)1029

Lemma 1, the kernel matrix L is a P0-matrix (all1030

principal minors are nonnegative), which guaran-1031

tees that the determinant of L and its principal1032

submatrix LE is nonnegative. And because the1033

principal minors of L are non-negative, the diago-1034

nal elements of I are 1, ensuring that the denomi-1035

nator is positive. Thus, Eq. 1 < 1, which is a valid1036

probability value.1037

B.3 Comparison with DPP on method1038

properties and application scenarios1039

The kernel matrix of DPP in the traditional setting1040

is restricted to a symmetric positive semi-definite1041

matrix, which can only model the negative correla-1042

tion between the items in the set, and is more suit-1043

able for application scenarios that emphasize the1044

diversity of the subset (e.g., diversity recommen-1045

dation). NDPP relaxes the symmetry constraint,1046

allowing the kernel matrix to be a nonsymmet-1047

ric P0-matrix capable of simultaneously modeling1048

both positive and negative correlations, and can1049

be adapted to more complex application scenarios.1050

Experiments on synthetic data in (Gartrell et al.,1051

2019) show that NDPP is more capable of mod-1052

eling positive and negative correlations between1053

the terms better, whereas DPP would overempha-1054

size the negative correlations between the terms.1055

However, the asymmetry of NDPP may lead to1056

degradation of Fisher information, making train-1057

ing difficult to converge and requiring additional1058

constraint terms.1059

C Convexity Analysis of the Optimization1060

Objective1061

Eq. 4 is not concave, because the nonsymmetric1062

kernel matrix results in the Hessian matrix of f in1063

Eq. 4 not being strictly negative definite. Gartrell 1064

et al. (2019) shows the Hessian matrix in eq. 8. 1065

D Practical Optimization of the 1066

Regularized log-likelihood 1067

We optimize Eq. 8 using the Adam optimizer based 1068

on the pseudo-labeled set training set Dtrain con- 1069

structed in § 4.2, and iteratively optimize the pa- 1070

rameter matrices V , B, C until convergence, which 1071

is conditional on the rate of change of the log- 1072

likelihood of the validation set being less than a 1073

preset threshold. 1074

E Approximation Guarantee for Greedy 1075

NDPP MAP Inference 1076

In 4.4.2, we present the framework of the greedy 1077

algorithm for approximate NDPP MAP inference, 1078

which instantiates the classical submodular max- 1079

imization greedy algorithm (Nemhauser et al., 1080

1978). Gartrell et al. (2021) provided a lower bound 1081

on the approximation quality of the greedy algo- 1082

rithm in Theorem 1. 1083

Theorem 1. Consider a nonsymmetric low-rank 1084

DPP L = V V T + BCBT , where V , B are of 1085

rank K, and C ∈ RK×K . Given a cardinality 1086

budget k, let σmin and σmax denote the smallest 1087

and largest singular values of LE for all E ⊆ D 1088

and |Y | < 2k . Assume that σmin > 1. Then, 1089

logdet(LEG) ≥ 4(1− e−1/4)

2(logσmax/logσmin)− 1
logdet(LE∗)

(12) 1090

where EG is the output of the greedy algorithm and 1091

E∗ is the optimal solution of the MAP inference in 1092

Eq. 9. 1093

Thus, when the kernel has a small value of 1094

logσmax/logσmin, the greedy algorithm finds a 1095

near-optimal solution. As mentioned above, there 1096

is no evidence that the condition σmin > 1 is usu- 1097

ally correct in practice. Gartrell et al. (2021) further 1098

provided Corollary 1, which excludes the assump- 1099

tion that σmin > 1 and quantifies this additional 1100

term. 1101

Corollary 1. Consider a nonsymmetric low-rank 1102

DPP L = V V T + BCBT , where V , B are of 1103

rank K, and C ∈ RK×K . Given a cardinality 1104

budget k, let σmin and σmax denote the smallest 1105

and largest singular values of LE for all E ⊆ D 1106
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and |Y | < 2k. Let ω := σmax/σmin Then,1107

logdet(LEG) ≥ 4(1− e−1/4)

2(logω)) + 1
logdet(LE∗)

− (1− 4(1− e−1/4)

2(logω) + 1
)k(1− logσmin)

(13)1108

where EG is the output of the greedy algorithm and1109

E∗ is the optimal solution of the MAP inference in1110

Eq. 9.1111

The proof of Theorem 2 and Corollary 1 is given1112

in (Gartrell et al., 2021) appendix F.1113

F Experimental Setting Details1114

F.1 Datasets Details1115

GeoQuery (Zelle and Mooney, 1996; Shaw et al.,1116

2020) contains a parallel corpus of 880 English1117

questions about US geography paired with Prolog1118

queries. The compositional dataset of GeoQuery1119

were created by Shaw et al. (2020), focusing on1120

compositional generalization.1121

NL2Bash (Lin et al., 2018) is a dataset for1122

the problem of mapping English sentences to1123

Bash commands. The corpus consists of 9k1124

text–command pairs, where each pair consists of1125

a Bash command scraped from the web and an1126

expert-generated natural language description.1127

MTOP (Li et al., 2020) is a multilingual parsing1128

dataset with 6 languages. The corpus consists of1129

text–command pairs, where each pair consists of1130

a Bash command scraped from the web and an1131

expert-generated natural language description.1132

WebQs (Berant et al., 2013) (short for We-1133

bQuestions) covers 6,642 question-answer pairs1134

obtained from the web. The questions are selected1135

using the Google Suggest API, and the answers are1136

entities in Freebase.1137

RocEnd (Mostafazadeh et al., 2016) (short for1138

Roc Ending) is a corpus with 100k stories.1139

F.2 Metrics Details1140

Exact Match (EM) (Rajpurkar et al., 2016) is1141

used for GeoQuery, MTOP, and WebQs to measure1142

the accuracy of generated outputs. EM calculates1143

the percentage of predictions that exactly match1144

the ground truth, providing a strict evaluation of1145

correctness.1146

BLEU-1 (Papineni et al., 2002) is applied to 1147

RocEnd to assess content alignment in story gen- 1148

eration. BLEU-1 focuses on unigram overlap, cap- 1149

turing the overall relevance of generated text to the 1150

reference. 1151

BLEU-4 (Papineni et al., 2002) is used for 1152

NL2Bash to evaluate structural fidelity in command 1153

generation. BLEU-4 emphasizes longer n-gram 1154

matches, effectively capturing more complex and 1155

syntactically accurate outputs. 1156

F.3 Baselines Details 1157

Random selects non-repeating context examples 1158

randomly from the training set, serving as a simple 1159

baseline without task-specific guidance. 1160

BM25 (Robertson et al., 2009) retrieves the top- 1161

K most similar examples for each test input using 1162

the classical sparse retrieval method BM25, which 1163

ranks candidates based on low-level textual similar- 1164

ity and selects the highest-scoring ones as context. 1165

EPR (Rubin et al., 2022) leverages a language 1166

model to assign positive or negative labels to can- 1167

didate examples. It then uses the model itself as a 1168

scoring function to retrieve effective prompts, se- 1169

lecting the top-K most relevant examples during 1170

inference. 1171

CEIL (Ye et al., 2023b) models the probability 1172

distribution over the context example subset using 1173

Determinantal Point Processes (DPP). It is trained 1174

within a contrastive learning framework that bal- 1175

ances diversity and relevance through a tunable 1176

trade-off parameter, enabling the selection of an 1177

optimal example combination. 1178

TTF (Liu et al., 2024b) fine-tunes the retriever 1179

using labeled data from the context example set, 1180

allowing it to incorporate task-specific modules and 1181

better adapt to different tasks through supervised 1182

signal. 1183

F.4 Implementation Details 1184

We used GPT-neo-2.7B and GPT-4 as LLM for our 1185

study. The maximum context length for the input 1186

of the LLM was set at 2048 tokens, and the num- 1187

ber of context examples per task was set to 50. If 1188

the context size limit of the LLM is exceeded, it 1189

will be truncated. We adopted the Adam optimizer 1190

with a learning rate of 0.01, and the hyperparame- 1191

ters α and β were both set to 0.01. We perform a 1192

grid search using a held-out validation set to select 1193
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Model Dataset GeoQuery NL2Bash MTOP WebQs RocEnd
GPT-Neo (2.7B) Bartlett’s Test 0 5.73e-61 0 7.29e-05 0
GPT-4 Bartlett’s Test 6.92e-03 0.0052 4.01e-12 0.0116 0.0251

Table 8: The p values of t-test on our method with baselines. The p values are all smaller than 0.05, indicating our
improvements are significant.

the best-performing hyperparameters. The training1194

was conducted on two NVIDIA A100 GPUs. We1195

initialize the encoder EQ(·) and EQ(·) with CEIL1196

(Ye et al., 2023a). We employ the implementation1197

from Ye et al. (2023a) for random, BM25, and EPR.1198

For CEIL, we use the result from Liu et al. (2024b)1199

except the result of RocEnd. We also employ the1200

implementation from Ye et al. (2023a) to obtain the1201

result of RocEnd for CEIL.1202

G Significance Test1203

We conduct the t-test (Bartlett, 1937) to examine1204

whether the improvements of our method are sig-1205

nificant. The p values in Table 8 are all smaller1206

than 0.05, demonstrating the significance of our1207

improvements.1208
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