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ABSTRACT

Class imbalance is a critical issue in image classification that significantly affects
the performance of deep recognition models. In this work, we first identify a net-
work degeneration dilemma that hinders the model learning by introducing a high
linear dependence among the features inputted into the classifier. To overcome
this challenge, we propose a novel framework called Whitening-Net to mitigate
the degenerate solutions, in which ZCA whitening is integrated before the linear
classifier to normalize and decorrelate the batch samples. However, in scenarios
with extreme class imbalance, the batch covariance statistic exhibits significant
fluctuations, impeding the convergence of the whitening operation. Therefore, we
propose two covariance-corrected modules, the Group-based Relatively Balanced
Batch Sampler (GRBS) and the Batch Embedded Training (BET), to get more
accurate and stable batch covariance, thereby reinforcing the capability of whiten-
ing. Our modules can be trained end-to-end without incurring substantial com-
putational costs. Comprehensive empirical evaluations conducted on benchmark
datasets, including CIFAR-LT-10/100, ImageNet-LT, and iNaturalist-LT, validate
the effectiveness of our proposed approaches.

1 INTRODUCTION

In the real-world recognition applications, long-tailed label distribution (i.e., imbalanced datasets) is
a common and natural problem, where a few categories (i.e., head classes) have more samples than
others (i.e., tail classes). This challenging task has received increasing attention in recent years Cui
et al. (2019); Cao et al. (2019); Kang et al. (2020); Zhou et al. (2020); Menon et al. (2020). In previ-
ous literature, the methods can be roughly categorized into three groups: re-sampling-based Chawla
et al. (2002); Huang et al. (2016); Zang et al. (2021), cost-sensitive re-weighting-based Cui et al.
(2019); Cao et al. (2019); Shu et al. (2019); Menon et al. (2020) and other methods Kang et al.
(2020); Zhou et al. (2020); Zhang et al. (2019); Zhong et al. (2021). To improve the classification
accuracy of tail classes, the re-sampling approaches change the sampling frequency to balance the
label distribution, and the re-weighting approaches allocate large weights for tail classes via the loss
function, thus an unbiased classifier can be learned.

In this paper, we explore the question of what causes the poor performance of end-to-end ERM
model1 training for the imbalanced classification. To answer the above question, we investigate the
feature representations in the hidden layers learned in end-to-end training. As shown in Figure 2,
we find that the features fed into the classifier are always highly correlated when the ERM model
is trained on imbalanced datasets. This representation collapse makes the training intractable and
finally leads to degenerated models. Prior works LeCun et al. (2012) demonstrated that the good
features should be decorrelated and have same covariances to avoid producing degeneracies. To
this end, we propose a simple yet effective end-to-end training framework named Whitening-Net
integrating the whitening transformation into the model to decorrelate the features before being fed
into the classifier, which can scatter the batch samples and thus avoid the representations collapse to
a compact latent space. Notice that on imbalanced classification, the mini-batch covariance statistic

1Imbalanced classification using Experiential Risk Minimization (ERM) model trained with cross-entropy
loss.
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Figure 1: The proposed end-to-end training framework for imbalanced classification. The pro-
posed system includes ZCA whitening on the features before being fed into the classifier, and two
covariance-corrected modules, Group-based Relatively Balanced Batch Sampler (GRBS) and Batch
Embedded Training (BET).

could be unstable, which results in the whitening operation not converging. Therefore, we pro-
pose two covariance-corrected modules, Group-based Relatively Balanced Batch Sampler (GRBS)
and Batch Embedded Training (BET) to get more accurate and stable batch statistics to reinforce
the capability of whitening. The extensive empirical results on the benchmarks CIFAR-LT-10/100,
ImageNet-LT and iNaturalist-LT demonstrate that our framework can effectively escape from the
degenerated models.

The main contributions of this paper are summarized as follows:

• We identify that the highly correlated features fed into the classifier makes the failure of
end-to-end ERM model training on imbalanced classification. To avoid feature representa-
tion collapse, a simple yet effective end-to-end training framework Whitening-Net is pro-
posed to decorrelate the features.

• Two covariance-corrected modules, Group-based Relatively Balanced Batch Sampler
(GRBS) and Batch Embedded Training (BET), are designed to obtain more accurate and
stable batch statistic estimation for whitening to avoid its non-convergence and reinforce
its capability in imbalanced scenarios.

• Extensive quantitative and qualitative experimental results on four imbalanced benchmarks
demonstrate effectiveness of our proposed method. In addition, our approach adds only a
very small inference cost.

2 RELATED WORKS

In this section, we firstly review some representative works on imbalanced classification, including
re-sampling, re-weighting and decoupled training methods. Next, some applications of whitening in
neural networks are introduced.

Re-sampling. Re-sampling methods as one of the classical approaches include over-
sampling Chawla et al. (2002); Han et al. (2005); Singh & Dhall (2018); Yan et al. (2019); Chen
et al. (2022) for the tail classes, under-sampling Kubat et al. (1997); Drummond et al. (2003); Tahir
et al. (2012); He & Garcia (2009); Huang et al. (2016); Zang et al. (2021) for the head classes, and
heuristic re-sampling Pouyanfar et al. (2018). Although promising results are reported repeatedly in
the literature, they still have their own limitations. To be precise, the over-sampling methods aug-
ment the tail classes by duplicating samples and they could result in over-fitting Kubat et al. (1997);
Drummond et al. (2003); Tahir et al. (2012) onto the tail classes. The under-sampling methods ran-
domly discard some samples of head classes, leading to poorer generalization ability Chawla et al.
(2002); Han et al. (2005); Singh & Dhall (2018). Therefore, in recent years, re-sampling methods
have fallen out of favor, and the mainstream focused on how to combine different re-sampling ap-
proaches on two training states, i.e., learning the backbone and fine tuning the classifier, to learn
better classifiers Kang et al. (2020); Zhou et al. (2020); Zhang et al. (2019).

Re-weighting. Re-weighting methods Khan et al. (2017); Lin et al. (2017); Zhang et al. (2017);
Ren et al. (2018); Pang et al. (2019); Cui et al. (2019); Khan et al. (2019); Cao et al. (2019); Shu
et al. (2019); Tan et al. (2020b;a); Jamal et al. (2020); Ren et al. (2020); Menon et al. (2020);
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Tian et al. (2023); Cheng et al. (2022) usually allocate large weights for training samples from
the tail classes in the loss functions to learn an unbiased classifier. Cui et al. (2019) proposed to
adopt the effective number of samples instead of proportional frequency. Thereafter, Cao et al.
(2019) explored the relationship between the margins of tail classes and the generalization error
and designed a label-distribution-aware loss to encourage a larger margin for tail classes. Balanced
Meta-Softmax (BALMS) Ren et al. (2020) proposed an extended margin-aware learning method.
Menon et al. (2020) proposed a “logits adjustment” approach by reducing the logits value based on
the label frequencies. However, these methods have a large performance gap compared with the
following decoupled training methods.

Decoupled training. Kang et al. (2020) proposed a decoupled training strategy to disentangle rep-
resentation learning from classifier learning and achieved surprising results. Zhou et al. (2020)
proposed a unified Bilateral-Branch Network (BBN) and a cumulative learning strategy to gradually
switch the training from feature representation learning to the classifier learning. Similar work is
that Zhang et al. (2019) proposed to integrate two sampling approaches, i.e., random sampling and
class balanced sampling, with a feature extraction module and three classifier modules respectively
to balance the feature learning and classifier learning. These decoupled training methods achieve
better performance than the re-weighting ones which adopt the end-to-end training scheme. The
potential limitation of decoupled training is that it cannot search the model globally in the whole
hypothesis set and would generally lead to sub-optimal solution Ma et al. (2023). In this paper, our
proposed framework can be trained end-to-end to find better feature representations.

Whitening. Whitening Koivunen & Kostinski (1999) is a linear transformation that transforms data
into a distribution with the mean being zero and the covariance matrix being the identity matrix. Af-
ter whitening, the features become uncorrelated and each of them has the same variance. Whitening
is always used as a preprocessing method Kessy et al. (2018) in real tasks. In recent years, whiten-
ing has been introduced into deep neural network applications, including normalization Huang et al.
(2018); Pan et al. (2019); Huang et al. (2020b), generative adversarial networks Siarohin et al.
(2018), and self-supervised learning Ermolov et al. (2020). In this work, we are the first to show
that whitening can be used in long-tailed classification to avoid feature representation collapse and
enable the end-to-end training scheme to achieve better performance than the decoupled approaches.

3 METHOD

In this section, we first analyze the network degeneration dilemma on imbalanced classification by
visualizing feature distributions. Next, we propose a simple yet effective framework based on chan-
nel whitening to normalize and decorrelate the representations of the last hidden layers. Finally, two
covariance-corrected modules are proposed to avoid non-convergence and reinforce the capability of
whitening in imbalanced scenarios via obtaining more stable and accurate batch statistic estimations.

Let X = [x1,x2, ...,xC]
T ∈ RC×B be a mini batch of features before being fed into the classifier,

where C and B are the number of channel and batch size respectively.

3.1 NETWORK DEGENERATION ON IMBALANCED CLASSIFICATION

This section aims to visualize correlation coefficients among the channel-wised feature representa-
tions in the hidden layers to identify the key factor causing the failure of end-to-end training scheme
on imbalanced classification.

In order to analyze the linear correlation among the channels of X, we compute their pearson
product-moment correlation coefficient (PPMCC) by:

ρ(xc, xc′) =

∑B
i=1(xic − x̄c)(xic′ − x̄c′)√∑B

i=1(xic − x̄c)2
√∑B

i=1(xic′ − x̄c′)2
(1)

where c, c′ = 1, 2, ..., C. Thus, the value of ρ can vary between −1 and 1. The larger absolute value
|ρ| means that the channels xc and xc′ are more linearly correlated.

We give the results of ResNet-32 trained on balanced CIFAR-10, imbalanced CIFAR-10 with and
without whitening operation in Fig 2. From the first row of sub-figure (b), we can see that the features
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(a) Balanced CIFAR-10 (b) Imbalanced CIFAR-10 (c) Imbalanced CIFAR-10 with channel whitening

Figure 2: The visualizations of feature distribution before being fed into classifier. The top row
figures show the correlation coefficients between channel-wised features. The bottom row figures
illustrate the singular value histograms of features. The X-axis represents the singular value, the
Y-axis represents epoch, and the Z-axis is the frequency. The first, middle and right columns present
the results obtained by training the neural networks on balanced CIFAR-10, imbalanced CIFAR-10
without and with whitening, respectively. We can see that the main difference between the balanced
and imbalanced tasks is that features learned on imbalanced dataset are more correlated than those
on the balanced dataset, e.g., higher correlation coefficients and more singular values are nearly
zero.

learned on imbalanced dataset are more correlated than those on the balanced dataset. Previous
works LeCun et al. (2002); Pezeshki et al. (2021); Zhu et al. (2023) have proved that: 1) The highly
correlated features can produce gradient starvation and network degeneracies; 2) The high channel
correlation can lead to feature redundancy. The singular value distributions in the second row (b)
also demonstrate that high correlation reduces feature diversity, which brings more singular values
closer to zero. Therefore, a technique designed to encourage the learning of a more diverse set of
features by effectively decorrelating the learned representation is necessary.

We also provide more visualization results in the appendix, which includes visualizations on more
datasets (CIFAR-10-LT, CIFAR-100-LT, iNaturalist-LT) based on different network architectures
(ResNet-10, ResNet-32, ResNet-110, EfficientNet, DenseNet). All the provided results are consis-
tent with the conclusion of the main paper, i.e., as the imbalance ratio increases, the features of the
last hidden layer exhibit higher correlation.

3.2 CHANNEL WHITENING

In the following, we present our proposed channel whitening technique to scatter the batch samples
and decorrelate the feature representation to avoid network degeneration. The whitening transfor-
mation ϕ(·) is defined as:

ϕ(X) =Σ− 1
2 (X− u · 1T),

µc =
1

B

B∑
i=1

Xci, (2)

Σ =
1

C
(X− u · 1T)(X− u · 1T)T + ϵI,

where u = [µ1, µ2, .., µC ]
T ∈ RC is a column vector with dimension C, 1 is a column vector with

all entries being 1, Σ is the covariance matrix of zero-mean X, and ϵ > 0 is a small positive number
for numerical stability (preventing a singular Σ), Σ− 1

2 is the inverse square root of the covariance
matrix.

The ZCA whitening compute Σ− 1
2 through eigen decomposition: Σ− 1

2 = VΛ− 1
2VT, where Λ =

diag(λ1, λ2, .., λC) and V = [v1, v2, ..., vC ] are the eigenvalues and eigenvectors of Σ, i.e.Σ =

VΛVT. The above process means that the centered X is rotated by VT, scaled by Λ− 1
2 , and then
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Figure 3: The visualization of batch covariance of last-layer hidden features before being fed into
the classifier. The experiments are constructed on CIFAR-100-LT dataset using ResNet-32. We use
“BET” to represent the proposed GRBS and BET approaches.

rotated by V again. In the inference, we use the moving averaged of u and Σ− 1
2 (Eq. 2) from

training for channel whitening.

After whitening, the means of the feature representation ϕ(X) become zeros and its covariance
matrix is the identity matrix, which implies that all the features are uncorrelated. As shown in
top row of Figure 2 (c), the correlation coefficients among different channels are all zeros, which
means the features are decorrelated, i.e., the linear dependencies have been removed. The bottom
row results in Figure 2 (c) show that the whitened features in the last hidden layer have more large
singular values to avoid feature concentration. Notably, our proposed channel whitening approach is
only integrated before the linear classifier, which assure minimal computational overhead (Tabel 5).

Discussion. Previous work used whitening operation for general image classification to decorrelate
features, which is called Decorrelated Batch Normalization (DBN) Huang et al. (2018). Our chan-
nel whitening method differs from it in the following two aspects. Firstly, we employ a Selective
Application of Whitening. While DBN Huang et al. (2018) replaced all batch normalization layers
in ResNet He et al. (2016) with whitening, our proposed method selectively applies whitening only
in the last hidden layer. This selective approach effectively alleviates the degenerate solution and
significantly reduces both training and inference time, as demonstrated in Table 5. Secondly, our
approach focuses on Channel Whitening instead of Group Whitening. DBN addressed the computa-
tional complexity and non-convergence of whitening by dividing the channels into different groups.
However, group whitening fails to adequately decorrelate each channel. Hence, our method, re-
ferred to as channel whitening, specifically aims at achieving channel decorrelation and overcoming
the limitations associated with group whitening. Our results in the Section C verify the ineffective-
ness of DBN in addressing imbalanced classification tasks.

3.3 CONVERENCE ANALYSIS OF ZCA WHITENING

Our experiments demonstrate that ZCA whitening always fails to converge, especially under ex-
tremely imbalanced conditions. The investigation conducted by Huang et al. (2020a) concluded
that applying whitening over batch data leads to significant instability during the model training.
Furthermore, the study found that this instability often hinders convergence of whitening. Based
on the above discussion in Section 3.2, although the group whitening proposed by DBN Huang
et al. (2018) can reduce batch stochastic, it is ineffective in imbalanced classification. Therefore,
below we observe the performance of covariance statistics on imbalanced data sets and propose new
solutions.

To analyze the stability of covariance matrix when the model is learned on imbalanced data, we
define the following mini-batch covariance estimation metric:

E =

C∑
i=1

Σii, (3)

where Σ ∈ RC×C is the covariance matrix. E represents the sum of the variances of all channels,
i.e., a large value of E means high stochasticity or instability in the covariance matrix.
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Figure 4: 1) The proposed group-based relatively balanced sampling method. The different colored
rectangles represent different categories. 2) The visualization of training loss on iNaturalist-LT
dataset. We use “BET” to represent the proposed GRBS and BET approaches.

As shown in Figure 3, we notice that on imbalanced classification, the mini-batch covariance statis-
tics could be unstable, especially the imbalance ratio is large. This can affect the convergence and
performance of whitening Huang et al. (2020a). Therefore, we would like to design a covariance-
corrected module to obtain more stable and accurate batch statistics for avoiding non-convergence
of channel whitening.

3.4 COVARIANCE-CORRECTED MODULES

An obvious difference between neural networks trained on balanced and imbalanced data is the pro-
portion of each class in the mini-batch samples. When the imbalance ratio is large, the widely used
random sampler makes the tail classes difficult to participate in the mini-batch training. The incon-
sistency of sample categories in each batch causes the covariance statistics to always be unstable.
Therefore, we would like to propose a new sampler and a novel training strategy to alleviate the
above unstable problem, thus whitening can converge during training.

As shown in Figure 4, the proposed Group-based Relatively Balanced Sampler (GRBS) is divided
into the following four steps:

• [Group-based] All N categories are sorted according to their number of samples. The number
of samples in each category is denoted to be Qi, i = 1, 2, ..., N (Q = [Q1, Q2, ..., QN ]). All
sorted categories are equally divided into G groups.

• [Relatively Balanced] In order to make the categories in each group relatively balanced, we
select from N sorted categories at equal intervals to form G groups. To be precise, the i-th group
is comprised from {i, i+G, i+2G, ..., i+(F−1)G}-th categories, g = 1, 2, . . . , G. The number
of samples of each category in group i is denoted to be Qi = [Q1

i , Q
2
i , ..., Q

F
i ], and we let their

ratios be Ri = [R1
i , R

2
i , ..., R

F
i ]. F = N

G is number of category in each group.
• [Sampling Probability] We need a method that can automatically determine the sampling prob-

ability of each category in each group. For example, the sampling probabilities of F categories
in i-th group are ri = [r1i , r

2
i , ..., r

F
i ]. Here, to get relatively balanced samples in each batch

compared with random sampling, we need to manually specify the sampling probabilities rF
′

i for
the F ′ tail classes in each group. Thus, the sampling probability rfi of category f in group i can
be calculated by the following equation:

rfi =

{
rmin Rf

i ≤ rmin

(1− F ′rmin)× R̂f
i Rf

i > rmin
(4)

where the new sampling probabilities R̂i ∈ RF−F ′
of the remaining F − F ′ categories can be

automatically calculated based on the ratio of their sample numbers. The setting of rmin is used
to increase the sampling probabilities of F ′ tail categories. It is determined as follows:

rmin =


r0 S < 1

S × r0 1 ≤ S < S0
1
F S >= S0

(5)
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Table 1: The details of imbalanced datasets.

Dataset # of classes # of samples Imbalance factor
CIFAT-10-LT 10 50K {10, 50, 100, 200}
CIFAT-100-LT 100 50K {10, 50, 100, 200}
ImageNet-LT 1000 186K 256
iNaturalist-LT 8142 437K 500

where r0 is a basic sampling probability, i.e., there is only one r0 for an imbalanced dataset.
S = QN/α

B/F is a scale parameter, in which QN is the number of samples in the smallest category

of the entire imbalanced dataset, α is an adjustable parameter. QN

α is used to ensure the each
sample of tail classes participate in training for every α epoch to prevent over-fitting. Because
in the extremely imbalanced CIFAR-100-LT dataset, the smallest category may have only one
sample. B

F denotes the average value of samples per category in each batch. 1
F represents a

class-balanced mini batch.

• After the above steps, all categories are grouped and their sampling probabilities are recalculated.
Since a larger sampling rate is specified for the tail class, the GRBS is a sampling process with
replacement. Batch samples constructed using GRBS always come from categories in a certain
group and are shuffled during use.

[Batch Embedded Training] Note that if we directly use the proposed GRBS instead of random
sampler, the model could over-fit to the tail classes and it will also mistakenly weaken the repre-
sentation learning of head classes. Therefore, we further propose a novel Batch Embedded Training
(BET) strategy to eliminate these risks. To be precise, our strategy let the batches in the GRBS
participate in the training intermittently (every T iterations) in every epoch to promote the represen-
tation learning of the tail classes without sacrificing more learned knowledge on the head classes. We
finally integrate this module together with GRBS into an end-to-end training scheme. The overall
algorithm and ablation studies of hyper-parameters are provided in the appendix.

4 EXPERIMENTS

In this section, we firstly introduce the four imbalanced image classification datasets used for our
experiments. Then we present some key implementation details of our experiments. After that,
we present the comparison results with the state-of-the-art methods to show the superiority of our
method. Finally, some ablation studies are given to highlight some important properties of our
method.

4.1 EXPERIMENTAL SETUP

Datasets. We perform experiments on three imbalanced datasets, including CIFAR-10-
LT Krizhevsky et al. (2009), CIFAR-100-LT Krizhevsky et al. (2009), ImageNet-LT Deng et al.
(2009) and iNaturalist-LT Van Horn et al. (2018). The details of datasets are presented in Table 1.
Following prior work Cao et al. (2019), the long-tailed versions of CIFAR datasets are sampled from
the balanced CIFAR by controlling the number of samples for each category. An imbalance factor
γ is used to present the ratio of training samples for the most frequent class and the least frequent
class, i.e., γ = Nmax

Nmin
. In our experiments, we set the imbalance factors as 10, 50, 100, 200 for

CIFAR-10-LT and CIFAR-100-LT datasets. The large-scale ImageNet-LT consists of 115.8K train-
ing images from 1000 classes and the number of images per class is decreased from 1280 to 5. The
iNaturalist-LT is a real-world, naturally long-tailed dataset, consisting of 437K training images from
8142 classes.

4.2 IMPLEMENTATION DETAILS

All the experiments are implemented by Pytorch 1.7.0 on a virtual workstation with 11G memory
Nvidia GeForce RTX 2080Ti GPUs. All the experiments are reproduced based on the released
codes.
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Table 2: Comparison with the state-of-the-art on CIFAR-10-LT and CIFAR-100-LT datasets. Best
results of each column are marked in bold.

Method CIFAR-10 CIFAR-100
200 100 50 10 200 100 50 10

End-to-end training
ERM 66.4 71.2 77.4 86.8 34.4 38.6 43.8 56.7
CB-CE 68.8 72.7 78.2 86.9 35.6 38.8 44.8 57.6
Focal Lin et al. (2017) 65.3 70.4 76.8 86.7 35.6 38.4 44.3 55.8
MW-Net Shu et al. (2019) 67.2 73.6 79.1 87.5 36.6 41.6 45.7 58.9
LDAM-DRW Cao et al. (2019) 73.0 77.2 81.6 87.6 38.8 42.8 47.3 57.5
Casual Tang et al. (2020) - 80.6 83.6 88.5 - 44.1 50.3 59.6
LADE Hong et al. (2021) - - 45.4 50.5 61.7
MFW Ye et al. (2021) 75.0 79.8 - 89.7 41.1 46.0 - 59.1
Hybrid-PSC Wang et al. (2021) - 78.8 83.9 90.1 - 45.0 48.9 62.4
CMO Park et al. (2022) - - - - - 46.6 51.4 62.3
Decoupled training
BBN Zhou et al. (2020) - 79.8 82.2 88.3 - 42.6 47.0 59.1
BBN + CR Ma et al. (2023) - 81.2 83.5 89.4 - 43.7 48.1 60.0
Ours 76.4 80.6 84.0 89.6 43.0 47.2 52.2 62.9

Table 3: Comparison with the state-of-the-art on ImageNet-LT and iNaturalist datasets. Best results
of each column are marked in bold.

Method ImageNet-LT iNaturalist-LT
Many Medium Few All Many Medium Few All

End-to-end training
ERM 55.1 22.4 2.2 32.3 55.7 45.5 40.6 44.6
CB-CE 56.8 25.7 3.2 34.6 46.2 49.8 47.2 47.5
LDAM Cao et al. (2019) 51.0 25.2 4.9 32.4 45.7 49.3 50.9 49.6
CMO Park et al. (2022) 50.2 33.5 21.2 38.3 43.6 51.7 54.7 52.3
Decoupled training
NCM Kang et al. (2020) 42.6 33.0 20.1 35.0 30.2 38.1 41.6 38.6
cRT Kang et al. (2020) 51.4 38.4 22.5 41.0 49.6 51.5 50.4 50.9
LWS Kang et al. (2020) 49.3 39.0 23.9 40.7 44.3 51.0 52.9 51.1
BBN + CR Ma et al. (2023) 46.3 41.2 26.7 40.9 45.2 52.1 54.6 51.4
Ours 53.6 38.7 21.2 41.5 49.3 53.4 53.8 53.2

Long-tailed CIFAR. For both long-tailed CIFAR-LT-10 and CIFAR-LT-100 datasets, following
most of the existing work, we use ResNet-32 He et al. (2016) as backbone to extract image repre-
sentation. SGD optimizer is adopted to optimize model with momentum of 0.9, weight decay of
0.0002. The initial learning rate is set to 0.1 and is decreased to 1/10 of its previous value on the
160-th and 180-th epoch of the total 200 epochs. The batch size is set to 128.

ImageNet-LT and iNaturalist-LT. We use ResNet-10 He et al. (2016) as backbone model. SGD
optimizer with momentum of 0.9, weight decay of 0.0005. The initial learning rate is set to 0.2 and
is decreased to 1/10 of its previous value for every 30 epochs in the total 90 epochs. The batch size
is set to 512. We adhere to the approach outlined in Liu et al. (2019) for reporting accuracy across
three class splits:: Many-shot (more than 100 images), Medium-shot (20-100 images) and Few-shot
(less than 20 images).

4.3 MAIN RESULTS

In this section, we present results to demonstrate the effectiveness of our proposed Whitening-Net
method by comparing with the state-of-the-art baselines, including the end-to-end and decoupled
training methods. The experimental results on hyperparameters are in the appendix.

Results on CIFAR-LT-10/100. As shown in Table 2, our proposed method Whitening-Net achieves
better performance than the decoupled training method BBN Zhou et al. (2020) over different im-
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Table 5: Model efficiency (s/per epoch) on imbalanced datasets based on ResNet-32, ResNet-10.
The time is the average of all the training epochs. The model is trained with 200 epochs on CIFAR-
10 datset, 90 epochs on ImageNet-LT and iNaturalist-LT datasets.

Method CIFAR-10 iNaturalist-LT ImageNet-LT
Training Inference Training Inference Training Inference

ERM 3.42 1.22 814.2 50.3 113.3 18.2
ERM w/ Whitening 3.98 1.48 817.8 54.2 116.2 22.0

balanced factors by a large margin, especially in CIFAR-100-LT. Compared with the state-of-the-art
methods, Hybrid-PSC Wang et al. (2021) obtains 90.1% on CIFAR-10-LT with imbalanced factor
10, BBN+CR Ma et al. (2023) obtains 81.2% on CIFAR-10-LT with imbalanced factor 100, but
they perform worse on CIFAR-100-LT. Therefore, these results verify that with our Whitening-Net
framework, end-to-end training can achieve better performance and whitening can be used to escape
from the degenerated solutions.

Results on ImageNet-LT and iNatunalist-LT. The results illustrated in Table 3 show that our
method can achieve 53.2% of the overall performance on iNaturalist-LT, which is better the sec-
ond best results 51.1% achieved by decoupled method LWS Kang et al. (2020). Compared with the
state-of-the-art methods, CMO Park et al. (2022) and BBN+CR Ma et al. (2023) perform worse than
our Whitening-Net although CMO is trained with 400 epochs and AutoAugmentation.

Table 4: The results are used to verify the effectiveness of our
proposed GRBS and BET. The testing accuracy is obtained
from CIFAR-100-LT dataset. “CB” represents class-balanced
sampling.

Method Imbalance factor
200 100 50 10

ERM 34.4 38.6 43.8 56.7
w / CB 28.2 31.2 38.5 53.4
w / GRBS 32.1 33.2 41.0 54.6
w / GRBS & BET 36.5 39.7 45.0 57.8
w / Whitening 41.2 43.5 47.8 59.6
w / Whitening & CB 35.3 38.1 43.6 55.8
w / Whitening & GRBS 39.3 40.7 46.1 58.6
w / Whitening & GRBS & BET 43.0 47.2 52.2 62.9

Computational Cost of Whiten-
ing. We analyze the computa-
tional cost of whitening on different
datasets and network architectures.
As shown in Table 5, the train-
ing time increases by about 4 sec-
onds per epoch on iNaturalist-LT
dataset, and the inference time on
CIFAR-10 dataset is increases by
only 0.26 second. The results show
that computational cost added by
whitening approach is very small.

Effectiveness of GRBS & BET.
As illustrated in Figure 4, our
proposed whitening approach inte-
grated with BET make the train-
ing loss smaller, which means the
model jump out of the degenerate
solution. The visualizations on Figure 3 show that our proposed covariance-corrected modules make
the covariance structure more stable during training, thus avoiding non-convergence. The testing ac-
curacy verified in Table 4 also demonstrate the effectiveness of our proposed GRBS and BET, i.e.,
it can reinforce the capability of channel whitening. In addition, their combination performs better
than the class-balanced sampling, because the GRBS let the tail classes participate in more iterations
without affecting the representation learning of head classes, and the BET training strategy can make
the GRBS avoid over-fitting to tail classes.

5 CONCLUSION

In this paper, we first identify that the highly correlated feature representations fed into the clas-
sifier is the key factor causing the failure of end-to-end training scheme on imbalanced classifica-
tion. Then, we propose a simple yet effective framework Whitening-Net, which integrates channel
whitening into the end-to-end training to scatter the features and thus avoid representation collapse.
Another contribution of this paper is we propose two covariance-corrected modules to get more
accurate and stable batch statistics to avoid non-convergence and reinforce the capability of whiten-
ing. Our results demonstrate that with our whitening technique, end-to-end training scheme can
avoid model degeneration. Although our proposed Whitening-Net has shown considerable improve-
ments on the benchmarks of imbalanced learning, we hope to explore novel approach to replace the
SVD computation of whitening transformation.
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In this appendix, we first provide the detailed steps of our proposed Whitening-Net in Algrithm 1.
Next, we present more visualization results in Section B to prove that the model does have network
degeneration phenomenon on imbalanced data, where the experiments come from different datasets
(CIFAR-10-LT, CIFAR-100-LT and iNaturalist-LT), different backbones (ResNet-10, ResNet-32,
ResNet-110, EfficientNet-B0 and DenseNet121). Then, Section D give a simple example for under-
standing the superiority of our GRBS sampler. Finally, in Section E, we present the ablation studies
on the hyper-parameters of GRBS and BET.

A ALGORITHM

Algorithm 1 Whitening-Net: An End-to-End Training Method for Imbalanced Classification
Required Samplers: Random Sampler with iterations T1, GRBS Sampler with iterations T2

Required Models: Initialized Backbone fθ1 and Classifier fθ2
Required: Inputs X, Features Z, Iteration T , Channel Whitening ϕ, Whitened features Ẑ

1: for t1=1 to T1 do
2: Extract features from random sampler Z = fθ1(X)

3: Channel whitening Ẑ = ϕ(Z)

4: Output logits Ŷ = fθ2(Ẑ)
5: if t1/T = 0 then
6: for t2=1 to T2 do
7: Extract features from GRBS sampler Z = fθ1(X)

8: Channel whitening Ẑ = ϕ(Z)

9: Output logits Ŷ = fθ2(Ẑ)
10: Compute cross-entropy loss
11: Update fθ1 and fθ2 by back-propagation
12: end for
13: end if
14: Compute cross-entropy loss
15: Update fθ1 and fθ2 by back-propagation
16: end for

B VISUALIZATION FOR NETWORK DEGENERATION

B.1 VISUALIZATION ON ALL HIDDEN LAYERS

In Figure 5, we visualize the channel-wised singular value distributions on different layers of
ResNet-32. From Figure 5 (a) and (b), we observe that the main difference between the features
learned in the imbalanced and balanced datasets is that the last intermediate hidden layer, i.e., the
features fed into the classifier, learned on the imbalanced dataset have a significantly larger amount
of nearly zero-valued singular values, which implies that these features are highly correlated. This
feature representation collapse would make the training intractable and finally leads to degenerated
solutions.

B.2 VISUALIZATION ON CIFAR-100-LT

As shown in Figure 6, we provide a visualization results on CIFAR-100-LT with imbalanced factor
200, in which we can draw the same conclusion as in the paper, i.e. the features trained on an
imbalanced dataset have larger correlation coefficients, and the proposed ZCA whitening approach
can alleviate this problem.

B.3 VISUALIZATION ON MORE NETWORK ARCHITECTURES

We also construct experiments on CIFAR-10-LT dataset using more different backbones, e.g.,
ResNet-110, EfficientNet-B0 and DenseNet121, to prove the conclusion in the main paper. As
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(a) Results from balanced CIFAR-10

(b) Results from imbalanced CIFAR-10

(c) Results from Imbalanced CIFAR-10 with channel whitening

Figure 5: Singular value histograms of features on different layers (The sub-figtures of (a), (b) from
left to right are: Layer 1, Layer 2, Layer 3 and Layer p, where “p” denotes pooling. The last sub-
figure on (c) is Layer p after whitening transformation.) of ResNet-32 using end-to-end training.
The first, middle and bottom rows present the results on balanced CIFAR-10, imbalanced CIFAR-10
and imbalanced CIFAR-10 with whitening, respectively. The vertical axis in each figure stands for
the training epoch. We can see that the main difference between the balanced and imbalanced tasks
is that a large amount of the singular values of the features fed into classifier (i.e., the last column)
in the imbalanced task are nearly zero, which implies that these features are highly correlated. The
bottom row demonstrates that our whitening can effectively decorrelate these features since the
features have more large singular values.

(a) Balanced CIFAR-100 (b) Imbalanced CIFAR-100 (c) Imbalanced CIFAR-100 with channel whitening

Figure 6: The correlation coefficients between channel-wised features fed into the classifier at the
last epochs. The experiments are constructed on CIFAR-100-LT datasets using ResNet-32.

shown in Figure 7, 8 and 9, the correlation coefficient values of the last layer features increases with
the imbalance ratio of the dataset.

C CHANNEL WHITENING VS. DBN

The results in Table 6 demonstrate that DBN and its group whitening are ineffective for imbalanced
classification tasks. In contrast, our proposed method utilizes whitening selectively, specifically
in the last hidden layer, which helps alleviate the degenerate solution while significantly reducing
both training and inference time. Our approach achieves improved performance with an accuracy of
72.3%.
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Table 6: The effectiveness of our channel whitening on imbalanced classification by comparing with
the DBN Huang et al. (2018) method. The experiments are conducted on CIFAR-10-LT dataset with
imbalance factor 200.

Method Accuracy
ERM 66.4
DBN 67.1
DBN w/ Last Layer - Group Whitening 66.6
Ours w/ Last Layer - Channel Whitening 72.3
Ours - WhiteningNet 76.4

D A SIMPLE EXAMPLE FOR UNDERSTANDING GRBS

we give a simple example to illustrate the advantage of our proposed sampler GRBS.

To be precise, we consider the simple imbalanced case that we are given a Gaussian mixture
distribution comprised of nine Gaussian data distributions N (µ, σ2

i ) with probability pi, where
σ1 > σ2 > . . . > σ9, p1 ≈ p2 ≈ p3 ≫ p4 ≈ . . . ≈ p9 ≈ 0 and

∑9
i=1 pi = 1. The follow-

ing remark shows such setting for variance is reasonable as existing works Khan et al. (2019) argue
that in the imbalanced classification task, the variances of head classes are larger than the tail classes.

We denote the density of N (µ, σ2
i ) as fi. If we use the random sampler to independently sample N

samples, i.e., xi ∼
∑9

j=1 pjfj . We consider the mean x̄ = 1
N

∑N
i=1 xi. We denote the variance of

x̄ of the random sampler as Var-RS and we can obtain that

Var-RS =
1

N

9∑
i=1

piσ
2
i ≈ 1

N

(
p1σ

2
1 + p2σ

2
2 + p3σ

2
3

)
≈ 1

3N

(
σ2
1 + σ2

2 + σ2
3

)
.

If we use our sampler and divide the categories into 3 groups, then x̄ takes the form of

x̄ =


1
N

∑N
i=1 xi, xi ∼ p1f1+p̃4f4+p̃7f7

p1+p̃4+p̃7
with probability = 1

3 ;
1
N

∑N
i=1 xi, xi ∼ p2f2+p̃5f5+p̃8f8

p2+p̃5+p̃8
with probability = 1

3 ;
1
N

∑N
i=1 xi, xi ∼ p3f3+p̃6f6+p̃9f9

p3+p̃6+p̃9
with probability = 1

3 ;

where we increase p4, p5, . . . , p9 to p̃4, p̃5, . . . , p̃9 in order to increase the importance the tail classes,
i.e., p̃4 ≫ p4, p̃5 ≫ p5, . . . , p̃9 ≫ p9. Then, we denote the variance of our x̄ from GRBS as
Var-GRBS and we can obtain that

Var-GRBS =
1

3N

(
p1σ

2
1 + p̃4σ

2
4 + p̃7σ

2
7

p1 + p̃4 + p̃7
+

p2σ
2
2 + p̃5σ

2
5 + p̃8σ

2
8

p2 + p̃5 + p̃8
+

p3σ
2
3 + p̃6σ

2
6 + p̃9σ

2
9

p3 + p̃6 + p̃9

)
<

1

3N

(
σ2
1 + σ2

2 + σ2
3

)
≈ Var-RS.

Hence, our sampler can effectively reduce reduce the sample variance between batches to improve
the stability of batch statistics.

D.1 VISUALIZATION ON INATURALIST-LT

We also present visualization results on large scaled iNaturalist-LT dataset to show the effectiveness
of our proposed ZCA whitening. As shown in Figure 10, the result in top figure shows that when
trained with ERM model, more than 95% of the singular values are smaller than 10. In contrast, we
can see that when trained with Weighting-Net, the learned features have more large-valued singular
values, implying that the features are effectively decorrelated.

E ABLATION STUDIES ON HYPER-PARAMETERS

In this section, we provide some ablation studies on the hyper-parameters of GRBS and BET. All the
experiments are constructed based on the proposed Whitening-Net on the large scaled iNaturalist-LT
dataset.
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Table 7: The hyper-parameters of GRBS and BET on different datasets. G is the group number, r0
is the basic sampling probability, T is the iteration interval for BET.

Hyper-parameter G r0 S0 α T
CIFAT-10-LT 1 0.05 10 2 60
CIFAT-100-LT 10 0.01 10 2 30
ImageNet-LT 100 0.01 10 2 60
iNaturalist-LT 815 0.01 10 2 200

Table 7 presents all the hyper-parameters of GRBS and BET. In our experiments, S0 and α are
fixed across all the imbalanced datasets. We make batches sampled from GRBS always have a fixed
number of categories (F = 10), which makes G easy to compute.

Table 8: Top 1 accuracy by varying group number G on iNaturalist-LT dataset.

Group number #G Many Medium Few All
200 47.2 53.3 55.8 53.0
400 48.4 53.1 55.0 53.1
800 49.3 53.4 53.8 53.2

1000 48.6 52.8 54.2 53.0

Table 9: Top 1 accuracy by varying minimum sampling ratio r0 on iNaturalist-LT dataset.

Sampling ratio #r0 Many Medium Few All
0.002 48.8 53.3 53.4 52.8
0.01 49.3 53.4 53.8 53.2
0.02 48.9 53.3 54.9 53.1
0.03 48.3 53.4 55.6 53.1
0.04 46.9 53.2 56.7 53.0

Table 10: Top 1 accuracy by varying iteration interval T (G = 800, r0 = 0.01) on iNaturalist-LT
dataset.

Iteration interval #T Many Medium Few All
100 49.1 53.4 53.9 53.0
200 49.3 53.4 53.8 53.2
300 49.4 53.4 53.6 53.1

Hyper-parameters of GRBS. The hyperpameters of GRBS include group number G, minimum
sampling ratio r0. As shown in the Table 8, the performances under different hyper-parameter
G of GRBS are similar, i.e., the proposed Whitening-Net is not sensitive to the choice of hyper-
parameters. At the same time, we can control the classification accuracy of different shots by se-
lecting different group number G, e.g., small group number G means that the class imbalance in
each group is more serious, and more tail classes will be sampled to alleviate the imbalance in each
group, because we fix the minimum sampling ratio r0 of the tail classes. The experimental results in
Table 9 also demonstrate that the minimum sampling ratio r0 can control the classification accuracy
of the samples in each shot, and a larger r0 will enhance the model’s ability to recognize tail classes.

Hyper-parameters of BET. The parameter of iteration interval T denotes that in each epoch, the
samples in the proposed GRBS participate in training after T iterations of random sampler, i.e.,
samll T means that the samples in GRBS participate in more training to augment the representation
learning of tail class. The experimental results illustrated in Table 10 demonstrate that the proposed
BET training strategy is robust to hyper-parameter T .
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Figure 7: The correlation coefficients between channel-wised features fed into the classifier at the
last epochs. The results are obtained on CIFAR-10-LT dataset using ResNet-110.
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Figure 8: The correlation coefficients between channel-wised features fed into the classifier at the
last epochs. The results are obtained on CIFAR-10-LT dataset using EfficientNet-B0.
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Figure 9: The correlation coefficients between channel-wised features fed into the classifier at the
last epochs. The results are obtained on CIFAR-10-LT dataset using DenseNet-121.
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Result from ERM model

Result from Whitening–Net

Figure 10: Singular value distributions of features fed into the classifier. The experiments are con-
structed on iNaturalist-LT dataset using ResNet-10. x-axis stands for number of epoch, y-axis is the
singular value. The curves from the top to the bottom are maximum-value, 99.7% quantile, 95%
quantile, 68% quantile and the minimum-value, respectively. The result in top figure shows that
when trained with ERM, more than 95% of the singular values are smaller than 10. In contrast,
we can see that when trained with Weighting-Net, the learned features have more large-valued
singular values, implying that the features are effectively decorrelated.
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