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Abstract

Accurate detection of liver lesions in longitudinal follow-up is critical for assessing dis-
ease progression. Unlike clinical practices that compare multiple time points, most deep-
learning approaches treat these time points independently. Existing longitudinal imaging
methods, particularly in brain imaging, use strategies like channel-wise concatenation, re-
current architectures, or temporal difference computation. However, these methods might
fall short in liver imaging due to challenges like non-rigid motions, anatomical variability,
and changes in imaging conditions. To address these challenges, we introduce LiFE-Net, the
first framework to integrate longitudinal information from baseline liver CT scans through
feature fusion. Our method employs intermediate feature fusion via self-attention mecha-
nisms, leveraging baseline images to incorporate longitudinal information for more accurate
predictions. We adopt an unsupervised training approach using synthetic lesions to address
the lack of supervised datasets for longitudinal liver tumors. Our results show improvements
in detection performance on follow-up images when baseline information is incorporated,
with gains in both detection mAP and ROC AUC per exam metrics. An exhaustive abla-
tion study further highlights the impact of baseline image integration, registration quality,
and architectural components in achieving these improvements. Our code for LiFE-Net is
made publicly available at: https://github.com/walid-yassine/LiFE-Net

Keywords: Longitudinal imaging, Liver lesion detection, Deep learning, CT scans.

1. Introduction

Liver cancer poses a significant challenge in oncology, ranking as the sixth most frequently
diagnosed cancer and the fourth leading cause of cancer-related mortality worldwide (Bray
et al., 2018; Tolou-Ghamari and Palizban, 2022). Early detection and longitudinal moni-
toring of liver tumors are critical for improving patient outcomes and guiding therapeutic
decisions. Clinicians typically rely on longitudinal comparisons of imaging data, evaluating
changes in tumor size and morphology to assess treatment efficacy and disease progression,
as outlined in the RECIST guidelines (Eisenhauer et al., 2009; Forner et al., 2018).

Deep learning methods have emerged as powerful tools for leveraging temporal informa-
tion in medical imaging. Some existing works treat this task as a tumor-tracking problem
(Moltz et al., 2012; Cai et al., 2021; Hering et al., 2021; Tang et al., 2022), identifying
lesions in the current scan based on their positions in previous scans. Such methods are
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limited to tracking lesions present in both scans without accounting for new or disappear-
ing lesions. In brain imaging, particularly for longitudinal analysis of multiple sclerosis
(MS) lesions, public datasets have enabled significant advancements (Danelakis et al., 2018;
Zeng et al., 2020; Hammer et al., 2024; Joskowicz et al., 2024; To et al., 2021; Birenbaum
and Greenspan, 2017b). These methods often treat each timepoint independently or con-
catenate scans from different timepoints as input to convolutional neural networks (CNNs)
that predict lesion masks in the current image. Some methods use channel-wise concatena-
tion, stacking 2D/2.5D slices (Birenbaum and Greenspan, 2017a; Denner et al., 2021) from
multiple timepoints along input channels to process temporal information simultaneously.
More advanced methodologies have sought to incorporate temporal dynamics by leveraging
pairs of 3D scans. (Szeskin et al., 2023) used a recurrent residual U-Net (R2UNet) model
applied to liver longitudinal images. This architecture processes registered scan pairs and
uses temporal information by concatenating prior and current 3D scans along the channels.
Similarly, (Wu et al., 2023) introduced a framework that segments both new and all lesions
in the current scan, integrating heterogeneous dataset annotations from single and dual
timepoint scans. While these methods demonstrate promising results, they do not explic-
itly enforce the model to focus on inter-timepoint differences and risk overemphasizing one
scan, leading to performance that resembles single timepoint models (Rokuss et al., 2025).
(Rokuss et al., 2025) addressed this issue in brain imaging by proposing a temporal dif-
ference weighting method with an explicit architectural bias to emphasize inter-timepoint
differences by computing difference feature maps in the encoder. This approach explicitly
models temporal dynamics through feature differences and has achieved state-of-the-art
(SOTA) performance in longitudinal brain imaging for MS lesion analysis.

However, most of these advancements are concentrated on brain imaging, where datasets
and annotations are more readily available. The broader application of such methods to liver
imaging remains an open challenge. Longitudinal analysis of liver CT scans faces distinct
challenges. Unlike the brain, the liver experiences non-rigid and dynamic deformations,
making it challenging to model temporal changes. Additionally, variations in contrast levels
and anatomical shifts caused by surrounding organs further complicate the analysis. This
makes the direct transfer of methodologies from brain imaging less effective. Moreover, the
limited availability of annotated paired scans for longitudinal liver CT studies - primarily
due to the absence of publicly available datasets - adds another layer of difficulty.

To address these limitations and challenges, we propose a novel framework better suited
for longitudinal liver CT scan analysis. Our approach is designed to answer the following
key questions: (Q1) How can we leverage longitudinal information for improving liver tumor
analysis while adhering to clinical practices? (Q2) What is the impact of incorporating prior
information and the quality of input registration on model performance? and (Q3) Can
such approaches overcome the challenge of limited annotations, especially in longitudinal
studies where obtaining annotated paired scans over time is more complex than single-scan
annotation? In response to these questions, we present the following contributions:

• A novel deep learning framework for longitudinal liver CT scan analysis that leverages
temporal information through feature-level fusion to enhance tumor detection.
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• Incorporation of explicit architectural mechanisms, such as stochastic masking com-
bined with self-attention, to balance the model’s focus across multiple scans and mit-
igate over-reliance on a single time point.

• A comprehensive evaluation of the proposed framework, showcasing its superior per-
formance in lesion detection over existing SOTA methods.

• Extensive ablation study to understand the impact of baseline image integration,
registration quality, and architectural components on the proposed framework.

2. Methodology

Let V : V (x, y, z) ∈ RH×W×D represent a 3D liver CT scan, where H, W , and D denote the
height, width, and depth of the scan, respectively. The liver segmentation mask is denoted
by: SLiver : SLiver(x, y, z) ⊂ V . Similarly, SLesion : SLesion(x, y, z) ⊂ SLiver ⊂ V , represents
the segmentation mask of the lesions within the liver.

2.1. Leveraging Longitudinal Information for Improved Lesion Detection

We propose LiFE-Net (Longitudinal information Fusion for Enhanced lesion detection
network) to enhance lesion detection in follow-up CT scans by leveraging prior imaging
data. Unlike single-timepoint methods, the model leverages both baseline (prior) V p and
follow-up (current) V c scans to co-learn a temporally informed representation (Fig. 1).

The model processes two types of inputs: the follow-up and baseline inputs. The follow-
up scan inputs consist of the current volume V c and its corresponding liver segmentation
mask Sc

Liver. These inputs are concatenated along the channel axis and passed into the
encoder of the followup branch Ec (that follows the architecture of an nnU-Net encoder).
The baseline scan inputs include the prior volume V p, the liver segmentation mask Sp

Liver,
and the lesion segmentation mask Sp

Lesion weighted by a softening coefficient αsoft, which are
also concatenated along the channel axis and processed by the encoder of the prior branch
Ep (same architecture as Ec). Encoded features from Ec and Ep are concatenated along
the channel axis and fed into a joint encoder Ejoint (that also follows the architecture of an
nnU-Net encoder). Implementation details of these encoders can be found in Appendix B.
The key components of the architecture are described as follows:

1. Feature Extraction: Individual encoders Ep and Ec process the baseline and follow-
up inputs to generate multi-resolution feature maps F p

[1:n] and F c
[1:n], where n is the

number of encoders resolution levels (e.g., if Ec has 4 downsampling blocks → n = 4;
F c
[i] is the feature map from Ec at resolution level i i.e. from Ec

[i]). The encoders Ep

and Ec share the same architecture but have different parameters.

F p
[i] = Ep

[i]([V
p, Sp

Liver, αsoftS
p
Lesion]), F

c
[i] = Ec

[i]([V
c, Sc

Liver]) for i ∈ {1, . . . , n} (1)

2. Feature Fusion with Self-Attention: Feature maps at the resolution level n,
F p
[n] and F c

[n], from Ep and Ec are concatenated and passed through a self-attention

(SA) mechanism before being fed into the joint encoder Ejoint to generate the multi-
resolution joint feature maps F joint

[1:n′] of the inputs, where n′ refers to the number of
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Figure 1: LiFE-Net architecture overview: The model processes follow-up inputs (V c,
Sc
Liver) and baseline inputs (V p, Sp

Liver, αsoft ·Sp
Lesion) through separate encoders

(Ec, Ep). Features are fused using a joint encoder with self-attention to capture
relevant temporal patterns. A stochastic masking strategy (Pmasking = 0.5) is
applied during training. Skip connections integrate multi-resolution features, and
the decoder Djoint generates the follow-up lesion segmentation mask.

resolution levels of Ejoint. This mechanism allows the model to account for baseline
features in follow-up lesion detection, capturing relevant longitudinal patterns.

F joint
[j] = Ejoint

[j] (SA([F p
[n], F

c
[n]])) for j ∈ {1, . . . , n′} (2)

3. Skip Connections and Decoding: Following nnU-Net principles, skip connections
are used to propagate information during decoding. The decoder Djoint (nnU-Net
decoder architecture) uses the fused representation from Ep, Ec, and Ejoint to generate
a lesion segmentation mask for the current scan V c. Djoint takes as input the feature
maps at the resolution level n′, F joint

[n′] , from Ejoint along with the feature maps F joint
[1:n′−1]

as skip connections. Above the resolution level n′, feature maps from Ep
[1:n−1] and

Ec
[1:n−1] are concatenated before being passed as skip connections to the decoder.

Sc
Lesion = Djoint([F joint

[1:n′] , F
p
[1:n−1], F

c
[1:n−1]) (3)
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4. Stochastic Masking and Lesion Mask Weighting: A stochastic masking strategy
is employed during training, where all the features maps of the prior branch F p

[1:n] are
masked with a probability of Pmasking = 0.5. This encourages the model to perform
effectively without prior information, allowing the self-attention mechanism to identify
the longitudinal patterns it should leverage from the encodings generated by both
Ep and Ec encoders. Additionally, the baseline lesion segmentation mask Sp

Lesion is
modulated by a weighting factor αsoft to reduce over-reliance on prior lesion masks.
Without this, the model might default to trivial solutions, replicating Sp

Lesion at the
output due to the high likelihood of lesions persisting in Sc

Lesion.

2.2. Synthetic Lesion Generation for Longitudinal Data

To overcome the lack of supervised longitudinal datasets, we use a synthetic lesion gener-
ation approach based on (Hu et al., 2023), which creates realistic tumors within the liver
region SLiver with corresponding ground truth lesion masks SLesion. The process begins by
selecting a lesion location within the liver. Initially, the lesion is modeled as an ellipsoid
shape, which is then deformed through elastic transformations. Next, a texture is generated
from Gaussian noise and adjusted to simulate hypodense lesions with lower Hounsfield Unit
(HU) values than liver tissue. Finally, the lesion is embedded into the scan. While our
tumor synthesis strategy is based on this approach, we introduced several modifications
to improve tumor quality, model performance, and generalization ability on real tumors.
Further details on these adaptations can be found in Appendix C. We further adapt this
generation framework for longitudinal liver CT scans to ensure both spatial and temporal
consistency between baseline and follow-up scans:

• Spatial Consistency: Lesions in the follow-up scan are placed near their baseline
locations. A translation augmentation of [0−6mm] is applied to the new lesion’s center
to account for registration errors and liver deformation. This helps correct shifts,
especially for subcapsular lesions near the liver boundary, due to the liver’s non-rigid
structure. Lesions are added before registration to ensure that the transformation
affects them as in real cases and prevents bias from the registration model.

• Temporal Consistency: Synthetic lesions are designed to mimic realistic clinical
behaviors, such as stability, growth, shrinkage, or disappearance over time. Lesion
evolution is modeled as follows: 20% of lesions appear in only one scan (V c or V p),
while 60% appear in both. Among lesions present in both scans, 30% remain stable,
30% grow, 10% shrink, and 30% show a mix of stability and growth. To model
growing and shrinking lesions, an ellipsoidal shape is initialized near the original
lesion (as described in Spatial Consistency). The lesion radius is then adjusted:
for growth, it is sampled from [1.3r, 1.7r]; for shrinkage, from [0.5r, 0.7r], where r is
the previous scan’s lesion radius. Finally, elastic deformations are applied to lesion
shapes to simulate realistic morphological changes.

This synthetic augmentation provides control over tumor characteristics. It also allows
the model to learn from various lesion behaviors across time points.

5



Yassine Charachon Hudelot Ardon

3. Experiments

3.1. Dataset and Implementation Details

Training Dataset (Synthetic Tumors): The training dataset Dtrain consists of 604
healthy longitudinal liver exam pairs (baseline and follow-up) from 330 patients, identified
as healthy based on clinical reports. Synthetic tumors are added to the scans, resulting in
1,812 follow-up pairs (33% healthy pairs and 67% with synthetic lesions in V p or/and V c).
Further details on tumor generation, including distributions of tumor types, sizes, counts,
and other attributes, are in Appendix C.

Evaluation Dataset (Real Tumors): The independent evaluation dataset, Deval, con-
sists of 192 exams from 83 patients, forming 110 follow-up pairs. Among these, 69% of
follow-up scans (V c) contain at least one tumor. For patients with multiple follow-ups,
each scan pair is analyzed separately (e.g., a patient with 3 exams [e1, e2, e3] provides 2
pairs: [e1, e2] and [e2, e3]). The mean time between scans is 274 days (range: 8–1141).
Baseline scans (40 healthy, 70 pathological) averaged 1.25 lesions per exam (range: 0–40),
with a mean lesion diameter of 23.3 mm (range: 6.2–189.0 mm), and a mean lesion vol-
ume of 16.05 mL (range: 0.06–448.93 mL). Follow-up scans (34 healthy, 76 pathological)
averaged 1.82 lesions per exam (range: 0–46), with a mean diameter of 21.6 mm (range:
6.4–118.1 mm) and a mean lesion volume of 10.1 mL (range: 0.08–255.02 mL). Tumors in
the dataset include hepatocellular carcinoma (HCC), metastases, hemangiomas, cysts, and
abscesses. All tumors are real and manually annotated by two radiology residents. To
quantify the model performance across lesions of varying sizes, we consider two evaluation
subsets: D>10

eval excluding lesions with a diameter < 10mm (as in clinical RECIST guidelines
(Eisenhauer et al., 2009)) and D>6

eval excluding lesions with a diameter of < 6mm.

All images are pre-registered using rigid and non-rigid transformations as described in
(Yassine et al., 2025) to align baseline and follow-up scans. During training, the αsoft

weighting coefficient was fixed at 0.3, selected empirically for optimal performance. Two-
fold cross-validation experiments were performed on NVIDIA T4 GPUs, using an Adam
optimizer, until convergence, with a composite loss combining focal loss and dice coefficient
loss: Lcomposite = Lfocal + 0.5 · Ldsc. Further implementation details are in Appendix B.
At inference, the Sp

Lesion mask is derived from a single-timepoint lesion detection model
(Msingle) with a nnU-Net architecture trained on synthetic lesions. To keep the LiFE-Net
model agnostic to the detection model, we use an augmented version of the ground truth
lesion mask as Sp

Lesion during training. This augmentation aims to simulate common errors:
false positives are introduced by adding random lesions to the segmentation mask Sp

Lesion.
In contrast, false negatives are simulated by removing lesions from Sp

Lesion while keeping
them in V p. This strategy makes the model training independent of any specific detection
model, improving scalability and generalization. The model’s robustness is evaluated with
two detection models: M1 (3D nnU-Net) and M2 (ensemble of 3D and 2D nnU-Net models),
trained on synthetic tumors. Details on synthetic tumor generation are in Appendix C.

3.2. Evaluation Metrics

In detection tasks, key metrics include precision and recall, which measure how many pre-
dicted positives are true positives and how many actual positives are correctly identified.
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However, these metrics are sensitive to the chosen decision threshold; a sensitive algo-
rithm (lower threshold) may be preferred when missing a lesion could have critical con-
sequences, while a precise algorithm (higher threshold) minimizes false positives. This
summarizes model performance across various thresholds and provides a comprehensive
evaluation. Additionally, we assess the ability to classify scans as healthy or pathological,
considering a scan correctly classified if at least one lesion is detected. We report the ROC
AUC at the scan level to differentiate between healthy and pathological scans. We also
report the Sensitivity of the models at varying false positive rates per exam. All metrics
are averaged across annotators, with a mean standard deviation of 0.008 (range:[0.0; 0.03]).

4. Results and Discussion

Table 1 compares detection metrics for the evaluation subsets D>6
eval and D>10

eval. Results in
parentheses refer to D>10

eval. The models compared are: (i) Channel Concat: an nnU-Net
with concatenated inputs, similar to (Wu et al., 2023), (ii) Diff Weighting: the temporal
difference weighting longitudinal nnU-Net (Rokuss et al., 2025), with SOTA performance
in brain MS segmentation, (iii) 3D R2U-Net (Alom et al., 2018): a multichannel recurrent
residual UNet as used in (Szeskin et al., 2023), (iv) LiFE-Netmasked: with PMasking = 1
during inference (excluding the longitudinal branch); and (v) LiFE-Net: with PMasking = 0
during inference (including the longitudinal branch). Additional details on model sensitivity
at varying false positive rates can be found in Table 2. Table 3 highlights ablation studies on
the impact of registration methods, architectural components, and longitudinal information.

Leveraging temporal information improves lesion detection. Our proposed method
outperforms the baseline and SOTA approaches, achieving higher detection mAP (0.724 vs.
0.641/0.603/0.691) and ROC AUC (0.865 vs. 0.843/0.803/0.813), highlighting the benefits
of including temporal information. In contrast, the Diff Weighting model struggles with
liver scans, likely due to the difficulty in achieving accurate registration. This model as-
sumes perfect alignment, which is challenging given the liver variability (e.g., deformations,
physiological changes, biliary duct dilation, etc.). These factors complicate the interpreta-
tion of feature differences computed in the model’s difference weighting block.

Impact of registration on model performance. Accurate registration significantly im-
proves model performance across metrics. As shown in Table 3, where different registration
levels are considered (no registration, global registration, and local registration), complete
registration enhances detection mAP (0.724 vs. 0.683) and ROC AUC (0.865 vs. 0.839) on
D>6

eval. These results highlight registration’s critical role in multi-timepoint analysis.

Contribution of architectural components. Ablation studies (Table 3) underscore
the importance of stochastic masking and the weighting coefficient αsoft for model perfor-
mance. Stochastic masking helps the model integrate information from both time points
while balancing features from prior and current data. The self-attention mechanism enables
this by focusing on relevant features within the joint encoder. Additionally, soft weighting
(αsoft = 0.3) improves performance by reducing the model’s reliance on Sp

Lesion. Appendix
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A presents qualitative examples of the impact of using longitudinal information.

Model
Detection mAP ↑ ROC AUC ↑

on D>6
eval on D>10

eval on D>6
eval on D>10

eval

Channel Concat 0.641 [0.615;0.645] 0.673 [0.580;0.701] 0.843 [0.749;0.849] 0.867 [0.775;0.908]
Diff Weighting 0.603 [0.542;0.637] 0.626 [0.552;0.645] 0.803 [0.702;0.863] 0.832 [0.721;0.879]
3D R2U-Net 0.691 [0.623;0.757] 0.703 [0.635;0.768] 0.813 [0.718;0.870] 0.841 [0.771; 0.908]

LiFE-Netmasked (Ours) 0.720 [0.664;0.791] 0.734 [0.644;0.771] 0.868 [0.774;0.913] 0.878 [0.798;0.925]
LiFE-Net (Ours) 0.724 [0.672;0.802] 0.739 [0.689;0.812] 0.865 [0.773;0.911] 0.882 [0.809;0.932]

Table 1: Quantitative Results: Comparison of models based on detection mAP and ROC
AUC, on D>6

eval and D>10
eval. Values in square brackets represent the 95% confidence

interval. The models compared are: (i) Channel Concat (similar to (Wu et al.,
2023)), (ii) Diff Weighting (Rokuss et al., 2025), (iii) 3D R2U-Net (Szeskin et al.,
2023) (iv) LiFE-Netmasked (Ours) with PMasking = 1 at inference, and (v) LiFE-
Net (Ours) with PMasking = 0 at inference.

Model
Sensitivity↑

@ Avg FP = 0.2 @ Avg FP = 0.5
on D>6

eval on D>10
eval on D>6

eval on D>10
eval

Channel Concat 0.336 [0.235; 0.475] 0.409 [0.294; 0.555] 0.452 [0.329; 0.610] 0.531 [0.398; 0.685]
Diff Weighting 0.341 [0.204; 0.478] 0.421 [0.251; 0.556] 0.418 [0.317; 0.572] 0.507 [0.398; 0.659]
3D R2U-Net 0.345 [0.232; 0.459] 0.424 [0.299; 0.551] 0.477 [0.312; 0.614] 0.564 [0.386; 0.726]

LiFE-Netmasked (Ours) 0.386 [0.284; 0.553] 0.471 [0.361; 0.644] 0.513 [0.412; 0.658] 0.604 [0.508; 0.739]
LiFE-Net (Ours) 0.429 [0.320; 0.596] 0.499 [0.386; 0.672] 0.533 [0.430; 0.671] 0.618 [0.523; 0.758]

Table 2: Sensitivity Analysis: Comparison of the models based on sensitivity at two
different average false positive rates per exam (0.2 and 0.5), on D>6

eval and D>10
eval.

Values in square brackets represent the 95% confidence interval.

Generalization ability relative to baseline predictions. The proposed approach en-
hances baseline predictions for both models, M1 and M2, with greater improvement for M1.
For D>6

eval, incorporating longitudinal data increases mAP by 0.011 for M1 and 0.003 for M2.
On D>10

eval, despite a reduction in mAP for M2 (-0.018), the ROC AUC improves (+0.016),
indicating better classification of healthy versus pathological exams. The importance of
these metrics may vary depending on the clinical context. Overall, longitudinal information
helps in detecting smaller lesions while ensuring reliable exam-level classification.

Validation on the LiTS dataset. To assess synthetic tumor generation and generaliza-
tion ability, we evaluated M1 (3D nnU-Net) and M2 (an ensemble of 3D and 2D nnU-Net
models) on the LiTS (Bilic et al., 2022) public dataset (131 scans) with real tumors. M2

achieved a dice coefficient (DSC) of 0.642, outperforming M1 (DSC: 0.581). M2 consistently
outperforms M1 on both our in-house and LiTS datasets, highlighting the consistency of
this performance gap on both datasets. Compared to prior works, M2 surpasses (Hu et al.,
2023), (DSC: 0.598 ∼ to M1 performance) which uses a 3D Unet model under similar
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synthetic-only conditions but lags behind methods using real annotated data during train-
ing, such as (Chen et al., 2024) which uses a Swin UNETR model (DSC: 0.679). These
results emphasize the robustness and relevance of the synthetic lesion generation pipeline.

Limitations and areas for improvement. While resource-effective, reliance on synthetic
lesion generation may not fully capture real clinical variability. Expanding datasets with
clinically annotated data could improve generalization ability, as shown in (Chen et al.,
2024). Additionally, fixed hyperparameters like αsoft = 0.3 and PMasking = 0.5 might not
be optimal across all datasets. Future work could explore adaptive weighting strategies and
masking probabilities for enhanced performance.

Model
Type of Registration Architectural Components Metrics

Liver Cropping Global Reg Local Reg Stochastic Masking αsoft
Detection mAP ↑ ROC AUC ↑
D>6

eval D>10
eval D>6

eval D>10
eval

Impact of Registration

LiFE-Net
✓ ✗ ✗ ✓ 0.3 0.683 0.701 0.839 0.879
✓ ✓ ✗ ✓ 0.3 0.713 0.730 0.871 0.888
✓ ✓ ✓ ✓ 0.3 0.724 0.739 0.865 0.882

Impact of Architectural Components

LiFE-Net

✓ ✓ ✓ ✗ 1.0 0.669 0.679 0.845 0.862
✓ ✓ ✓ ✗ 0.3 0.686 0.7 0.841 0.853
✓ ✓ ✓ ✓ 1.0 0.699 0.710 0.863 0.878
✓ ✓ ✓ ✓ 0.3 0.724 0.739 0.865 0.882

Adaptability Across Baseline Predictions

M1 ✓ - - - - 0.713 0.738 0.866 0.860
LiFE-Net (M1) ✓ ✓ ✓ ✓ 0.3 0.724 0.739 0.865 0.882

M2 ✓ - - - - 0.737 0.772 0.866 0.878
LiFE-Net (M2) ✓ ✓ ✓ ✓ 0.3 0.740 0.754 0.881 0.894

Table 3: Ablation studies: (1) Impact of registration (Liver Area Cropping, Global Reg-
istration, and Local Registration), (2) Impact of architectural variations, including
the stochastic masking and the αsoft weighting coefficient, and (3)LiFE-Net’s abil-
ity to improve baseline detection models with varying performance levels. M1 and
M2 are standalone detection models, while LiFE-Net is our proposed approach.

5. Conclusion

This paper presents LiFE-Net, a framework for analyzing longitudinal liver CT scans that
uses feature-level fusion to enhance tumor detection. Our results show that leveraging tem-
poral information improves detection performance, particularly for smaller lesions, com-
pared to baseline and SOTA methods. Key components of LiFE-Net, such as stochastic
masking and self-attention, enable effective data integration from multiple time points.
This highlights the value of longitudinal information in detecting liver lesions, an area less
explored in the literature, and its potential to drive further research in this domain and
other applications involving longitudinal imaging. Despite its strengths, the method relies
on synthetic lesions, which may not fully capture clinical variability. Future work will fo-
cus on expanding clinically annotated datasets and exploring adaptive parameter tuning to
improve generalization ability and performance.
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Appendix A. Qualitative Results

Figure 2 illustrates the impact of incorporating longitudinal information into liver scan
analysis. This is achieved by comparing predictions made using a standalone detection
model, M1, with those generated by our proposed approach, LiFE-Net. The figure displays
two liver scans: a baseline (prior) scan, V p, and a current (follow-up) scan, V c. The ground
truth annotations are highlighted in green. Predictions made by the standalone model, M1,
are indicated in red, while those from LiFE-Net are shown in blue.

In case (a), the standalone model detects a false positive, which is successfully eliminated
by the longitudinal model (LiFE-Net). In case (b), a lesion missed by the standalone model
is correctly identified by LiFE-Net, demonstrating the added value of considering both prior
and current scans. In case (c), we show a case of biliary duct dilations inside the liver, where
the model appears to be disturbed by these structures, leading to false positives. This is
likely due to the fact that biliary ducts also exhibit hypodensity relative to liver tissue,
similar to tumors, making them challenging to distinguish.

Figure 2: Impact of using longitudinal information. Columns (from left to right):
prior (baseline) liver scan V p, current (followup) liver scan V c with ground truth
annotation (in green), prediction at V c with the standalone detection model M1

(in red), and prediction at V c with our approach LiFE-Net (in blue). (a) A
false positive that was eliminated by the longitudinal model. (b) A lesion was
missed by the standalone model but was detected through the use of longitudinal
information. (c) A case of biliary duct dilations inside the liver, where the model
appears to be disturbed by these structures, leading to false positives.
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Appendix B. LiFE-Net: Implementation details

Synthetic tumors are incorporated into the training dataset Dtrain, which consists of 604
healthy longitudinal liver examination pairs, to create annotated lesions. For each exam-
ination pair (V p, V c), two synthetic augmentations are generated by introducing tumors,
based on a predefined probability distribution that models longitudinal tumor evolution.
This process yields a total of 1,812 follow-up pairs, with 33% representing healthy follow-ups
and 67% containing at least one scan (V p or V c) with lesions. All datasets were collected
under GDPR1 compliance in collaboration with a hospital.

All images are cropped around the liver area and resampled to (160, 160, 100) voxels with
an average resolution of (1.5, 1.37, 2)mm along the (x, y, z) axes. Liver segmentation masks
are generated using a U-Net model trained on ∼ 1K annotated liver masks, achieving a Dice
Similarity Coefficient (DSC) of 0.96 on an internal test set and 0.971 on the LiTS dataset
(Bilic et al., 2022). All images are pre-registered using rigid and non-rigid transformations
as described in (Yassine et al., 2025) to ensure alignment between baseline and follow-up
scans. This step minimizes spatial misalignments, aiming to align anatomical structures
and lesion positions as closely as possible.

The encoder networks (Ep, Ec) consist of three down-sampling blocks, starting with
8 filters. The joint encoder (Ejoint) adds two more down-sampling blocks, with an in-
put channel size of 64 (from concatenated encoders) and filters starting at 128. The de-
coder (Djoint) includes five up-sampling blocks to generate a lesion segmentation mask
(Sc

Lesion) at the input image resolution. Each down/up-sampling block includes two con-
volutional layers, with normalization and leaky ReLU activation. During training, the
αsoft weighting coefficient is fixed at 0.3, a value selected empirically via grid search
for optimal performance. Our code for LiFE-Net will be made publicly available at:
https://github.com/walid-yassine/LiFE-Net

Appendix C. Synthetic Tumor Generation

Our methodology for synthesizing tumors is based on existing techniques for liver tumor
synthesis, particularly those described in (Hu et al., 2023). However, we have implemented
several modifications to enhance both the generation process and the performance of the
underlying detection model, as well as its generalization ability to real tumors.

The key improvements to our methodology are as follows:

• Lesion Size Specification in Millimeters: The generated tumors are categorized
into different classes: tiny, small, large, and mixed (a combination of the previous
classes), with a specific radius in millimeters for each class (along with a sampling
interval to introduce variability). Characterizing the size of the tumor in millime-
ters allows for adaptable scaling based on each image’s resolution, thereby increasing
variability in tumor size during training.

• Threshold on Lesion Size: According to RECIST guidelines (Eisenhauer et al.,
2009), lesions with an axial diameter smaller than 10 mm cannot be accurately char-
acterized as tumors. Consequently, to comply with radiological standards, we filter

1. General Data Protection Regulation
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out noisy generations of tiny tumors (especially when tiny lesions undergo elastic de-
formations that may reduce their maximum axial diameter to below 10 mm). This
noise filtering step is quite critical for maintaining the quality of tumor segmentation
training, as emphasized by (Yang et al., 2023), where such noisy generations can lead
to suboptimal performance of the model. Specifically, we filter out tumors smaller
than 7 mm to avoid noisy generations (we use 7 mm instead of 10 mm to leave a
safety margin below the threshold typically used in radiological guidelines).

• Collision Detection with Biliary Ducts: In addition to avoiding collisions with
blood vessels, we propose avoiding collisions with biliary ducts and cavities inside the
liver, which appear dark in the acquired image. This ensures that synthetic tumors
do not overlap with these critical structures.

• Adapted Texture Generation: Instead of using a fixed range of values to sample
the texture mean HU value µt for the tumor region, we model it as the mean difference
between the liver parenchyma (liver tissue) and the tumor. This allows the tumor
texture to adapt to different liver scans, which may have varying HU distributions
depending on the phase of acquisition and contrast injection. For instance, exams
with late injection times or without contrast typically exhibit lower HU values within
the liver. In addition, we use a texture difference sampling strategy conditional on
tumor size to minimize noise and ensure plausible tumor appearances. For small
tumors, we sample more in the upper part of the texture difference range to reduce
sensitivity to image artifacts and minimize false positives, as small tumors that are
not markedly hypodense relative to the liver parenchyma can be challenging to detect
and may look like artifacts in CT scans. Conversely, we sample more in the lower part
of the texture difference range for larger lesions to ensure detection even in the case
of subtle texture variations.

• Contrast Variation in Training Data: Our training dataset contains cases with
varied contrast levels, including those without intravenous contrast and late injection
phases. Even though including such cases can be more challenging than considering
only well-contrasted ones, they help enhance the model’s robustness to image quality
and contrast variations.

• Human in the loop - Parameter Adjustment with Radiologist Input and
Post-Training Evaluation: Involving experts in the parameter tuning process through
feedback loops is essential to guarantee relevant synthetic tumors. We perform this
feedback process through 2 steps, with a first review phase of the generated tumors
that is a common practice. However, the second phase we propose, where radiologists
assess the model’s detection performance on real tumor data, is essential to uncover
any underlying biases and error patterns in the generation process and to achieve
good generalization performance on real tumors.

Main Parametrization: The tumor generation configuration employs a set of specific
parameters to simulate a diverse range of tumors. It includes five distinct tumor types:
”tiny,” ”small,” ”medium,” ”large,” and ”mix,” with associated probabilities of occurrence
being 0.1, 0.25, 0.3, 0.2, and 0.15, respectively. A tumor of type ”mix” samples from each
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of the four remaining classes to model different sizes of tumors within the same exam (i.e.
a scan with tumors of type ”mix” will include tiny, small, medium, and large tumors at the
same time.)

For each tumor type, the radius, number, and sigma values (σe for elastic deformations)
are predefined: ”tiny” tumors have a mean radius of 6 mm, σe between 0.7 and 0.9 and
their number is uniformly distributed between 5 and 8 tumors, ”small” tumors have a mean
radius of 8 mm, σe between 1.0 and 1.25 and their number is uniformly distributed between
4 and 6 tumors, ”medium” tumors have a mean radius of 9 mm, σe between 1.5 and 2.5 and
their number is uniformly distributed between 1 and 3 tumors, while ”large” tumors have a
radius of 14 mm, σe between 2.5 to 3.5 and their number is uniformly distributed between
1 and 2 tumors. For each class, the tumor radius value is sampled from [0.75× r, 1.25× r],
where r is the mean radius associated with each class. When generating a tumor, a value of
σe is sampled from its associated range, creating various deformations of the initial spherical
shape, leading to different shapes and diameters even within the same class. For example,
two tumors generated for the ”medium” class with different σe values will have different
shapes and radii. Generated tumors are filtered to exclude any tumor whose maximum
axial diameter is below 8 mm.

For texture generation, the value µt of the mean difference between the parenchyma and
the tumor texture is chosen based on expert feedback, with µt ranging from 30 to 80 HU,
meaning that on average, there will be a density difference of 30 to 80 HU.
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