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ABSTRACT

Autoregressive (AR) Large Language Models (LLMs) have demonstrated sig-
nificant success across numerous tasks. However, the AR modeling paradigm
presents certain limitations; for instance, contemporary autoregressive LLMs are
trained to generate one token at a time, which can result in noticeable latency.
Recent advances have indicated that search and repeated sampling can enhance
performance in various applications, such as theorem proving, code generation,
and alignment, by utilizing greater computational resources during inference. In
this study, we demonstrate that diffusion language models are capable of gener-
ating at least 32 tokens simultaneously, while exceeding the performance of AR
models in text quality and on the LAMBADA natural language understanding
benchmark. This outcome is achieved through a novel distillation method for dis-
crete diffusion models, which reduces the number of inference steps by a factor
of 32-64. Practically, our models, even without caching, can generate tokens at
a rate that is up to 8 times faster than AR models employing KV-caching, and
we anticipate further improvements with the inclusion of caching. Moreover, we
demonstrate the efficacy of our approach for diffusion language models with up
to 860M parameters.

1 INTRODUCTION
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Figure 1: Latency of diffusion language
models (1.3B). Sampling with 16 steps
achieves an 8x speedup against the AR base-
line that uses KV caching.

In recent years, autoregressive (AR) large lan-
guage models (LLM) have exceeded expectations
(Vaswani et al., 2017; Devlin et al., 2018; Radford
et al., 2019; Brown et al., 2020b; Kaplan et al., 2020;
Raffel et al., 2020; Fedus et al., 2022; Hoffmann
et al., 2022; Chowdhery et al., 2023; Google, 2023;
Touvron et al., 2023). Importantly, many break-
throughs in coding (Chen et al., 2021), mathemat-
ics, and reasoning (Trinh et al., 2024b;a; Romera-
Paredes et al., 2024; Hosseini et al., 2024; Wang
et al., 2024) were achieved based on decoding large
amounts of completions from a base LLM.

Importantly, the benefits of repeated sampling can be
so significant that it is often more efficient to use a
smaller, faster model rather than a larger, slower one.
More generally, one can improve the performance of
a fixed model by scaling up computational resources at inference time (Madaan et al., 2023; Yao
et al., 2023; Snell et al., 2024; Wu et al., 2024; Chen et al., 2024; Brown et al., 2024; Goyal et al.,
2024), a phenomenon that was previously observed for games (Campbell et al., 2002; Silver et al.,
2016; Lerer et al., 2019; Brown et al., 2020a; Jones, 2021). Hence, when tackling reasoning tasks,
a major bottleneck is the latency of the model. In this work, we improve the decoding speed of
LLMs by moving away from AR modeling. We build on recent breakthroughs in discrete diffusion
(Lou et al., 2023; Sahoo et al., 2024; Shi et al., 2024; Ou et al., 2024). Our approach can generate
text up to 8 times faster than AR models that use KV caching (Pope et al., 2022). Diffusion models
are typically trained to maximize the evidence lower bound (ELBO), which does not consider the
desired number of inference steps. Hence, vanilla diffusion models typically require thousands
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(a) Accuracy of the correct last word decoded from our
model. Distillation with KLD loss leads the student
model to outperform the teacher in terms of accuracy
on LAMBADA.
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(b) Perplexity of the last word. The KLD preserves
performance best, and even when the student is trained
to sample with 16 instead of 1024 steps, the student
still matches AR baselines.

Figure 2: Performance on LAMBADA after multiple rounds of SDTT with different distillation
losses. We pre-train with the masked diffusion language modeling objective (MDLM) (Sahoo et al.,
2024) and distill with 7 rounds of SDTT. Note that a single word in the LAMBADA data set often
consists of multiple tokens. We greedily decode all tokens a single forward pass for the diffusion
models and decode autoregressively for the AR models.

of decoding steps. Fortunately, it is possible to drastically reduce the inference costs of continuous
diffusion models via distillation (Luhman & Luhman, 2021; Salimans & Ho, 2022). Most distillation
methods rely on deterministic mappings from noise to data, such as DDIM (Song et al., 2022). The
deterministic mappings can be efficiently learned by a student diffusion model to sample in fewer
steps. We hypothesize that such deterministic map cannot exist for the diffusion language models
studied in this work. Indeed, those models always initialize the denoising process with a sequence
of masked token, hence a deterministic algorithm can only generate a single sample. As such, we
devise a distillation method that does not does depend on deterministic maps. This is a significant
finding because faster decoding mechanisms allow exploring a larger search space in applications
that require search, planning, and reranking. In summary, our core contributions are as follows:

• We introduce Self-Distillation Through Time (SDTT), which allows generating at least 32
tokens at a time, while achieving better perplexity than GPT-2 with nucleus sampling for
conditional and unconditional generation. Unlike many distillation methods for continuous
diffusion models, SDTT does not rely on deterministic mappings such as DDIM (Song
et al., 2022). SDTT is very simple and easy to implement.

• We show that SDTT can generate tokens up to 8 times faster than AR models that use KV
caching, for models with 1.3B parameters, in 16 decoding steps. Importantly, the discrete
diffusion model does not rely on activation caching, suggesting that there is potential for
even greater efficiency gains. The latency gains for smaller models are even greater.

• We demonstrate the effectiveness of SDTT for models with up to 860M parameters. To
the best of our knowledge, this represents the largest publicly available discrete diffusion
language model.

• We evaluate the distilled students on LAMBADA (Paperno et al., 2016) and 6 multiple-
choice questions benchmarks from Gao et al. (2021). We find that SDTT preserves the
downstream performance of the teacher.

2 BACKGROUND

2.1 MASKED DIFFUSION LANGUAGE MODELING

We follow the notation of Sahoo et al. (2024) to introduce masked diffusion language model-
ing (MDLM). Language modeling can be framed as the sequential prediction task of discrete
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Figure 3: SDTT. In figure (a), we illustrate how we prepare the distillation targets. In figure (b), we
display the generative perplexity of samples after distillation.

tokens (xi) coming from a vocabulary X = Z<N = {0, ..., N − 1} that can take N possi-
ble discrete values. A language model would predict sequences of length L, which can be de-
fined as the sequences of xi’s originating from XL =

{
x(i) = (x

(i)
0 , . . . , x

(i)
L−1)

}
i∈Z<K

. Let

D :=
{
x(0), . . . , x(K−1) : x(i) ∈ XL

}
denote the training set. The goal of language modeling

is to sample from the unknown distribution p0 : XL → [0, 1] that generated the samples in D.

Similarly to continuous diffusion, we sample from an approximation of p0 by learning to denoise
corrupted examples. One can sample from the model through ancestral sampling, starting from
a stationary distribution. The stationary distribution of Sahoo et al. (2024) is such that all tokens
of the sentence are replaced with a special MASK token like the MASK token used for pre-training
BERT models. However, a key difference between BERT and MDLM is that MDLM is trained on
sequences with varying levels of corruption, while BERT uses a fixed ratio.

Discrete absorbing diffusion process MDLM defines a forward process to corrupt data and a
backward process to learn to recover data. MDLM uses a continuous-time formulation, with the
data distribution denoted as p0 and the stationary noise distribution as p1 = π. The forward process
linearly interpolates between the one-hot distribution defined by the original document x and the
stationary distribution π, which places all mass on the MASK token. Mathematically,

q(zt|x) := Cat(zt;αtx+ (1− αt)π), (1)
where the noise injection schedule is defined by αt, for t ∈ [0, 1]. The constraints on αt are that
αt ∈ [0, 1], αt should be a strictly decreasing function of t, and α0 ≈ 1, α1 ≈ 0. The forward
process is called absorbing because once a token is assigned to a MASK token, it cannot be reverted
to a real token.

We can derive the analytical form of the reverse process q(zs|zt,x), with t > s and αt|s =
αt

αs
as

q(zs|zt,x) = Cat

(
zs;

[αt|szt + (1− αt|s)1π
⊤zt]⊙ [αsx+ (1− αs)π]

αtz⊤t x+ (1− αt)z⊤t π

)
. (2)

Objective and parameterization To generate new samples, we can simulate the reverse process
from eq. (2). Since the ground-truth sample x is unknown, Sahoo et al. (2024) learn an approxima-
tion xθ using a neural network with parameters θ. Sahoo et al. (2024) then use xθ instead of x to sim-
ulate the reverse process. The sampling distribution is denoted as pθ(zs|zt) := q(zs|zt,xθ(zt, t)).
Sahoo et al. (2024) optimize θ using a continuous version of the negative evidence lower bound
(ELBO) of Sohl-Dickstein et al. (2015a). Previous research has shown that continuous-time objec-
tives optimize the data likelihood better (Kingma et al., 2023). Due to the definition of the absorbing
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Algorithm 1 Computing the Self-Distillation Through Time targets x̃teacher
θ (zt, t,m/k)

1: Inputs: Noisy tensor xt ∈ RN×L, Starting sampling time tstart ∈ [0, 1]N , Number of sampling
steps m/k ≥ 2, such that m/k ∈ N+, Sampling step size ∆ ∈ (0, 1), Mask token index M ∈ N,
Minimal sampling time ϵ.

2: Output: Distillation targets x̃teacher
θ (zt, t,m/k)

3:
4: target← zeros(N , L, K) ▷ Allocate empty tensor for x̃teacher

θ (zt, t,m/k)
5: z← xt

6: for i = 0, ...,m/k − 1 do
7: tcurr ← max(tstart − i ·∆, ϵ) ▷ Sampling step for the current time
8: znew, ℓteacher ← reverse sample(z, tcurr, ∆) ▷ Updated z & log-probabilities

xθ(z, tcurr)
9: U = znew ̸= z ▷ Create mask U of tokens that were denoised

10: target[U ]← ℓteacher[U ] ▷ Extract log-probs for the denoised tokens
11: z← znew ▷ Update z for the next iteration
12: end for
13: target[z == M ] = ℓteacher[z == M ] ▷ Use log-probs of the last denoising step for masked

tokens
14: return target ▷ Target log-probs for all masked tokens in xt

diffusion process, the ELBO simplifies to a weighted cross-entropy loss between the ground-truth x
and the model predictions xθ:

L∞
NELBO = Eq

∫ t=1

t=0

α′
t

1− αt
log⟨xθ(zt, t),x⟩dt. (3)

To derive eq. (3), Sahoo et al. (2024) impose two properties on pθ(zs|zt). First, denoised tokens
are never re-masked during sampling. Practically, this is achieved by manipulating the output of the
neural network xθ(zt, t) to ensure that no probability mass is assigned to the MASK token. Secondly,
already-denoised tokens are carried-over to the next sampling step. Sahoo et al. (2024) showed that
both constraints lead to improved likelihood.

2.2 KNOWLEDGE DISTILLATION

Knowledge distillation (Bucila et al., 2006; Hinton et al., 2015) is a technique where a student
neural network is trained to imitate the predictions of a more complex teacher model. One of the
main advantages of distillation is the ability to reduce the inference cost associated with sampling
from large LLMs while surpassing the performance of smaller models trained without distillation
(Gu et al., 2024; Agarwal et al., 2024). The most relevant to our work are the distillation methods
that match the predictions of the teacher and the student using a divergence measure δ:

Ex∼D [δ(µs(xt|x<t);µt(xt|x<t))] , (4)

Where µs, µt are the AR distributions of the student and teacher, respectively, and D represent the
training dataset. Common divergence measures include f -divergences (Wen et al., 2023) such as the
Kullback-Leibler divergence (KLD) or the total variation distance (TVD).

3 METHOD

3.1 SELF-DISTILLATION THROUGH TIME

As explained in section 2.1, discrete diffusion language models optimize the ELBO over the training
examples. Fewer decoding steps typically lead to lower sample quality because the approximation
of the reverse process is less accurate, as visible in the teacher curve in fig. 4.

To address the issue of low sample quality with fewer decoding steps, we propose Self-Distillation
Through Time (SDTT). SDTT tunes a pre-trained MDLM to allow decoding with significantly fewer
steps. Interestingly, our final model decodes samples with lower generative perplexity in 32 steps

4
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Algorithm 2 One training round of Self-Distillation Through Time

1: Inputs: Training set D, Teacher xθ, Divergence measure δ, Number of sampling steps m/k,
Sampling step size ∆, Mask token index M , Total number of training steps H

2: Output: Distilled student xν .
3:
4: ν ← θ ▷ Initialize the student with the teacher weights
5: for i = 0, ...,H − 1 do
6: x0 ← sample example (D) ▷ Sample a training example
7: tstart ∼ U [0, 1] ▷ Sample t uniformly at random
8: xt ∼ qt(xt|x0) ▷ Forward diffusion process. See eq. (1)
9: xstudent ← xν(xt, t)

10: xteacher ← teacher SDTT(xt, tstart, m/k, ∆, M , 1e-5) ▷ See algorithm 1
11: L ← δ(xstudent||xteacher) ▷ Compute divergence between student and SDTT targets.
12: ν ← backprop optim(L, ν) ▷ Update the parameters of the student with AdamW
13: end for
14: return xν

than the teacher would with 1024 forward passes. In short, SDTT improves the sampling speed by
distilling the inference time computation to sample multiple steps into the student.

Let p(m)
θ be the distribution of samples generated with m steps, using a denoiser with parameters θ.

SDTT trains a denoiser with parameters ν to minimize a divergence d between p
(m)
θ and p

(k)
ν . Here

k < m, and k divides m (e.g., m = 1024 and k = 512):

min
ν

d
(
p(k)ν ||p

(m)
θ

)
. (5)

Since xθ and xν are the only learnable elements of the sampling process, they completely determine
the sampling distributions p(m)

θ and p
(k)
ν . As such, training xν to match the predictions of xθ with

fewer steps minimizes eq. (5). We now present a method for generating targets x̃teacher
θ (zt, t,m/k) to

train xν . Mathematically, we optimize the following objective:

min
ν

Ez0∼D,zt∼qt(zt|z0)

[
δ(xν(zt, t)||x̃teacher

θ (zt, t,m/k))
]
, (6)

where δ a divergence measure between the student and the teacher targets x̃teacher
θ (zt, t,m/k)).

We consider the Kullback-Leibler divergence (KLD), Total Variation Distance (TVD), and Mean-
Squared Error (MSE). See appendix B for details on those divergence measures.

Generating the Teacher Targets Following the terminology of knowledge distillation, we call the
denoiser xθ used for many steps decoding as the teacher and the denoiser xν used for a few steps de-
coding as the student. To train xν to match the predictions of xθ, we sample from the teacher for m/k
steps. Whenever a MASK token is denoised, we collect the log probabilities predicted by the teacher
for this MASK token. These log-probabilities become the distillation targets x̃teacher

θ (zt, t,m/k). Al-
gorithm 1 outlines this process and fig. 3a presents it visually. While fig. 3a shows how to distill two
decoding steps in one, the procedure can be extended to larger values of m/k. The complete SDTT
training loop is presented in algorithm 2.

Iterated SDTT SDTT reduces the number of decoding steps by a factor m/k. If we want to reduce
the number of decoding steps further, we can apply SDTT with k′ < k, or alternatively apply
SDTT n times, using the newly distilled student as teacher for the next round, which we refer to as
iterated SDTT. Instead of directly optimizing the divergence in eq. (5), we introduce n intermediate
distributions pki

νi
such that m/ki is an increasing sequence as a function of i. In practice, we choose

m = 210 and ki = 210−i with 0 ≤ i ≤ 7 and sequentially minimize the objective

min
ν

d
(
p
(kj+1)
νj+1 ||p(kj)

νj

)
, (7)

for 0 ≤ j < 7, where νj denotes the parameters of the j-th denoiser, with ν0 = θ (teacher). If the
minimization procedure was perfect, minimizing eq. (5) or eq. (7) should result in the same solution.

5
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However in practice, we observe that it is easier to minimize eq. (7) sequentially for increasing values
of i, in a progressive fashion, similar to Salimans & Ho (2022).

As an alternative to iterated SDTT, we tried using a single model and slowly growing the step size
used to generate x̃teacher

θ (zt, t,m/k). Unfortunately, this approach was unstable and the loss diverged
after 30-50 steps, irrespective of how small the sampling step size was.

4 EXPERIMENTS

We distill MDLMs on the OpenWebText dataset (Gokaslan & Cohen, 2019) as it was used to train
recent discrete diffusion language models (Lou et al., 2023; Sahoo et al., 2024). We use the Adam
optimizer with a learning rate of 6e − 5, a batch size of 128 and no weight decay. We linearly
increase the learning rate for 500 training steps and keep it constant afterwards. As a base model,
we reuse the checkpoint released by Sahoo et al. (2024). See appendix C for more details.

In section 4.1, we evaluate 3 distillation divergences and show that iterated SDTT can reduce the
number of sampling steps by a factor 16-32. In section 4.2, we ablate on the importance of hyperpa-
rameters, including the duration of each round of iterated SDTT and the number of sampling steps
to generate the targets x̃teacher

θ (zt, t,m/k). In section 4.3, we scale SDTT to models with of up to
860M parameters. Finally, in section 4.4, we compare the latency of SDTT against autoregressive
models that use KV caching.

Generative perplexity Following prior work (Dieleman et al., 2022; Lou et al., 2023; Sahoo et al.,
2024), we use a larger model to compute the generative perplexity of unconditional and conditional
samples. We evaluate the smallest students using GPT-2 (large) (Radford et al., 2019). In the scaling
experiments, we use Llama3 8B (Touvron et al., 2023), since we compare models with up to 860M
parameters.

MAUVE We evaluate conditional generation using the MAUVE score (Pillutla et al., 2021).
MAUVE measures how well a model follows a prompt by comparing multiple generations with
a reference continuation. We use the first 1024 samples with at least 1024 tokens from the WebText
dataset (OpenAI, 2019), take the first 50 tokens as a prompt, and generate 50 tokens of continuation.
For each prompt, we generate 5 continuations, as done in Lou et al. (2023).

Sample diversity Post-training can drastically reduce the diversity of language models (Kirk et al.,
2024; Agarwal et al., 2024; Li et al., 2024). Hence, we measure the diversity of samples using the
self-BLEU score (Zhu et al., 2018) with the same completions used to compute MAUVE.

Downstream performance We measure the downstream performance using the LAMBADA
dataset (Paperno et al., 2016), as well as 6 multiple-choice question (MCQ) tasks from Gao et al.
(2021). On LAMBADA, we report an upper bound on the perplexity, computed using the ELBO (3).
We also report the suffix accuracy by masking all tokens of the last word and predicting all of them
in a single forward pass, using the argmax of the predictions. The diffusion model is correct only
if all the masked tokens are decoded correctly in a single decoding step. The 6 other benchmarks
from Gao et al. (2021) evaluate the MCQ accuracy.

4.1 ABLATION ON THE TRAINING DIVERGENCE

SDTT requires choosing a divergence δ and we study the Mean-Squared Error (MSE), Total Vari-
ation Distance (TVD) and (reverse) Kullback-Leibler Divergence (KLD). We apply iterated SDTT
for 7 rounds of 10k training iterations and generate x̃teacher

θ (zt, t,m/k) with 2 sampling steps from the
teacher (algorithm 1). We use an exponential moving average (EMA) of the weights with a decay of
0.9999 that we do not reset between rounds.

Figure 2 shows that students distilled with the KLD clearly outperform students trained using the
MSE and TVD on LAMBADA. The LAMBADA accuracy of students tuned with the KLD slightly
improves over the teacher, while the perplexity remains better or matches the AR baselines for all
but the last round of SDTT. The improved accuracy on LAMBADA suggests that the model is better

6
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Figure 4: Sampling step ablations on perplexity. Perplexity of samples after each round of iterated
SDTT. (a): Iterated SDTT on a small model trained for 1M step. (b): Scaling SDTT to larger models
trained for 400K steps.

at predicting multiple tokens in parallel after distillation with SDTT, since we evaluates the accuracy
by decoding all tokens of the last word simultaneously.

Figure 5 shows that the KLD seem to outperform the MSE and TVD objectives on MAUVE. Since
we generate sequences of 100 tokens only for MAUVE, following (Lou et al., 2023), we sample with
at most 128 steps, and use samples generated with 128 sampling steps from the teacher as a baseline.
Note that as observed by Deschenaux & Gulcehre (2024), discrete diffusion models typically achieve
slightly lower MAUVE scores than AR models. Nonetheless, distillation with the KLD objective
improves the MAUVE score of the students. Similarly fig. 17 shows that continuations from the
student distilled with the KLD reaches the lowest perplexity and match GPT-2 with nucleus sampling
in 32 forward passes.

In table 1, we compare the downstream performance on the tasks of Gao et al. (2021) before and
after distillation. We observe that SDTT minimally affects the results, and that student distilled with
the KLD objective reaches higher accuracies than other students in all but one task

Figure 4a measures the diversity of samples using the self-BLEU score (Zhu et al., 2018), for the
students distilled with the KLD objective. See appendix A for results with the MSE and TVD. We
find that SDTT minimally decreases the diversity. Compared to distilling autoregressive models
(Agarwal et al., 2024), SDTT minimally reduces the diversity. For reference, Agarwal et al. (2024)
routinely observes an increase of 15 in self-BLEU while we observe a change of at most 2 for the
KLD student. See appendix A for more results and details on the self-BLEU score.

Figure 6 shows that students distilled with KLD have higher unconditional generative perplexity
than those distilled with the MSE. However, KLD is the only objective that preserves performance
in the LAMBADA data set while still significantly reducing the generative perplexity compared to
the teacher. Therefore, in the remainder of this work, we focus on the KLD.

4.2 ADDITIONAL ABLATIONS

Number of steps in each SDTT round In section 4.1, each round of SDTT consists of 10k train-
ing iterations. Since the magnitude of the distillation loss does not reliably indicate convergence,
we experiment with shorter rounds. We find that reducing the number of training iterations to 5k or
2.5k negatively impacted conditional generation performance, as shown in fig. 7. However, shorter
rounds slightly improved the final generative perplexity (fig. 8) and resulted in marginally better
LAMBADA perplexity (fig. 9). Since SDTT does not directly optimize the ELBO, an increase
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Figure 5: MAUVE performance of the student after each round of SDTT. The teacher performance
is computed using samples generated with 128 decoding steps.

in perplexity is expected. Interestingly, the LAMBADA accuracy remains unchanged with shorter
rounds.

Number of sampling steps to generate the targets In section 4.1, the targets x̃teacher
θ (zt, t,m/k)

are generated using 2 sampling steps from the teacher. We explore distilling a larger number of sam-
pling steps at once (4 or 8), since using more rounds of SDTT may induce more error accumulation
in approximating the original teacher. Figure 12 shows that distilling more than two steps at a time
is difficult and results in weaker results on LAMBADA. This suggests that the higher stochasticity
of the targets generated with four or eight steps makes the task too difficult for the student.

Generating targets with the analytical sampler Lou et al. (2023) observe that using an analytical
sampler (Campbell et al., 2022) results in higher quality samples compared to ancestral sampling.
However, when generating targets x̃teacher

θ (zt, t,m/k) with analytical sampling, we observed minimal
difference with ancestral sampling, as shown in fig. 10 and 11.

Resetting the optimizer and Exponential Moving Average between rounds Using an Expo-
nential Moving Average (EMA) of the weights is known to improve the quality of samples from
diffusion models (Nichol & Dhariwal, 2021). However, when applying SDTT for multiple rounds,
it is unclear whether the EMA or current weights should be used as the teacher for successive rounds.
Additionally, it could be favorable to reset the optimizer state between rounds as we grow the de-
coding step size. We experiment with two approaches: either resetting the optimizer state only, or
resetting both the EMA and optimizer state. Figure 13 shows the generative perplexity when reset-
ting the optimizer state and using the EMA as the teacher instead of the current weights, while fig. 14
presents the corresponding results for MAUVE. When using the EMA as teacher, since we accumu-
late updates in the EMA over 10k training iterations only, we use a slightly lower decay rate of
0.999. We find that using the EMA of the weights as the teacher may slightly improve performance.

4.3 SCALING SDTT TO 860M PARAMETERS

We apply SDTT to larger discrete diffusion models with up to 860M parameters. In this experiment,
we train the models from scratch for 400k steps with a batch size of 512, a context length of 1024
and the Adam optimizer. We reuse the training configuration of Sahoo et al. (2024) and scale the
models to larger sizes. We train 3 model sizes, small (169M), medium (424M) and large (863M).
Details of the model architecture for each scale are shown in table 2. As for the other experiments,
the models are diffusion transformers (Peebles & Xie, 2023) and we use an EMA with a decay of
0.9999. Although the results in section 4.2 suggest that short distillation rounds might be sufficient,
it is unclear whether this result also holds on larger scales. Therefore, we use 10k steps per round of
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Figure 6: Perplexity for different losses and decoding step size. Generative perplexity over 7
rounds of SDTT with MSE, TVD and KLD. While the KLD leads to a higher perplexity than the
MSE; we focus on the KLD because it is the only divergence that retains the performance on the
LAMBADA dataset.

SDTT. For simplicity, we generate targets using 2 teacher ancestral decoding steps and do not reset
the optimizer state or EMA between rounds.

Since we train larger models, we evaluate the generative perplexity using Llama3 8B (Touvron
et al., 2023). The generative perplexity over the 3 model sizes is shown in fig. 4b. Interestingly,
the smaller diffusion model (169M) sampled from with 64 steps or more after distillation achieves
better generative perplexity than the largest model (863M) when sampling with 1024 steps. In
fig. 15, we show that the MAUVE performance also improves after distillation for the medium and
larger model. Finally, in fig. 16, we see that the LAMBADA accuracy improves after distillation,
similar as in the smaller scale, when using the KLD objective.

4.4 LATENCY WITH SDTT

While SDTT allows sampling from discrete diffusion models with 32-64 times less decoding steps,
a quantity of interest to practitioners is the actual latency of text generation. Indeed, while the reduc-
tion in the number of sampling steps is large, since discrete diffusion uses a non-causal architecture,
we cannot use KV caching (Pope et al., 2022). KV caching improves the inference performance
drastically for AR models, hence we compare the latency of SDTT with GPT-2 with KV caching.
We successfully reproduce the results of Deschenaux & Gulcehre (2024), which showed a 4x im-
provement when sampling with 32 steps, and measure an 8x improvement with 16 decoding steps.
We compute the latency using untrained models with around 1.3B parameters, using the same hy-
perparameters as Deschenaux & Gulcehre (2024). We use a batch size of 8 and time the sampling
10 times after one warm-up step on a single A100 GPU with 80 GiB of RAM. All models use
FlashAttention (Dao et al., 2022). See Appendix A for additional experiments on the latency.

5 RELATED WORK

Diffusion Models Diffusion models (Sohl-Dickstein et al., 2015b; Ho et al., 2020; Song & Ermon,
2020) are the basis of many state-of-the-art text-to-image models (Ramesh et al., 2022; Rombach
et al., 2022; Saharia et al., 2022). After their introduction by Sohl-Dickstein et al. (2015b), Ho et al.
(2020) showed that diffusion models can achieve FID scores (Heusel et al., 2017) comparable to
GANs (Goodfellow et al., 2014; Arjovsky et al., 2017).

Discrete Diffusion & Diffusion Language Models Prior to Sahoo et al. (2024); Shi et al. (2024);
Ou et al. (2024), Lou et al. (2023) introduced a novel discrete diffusion language model called
SEDD. When decoding with a large number of steps, SEDD can match or surpass GPT-2 in uncon-
ditional text generation. The model of Lou et al. (2023) learn a discrete generalization of the score

9
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Task GPT-2 Teacher KLD student MSE student TVD student
ARC-Easy 43.81 40.91 40.57 40.45 40.32
ARC-Challenge 19.03 21.08 20.73 19.28 20.05
HellaSwag 28.92 30.50 29.65 29.10 29.18
MathQA 21.21 21.78 21.47 22.28 21.84
PIQA 62.89 59.74 59.85 58.11 58.16
WinoGrande 51.62 50.91 50.75 49.57 50.36

Table 1: Downstream evaluation results. We report the accuracy of GPT-2, the teacher and students
after 7 rounds of SDTT. Distillation seem to minimally affect the downstream performance.

of continuous diffusion models (Song & Ermon, 2020; Song et al., 2021). Campbell et al. (2022);
Zhao et al. (2024) developed the continuous-time discrete diffusion framework. Hoogeboom et al.
(2021) extended Bernoulli diffusion (Sohl-Dickstein et al., 2015b) to categorical distributions, and
Austin et al. (2023) generalized the work of Hoogeboom et al. (2021) to more general corruption
processes, including absorbing diffusion. Zheng et al. (2024) develop a family of re-parameterized
discrete diffusion models to enhance the training and decoding efficiency. In parallel, several studies
have explored continuous diffusion for language modeling (Li et al., 2022; Dieleman et al., 2022;
Han et al., 2023; Chen et al., 2023; Gulrajani & Hashimoto, 2024). Despite recent breakthroughs,
diffusion language models still have some drawbacks (Deschenaux & Gulcehre, 2024). Ye et al.
(2024) adapt Chain-of-Thought reasoning (Wei et al., 2023) to diffusion models.

Distillation of Continuous Diffusion models Distilling continuous diffusion models is a well-
studied area. For a comprehensive survey, see Luo (2023). Many distillation methods rely on De-
noising Diffusion Implicit Models (DDIM) (Song et al., 2022), which showed that diffusion mod-
els can be sampled deterministically. Luhman & Luhman (2021) unroll trajectories sampled with
DDIM and train a student to map noise directly to images. Luhman & Luhman (2021) pre-compute
a dataset of noise-image pairs. Close to our work, Salimans & Ho (2022) teaches the student to
match multiple sampling steps of the teacher, given corrupted training examples. However, unlike
Salimans & Ho (2022), we cannot rely on the existence of a deterministic map via DDIM. Con-
sistency distillation (Song et al., 2023) fine-tunes a pre-trained diffusion model to predict the final
sample from intermediate points of the sampling trajectory, which enable faster sampling. Luo et al.
(2024) distills a pre-trained diffusion model into single-step generator through a novel loss, Integral
Kullback-Leibler divergence. SD-XL Turbo (Sauer et al., 2023) uses an adversarial formulation to
sample with 1-4 steps from a latent diffusion model (Rombach et al., 2022).

Masked & Non Auto-Regressive Language Modeling BERT (Devlin et al., 2018) introduced the
masked language modeling objective. While BERT focuses on representation learning, discrete dif-
fusion language models are generative. XLNet (Yang et al., 2020) uses a generalized AR pretrtaining
method to model the text distribution over all permutations of the training sequences, outperforming
BERT on downstream tasks. Pannatier et al. (2024) adopt a similar objective to XLNet for generative
modeling instead of natural language understanding.

6 DISCUSSION

In this work, we introduce Self-Distillation Through Time (SDTT), a distillation method for discrete
diffusion models. Recent works (Lou et al., 2023; Sahoo et al., 2024; Shi et al., 2024; Ou et al.,
2024) suggest that discrete diffusion models can match or outperform autoregressive models in
text quality. However, those models require more inference resources than AR models to achieve
good performance, because of the non-causal architecture of the neural network that prevents the
use of KV caching. We show that SDTT can reduce the number of decoding steps while retaining
performance. Our final student is up to 8x faster than AR models that use KV caching and we
demonstrate that SDTT is applicable to larger models as well. In future work, we plan to evaluate
SDTT on tasks that involve generating a large number of completions from a base language model.
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7 REPRODUCIBILITY STATEMENT

We provide details on model architectures, hyperparameters, and provide pseudocode for our algo-
rithm. We built on top of the open source model of Sahoo et al. (2024), which makes it relatively
easy for researchers to reproduce our results. Additionally, upon de-anonymization, we will release
our code and artifacts.

8 ETHICS STATEMENT

Overall, language models are dual-use technologies, and thus, they can have unethical uses, such as
fake content generation, and they can suffer from bias if applied to data sets that are not carefully
curated. This paper focuses specifically on speeding up discrete diffusion language models at test
time to reduce their computational demands; we do not have specific concerns with regard to this
contribution.
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Azalia Mirhoseini. Large language monkeys: Scaling inference compute with repeated sampling,
2024. URL https://arxiv.org/abs/2407.21787.

Noam Brown, Anton Bakhtin, Adam Lerer, and Qucheng Gong. Combining deep reinforcement
learning and search for imperfect-information games, 2020a. URL https://arxiv.org/
abs/2007.13544.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020b.

Cristian Bucila, Rich Caruana, and Alexandru Niculescu-Mizil. Model compression. In Knowl-
edge Discovery and Data Mining, 2006. URL https://api.semanticscholar.org/
CorpusID:11253972.

Andrew Campbell, Joe Benton, Valentin De Bortoli, Tom Rainforth, George Deligiannidis, and
Arnaud Doucet. A continuous time framework for discrete denoising models, 2022.

Murray Campbell, A.Joseph Hoane, and Feng hsiung Hsu. Deep blue. Artificial Intelli-
gence, 134(1):57–83, 2002. ISSN 0004-3702. doi: https://doi.org/10.1016/S0004-3702(01)
00129-1. URL https://www.sciencedirect.com/science/article/pii/
S0004370201001291.

Lingjiao Chen, Jared Quincy Davis, Boris Hanin, Peter Bailis, Ion Stoica, Matei Zaharia, and James
Zou. Are more llm calls all you need? towards scaling laws of compound inference systems,
2024. URL https://arxiv.org/abs/2403.02419.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

11

https://arxiv.org/abs/2306.13649
https://arxiv.org/abs/1701.07875
https://arxiv.org/abs/1701.07875
https://arxiv.org/abs/2107.03006
https://arxiv.org/abs/2107.03006
https://arxiv.org/abs/2407.21787
https://arxiv.org/abs/2007.13544
https://arxiv.org/abs/2007.13544
https://api.semanticscholar.org/CorpusID:11253972
https://api.semanticscholar.org/CorpusID:11253972
https://www.sciencedirect.com/science/article/pii/S0004370201001291
https://www.sciencedirect.com/science/article/pii/S0004370201001291
https://arxiv.org/abs/2403.02419


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Ting Chen, Ruixiang Zhang, and Geoffrey Hinton. Analog bits: Generating discrete data using
diffusion models with self-conditioning, 2023.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. Journal of Machine Learning Research, 24(240):
1–113, 2023.

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and
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A ADDITIONAL ABLATION RESULTS

In this section, we show additional plots on the ablations we conducted. Because the KLD was best
in retaining the performance on the LAMBADA dataset, we used it in most the ablations. Hence,
unless specified, the following experiments distill using the KLD.

Ablations on the number of steps per round of SDTT In fig. 7 we show the MAUVE perfor-
mance. In fig. 8 we show the generative perplexity, and in fig. 9, we show results on LAMBADA.

Ablation on the analytic sampler In fig. 10 we show results on LAMBADA, and on fig. 11 the
MAUVE score.

Distilling more than 2 steps at once In fig. 12, we show the generative perplexity.

Ablation on the optimizer state and exponential moving average of the weights In fig. 13 we
show the generative perplexity when resetting the EMA and optimizer state. In fig. 13, we compare
the generative perplexity when resetting the optimizer state only, and when resetting the EMA state.
Finally, in fig. 14, we show the MAUVE score.

Plots for scaled SDTT In fig. 15 we show the MAUVE score and in fig. 16, we show results on
LAMBADA.

Conditional perplexity with TVD In fig. 17c, we show the conditional perplexity (prompt ex-
cluded) on the small scale, for models trained for 1M steps. Empirically, the TVD performs worse
than the KLD and MSE.

Measuring the diversity We evaluate the generation diversity using the self-BLEU score (Zhu
et al., 2018). The self-BLEU score averages the BLEU score between one completion and the
others. Therefore, when the sampling algorithm is deterministic, the self-BLEU score is 1, and a
lower self-BLEU score denotes a more diverse set of samples. Formally, let X = {x1, ..., xn} be
conditionally-generated sequences, starting with the same prompt. The self-BLEU score can be
computed as

self-BLEU :=
1

n

∑
i

BLEU(xi, X \ {xi}). (8)

We compute the self-BLEU score using 1000 prompts, as for MAUVE, and generate 5 continua-
tions per prompt. Figure 4a, fig. 18a and fig. 18b show the self-bleu score after distillation with
the KLD, MSE and TVD objectives. Each objective only minimally decrease the diversity after
distillation. Compared to on-policy distillation of autoregressive models (Agarwal et al., 2024), the
decrease is marginal, as Agarwal et al. (2024) observe an increase of self-BLEU of the order of
10-20, demonstrating a more significant decrease in diversity.

Decoding latency In addition to the results on the 1.3B scale, we report the latency for models
with 169M, 424M, 863M, 3B and 8B parameters. We compute the latency with a batch size of 8 and
4. Figure 19 shows the latency with a batch size of 8 and fig. 20 using a batch size of 4. Figure 21
shows the trade-off between latency and perplexity. We measure the latency at the small model size
and compare GPT-2 with the final students after 7 rounds of distillation.

B ADDITIONAL DETAILS ON THE DIVERGENCE MEASURES

In this work, we teach the student to match the teacher targets x̃teacher
θ (zt, t,m/k) generated by algo-

rithm 1. We penalize the student deviating from the targets using one of three divergence measure:
the Kullback-Leibler Divergence (KLD), the Total Variation Distance (TVD), and the Mean-Squared
Error (MSE). We now describe each of them.
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(b) 10k vs 2.5k iter/round.

Figure 7: MAUVE performance with fewer steps per distillation round. It seems that using 5k or
2.5k distillation steps instead of 10k per round is detrimental to the MAUVE performance.
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Figure 8: Generative perplexity with fewer steps per distillation round. Using 5k or 2.5k steps per
round yields slightly improved perplexity after the latest distillation rounds while being a slightly
worse in intermediate ones.
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Figure 9: Performance on LAMBADA when distilling with fewer steps per distillation round.
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Figure 10: Generative perplexity and performance on the LAMBADA dataset when using the ana-
lytical sampler. We find no clear benefit over the ancestral sampler.
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Figure 11: MAUVE performance when distilling using the ancestral sampler used by Lou et al.
(2023). We find no clear benefit over the ancestral sampler.
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(a) 4 steps.
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(b) 4 steps and 15k iter/round.
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Figure 12: Trying to distill more than 2 teacher steps at once. (a): Distilling 4 steps at once.
(b): Distilling 4 teacher sampling steps at once wit more training iterations per round (15k). (c):
Distilling 8 sampling steps per iteration. Overall, distilling more than 2 steps at a time seem to hurt
performance. One could expect that distilling more steps at once would require longer rounds to
train, hence we tried growing the round to 15k steps per round, which hurt the performance of the
student.
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Figure 13: Generative perplexity when resetting optimizer or EMA state between rounds of SDTT.
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(a) Resetting the optimizer state only.
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(b) Reset the optimizer state and use EMA of weights as teacher.

Figure 14: MAUVE performance when resetting optimizer or EMA state between rounds of SDTT.
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Figure 15: MAUVE performance of medium and large models pretrained for 400k steps. This
experiment supports our claims that SDTT helps the final models to approach the performance of
the teacher with less sampling steps.
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Figure 16: Accuracy and perplexity on LAMBADA when scaling SDTT to larger models. All
models are trained for 400k steps before distillation. On the small scale, training for 400k steps
instead of 1M yields a weaker model. Interestingly, the perplexity can improve after distillation
when the models are undertrained.
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(a) Perplexity of completions when distilling with the
KLD objective.
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(b) Perplexity of completions when distilling with the
MSE objective.
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Figure 17: Conditional perplexity. Perplexity of the completions using GPT-2 large, excluding the
prompt. SDTT with TVD performs worse. The final student distilled with KLD matches GPT-2
with nucleus sampling. Ground-truth continuations have a perplexity ≈ 13.11.

51.5 52.0 52.5 53.0 53.5 54.0 54.5 55.0
Self-BLEU

50

100

150

200

250

Co
nd

iti
on

al
 p

er
pl

ex
ity

8 steps
16 steps
32 steps
64 steps

128 steps
Round 1
Round 3
Round 5

Round 7
GPT2 (reg)
GPT2 (p=0.95)

(a) Distillation with the MSE loss.
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Figure 18: Diversity of conditional generation (small scale). We measure the trade-off between
quality and diversity using Self-BLEU (Zhu et al., 2018). Deterministic sampling yields a score of
1. The diversity minimally decreases after distillation.
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Figure 19: Additional latency experiments with a batch size of 8.
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Figure 20: Additional latency experiments with a batch size of 4.
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Figure 21: Perplexity vs wall-time latency (in seconds) for small models. We use 16, 32, 64, 128
ans 256 decoding step for the diffusion models.

Model size small medium large 1.3B 3B 8B

# params 169M 424M 863M 1.3B 3B 8B
Num Layers 12 24 24 24 26 40
Embedding dim. 768 1024 1536 2048 3072 4096
Num. heads 12 16 16 32 32 32

Table 2: Hyperparameters of the diffusion models at different scales. All models use RoPE posi-
tional encoding (Su et al., 2023).

B.1 KULLBACK-LEIBLER DIVERGENCE

The Kullback-Leibler Divergence (KLD) between two discrete distributions p and q defined on the
same finite sample space Ω is computed as

DKL(p||q) :=
∑
x∈Ω

p(x) log
p(x)

q(x)
. (9)

The KLD has a unique minimum when p and q are equal, however the KLD is not symmetric,
meaning that DKL(p||q) ̸= DKL(q||p) in general. In this work, we train the student with the reverse
KLD DKL(pθ||pteacher). In the next paragraphs, we present differences between DKL(pteacher||pθ)
(forward KLD) and DKL(pθ||pteacher) (reverse KLD).

The Forward KLD The forward KLD is called zero-avoiding because if ptarget(x) is non-zero but
pθ(x) is close to zero, then ptarget(x)

ptarget(x)
pθ(x)

will be large. To minimize the forward KLD, pθ will try
to assign non-zero probability to all points where ptarget is non-zero.

The Reverse KLD The reverse KLD is called zero-forcing because if ptarget(x) is close to zero
but pθ(x) is not, pθ(x)

pθ(x)
ptarget

will be large. To minimize the reverse KLD, pθ will try to assign zero
probability to points where ptarget is close to zero.

B.2 TOTAL VARIATION DISTANCE

The total variation distance (TVD) is a metric used to compare two probability distributions. For
two discrete probability distributions p and q defined on the same finite sample space Ω, the TVD is
computed as:

dTV(p, q) =
1

2

∑
x∈Ω

|p(x)− q(x)|. (10)
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The factor of 1/2 ensures that the TVD ranges between 0 and 1, where dTV(p, q) = 0 if and only if
p = q.

B.3 MEAN-SQUARED ERROR

Unlike the Kullback-Leibler divergence (KLD) and Total Variation Distance (TVD), the MSE can
be used to compare any scalar quantities, not just probability distributions. For numerical stability,
we compute the MSE in log space:

MSE(p, q) =
1

|Ω|
∑
x∈Ω

(log p(x)− log q(x))
2
. (11)

B.4 χ2 DIVERGENCE

The χ2 divergence can be used to compare two probability distributions. For two discrete probability
distributions p and q defined on the same sample space Ωm the χ2 divergence is computed as:

dχ2(p, q) =
∑
x∈Ω

q(x)

(
p(x)

q(x)
− 1

)2

=
∑
x∈Ω

1

q(x)
(p(x)− q(x))

2
. (12)

As such, we see that the χ2 divergence is related to the MSE. Note that when using the MSE for
distillation, we penalize the error in log space, while the χ2 penalizes error in probability space.
Additionally, the MSE uses a uniform weight factor 1

|Ω| for each term of the sum, while the χ2

divergence uses a weight of 1
q(x) .

C IMPLEMENTATION DETAILS

Architecture To compare with Sahoo et al. (2024), we trained the diffusion models using their
code and pre-processing steps on the OpenWebText dataset (Gokaslan & Cohen, 2019). As Sahoo
et al. (2024), our models are not conditioned on the noise level. Nonetheless, Sahoo et al. (2024)
kept the architecture of Lou et al. (2023) unchanged and makes the model unconditional by feeding
it a zero tensor instead of the noise level. Removing the adaptive layers could improve the sampling
speed further, but we avoided modifying the architecture to prevent potential problems. See table 2
for the hyperparameters of our models.

D TEXT EXAMPLES

We include non-cherry picked text generated from the small distilled model with KLD loss from
the last round of distillation via unconditional sampling with varying number of steps. We show the
first 512 tokens to so that the text fits on one page. Remember that those models are small and not
fine-tuned for text quality. They can also start generating in the middle of sentences, since they are
trained on a concatenated corpus of documents.
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Text generated with 16 steps (1/3)

invite to the gathering, because he was invited in 2008,
probably on a regular basis thereafter. But to become a
scientist, to verify those cred veracity is important,"
inlamali said.

CNN is thus creating a monster that has supporting cascade of
other grand jury investigations, he said.

"In the case of Mr. Eliaschis, I wrote in a today to a number
of everyone involved in consideration of this matter;
these people are invited, named and considered ’committed
’ to the process and trust of the Nation," he said.

There have been no complaints or formal complaints and this
will directly no longer be CNN’s standard and indepth
coverage.<|endoftext|>because my office cherish diversity
, this is the approach we have come across. their
subscription model is great, and right now there are
folks in our office that want to help to promote
diversity. so we’re looking forward to hearing those
responses from them. although we realize it is a
different place than we run it. but outside of this, I
think we’ve never had a lot of conversations (especially
here) about community-based leadership being happier than
market-based leadership: the leader is fantastic, the
person is valuable and talented.in the UK things don’t
that way. it has a leaderless culture which has not been
well with a hierarchical planning and organizing process.
we have a very specific image of this kind of
organization. but one of such qualities is the image of
someone accomplished like everybody else does, which
interests us as do the talks of one of our public figures
.

as part of what we’d love to do here on our social impact
endeavors. recognize that most of the work here, we’re in
the midst of the first day of the interview (which Prof.
Garry had posted to the blog). Garry was kind enough to
come participate in the interview as well as conducting
and perusing on his and the next few competitors, in
order to get valuable feedback. I wanted to feel
enthusiastic about the process, eager to share feedback,
and expect to have a very professional experience.

but, broadly speaking, more than a lot of the things that we
struggle with the capacity to report, we just made a
draft, and then got the post called. there is one example
of things throughout the draft that made me the most--

. The media is a small part in Far Left.

it is really important to have a relationship with your
employer. At a high
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Text generated with 16 steps (2/3)

kids not being in our schools as a result. The kids put their
families in Florida schools in this district, this is
Georgia school, and not only do they have enough time to
work for a Florida firm, it’s not desirable for our kids
to be in Florida school anymore."

The brothers turned to public education and the governors
quickly asked them if they wanted to. Bonding Aid then
was contacted once asked for a special order from the
administration setting aside $524,000, but they were
denied despite the requestBy Bill Othello, according to
government spokesman. The brothers wrote letters to the
governors numerous times claiming the information was
false, including one letter, which suggested that they
funnel $2,000 to the Slothouse Clearing House schools
through the University of Florida. However, one of the
brothers, Chris Yates, told Bloomberg News that he still
was shocked and horrified by the correspondence, saying,
"Obviously, I felt like a coward to be in this of a very
uncomfortable situation."

Instead however, Yates said, he reacted very much like he
pissed off at one of his favorite politicians, Bush.

Florida’s two Republican leaders have strained relations, in
particular with recent governors Doug Ducey, a Republican
, and Jeb Bush, a Republican, addressing his concerns. "I
do not think the other leaders will do this, but we do
have to work to make sure that is how we have to do it,
something that’s something that we need to be doing, and
that there will be always a need for better quality
education, too," Bush also said. "We do not want Florida
to stop funding education and essentially contradict the
fact that what has a provenance in this planet is that
killing was at least 10 percentage and many people got
dead. We I beginning to have problem with that and I
think that’s the first where we know, for sure, when we’
re going to eventually share that information with the
public, and we feel in order to deal with that we have to
agree to the efforts that we are engaged in and also [
Haley and I] are ultimately going to have to provide that
. We will have the heavy lifting to do whatever we do. I
think this is irresponsible but also that we are not
going to start having a real conversation because we’ve
got a lot to do, but that was a eye opener to us."

When asked on Tuesday if he was dazed and that he regretted
attending the meeting
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Text generated with 16 steps (3/3)

was subjected to will then acidize in the form of foam. The
pH and pitch of foam create a, too substantial a gap
between an egg and tissue, which will drive it to
accumulate faster, and can thus cause irritation to the
sensitive parts of the body. It’s penalties are well as
analgesia, and shortens chances of learning how the
material works.

Mr. Segal, who was involved in the study, did not acknowledge
the limitations of the study to treat his own
specifically painful dental fracture, but added that it
succeeds in all aspects of the process. "This is the
first time that it might make a significant contribution
to improving dental health. Until then we will have to
get better at adjusting what have changed to make sure
that it is effective."<|endoftext|>Yet, in June 2013,
Laquan Phillips, 20, a promising medical student at the
Jackson State University School of Medicine and the son
of a cyclist Philando Castile, killed two or four weeks
earlier, was forced to give a the dozens of officers.
officer just about three seconds to pull up on the
vehicle trying to lock the black car into silos, and
Fewell, the neighborhood managed by the officer who
arrested Phillips, was refusing to go all the way. The
officers were concerned about the direction of bullets so
that they could hit a casting bit.

While police believed the bullet hit a man on the left side -
and a belief that had been consistent since police had
been in deep denial, it failed to hit the man on the
right side of the table. When you interjected a shot into
the man’s first body, the face mostly rolled down the
throat - a crushing moment of motherhood and last sweat
for a father of two - and thankfully the other one was
stopped in his tracks.

"We believe him," said John Milliken, a police officer at the
time of his shooting, who could not confirm other deaths
but said that Oli was firing gun. Others would say it
was the product of head trauma.

The policeants in Roswell could rely on a variety of lethal
weapons, they said, including ammunition that police had
accessed. I want to thank the people for the first- aid
kit for the family, and the people and the people for
Justice Jesse James also, at hand members of the Black
community the 71st.

An anonymous person was having a phone conversation with the
Buckeyes’s interim president, who was to take part in the
participants of
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Text generated with 32 steps (1/3)

Wilkins was he committed the acts of vandalism as a juvenile
.

Woodward said he had "since confessed the crime based on
information and an explanation for what he did." But a
police spokesman told the news outlet that investigators
work for the government and it is the responsibility of
whether it is the individual with knowledge of the crime
or that should be punished as well as those involved with
the system.

"Liberals can withhold confidential information from the
public on the basis of any reason or whether such
information is a public interest," the spokesman said on
condition of the anonymity because of the investigation.

Fox News reporter Brian Stelter, reporting the agency’s look
at the alleged Hammond scheme, took a high-profile line
on political campaigning in Russia and current affairs on
Fox News Channel’s propaganda channel, The Which?," for
instance.

The Rasmussen Reports cited concerns of a spike in voter
fraud, citing the divide between the Democrats and voters
, many of whom Republicans outside the party vowed to
lose in the election.

The Washington-based advocacy group We Are America, which
publishes figures from the polls, said the report was
based on the promises of conservative news outlets,
independent organization, and the use of pollsoddy
reporting.

"The communication and reporting of American media has been
critical," We Are Russia said in a statement following
the report.

The United States media has been biased against the election,
which Russian officials linked to hacking on Democratic
computers and other promotional efforts that seem aimed
at raising security fears in Moscow and toppling many of
the Kremlin’s market allies in the U.S, which is moving
closer to winning the election before a referendum begin
taking place.

Russian officials have attributed their bias in opinion polls
toward the 2016 elections to an uptick in unemployment
statistics, with figures they’re publishing being
forecast on the eve of their presidential elections.

Russian officials say they would like to prevent fraud, and
polls show that they may have aggressive on potentially
maintaining a narrow five-point lead.

The Rasmussen poll report came days after the state Attorney
General filed a lawsuit in general against the Rasmussen
Reports’ report, and asked the state to look to the
opinion polls and determine if the Rasmussen poll did a "
good job."

Democrats announced plans to use a federal court case to
discredit Republicans based on the polling.<|endoftext|>
While Republicans have the race for the presidency in
popularity, getting near the
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Sherman was a city historian for 28 years before 1988 and
former relations adviser spoke with more than a dozen
Asheville staff members during an interview outside the
hotel early Monday morning. In a brief interview, Sherman
gave employees an overview of what they seerved from the
two Highlanders - including a handwritten piece of
electric paper and pictures of the cut and logings,
perhaps sweeter than the compensation Yancey and Davis
did compensation settlement for.

Photo: Courtesy U.S. BAG via Jan. 30; The documents provided
in the report stem from a link to a minor change in the
law, according to the report.

The law officially establishes an enforcement and oversight
process (PDF) for transferring payments to the other
committee, or the City or State Board, that has the
mandate to require the cash transfers from the other side
;

The legislation, upon meeting each committee, instead directs
the legislature to set its own financial policy in the
other committee;

The method suggests payments to the other committee can form
the legislature’s own committee to pass enforcement and
oversight legislation, and that each of the committees
may vote on motions for a resolution and give the public
a vote or motion to approve legislation by the Joint
Finance Committee.

That, the city and state will follow the same process as the
New Hampshire City and Lodging Act. However, in the Nov.
election the Legislature prepares to decide whether to
modify the rules and procedures surrounding such a Senate
bill, so it would be unclear how long the interim
Legislature policy to be implemented once it’s adoption
is in place.

The terms of the report are not necessarily overarching, some
of the other ways are specifically saying that a
proposed legislation that would transfer payments to the
other committee must be amended to include a general bill
, before it would be recognized as a legislative body.

in Khan at editors@time.com

Twitter: @in_khan<|endoftext|> independent party New Greens
has urged Parliament to declare that there was no reason
for the war. Many Australians who believe that it would
be better to their children going to war are handed local
police officers the chance only for training next week.
The leader of South’s Republic of the African state,
Christopher Robertson, said that the government’s refusal
to give any status to the force is the worst for
Australia’s history. In a statement to the Liberal party,
Mr Robertson said it is important to keep a police force
on ground as it sees fit. This has caused panic among
all 16 states, in particular the growing31
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, the police, media and public

International Council of the Community of Europe (IECE) is
preparing the next steps, being taken on Monday - that
could the potential to make firm changes to Britain and
the EU, including the introduction of modern regulations
and procedures on trans financial transactions from
ordinary individuals to private corporations.

However, senior mainstream EU members told the Telegraph that
some of the changes in the legislation at the moment "
are not clearly relevant to that role" for regulatory
oversight, as well as legal procedures, for the provision
of business and financial industry, social, welfare,
police, promotions, public health and economic activities
- and finally, to give the EU the right to make the
legal and regulatory decision that is needed by the wider
market.

A senior Council official in the UK, speaking on condition of
anonymity for the sensitivity of the meeting with his
staff, said there had been little progress in negotiation
negotiations and how to implement the changes because
the legislation was still on the way. The senior official
said both countries had worked fully with each other so
the legislation could meet the basic existing EU
regulations.

"We agree then that we will need to amend the legislation in
a way that is appropriate for EU law in the parts of the
UK. So review and consultation is something we are
looking very closely to to ensure that our new amendments
to the legislation give additional leadership and
framework ... to verify we can implement those measures
and will provide appropriate support of expertise to the
UK in relation to getting them."

However, the official said it could take some time still to
implement the legislation and that any changes put in
place require a complete clean review of the wording of
legislation, and part with EU institutions in that way.

"We understand the process that is underway on how to
implement those measures - and implementing those
measures is going rapidly, so we can’t yet start to
assess the situation," he said.

The Council has agreed on January 25 to pressure the UK
government on the decision to leave the EU to good effect
.

"The previous government had helped reform the law around the
UK and contributed to that change," said Matthew Kennedy
, an official for the Council.

The Council will work on the new amendments as part of two of
the terms of engagement with the British government,
signed by David Cameron.

"They are part of a broader effort and to do so has not been
determined, so the Prime Minister and those
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create big gas storage wells locally. BP has proposed
investing billions of dollars to build new big storage
wells, which will raise gas production to new levels of
production.

The research has been co-sponsored by Congress lobbying to
oppose oil and gas drilling (FAPL), but the
administration has yet to outline how far oil and gas
drilling and the Eagle Ford expansion will take its new
forms, with new risks rising.

SUS energy industry officials say changes in the measures
ordered and new funding levels have been little bearing
on oil production, capped in about 60% last year, but
some proposals are still receiving orders - still others
have yet to be overcome - by the Department of Energy to
produce a package on a proposed Dakota Access oil
pipeline to the West in the West Coast.

The distinction between fossil fuel and gas is also blurred
on energy measures that have been laid out to Congress
about a year; most are now in the process to agree on the
proposed Keystone XL pipeline, and the Dakota Access
pipeline.

The US energy market is fast moving, so the focus of the
Obama administration has been to push jobs to the US and
to encourage Americans to have better financial prospects
for creating their new jobs

Gans to set low-carbon renewable energy targets will soon
launch at the White House. Since 2009, infrastructure
projects have established several significant initiatives
: restructuring the coal sector in the West of Europe,
reducing the tariffs on renewable energy in Britain, and
implementing zero-carbon policies in South Africa,
despite high difficulties in succeeding in implementing
EU emissions standards.

The infrastructure initiatives, announced and unveiled by the
president on Wednesday, are focused on the aim of
finding effective ways to build on competitiveness at
long-term scales and to help around the world create a
sustainable energy portfolio in the areas needed to
mitigate the risks in local economies.

But institutions as big and large as central banks
infrastructure plans to support renewables have been
especially critical in recent years. A number of EU
states such as Finland and Sweden were taking initiative
with their plans. The states, which will also launch a
number of the other initiatives at the White House
ceremony, said that "the energy policy environment will
receive high profile development in the UK and the
economy of the EU in most of them".

The far-reaching strategy has been to place low-carbon
targets in the UK’s renewable energy sector, of course,
with a push of the private sector - much of which is
being led by governments and businesses - to scale their
renewable energy
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exchange Bitcoin, it should be able to deliver such services.
Basically, a service that hinges on Coinbase make
payments for those bitcoin users who use this unique
means of purchasing and storing bitcoin, and that it’s
able to reach retailers as wide as possible, which makes
it so attractive for merchants for transaction speeds.
Once they’ve taken the step of overcoming a long wait for
an WePay service, they’re permitting merchants to accept
Coinbase to begin. What explains the delay is that even
if they decide moving forward with an offer to pay for
maintaining the price of bitcoin and the impressive
growth of bitcoin, it remains a high barrier and
additional cost for some users. What’s sure for certain
is that merchants will accept the service, but that it
will deliver a version of bitcoin as a method of payment.

They also plan to allow Coinbase to maintain control of the
new address, to ensure the security of the integrity of
Coinbase, as well to further expand the service available
to Mac users. And besides, Coinbase is still investing
in BitPay, a leading bitcoin exchange offering for free
an alternative to fiat value, which would be a perfect
fit for a marketplace for all that bitcoin in a heavily
regulated world.

We have reached to WePay Bitcoin for our response and for
their views on our WePay service.<|endoftext|>How do you
describe the typical user of marijuana. Your questions
are always open to the cipscoop.net email team. Today is
Day of Cannabis, an event celebrating the global outside
of the marijuana industry. Let us know your favorite
questions.

K: Let’s talk about the for-profit group that supports
marijuana, Gives of Health, which established the first
nationwide standard price system for marijuana. Can you
name a name?

In its first statement, Gives of Health defined itself as
committed to supporting a national free market system of
marijuana, promoting policies to reduce the supply of
legal prescription drugs, reduce tobacco prices, reduce
wasteful government spending, and taxing and regulating
marijuana. We believe a marijuana marketbased tax system
is good for our public health and for the economy by
helping people circumvent drug laws and purchase
marijuana, reducing tax costs associated with
prescription analgesics and avoiding tax evasion.

K: Leon and several advocacy groups that try to crack down on
marijuana, as the Gang of Eight, introduced bills to
make cannabis and medical marijuana for adults in more
than a dozen states. What is that to say about addressing
a lot of the problems?
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by the military. The army (which elected its President) saw
the most important coup in its history.

The broader American Catholic Church claim that one of the
first indications of the twentieth century thought of "
liberated Christians" not earlier than July, 1960 was
that the Protestant church would be leveled within their
territory. Protestant mainline hierarchies in the late
1950, and early 1960, which had witnessed the life of a
Calvinist Protestant movement, built the Protestant image
of a new creed that preached tolerance and loyalty to
the Church, desperately looking for a new denomination.
Although the political movements had been building up for
a long time, there was a Protestant political movement
that thwarted the church and introduced a sense of
impending doom specifically to a certain movement, a
belief that while the Reagan government’s attack on the
Church made it Americans personally and at the center of
society, and eventually dissolved and destroyed
Protestant institutions. The church, with the exception
of the United Methodist Episcopal Church (MCCA), heavily
engaged in Latin American, Australian, and indigenous
communities, is recognized as having one of the first
Protestant hegemonies in the United States, following the
formation of St. Mary Catholic Church in Louisville in
1963.

The circumstances of the resurgence of radicalism have led to
a political movement that introduced a distinctly
Protestant identity and spread feelings of insecurity and
alienation that today plague converts to Christianity.
This is unusually widespread within the broader American
Catholic Church. Often associated with radical movements,
such trends may signal a significant shift in the
Catholic Church from the separation techniques throughout
the history of the United States Church. The Southern
Baptist Convention Conference, established its Center for
the Restoration of Christ of God, in America. Later, it
established an Adventist church in Texas. The Maclean
Church professes and operates another Adventist church,
the Church of America, which began forming one of the
most centrist and largest denominations in the country in
1960. As a result of this, the largest denomination
would soon be Holy Cross Church in North Carolina. Nick
Sheymia, president of of Faith in America, which
maintains a hard line between conservative and
fundamentalist Christianity on the left, told the New
Apostolic Arrangement Network that the church has always
"walked in the overall shadow of the much broader church
that attempted its rule and control of the nation."

Ol Howard, an educator and the author of the American
Catholic Church: A Study in Truth, said, "The church
seems inept at the end of the time. But to most Americans
it
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most countries, but in the UK, where computers are run by the
as many as 15 people involved is more complicated. Many
experts think that governments may need to overhaul their
machines because they are unable to retain their
influence because budgets are stretched too thin. In such
a complicated situation, they say, public sector efforts
to move ahead in technology, particularly climate change
, would have to be put in real action.

Another major concern was a government effort to undermine
the private sector in the construction sector and
financial services industry. Ben Gove, chief executive of
the House of Commons, said the government needed to
address the role of the public service sector, and made
explicit that the role of the labour force has become an
effective vehicle to cut income from the poorest working
people to the richest.

20%: the economic consequences of mass industrialisation Read
more

In a joint statement with several coalition partners, the
Conservative party also called for changes in the public
sector to ensure the return on public investment, as well
as the budget. Labour pushed back against some reforms,
which involve modernising the benefits system for older
people to make it easier for businesses to compete to win
jobs. However, these reforms critics say apply only to
the people who need them.

Ben Smith, the shadow environment minister with a record of
climate change on the Labour side, expressed "general
disappointment that this report shows significant
shortcomings". In practice, the Commons report is not
meant to advocate for such reforms. Labour would have
hoped to represent a party with a strong alliance with
existing policies and a government that has committed to
investing in more workers overall.

Labour responded by saying: "We’re pleased the MPs voted to
put in place further policies to help the workforce and
benefit everyone."

Labour paid for the narrow, decisive vote with a single vote.
They say the findings show the government has missed the
importance of its work for helping the working class
within the economy, so that the enormous impact of
automation benefits is linked with the exploitation and
marginalisation of the working class.

The government has failed to recognise the fact that energy
profits have been rising. Since 2008, bosses have tripled
the ranks of the British electricity and gas companies,
helping their annual profits rise by 3.1bn over the
previous decade.

The biggest companies have made more profits over the decade
before. This has created an incentive to make for more
secure and sustainable energy security. But as well as
bosses, they must collectively recognise what is
happening,
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many really exciting, non- independent artists, and all these
indie bands, jazz and folk-rock, and rock-and-roll jazz
bands, and you see a lot of new artists making these
kinds of fantastic music. What do you think about these
artists in Seattle?

M: I my whole life have never really wanted to do anything
outside indie music, so I wanted to go way mainstream. It
’s much of a role model to try and spread the word. I
think everyone gets invested in it so that people can use
their music, but even back then, nobody had tried to
bring these kinds of music to that community, and I saw
that it was a good way you should find someone who’s
going to do that in the right way. This city can be an
extremely helpful tool for developers to come up with the
right media resources to develop quality music, and now
there are so many indie studios over the country just
attracting artists, and I think it’s very helpful, and so
there are a lot more open tools available.

S. Norman, what is probably the biggest impediment you put in
terms of the music scene, and what’s really important
for you and I to bring your music to audiences in
Portland or New York?

M: I would say the only really obstacle to me, it’s the fact
that I have to work with people in Seattle, and I try to
involve them in it as much as possible because of where
they actually come from. Many of the people we were
talking to are basically part timers in the industry, and
that I and I have had to work with, so many people are
also a part of the community, among all of the audiences
we’ve been meeting. And I really came out of this scene
with a lot of excitement about it. And because I grew up
growing up here in Seattle that was crowded and full of
loud noise, it had just turned out to this place with so
many people in this scene, that I found myself moving
more to the music that I come from, at least to me, in a
small, vibrant, and growing community, and it makes that
sound more accessible to everyone. And what is really so
encouraging is that while most of the people that we were
talking to at events, they are also taking part in
actions within the community, supporting our music
through connections and sharing it with each other in our
community and the city. Right now, there’s really not a
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to write this because it blew me out of my seat. I’ve been
getting a few negative reviews in the past couple of days
and I realize that people are much harder than ever to
read them. Well, everything I’ve heard to this is
overwhelming, and I’m happy to say that there am so much
that I know that has really blown me out of my seat that
this situation is much worse than anything I have told
you. I want to be very direct to you, regarding even some
of the things that you have heard. Feel free to let me
know what you feel like - whether I have a personal
concern or a sincere thing you would like to hear about
this topic.

The response to this story is overwhelming support and love!
I just want to reach out to my Facebook page to tell you
what I I wish to do for you and really appreciate. I don’
t want to talk to anyone just to tell you how I’m very
sorry. I want to tell you about all the things that I’ve
been through so far and what I’ve done for you. I’m
really sorry for everything that I have done to this
community, and I am really appreciative for my support.
Not to even go into detail the issue too much, please do
head over to the next page in the post.

I ultimately don’t want to tell you that this is your biggest
issue - I don’t assume that it help you much. Instead, I
want to say that you should just get some things out of
the way. I’ve encountered many other people just coming
forward to this, and the fear of losing anything that I
try to say about these issues can only interfere with
such a process. However, now I like being out there
trying to help the world, and I am so thankful that the
community might help me too. Although I try to read this
as about once a day, I just appreciate the amount of your
feedback and hopefully I can build more positive ones to
read by the evening.

Lastly, I want to inform everyone regarding this topic in
case that other readers want to buy my blog here....So
hopefully when I write something to my readers in order
to help them out, I like your support. I want to support
every reader so that I can talk to other readers for any
information that can help me, to further tell my story.

C: I still have the horrible feeling that I
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