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Abstract

Empirically it has been observed that the performance of deep neural networks
steadily improves with increased model size, contradicting the classical view on
overfitting and generalization. Recently, the double descent phenomenon has been
proposed to reconcile this observation with theory, suggesting that the test error
has a second descent when the model becomes sufficiently overparameterized, as
the model size itself acts as an implicit regularizer. In this paper we add to the
growing body of work in this space, providing a careful study of learning dynamics
as a function of model size for the least squares scenario. We show an excess risk
bound for the gradient descent solution of the least squares objective. The bound
depends on the smallest non-zero eigenvalue of the sample covariance matrix of
the input features, via a functional form that has the double descent behaviour. This
gives a new perspective on the double descent curves reported in the literature, as
our analysis of the excess risk allows to decouple the effect of optimization and
generalization error. In particular, we find that in the case of noiseless regression,
double descent is explained solely by optimization-related quantities, which was
missed in studies focusing on the Moore-Penrose pseudoinverse solution. We
believe that our derivation provides an alternative view compared to existing
works, shedding some light on a possible cause of this phenomenon, at least in the
considered least squares setting. We empirically explore if our predictions hold for
neural networks, in particular whether the spectrum of the sample covariance of
features at intermediary hidden layers has a similar behaviour as the one predicted
by our derivations in the least squares setting.

1 Introduction

Deep Neural Networks optimized by Gradient Descent (GD) methods have shown amazing versatility
across a large range of domains. One of their most intriguing features is their ability to perform
better with scale. Indeed, some of the most impressive results [see e.g. Brock et al., 2021, Brown
et al., 2020, Senior et al., 2020, Schrittwieser et al., 2020, Silver et al., 2017, He et al., 2016 and
references therein] have been obtained often by exploiting this fact, leading to neural network models
that have at least as many parameters as the number of examples in the dataset they are trained on.
Empirically, the limitation on the model size seems to be mostly imposed by hardware or compute.
From a theoretical point of view, however, this property is quite surprising and counter-intuitive, as
one would expect that in such extremely overparameterized regimes the learning would be prone to
overfitting [Hastie et al., 2009, Shalev-Shwartz and Ben-David, 2014].
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Recently Belkin et al. [2019] proposed Double Descent (DD) phenomenon as an explanation. They
argue that the classical view of overfitting does not apply in extremely overparameterized regimes,
which were less studied prior to the emergence of the deep learning era. The classical view in the
parametric learning models was based on error curves showing that the training error decreases
monotonically when plotted against model size, while the corresponding test errors displayed a
U-shape curve, where the model size for the bottom of the U-shape was taken to be a “sweet spot”
[cf. Belkin et al., 2019, Fig. 1A] achieving an ideal trade-off between model size and generalization.
Here, larger model sizes than the aforementioned ideal were thought to constitute the ‘overfitting’
regime, since the gap between the test error and the training error increased.

Figure 1: Evaluation of a synthetic setting inspired by Belkin et al. [2020]. We consider a linear regression
problem (n = 20, d ∈ [100]), where regression parameters are fixed, and instances are sampled from a truncated
(to [−1, 1]) normal density. GD is run with learning rate α = 0.05 and initialization drawn from N (0, 1

d
I).

The first row demonstrates behavior of the excess risk (see Eq. (1)), the second shows an estimate of the excess
risk (on 104 held-out points), and the third shows an estimate of the optimization error.

The classical U-shape test error curve dwells in what is now called the under-parameterized regime,
where the model size is smaller than the size of the dataset. Arguably, the restricted model sizes used
in the past were tied to the available computing power. By contrast, it is common nowadays for model
sizes to be larger than the amount of available data, which is called the over-parameterized regime.
The divide between these two regimes is marked by a point where model size matches dataset size,
which can be called the interpolation threshold [cf. Belkin et al., 2019, Fig. 1B].

The work of Belkin et al. [2019] argues that as model size grows beyond the interpolation threshold,
one will observe a second descent of the test error that asymptotes in the limit to smaller values than
those in the underparameterized regime, which indicates better generalization rather than overfitting.
To some extent this was already known in the nonparametric learning where model complexity
scales with the amount of data by design (such as in nearest neighbor rules and kernels), yet one
can generalize well and even achieve statistical consistency [Györfi et al., 2002]. This has lead to a
growing body of works trying to identify the mechanisms behind DD, to which the current manuscript
belongs too. We refer the reader to Section 2, where the related literature is discussed. Similar to
these works, our goal is also to understand the cause of DD. In this paper we explore a finite-time
GD solution to least squares problems that allows us to work with analytic expressions for all the
quantities involved. Fig. 1 provides a summary of our findings. In particular, it shows the behaviour
of the risk (or the expected loss of the algorithm) in a linear regression setting with random inputs
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and noise-free labels, for which in Section 3 we prove a bound that has the form(
(1− αλ̂+min)

2T +
1√
n

)
‖w?‖2 .

Here labels are generated as Y = X>w? for some unknown ground truth model w? ∈ Rd and
random inputsX ∈ Rd on a unit sphere (‖X‖M =

√
X>MX = 1 for a positive matrixM ). The

factor α is a constant learning rate, and n is the number of examples in the training set. Note that
the feature dimension d coincides with the number of parameters in this particular setting, hence
d > n is the overparameterized regime. The quantity λ̂+min is the smallest positive eigenvalue of
the sample covariance matrix of the inputs, and it is of special importance: We observe that the
shape of the bound is controlled by λ̂+min via the exponential term, which increases as λ̂+min decreases
while it decreases as λ̂+min grows, resulting in a peaked shape of the bound. In Fig. 1 we observe a
peaking behavior not only in the risk but also in the quantity that we label ‘optimization error’ which
is this special term of the risk bound that is purely related to optimization. The peaking behaviour
of the risk—the Mean Squared Error (MSE) in case of the squared loss—was observed and studied
in a number of settings [Belkin et al., 2019, Mei and Montanari, 2019, Derezinski et al., 2020]
sometimes relating it to λ̂+min, however, to the best of our knowledge the connection between the
peaking behavior and optimization so far received less attention. In the absence of label noise, we
conclude that DD manifests due to the optimization process. On the other hand, when label noise is
present, in addition to the optimization effect, λ̂+min also has an effect on the generalization error.

Our contributions: Our main theoretical contribution is presented in Section 3. In particular,
Section 3.1 focuses on the noise-free least squares problem, Section 3.2 adds noise to the problem, and
Section 3.3 deals with concentration of the sample-dependent λ̂+min around its population counterpart.
The essential idea of the proof of our main result is outlined in Section 5. Sections 4 and 6 provide
some discussion on the implications of our findings and an empirical exploration of the question
whether simple neural networks have a similar behaviour than that of the least squares setting.

Notation: The linear algebra and analysis notations used in this work are defined in Appendix A.
We briefly mention here that we denote column vectors and matrices with small and capital bold letters,
respectively, e.g. α = [α1, α2, . . . , αd]

> ∈ Rd and A ∈ Rd1×d2 . Singular values of a rectangular
matrix A ∈ Rn×d are denoted by smax(A) = s1(A) ≥ . . . ≥ sn∧d(A) = smin(A). The rank
of A is r = max{k | sk(A) > 0}. The eigenvalues of a Positive Semi-Definite (PSD) matrix
M ∈ Rd×d are non-negative and are denoted λmax(M) = λ1(M) ≥ . . . ≥ λd(M) = λmin(M),
while λ+min(M) denotes the smallest positive (non-zero) eigenvalue.

2 Related Work

To the best of our knowledge DD was first mentioned by Vallet et al. [1989], who observed the
phenomenon for the Moore-Penrose pseudo-inverse solutions (see [Loog et al., 2020] for a brief
history). The recent literature revisited DD mainly considering ordinary least squares with the explicit
solution given by the Moore-Penrose pseudo-inverse. These works have focused on instance-specific
settings (making distributional assumptions on the inputs) while arguing when the analytic pseudo-
inverse solutions yield DD behaviour [Belkin et al., 2020]. This was later extended to a more general
setting showcasing the control of DD by the spectrum of the feature matrix [Derezinski et al., 2020].
In this paper we also argue that the spectrum of the covariance matrix has a critical role in DD,
however we take into account the effect of GD optimization, which was missed by virtually all the
previous literature due to their focusing on analytic solutions. The effect of the smallest non-zero
eigenvalue on DD, through a condition number, was briefly noticed by Rangamani et al. [2020].
In this work we carry out a more comprehensive analysis and show how the excess risk of GD is
controlled the smallest eigenvalue. In particular, λ̂+min has a U-shaped behaviour as the number
of features increases, and we give a high-probability characterization of this behavior when inputs
are subgaussian. To some extent, this is a non-asymptotic manifestation of the Bai-Yin law, whose
connection to DD in an asymptotic setting was noted by Hastie et al. [2019, Theorem 1].

Some interest was also dedicated to the effect of bias and variance of DD [Mei and Montanari, 2019]
in the same pseudo-inverse setting, while a more involved fine-grained analysis was later carried out
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by Adlam and Pennington [2020]. In this work we focus on the influence of the optimization error,
which is complementary to the bias-variance effects (typically we care about it once optimization
error is negligible).

The DD behaviour was also observed beyond least squares, for instance in neural networks and other
interpolating models [Belkin et al., 2019]. To some extent a formal connection to neural networks
was first made by Mei and Montanari [2019] who studied the asymptotic behaviour of the risk under
the random feature model, when n, dinput, dRF →∞ while having n

dinput and dRF

dinput fixed. Later on,
with the popularity of the Neural Tangent Kernel (NTK) [Jacot et al., 2018] this connection became
clearer as, within the NTK theory interpretation, shallow neural networks can be paralleled with
kernelized predictors [Bartlett et al., 2021]. A detailed experimental study of DD in deep neural
networks was carried out by [Nakkiran et al., 2019], who showed that various forms of regularization
mitigate DD. Our results imply that `2-regularization in least squares (ridge regression) makes λ̂+min
well-controlled and therefore mitigates the peak. The same should carry over to the early-stopping
in least squares [Yao et al., 2007] and to early stopping in shallow neural networks [Ji et al., 2021,
Richards and Kuzborskij, 2021, Kuzborskij and Szepesvári, 2021].

In this work, we explain DD in least squares solution obtained by GD through the spectrum of the
features, where optimization error has a visible role. While we do not present formal results for
neural networks, we nevertheless empirically investigate on shallow neural networks whether our
conclusions extend to neural nets as would be suggested by the NTK theory.

3 Excess Risk of the Gradient Descent Solution

We focus on the Gradient Descent (GD) algorithm, treated as a measurable map A : S × Rd → Rd
where S = Zn is the space of size-n training sets. Consider a learning problem where hypotheses are
parameterized by weight vectorsw ∈ Rd. The risk of a givenw is L(w), and the empirical risk ofw
over a sample S is L̂S(w). GD is applied to minimize the empirical risk. Given a training set S ∈ S
and an initialization point w0 ∈ Rd, we write AS(w0) to indicate the output obtained recursively by
the standard GD update rule with some fixed step size α > 0, i.e. AS(w0) = wT , where

wt = wt−1 − α∇L̂S(wt−1), t = 1, . . . , T .

It is well-known that in the overparameterized regime (d > n), GD is able to achieve zero empirical
loss. Therefore, rather than focusing on the generalization gap L(AS(w0)) − L̂S(AS(w0)) it is
more natural to compare the loss of AS(w0) to that of the best possible predictor. Thus, we consider
the excess risk defined as

ET = L(AS(w0))− L(w?) , w? ∈ argmin
w∈Rd

L(w) . (1)

3.1 Least Squares with Random Design and No Label Noise

We first consider a noise-free linear regression model with random inputs:

Y =X>w?

where the random inputX ∈ Rd is distributed according to some unknown distribution PX supported
on a unit shpere (‖X‖M =

√
X>MX = 1 for a positive definite matrix M ∈ Rd×d). After

observing a training sample S = ((Xi, Yi))
n
i=1, we run GD to minimize the empirical squared loss:

L̂S(w) =
1

2n

n∑
i=1

(w>Xi − Yi)2 .

The sample covariance matrix is Σ̂ = (X1X
>
1 +· · ·+XnX

>
n )/n. Let Σ̂ = USV > be the Singular

Value Decomposition (SVD) with orthogonal matrices U = [u1, . . . ,ud] and V = [v1, . . . ,vd],
and scaling matrix S = diag(λ̂1, . . . , λ̂d) where λ̂i = λi(Σ̂) = si(Σ̂) are in the decreasing order:
λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂d ≥ 0. The matrix Σ̂ might be degenerate (λ̂d = 0), and the non-degenerate part is
given by U r = [u1, . . . ,ur], V r = [v1, . . . ,vr] and Sr = diag(λ̂1, . . . , λ̂r), where r = rank(Σ̂).
We use the shorthand λ̂+min = λ+min(Σ̂) = λr(Σ̂) for the minimal positive (non-zero) eigenvalue, and

we denote M̂ = U rU
>
r . Note that M̂

2
= M̂ . Now we state our main result in this setting.
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Theorem 1. For any w0 ∈ Rd and x > 0, with probability at least 1− e−x over inputs

ET ≤ (1− αλ̂+min)
2T ‖w? −w0‖2 +

12√
n

(√
ln d+

√
x
) (
‖w0‖2 + 2‖w?‖2

)
.

Proof. The theorem is a corollary of Theorem 2 below, whose proof is given in Appendix C.

Looking at Theorem 1, we can see that the excess risk is bounded by the sum of two terms. Note
that the second term is negligible in many cases (consider the limit of infinite data) and additionally
it is a term that remains constant during training as it does not depend on training data. Therefore,
we are particularly interested in the first term of the bound, which is data-dependent and arises due
to optimization error of the algorithm. This term increases as λ̂+min decreases and it decreases as
λ̂+min grows, which results in a peaked shape. As we will see in the following Section 3.3, given mild
assumptions on the input distribution, this is precisely the behaviour of λ̂+min. Interestingly, only the
first term in this bound is a source of the peak, which suggests that in a setting without the label noise,
optimization error is the sole source of DD. Next we consider the case with label noise.

3.2 Least Squares with Random Design and Label Noise

Now, in addition to random inputs we introduce label noise into our model:

Y =X>w? + ε ,

where we have random variable ε, independent fromX , such that E[ε] = 0 and E[ε2] = σ2.

Theorem 2. For any w0 ∈ Rd and x > 0, with probability at least 1− e−x over inputs

E[ET |X1, . . . ,Xn] ≤ (1− αλ̂+min)
2T ‖w? −w0‖2 +

4σ2

n

(
λ̂+min

)−2
+

12√
n

(√
ln d+

√
x
)(
‖w0‖2 + 2‖w?‖2 + σ2

r∑
i=1

λ̂−1i

)
.

The proof is in Appendix C. Comparing to Theorem 1, the theorem gains two noise-dependent
terms, namely 4(σ2/n)(λ̂+min)

−2 and σ2(λ̂−11 + · · ·+ λ̂−1r ). The former closely resembles the term
controlling the generalization gap in the analysis of ridge regression [Shalev-Shwartz and Ben-David,
2014, Cor. 13.7], however, unlike ridge regression, here we have a dependence on the smallest
non-zero eigenvalue instead of a regularization parameter. The latter is due to convergence of GD to
the Moore-Penrose pseudo-inverse solution. This term can be further upper-bounded by σ2r/λ̂+min,
and so the last component in the bound is of order (‖w?‖2 + σ2r/λ̂+min)/

√
n. Thus, as long as

λ̂+min & r, we should have a non-vacuous bound even in the overparameterized setting. In the next
section we try to understand when this is the case by looking at the concentration of λ̂+min.

3.3 Concentration of the Smallest Non-zero Eigenvalue

In this section we take a look at the behaviour of λ̂+min assuming that input instances X1, . . . ,Xn

are i.i.d. random vectors, sampled from some underlying marginal density that meets some regularity
requirements (Definitions 1 and 2 below) so that we may use the results from random matrix
theory [Vershynin, 2012]. Recall that Σ̂ = (X1X

>
1 + · · · +XnX

>
n )/n is the covariance matrix

of the input features. We focus on the concentration of λ̂+min = λ+min(Σ̂) around its population
counterpart λ+min = λ+min(Σ), where Σ is the population covariance matrix: Σ = E[X1X

>
1 ].

In particular, the Bai-Yin limit characterization of the extreme eigenvalues of sample covariance
matrices [Bai and Yin, 1993] implies that λ̂+min has almost surely an asymptotic behavior (1−

√
d/n)2

as the dimensions grow to infinity, assuming that the matrix D> := [X1, . . . ,Xn] ∈ Rd×n has
independent entries. We are interested in the non-asymptotic version of this result. However, unlike
Bai and Yin [1993], we do not assume independence of all entries, but rather independence of
observation vectors (columns ofD>). This will be done by introducing a distributional assumption:
we assume that observations are sub-Gaussian and isotropic random vectors.
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Definition 1 (Sub-Gaussian random vectors). A random vector X ∈ Rd is sub-Gaussian if the
random variables X>y are sub-Gaussian for all y ∈ Rd. The sub-Gaussian norm of a random
vectorX ∈ Rd is defined as

‖X‖ψ2
= sup
‖y‖=1

sup
p≥1

{
1
√
p
E[|X>y|p]

1
p

}
.

Definition 2 (Isotropic random vectors). A random vectorX ∈ Rd is called isotropic if its covariance
is the identity: E[XX>] = I . Equivalently,X is isotropic if E[(X>x)2] = ‖x‖2 for all x ∈ Rd.

Let Σ† be the Moore-Penrose pseudoinverse of Σ. In Appendix D we prove the following.1

Lemma 1 (Smallest non-zero eigenvalue of sample covariance matrix). LetD> = [X1, . . . ,Xn] ∈
Rd×n be a matrix with i.i.d. columns, such that maxi ‖Xi‖ψ2

≤ K, and let Σ̂ = D>D/n, and
Σ = E[X1X

>
1 ]. Then, for every x ≥ 0, with probability at least 1− 2e−x, we have

λ+min(Σ̂) ≥ λ+min(Σ)

(
1−K2

(
c

√
d

n
+

√
x

n

))2

+

for n ≥ d ,

and furthermore, assuming that ‖Xi‖Σ† =
√
d a.s. for all i ∈ [n], we have

λ+min(Σ̂) ≥ λ+min(Σ)

(√
d

n
−K2

(
c+ 6

√
x

n

))2

+

for n < d ,

where we have an absolute constant c = 23.5
√
ln(9).

Lemma 1 is a non-asymptotic result that allows us to understand the behaviour of λ̂+min, and hence
the behaviour of the excess risk bound that depends on this quantity, for fixed dimensions. We will
exploit this fact in the following section in which we discuss the implications of our findings.

4 Discussion

The above concentration inequalities for λ̂+min combined with Theorem 1, in the overparameterized
regime (d > n) give us 2

ET .

((
1− α

n
(
√
d−
√
n− 1)2+

)2T
+

1√
n

)
‖w?‖2 .

A similar bound holds in the underparameterized case (d < n) but replacing the term (
√
d−
√
n−1)2+

with (
√
n−
√
d− 1)2+. Note that the term multiplying the learning rate is (

√
d/n− 1− 1/

√
n)2,

in accordance with the Bai-Yin limit which says that asymptotically λ̂+min ∼ (
√
d/n − 1)2. It is

interesting to see how
(
1 − α(

√
d/n − 1)2+

)2T
varies with model size d for a given fixed dataset

size n and fixed number of gradient updates T . Setting γ = d/n and considering the cases γ → 0
(underparameterized regime), γ ∼ 1 (the peak), and γ > 1 (overparameterized regime) it becomes
evident that this term has a double descent behaviour. Thus, the double descent is captured in the part
of the excess risk bound that corresponds to learning dynamics on the space spanned by M̂ .

Similarly, we can now consider the scenario with label noise: we can similarly bound the excess risk,
following the same logic as for noise-free case; however we have an additional dependence on σ2

via the term 4(σ2/n)(λ̂+min)
−2. While this does not interfere with the double descent shape as we

change model size, it does imply that the peak is dependent on the amount of noise: The more noise
in the learning problem, the larger we expect the peak at the interpolation threshold to be.

While the presence of the double descent has been studied by several works considering pseudoinverse
solutions, our derivation provides potentially new interesting insights. Optimization plays a role in the

1(x)+ = max {0, x}
2We use f . g when there exists a universal constant C > 0 such that f ≤ Cg uniformly over all arguments.
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appearance of DD and its impact depends on the strength of the label noise. In the noise-free setting,
DD curves seem to be solely due to optimization. In the presence of noise, there is a relationship
between the strength of label noise and the shape of the DD curve: The larger the noise is, the larger
is the peak in DD curve. This agrees with the typical intuition in the underparmetrized regime that
the model fits the noise when it has enough capacity, leading towards a spike in test error. However,
due to the dependence on λ̂+min, it is subdued as the model size grows.

Connection to neural networks. Taking some inspiration from our observations for least squares,
it is natural to ask whether we can observe a similar effect in neural networks trained by GD. One
argument here could be to decompose learning in neural networks into a feature extraction and linear
prediction components, and to check whether λ̂+min of features obtained from the intermediary layers
could exhibit the behaviour leading to the double descent. This in particular might be significant if
we think of the last layer of the architecture as a least squares problem (assuming we are working
with mean squared error), and all previous layers as some random projection, ignoring that learning
is affecting this projection as well. It is also interesting to investigate the behaviour of λ̂+min in
combination with techniques used by practitioners, such as batch-norm [Ioffe and Szegedy, 2015],
layer-norm [Ba et al., 2016], and residual connections [He et al., 2016], which are typically used in
recent architectures, ensuring that features of intermediary layers are well “conditioned”. In Section 6
we empirically look at some of these questions.

From a theoretical point of view, one possibility for adapting our results to neural network learning
could be to consider a Neural Tangent Kernel (NTK) framework [Jacot et al., 2018]. Interestingly,
this may require results on the concentration of the neural tangent random feature covariance matrix.
For shallow networks the concentration phenomena for NTK matrices are expected to be similar
as presented in our work [Tropp, 2012]. For deep networks, the spectrum of an NTK matrix is not
well-understood and this is an active area of research itself [Nguyen et al., 2021] with open questions,
which would be interesting to explore in the future work.

5 Proof idea

The proof of our main result (Theorem 2) rests upon the observation that under GD optimizing an
overparameterized least squares objective, the iterates span a low-dimensional subspace given by
the eigenvectors of a sample covariance matrix. This is captured by the following straightforward
decomposition (see Appendix C for the rest of the proof):

Proposition 1. For any w0 ∈ Rd,

ET ≤ ‖AS(w0)−AS(w?)‖2
Σ̂︸ ︷︷ ︸

(1)

+ ‖AS(w?)−w?‖2
Σ̂︸ ︷︷ ︸

(2)

+ ‖Σ− Σ̂‖2
(
‖AS(w0)‖2 + ‖w?‖2

)︸ ︷︷ ︸
(3)

.

Here, the first term (1) vanishes as long as the algorithm-mapAS is contractive on the aforementioned
subspace, which we show in Appendix C.1 thanks to the closed-form expression of GD iterates.

Term (2) captures algorithm’s sensitivity to the label noise: How far would GD go when initialized
at the minimum of the risk? Indeed, it is easy to see that when there is no label noise, term (2) is
zero (one can demonstrate it by the descent lemma). In the presence of noise, matters are more
complicated, and we employ a more or less standard technique where we recursively track the distance
between GD iterates and “virtual” iterates, which are obtained as if we could remove the noise. This
results in a bound 4(σ2/n)(λ̂+min)

−2, which is shown in Appendix C.3.

Finally, term (3) is essentially a concentration of the sample covariance matrix and ensuring that
the norm of the solution remains well-behaved, see Appendix C.2. The concentration of the sample
covariance matrix is due to the matrix Chernoff inequality [Tropp, 2012]. We control the norm of
the solution by relating it to the Moore-Penrose pseudoinverse solution which can be written in a
closed-form expression. This makes it easy to see that when the label noise is absent, the norm
depends only onw? andw0. On the other hand, when the noise is present the behaviour of the bound
will depend on behaviour of λ̂+min as discussed in Section 3.2.
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Figure 2: Training one hidden layer networks of increasing width on MNIST (top) and FashionMNIST
(bottom): (a) Minimum positive eigenvalue of the intermediary features at initialization - (b) Test
error and corresponding minimum eigenvalue of the intermediary features at different iterations

6 Empirical exploration in neural networks

The first natural question to ask is whether the observed behaviour for the least squares problem is
reflected when working with neural networks. To explore this hypothesis, and to allow tractability
of computing various quantities of interest (like λ̂+min), we focus on one hidden layer MLPs on the
MNIST and FashionMNIST datasets. We follow the protocol used by Belkin et al. [2019], relying
on a squared error loss. In order to increase the model size we simply increase the dimensionality
of the latent space, and rely on gradient descent with a fixed learning rate and a training set of 1000
randomly chosen examples for both datasets. More details can be found in Appendix G.

Fig. 2 provides the main findings on this experiment. Similar to the Fig. 1, we depict 3 columns
showing snapshots at different number of gradient updates: 1000, 10000 and 100000. The first row
shows test error (number of miss-classified examples out of the test examples) computed on the
full test set of 10000 data points which as expected shows the double descent curve with a peak
around 1000 hidden units. Note that the peak is relatively small, however the behaviour seems
consistent under 5 random seeds for the MNIST experiment.3 The second row and potentially the
more interesting one looks at the λ̂+min computed on the covariance of the activations of the hidden
layer, which as predicted by our theoretical derivation shows a dip around the interpolation threshold,
giving the expected U-shape. Even more surprisingly this shape seems to be robust throughout
learning, and the fact that the input weights and biases are being trained seems not to alter it, thus
suggesting that our derivation might provide insights in the behaviour of deep models.

3The error bars for the test error in all the other experiments are estimated by splitting the test set into 10
subsets.
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Figure 3: Training networks of increasing width with 1 and 3 hidden layers on MNIST: (a) Minimum
positive eigenvalue of the intermediary features at initialization - (b) Test error and corresponding
minimum eigenvalue of the intermediary features at different iterations

Following this, if we think of the output layer as solving a least squares problem, while the rest of the
network provides a projection of the data, we can consider what can affect the conditioning of the last
latent space of the network. We put forward the hypothesis that λ̂+min is not simply affected by the
number of parameters, but actually the distribution of these parameters in the architecture matters.

To test this hypothesis, we conduct an experiment where we compare the behavior of a network with
a single hidden layer and a network with three hidden layers. For both networks, we increase the size
of the hidden layers. For the deeper network, we consider either increasing the size of all the hidden
layers or grow only the last hidden layer while keeping the others to a fixed small size, creating a
strong bottleneck in the network. Fig. 3 shows the results obtained with the former, while the effect
of the bottleneck can be seen in Appendix F. We first observe that for the three tested networks, the
drop in the minimum eigenvalues happens when the size of the last hidden layer reaches the number
of training samples, as predicted by the theory. The magnitude of this drop and behavior across
the different tested sizes depends however on the previous layers. In particular, we observe that the
bottleneck yields features that are more ill-conditioned than the network with wide hidden layers,
where the width of the last layer on its own can not compensate for the existence of the bottleneck.
Moreover, from Fig. 3, we can clearly see that the features obtained by the deeper network have a
bigger drop in the minimum eigenvalue, which results, as expected in a higher increase in the test
error around the interpolation threshold.

It is well known that depth can harm optimization making the problem ill-conditioned, hence the
reliance on skip-connections and batch normalization [De and Smith, 2020] to train very deep
architectures. Our construction provides a way of reasoning about double descent that allows us to
factor in the ill-conditioning of the learning problem. Rather than focusing simply on the model
size, it suggests that for neural networks the quantity of interest might also be λ̂+min for intermediary
features, which is affected by size of the model but also by the distribution of the weights and
architectural choices. For now we present more empirical explorations and ablations in Appendix G,
and put forward this perspective as a conjecture for further exploration.

7 Conclusion and Future Work

In this work we analyse the double descent phenomenon in the context of the least squares problem.
We make the observation that the excess risk of gradient descent is controlled by the smallest positive
eigenvalue, λ̂+min, of the feature covariance matrix. Furthermore, this quantity follows the Bai-Yin
law with high probability under mild distributional assumptions on features, that is, it manifests a U-
shaped behaviour as the number of features increases, which we argue induces a double descent shape
of the excess risk. Through this we provide a connection between the widely known phenomenon and
optimization process and conditioning of the problem. We believe this insight provides a different
perspective compared to existing results focusing on the Moore-Penrose pseudo-inverse solution.
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While we do not show the same formally for the more complex learning scenario of neural networks,
our work conjectures the connection between the known double descent shape and model size is
through λ̂+min of the features extracted from the intermediary layers. For the least squares problem
λ̂+min correlates strongly with model size (and hence feature size). However this might not necessarily
be always true for neural networks. For example we show empirically that while both depth and
width increase the model size, they might affect λ̂+min differently. We believe that our work could
enable much needed effort, either empirical or theoretical, to disentangle further the role of various
factors, like depth and width or other architectural choices like skip connections on double descent.
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