Under review as a conference paper at ICLR 2026

IN—-RIL: INTERLEAVED REINFORCEMENT AND IMITA-
TION LEARNING FOR POLICY FINE-TUNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Imitation learning (IL) and reinforcement learning (RL) offer complementary
strengths for robot learning, and yet each has severe limitations when used in isola-
tion. Recent studies have proposed hybrid approaches to integrate IL with RL, but
still face major challenges such as over-regularization and poor sample efficiency.
Thus motivated, we develop IN-RIL, INterleaved Reinforcement learning and
Imitation Learning, for policy fine-tuning, which periodically injects IL updates
after multiple RL updates. In essence, IN-RIL leverages ‘alternating optimization’
to exploit the strengths of both IL and RL without overly constraining the policy
learning, and hence can benefit from both the stability of IL and the expert-guided
exploration of RL accordingly. Since IL and RL involve different optimization
objectives, we devise gradient separation mechanisms to prevent their interference.
Furthermore, our rigorous analysis sheds light on how interleaving IL with RL
stabilizes learning and improves iteration efficiency. We conduct extensive experi-
ments on Robomimic, FurnitureBench, and Gym, and demonstrate that IN-RIL,
as a general plug-in compatible with various state-of-the-art RL algorithms, can
improve RL sample efficiency, and mitigate performance collapse.

1 INTRODUCTION

Recent advances in robot learning have largely been Transport | Sauare . Hopper

driven by imitation learning (IL) and reinforce- 0.8 os

ment learning (RL) (Black et al.; |Chi et al., 2023 ﬁo.s 0'6 2500

Fu et al.| 2024; Wu et al.l [2023). While these 204 0‘4 52000

paradigms offer complementary strengths, each ex- g ’

hibits fundamental limitations when applied in isola- - 0.2 1500

tion. Imitation learning approaches, such as behav- 00753706 00 >0 03060012 05101520
Step (x107) Step (x107) Step (x107)

ioral cloning (Florence et al., 2022} Shafiullah et al.,

IN-RIL RL — L

2022), learn policies through supervised learning

on expert demonstrations. While IL provides stable IN-RIL: ﬂ m “
learning dynamics, it faces three critical challenges:
costly expert demonstration collection (Zhao et al.| ; a
2024), limited generalization beyond the demonstra- RL-only fine-tuning, and IN-RIL (interleaved
tion distribution, and vulnerability to compounding RL/IL) fine-tuning. IL pre-training saturates
errors (Ankile et al.| 2024} Rajeswaran et al.,2018). at IQW success rates; RL-Only fine-tuning fol-
Even small deviations from demonstration distri- 10Wing IL-pre-training is unstable and sample-
butions could accumulate and drastically degrade inefficient. By interleaving IL and RL up-
performance. RL approaches, in contrast, learn poli- dates, I,N_R_IL 'ﬁne-tumng outperforms RL
cies through environmental interaction to maximize ~fine-tuning significantly.

accumulated rewards in a Markov Decision Process (MDP) (Sutton et al.l [1999). RL enables
active exploration beyond expert knowledge but often suffers from instability and poor sample
efficiency (Hafner et al.,[2023]; [Haarnoja et al.,|2018])). These problems are amplified in robotics tasks
with sparse rewards and long horizons. For instance, as shown in Figure[I] IL alone yields poor
performance due to the limited coverage of demonstrations, whereas RL-alone fine-tuning struggles
to learn effectively. This has given rise to the following fundamental question on how to integrate IL
and RL for robot learning:

Figure 1: Performance of IL pre-training,

Under review as a conference paper at ICLR 2026

How to synergize the exploratory strengths of reinforcement learning with the stability of imitation
learning for efficient policy fine-tuning?

Existing hybrid approaches designed to combine IL and RL have made important progress (Florence
et al.l 2022} [Nair et al.l 2020; |[Song et al., [2022), but still face severe limitations. Notably, the
approaches that initialize with IL pre-training followed by pure RL fine-tuning (Nakamoto et al.,
2023} [Nair et al.| 2020) may suffer from policy collapse and instability as the learned policy drifts
away from the IL initialization. Another line of works that inject demonstrations into replay buffers
for off-policy updates (Ball et al.,[2023; [Song et al.,|2022) require explicit reward annotations and
complex sampling strategies, limiting their applicability to reward-sparse environments. The widely
used strategy of imposing behavioral cloning (BC) regularization during RL fine-tuning (Rajeswaran
et al.,|2018; Haldar et al.,2023), adds a linearly weighted constraint to RL policy fine-tuning, treating
IL and RL as competing objectives that must be balanced. This linear combination approach often
leads to over-regularization or instability: when the weight favors IL, RL exploration is overly
constrained; when it favors RL, the policy drifts away from stable IL guidance.

To address these limitations, we propose IN-RIL (INterleaved Reinforcement and Imitation Learning),
a novel non-linear approach that alternates between IL and RL updates rather than linearly combining
them. IN-RIL periodically interleaves IL updates after every few RL steps, allowing both optimization
processes to progress effectively within their respective regimes. Our key insight is outlined below.

Key Insight. IL and RL objectives create fundamentally different non-convex optimization landscapes
with multiple local optima. When used alone, each approach may get trapped in suboptimal regions
of its landscape. As illustrated in Figure[2] IL can get stuck in demonstration-constrained minima
while RL gets trapped in low-reward local optima. Observe that the regions that are local minima
for IL. may not be local minima for RL, and vice versa. The interleaving mechanism allows both
objectives to benefit from each other’s updates: RL updates help IL escape local minima in its loss
landscape, while IL updates guide RL escape low-reward regions. This phenomenon is corroborated
by our experiments where IL losses may experience a "double descent” (as illustrated in Section [3.3))
and begin decreasing again despite the policy has converged during IL pre-training.

We caution that naively interleaving IL and RL updates introduces a new challenge: the different
optimization landscapes can lead to destructive interference between gradient updates, potentially
undermining the benefits of alternating optimization. This is because that the gradients from IL (which
aim to match demonstrations) and RL (which aim to maximize rewards) may point in conflicting
directions, causing oscillatory behavior or even preventing convergence. To address this challenge,
we devise gradient separation mechanisms that effectively combine learning signals while preventing
conflicts between these different objectives. In particular, we have developed two implementation
approaches: (1) gradient surgery (Sener & Koltun, 2018};|Quinton & Reyl 2024), which mitigates
interference through gradient projection techniques; and (2) network separation, which isolates RL
gradients in a residual policy while the base policy continues to leverage IL. Both methods effectively
separate IL and RL gradient updates in different subspaces to prevent destructive interactions. It is
worth noting that IN-RIL is algorithm-agnostic and can serve as a plug-in to existing RL algorithms,
as demonstrated through our integration with state-of-the-art RL methods including DPPO (Ren et al.|
2024), IDQL (Hansen-Estruch et al., [2023)), residual PPO (Ankile et al., |2024; Yuan et al., [2024]),
covering both on-policy and off-policy approaches.

Summary of Contributions. In summary, our work makes the following contributions:

e IN-RIL. a fine-tuning approach that periodically inserts one IL iteration after every few RL
iterations. IN-RIL synergizes the stability of IL using expert demonstrations with the exploration
capabilities of RL throughout the fine-tuning process, and mitigates the instability and poor
sample-efficiency of RL.

e Gradient Separation Mechanisms. Since IL and RL involve different optimization objectives,
we devise two gradient separation mechanisms to prevent their interference in alternating op-
timization: gradient surgery using projection techniques and network separation via residual
architectures. These mechanisms ensure that IL and RL gradients operate in separate subspaces
while preserving the benefits of both objectives.

e Analytic Foundation. We provide theoretical analysis to shed light on why IN-RIL outperforms
existing approaches by characterizing how alternating updates help each objective escape local

Under review as a conference paper at ICLR 2026

RL local optirﬁa

(Higher) RL uﬁdate
{\ IL uﬁdate

Reward (low to high)
B]

Loss (low to hi%h)

RL local optima

plemad

Interleaved
RL and}

Figure 2: Optimization landscapes for IN-RIL. The IL loss landscape, represented by the 3D surface
topology and its corresponding contour curves (where each contour connects points of equal IL loss
value); and the landscape of RL rewards, represented by the color gradient mapped onto the surface
(where the blue-to-white spectrum indicates low-to-high reward values as shown in the legend). IL
updates drive the policy toward regions with lower losses, while RL updates steer toward higher
rewards. Both optimization processes are stochastic and non-convex with multiple local optima. When
using either RL or IL alone, training often converges to suboptimal solutions (as shown in the “IL
only” and “RL only” trajectories). In contrast, IN-RIL enables RL and IL to help escape local optima:
periodic IL updates help RL escape lower-reward regions toward higher-reward neighborhoods, while
RL updates help IL traverse between different local minima in the loss landscape, as shown in our
experiments in Section 3.3.

optima in their respective landscapes. Our analysis offers insights into optimal interleaving ratios
and identifies the conditions under which mutual assistance between IL and RL is most effective.

e Algorithm-Agnostic Design with Comprehensive Validation. We demonstrate IN-RIL’s effec-
tiveness as a general plug-in compatible with state-of-the-art RL algorithms, including on-policy
methods (DPPO, residual PPO) and off-policy approaches (IDQL). Through extensive experi-
ments on challenging robotics tasks in FurnitureBench (Heo et al.}|2023)), Robomimic (Mandlekar|
et al.l |2021), and OpenAl Gym (Brockman et al.| 2016)), we show substantial performance
improvement on tasks with varying horizons and reward sparsity.

(Related Work) Robotics Policy Learning and Fine-Tuning. IL and RL each offer distinct
advantages in policy learning: IL provides stable learning from expert demonstrations but struggles
with distribution shift and demands costly data collection (Rajeswaran et al., |2018; Zhao et al.,
2024), whereas RL enables exploration and generalization at the expense of high sample complexity,
especially in long-horizon, sparse-reward settings (Song et al.||2022; |Gupta et al.l 2019). A common
workaround is a two-stage pipeline—IL pre-training followed by RL fine-tuning (Ren et al.| 2024;
Ankile et al.,[2024). IN-RIL moves beyond the two-stage paradigm, and shows that the data used
for pre-training, even after pre-training plateaus, is still valuable in improving sample-efficiency and
stability during RL fine-tuning. We attach more discussions to the Appendix.

RL with Expert Demonstrations. Recent works have explored leveraging offline data during RL.
Several works (Haldar et al.; 2023} Rajeswaran et al.,|2018)) introduce additional regularization terms
to RL objectives to keep the policy close to expert behaviors, which often over-regularizes policy
updates. Along a different line, very recent works on LLMs (Liu et al., 2025} |He et al.} 2025} Zhang
et al.}2025) have proposed variants of such regularization for model fine-tuning, using a weighted
sum of supervised fine-tuning (SFT) and RL objectives, Different from the regularization approaches
which lead to one optimization landscape in the form of a weighted sum of IL and RL objectives, for
the proposed IN—RIL based policy optimization, IL and RL updates keep their individual optimization
landscapes and help each other to escape from their local minima. Another common approach is
to add expert data with rewards to a replay buffer and perform off-policy updates during online
learning (Nair et al.l [2020; Song et al.| 2022} Hu et al., 2023} [Ball et al.| |2023} [Nakamoto et al.|
2023)). However, it can be infeasible to perform off-policy RL updates on expert demonstrations
since reward annotations are not always available. Furthermore, sampling strategy is shown to be
crucial for off-policy updates when there are both demonstration data and RL-collected data (Hu
et al.,|2023; Ball et al.| 2023). In contrast, IN-RIL does not introduce explicit regularization terms
which rely on delicate loss balancing, and can over-regularize the policy and damage performance.
IN-RIL does not assume availability of rewards in IL data, or require sampling strategies to balance
learning from offline and online data. Instead, it treats IL and RL as complementary optimization

Under review as a conference paper at ICLR 2026

processes and interleaves them during fine-tuning without modifying the RL algorithm itself. This
makes IN-RIL broadly applicable to both on-policy and off-policy RL methods. IN-RIL follows
standard assumptions on IL data coverage (as discussed in Section 2, and our analytics show that
IN-RIL outperform RL even in the worst case where data coverage is low.

2 IN-RIL: INTERLEAVED RL AND IL FOR EFFICIENT POLICY FINE-TUNING

In this section, we provide a theoretical analysis of IN-RIL, aiming to answer two key questions: (1)
What is the optimal interleaving ratio of RL updates to IL updates that balances learning stability
and performance improvement, and (2) How much reduction in iteration complexity can be achieved
by our proposed IN-RIL approach? We derive conditions under which IN-RIL achieves faster
convergence to target performance levels.

Markov Decision Process. We consider a Markov Decision Process (MDP) defined by the tuple
M= (S, A, P,r,v,po), where S is the state space, A is the action space, P : S x A x S — [0,1]
is the transition probability function, r : S x A — R is the reward function, v € [0, 1) is the discount
factor, and py is the initial state distribution. A policy 7 : S — A(A) maps states to probability
distributions over actions. The action-value function, or Q-function, for a policy 7 is defined as
Q™ (s,a) =Ex D020 v'7(se,at)|so = s, a9 = al, representing the expected cumulative discounted
reward when taking action a in state s and following policy 7 thereafter. The objective in RL is to
find a policy that maximizes the expected Q-value: E, ;) qmr(.|s) (@7 (5, @)].

Pre-Training. We consider a parametric policy 7y : S — A(A) that maps states to distributions
over actions. We employ a direct policy representation where 7y (a|s) gives the probability (or proba-
bility density) of taking action a in state s. This formulation allows for direct optimization through
gradient-based methods while maintaining sufficient expressivity for complex robotic control tasks.
During pre-training, we use behavior cloning to learn a policy that imitates expert demonstrations

Dexp = {71, 72,...,7n}, where each trajectory 7; = {(s1,a1),...,(sT,ar)} contains state-action
pairs. The objective is to maximize the likelihood of expert actions given the corresponding states:
L1(0) = E(s,0%)~D,, [~ log mo(a]s)],)

where a* represents the expert action. This negative log-likelihood objective encourages the policy to
assign high probability to actions demonstrated by experts in the same states. We then obtain a warm-
start policy my = arg min,, £11,(6) that serves as the initialization for subsequent fine-tuning. This
pre-training approach allows the policy to capture the basic structure of the task before reinforcement
learning is applied to further optimize performance. After obtaining a policy via imitation learning
during pre-training, we proceed to the fine-tuning phase where we optimize the policy. In our analysis,
we compare two distinct fine-tuning approaches, RL Fine-tuning and our proposed IN-RIL.

RL Fine-tuning. After pre-training, RL fine-tuning directly optimizes policy parameters to maxi-
mize the expected Q-value as defined earlier, through gradient updates of the form:

Or41 = 0 — arL. Vo LrL(6:),

where agy, is the learning rate, and for convenience we define Lgy,(0) = —Eqqmo [Q7° (s, To(s))]
as the loss function, which is the negative of the expected Q-value. This formulation directly connects
to our optimization objective of maximizing E,.,, o~x(|s)[@ (5, a)], but accounts for the evolving
state distribution as the policy improves. While this approach aims to maximize the overall reward,
it often suffers from instability and poor sample efficiency, particularly when fine-tuning complex
models like diffusion policies.

IN-RIL. As illustrated in Figure|l} the proposed IN-RIL systematically alternates between IL and
RL updates:

I 0, — arL, VoL (0:),
9t+ 1+1:—1](‘t) = 9t+ 1+%i1(t) — aRLVQERL(GH 1+717‘L(t)), VS {1, . ,m(t)},

Under review as a conference paper at ICLR 2026

where m(t) represents the iteration-dependent number of RL updates performed after each IL update.
The IL updates help maintain the desirable behaviors from pre-training while providing regularization,
and the RL updates improve performance on the target task.

Our analysis uses standard assumptions regarding the pre-training performance, data coverage,
smoothness properties of the loss functions, and gradient estimation quality. Specifically, we assume
that: (1) the initial policy obtained by pre-training results in a training loss within a bounded distance
from the IL objective; (2) the expert demonstration dataset provides reasonably sufficient coverage
of the relevant state space for the target task; (3) both the IL and RL objectives satisfy smoothness
conditions; and (4) the stochastic gradient estimates for both objectives have bounded variance that
decreases proportionally with batch size. The formal statements of these assumptions (Assumptions
5) and their implications are provided in Appendix A.

Next, we introduce the assumptions on the geometric relationship between the gradients of the IL
and RL objectives in Assumption m In particular, we use the parameter p(t) to capture the cosine
similarity between these gradients, with positive values indicating opposing gradients and negative
values indicating aligned gradients. Such assumption has been commonly used in multi-objective
optimization (Sener & Koltun, 2018 [Désidéril 2012).

Assumption 1 (Gradient Relationship). In the fine-tuning regime, the gradients of IL and RL
objectives exhibit the following relationship:

(VoL (01), VoLrr(01)) = —p) VoL (00 - [[VoLrr(04)],

where p(t) € [—1, 1] represents the time-varying relationship between gradients, with positive values
indicating opposition (negative cosine similarity) and negative values indicating alignment (positive
cosine similarity).

Based on these assumptions, we establish the following key results on the optimal ratio of RL updates
to IL updates in the proposed IN-RIL. This ratio is crucial for balancing the stability provided by IL
updates with the performance improvements offered by RL updates.

Theorem 1 (Optimal Interleaving Ratio). Under Assumptions[I}3] at iteration t, the optimal ratio
m(t) for IN-RIL satisfies mp(t) > 1.

Theorem [I] provides a principled formula for adapting the interleaving ratio throughout training
based on current gradient information. The optimal ratio mep (t) increases when gradients strongly
“oppose” each other (p(t) < 0) and decreases when they are more aligned (p(t) > 0), reflecting
the intuition that more RL updates are needed to make progress when IL updates work against
the RL objective. This result suggests that monitoring gradient alignment during training can help
to determine the interleaving ratio for efficient optimization. Given this optimal ratio, we next
quantify exactly how much more efficient IN-RIL can be compared to RL-only approaches. Denote

Aupp = — S e yg 2y (0,)]] - |V Law (01)]] — SE7LE Then we have:
IL-RL = t=0 L. VL (0] - IV LrL(0)]| 2L Ny, - - en we have:

Theorem 2 (Iteration Complexity of IN-RIL). Under Assumptions for a fixed computational
LrL(LrL(80)—L5R1)

budget of T total updates, IN-RIL with m > 1 and Ay, gy, > i requires fewer
iterations to reach a target accuracy € than RL-only fine-tuning, i.e., %

Theorem 2 establishes the conditions under which IN-RIL achieves superior efficiency compared
to RL-only fine-tuning. Specifically, when the regularization benefit Aj,_gy, exceeds the threshold
Mﬁ)ﬁm) IN-RIL requires fewer total updates to reach the same performance level. This
threshold depends critically on the 1nterleav1ng ratio m, with higher values of m reducing the required
regularization benefit for efficiency gain. Intuitively, this means that when the stabilizing effect
of periodically revisiting the demonstration data is sufficiently strong, and the interleaving ratio is
properly set, IN-RIL can achieve the same performance with fewer total updates. The result provides
formal justification for the IN-RIL and offers practical guidance for setting the interleaving ratio
based on task characteristics. In the next section, we show that this theoretical guarantee aligns with
our empirical observations across multiple robotics tasks, where IN-RIL consistently demonstrates
faster convergence and higher sample efficiency than pure RL approaches.

Under review as a conference paper at ICLR 2026

3 EXPERIMENTS

Based on the above analysis, we further conduct a comprehensive empirical evaluation to address two
key questions: 1) What are the benefits of IN-RIL compared to RL fine-tuning and BC-regularized
RL fine-tuning? 2) What is the impact of the interleaving ratio m on the performance? To this end, we
evaluate IN-RIL on three widely adopted benchmarks, including FurnitureBench (Heo et al., 2023),
OpenAl Gym (Brockman et al.l 2016), and Robomimic (Mandlekar et al.| 2021). These benchmarks
encompassing both locomotion and manipulation challenges with varying reward structures (sparse
and dense) and time horizons (short and long).

Robomimic (Mandlekar et al., 2021). We evaluate IN-RIL on four Robomimic tasks: L.i ft, Can,
Square, and Transport. Among these, Square and Transport are particularly challenging
for RL agents (Ren et al,2024). All tasks feature sparse rewards upon successful completion, with
each task providing 300 demonstrations. For Transport and Lift, we specifically use noisy
multi-human demonstration data to test robustness.

FurnitureBench (Heo et al., 2023). FurnitureBench featurs long-horizon, multi-stage manipulation
tasks with sparse rewards. We include three assembly tasks: One—-Leg, Lamp, and Round-Table.
There are Low and Med randomness settings for state distributions. Each task includes 50 human
demonstrations and provides sparse stage-completion rewards. We additionally incorporate two tasks
from ResiP (Ankile et al.,[2024): Mug-Rack and Peg-in-Hole.

OpenAl Gym (Brockman et al., 2016). To evaluate performance on dense-reward tasks, we include
three classic locomotion benchmarks: Hopper (v2), Walker2D (v2), and HalfCheetah (v2).
For these tasks, we utilize the medium-level imitation datasets from D4RL (Fu et al.,[2020).

3.1 TRAINING

We evaluate IN-RIL with multiple policy parameterizations for pre-training, including diffusion
policy (DP)(Chi et al., [2023) and Gaussian policy(Sutton et al.,[1999), both of which are widely
adopted in recent IL and RL literature (Ankile et al|2024; Ren et al., 2024; |Chi et al., 2023 Zhao
et al.,|2024). Particularly, DP has demonstrated superior performance across robotics tasks in both
pre-training (Chi et al., [2023)) and fine-tuning (Ren et al.| 2024). We employ action chunking (Fu
et al., 2024) to enhance temporal consistency. For fine-tuning, we select three state-of-the-art RL
algorithms spanning both on-policy and off-policy approaches: 1) PPO (Schulman et al.,|2017;|Ankile
et al.;,2024; Yuan et al.,|2024), a widely used on-policy algorithm; 2) DPPO (Ren et al.,[2024), an
on-policy, policy gradient-based RL algorithm; and 3) IDQL (Florence et al.}2022), an off-policy,
Q-learning-based RL algorithm. IDQL and DPPO are both DP-based RL algorithms.

Pre-Training. Taking FurnitureBench as an example, we pre-train different policy parameterizations
using 50 demonstrations with IL until convergence. As shown in Appendix Table[6} Gaussian policies
without action chunking fails entirely on these challenging multi-stage sparse-reward tasks, while
Gaussian policies with action chunking achieves limited success. DP demonstrates the strongest
overall performance across all tasks. However, even DP pre-training remains sub-optimal, with 3
tasks showing below 5% success rates after loss plateaus, primarily due to limited dataset coverage.

Fine-Tuning. While DP yields the best pre-training performance, fine-tuning DP with conventional
RL algorithms presents significant challenges and can fail (Ren et al., [2024}|Yang et al., [2023)). We
consider two RL strategies: 1) Full network fine-tuning, where we use specialized DP-based RL
algorithms to fine-tune DP; and 2) Residual policy fine-tuning, where we introduce an additional
Gaussian policy as a residual policy on top of the pre-trained DP (base) policy. The residual policy is
fine-tuned with conventional RL (PPO) (Schulman et al.,|2017)) while the base policy is updated with
IL. The residual policy learns to adjust the base policy’s actions at each time step. For each task, we
fine-tune the pre-trained DP checkpoint with the highest success rate (or reward) using IN-RIL, and
compare against RL-only fine-tuning. While our theory suggests an adaptive ratio m(t), we use a
constant value of m throughout training for simplicity. Based on our results, values of m between 5
and 15 work well across most tasks, balancing performance improvement with policy stability. We
conduct a detailed ablation study on the impact of different m values in Section [3.3]

Separation of RL and IL gradients for IN-RIL. RL and IL each operate within distinct opti-
mization landscapes. Directly updating the same network with potentially conflicting objectives can

Under review as a conference paper at ICLR 2026

degrade policy performance (as demonstrated in our ablation study in Section [3.4). To address this,
we introduce gradient separation mechanismsto prevent interference between RL and IL objectives:
1) gradient surgery, which projects each gradient onto the dual cone (Quinton & Rey, [2024)), ensur-
ing that updates benefit both individual objectives; and 2) network separation, which is naturally
integrated with the residual RL fine-tuning strategy. This approach allocates IL gradients to the base
policy while RL gradients update the residual policy, effectively mitigating interference.

3.2 IN-RIL PERFORMANCE

We demonstrate that IN-RIL can enhance the performance of state-of-the-art RL fine-tuning al-
gorithms. For each benchmark, we select the best-performing RL algorithms according to recent
literature: DPPO (Ren et al.| [2024)) and IDQL (Hansen-Estruch et al., 2023)) for Robomimic and
Gym tasks, and residual PPO (Ankile et al., [2024) for FurnitureBench. We also include other RL
fine-tuning algorithms, AWC (Peng et al.,|2019; Ren et al.|[2024)), and DIPO (Yang et al.,[2023), in
Table [T} We also compare IN-RIL with BC regularized RL fine-tuning (Rajeswaran et al., 2018)
(denoted as “BC Reg" in the table), in which a BC loss is added to the RL objective.

Robomimic and Gym fine-tuning results. Figure 4] and Figure 3] show that IN-RIL consistently
improves upon both IDQL and DPPO across most tasks. Notably, on the two most challenging
Robomimic tasks, Transport and Square (Ren et al.,[2024), IN-RIL substantially boosts perfor-
mance of both IDQL and DPPO. The gains are especially prominent when combined with IDQL,
where RL-only fine-tuning fails on Transport with 12% success rates, while IN-RIL successfully
solves the task and achieves 88% success rates, as shown in Figure [3|and Table|lf on Square,
IN-RIL improves IDQL by 22.5% in success rates; and reduces 62% environment steps needed for
DPPO to converge in Figure[d This highlights the crucial role of IL guidance for RL exploration.
For Gym locomotion tasks, IN-RIL either matches or surpasses RL-only fine-tuning. In Figure 4}
DPPO degrades after peaking on Hopper, while IN-RIL avoids this drop and ultimately surpasses

Transport Square Walker2D Hopper HalfCheetah
200 4000 3000
4600
. 200 150 2500
g 100 3000 2000 4400
Q
x 100 1500
50 2000 4200
1000
0+ R, } ' '
0.3 0.6 0.9 0.10.20.30.4 0.30.60.91.2 0.51.01.52.0 0.51.01.52.0 ©0.61.21.82.43.0
Step (x107) Step (x107) Step (x107) Step (x107) Step (x107) Step (x107)
= [IN-RIL RL Only

Figure 3: Comparing IN-RIL with RL fine-tuning on Robomimic and Gym using IDQL.

Transport Square Walker2D 3000 Hopper HalfCheetah
300 4000 4800
T 2500
g200 3500 4600
g 2000
100
3000
1500 4400
ot ' ! ' '
0.3 0.6 0.9 0.10.20.30.4 0.30.60.91.2 0.51.01.52.0 0.51.01.52.0 ©0.61.21.82.43.0
Step (x107) Step (x107) Step (x107) Step (x107) Step (x107) Step (x107)
= |N-RIL RL Only

Figure 4: Comparing IN-RIL with RL fine-tuning on Robomimic and Gym using DPPO.

Task | IN-RIL (DPPO) DPPO BC Reg (DPPO) | IN-RIL (IDQL) IDQL | DIPO AWR
Transport 0.91+0.00 0.78+£0.00 0.41 0.84+0.03 0.12+£0.00 | 0.16 0.16
Can 1.00+0.00 1.00+0.00 0.96 0.98+0.00 1.00£0.00 | 094 0.65
Lift 1.00+0.00 0.93+0.05 0.98 0.99+0.00 0.99+£0.00 | 097 0.99
Square 0.93£0.02 0.88+0.02 0.64 0.8840.07 0.69£0.12 | 0.59 0.51
Walker2D 404540 3753447 3457 4104443 4143+79 | 3715 4250
Hopper 2901431 2888439 2896 3002+t16 2943£24 | 2938 1427
HalfCheetah 477952 4866+149 4532 4688139 4600133 | 4644 4611

Table 1: Performance comparison for all fine-tuning methods on Robomimic (using success rates)
and Gym tasks (using rewards). Bold values indicate the best in the DPPO group, or IDQL group.
Italic values indicate the overall best across all methods.

7

Under review as a conference paper at ICLR 2026

FurnitureBench fine-tuning results. The multi-stage furniture assembly tasks with sparse rewards
are particularly difficult for RL agents, especially when IL pre-training converges at low success
rates, with 3 tasks below 5%, and only One-Leg Low over 30%, as demonstrated in Appendix
Table [6] Meanwhile, IN-RIL significantly outperforms residual PPO across most tasks, as shown
in Table [2] when consuming the same amount of environment steps. For the challenging Lamp
Low task, RL-only fine-tuning frequently collapsed during training, while IN-RIL maintains stable
learning dynamics across multiple runs. On Round-Table Low, where pre-training achieves
only 5% success rate, IN-RIL reaches 73% success rate with approximately 10® fewer environment
interactions than RL-only fine-tuning with 25% improvement in sample efficiency.

Round Table Low Lamp Low Lamp Med Factory Peg in Hole Mug Rack One Leg Med
1.0 1.00 1.00
0.6 0.8
£0.75 0.75 0.75 0.75
" 0.4 0.6
$0.50 0.50 0.50 0.50
g 0.2 0.4
a 0.25 0.25 0.25 0.25
0.00/ 0.00/ 0.0} 0.00/ ! 0.21
1.02.03.04.0 20 4.0 2.04.06.08.0 1.0 2.0 3.0 1.02.03.04.0 1.02.03.04.0
Step (x10°%) Step (x10°%) Step (x10°%) Step (x108) Step (x108) Step (x10°%)
RL —— IN-RIL

Figure 5: Comparing IN-RIL with RL fine-tuning on FurnitureBench using residual PPO.

Task | IN-RIL (Residual PPO) Residual PPO | DPPO IDQL
Lamp (Low) 0.92::0.04 0.4240.28 085 0.11
Lamp (Med) 0.60--0.00 0.34£0.13 036 001
Round-Table (Low) 0.92--0.02 0.82:0.09 0.88 0.9
One-Leg (Low) 0.93220.01 0.96--0.00 092 045
One-Leg (Med) 0.82-£0.02 0.7740.02 080 024

Table 2: Comparing IN-RIL with other RL fine-tuning algorithms on FurnitureBench. Bold values
indicate the best of all.

3.3 ABLATION STUDIES ON INTERLEAVING RATIO m

(a) Hopper (DPPO) (b) Transport (IDQL) (c) Square (DPPO)

0.18 0.12
3000 {Reward IL|Loss Success Rate IL Loss

S 17 08 1 0.8
~<_ 0 0.10

0.15

Success Rate , IL Los;
=
0.6 0.08 0.6 0.10
0.4 0.06 0.4
0.05
0.2 0.04 0.2
1000 0.134 0.0/ 0.02 0.0+ ‘
0.20.40.60.81.0 0.20.40.60.81.0 0.20.40.60.81.0 0.20.40.60.81.0 0.20.40.60.81.0 0.20.40.60.81.0
Step (x107)
—_— m=2 m=5 m=10 m=15 m=30 m=60 —— m=inf (RL-only)

Figure 6: The impact of the interleaving period m on IN-RIL RL performance (rewards), and IL
performance (IL losses). We use 7 different values for m, and train the agent with all the values using
107 environment steps. The figure shows how RL rewards and IL losses change with different m.
The curves are smoothed using a Savitzky-Golay filter to better show the patterns.

Next, we investigate how the interleaving period m affects the learning dynamics of IN-RIL by
examining changes in both online performance metrics (RL rewards) and offline performance metrics
(IL losses) under different values of m. For RL-only fine-tuning (m = co), we compute IL losses
to monitor how well the policy maintains fidelity to demonstrations during fine-tuning, but without
updating the policy based on these losses. We evaluate IN-RIL with seven different values of m. In
particular, Figure[6|reveals several key insights about IN-RIL’s behavior:

Double Descent of IL Losses. For RL-only fine-tuning (m = oo), IL losses increase dramatically
as RL drives the policy away from the pre-trained policy. In contrast, IN-RIL maintains controlled
IL loss trajectories. Most remarkably, we observe that IL losses may experience a "double descent”
phenomenon on some tasks—they begin decreasing again despite the pre-trained policy having fully
converged. This empirically validates our hypothesis illustrated in Figure [2]that RL helps IL escape
local minima, enabling discovery of superior policies that are inaccessible through IL alone.

Under review as a conference paper at ICLR 2026

Enhanced Sample Efficiency. Figure [6{c) demonstrates that IN-RIL dramatically improves the
sample efficiency of DPPO, particularly during early fine-tuning. IN-RIL converges to high success
rates within just 0.4 x 107 steps, while DPPO alone requires approximately 0.9 x 107 steps (1.25x
more environment interactions) to achieve comparable performance.

Improved Stability. As shown in Figureﬂa), overly aggressive exploration in RL-only approaches
can degrade performance after 0.4 x 10" steps. IN-RIL prevents this degradation across multiple
interleaving ratios by maintaining IL losses within an appropriate range, effectively constraining
exploration to promising regions of the policy space.

Guided Exploration. Figure[6[b) illustrates a critical advantage of IN-RIL: on challenging tasks
where IDQL fine-tuning alone fails due to ungrounded exploration, IN-RIL successfully guides the
agent toward task completion. By periodically refreshing the agent’s memory of expert demonstrations
through IL gradients, IN-RIL effectively structures exploration, enabling success on tasks that RL-
only approaches cannot solve.

3.4 ABLATION OF GRADIENT SEPARATION. 10, (@) Square (b) One Leg (low) '

When simultaneously leveraging IL and RL gradients to
update policy networks, resolving potential interference be-
tween these distinct optimization objectives is crucial. When
implementing gradient separation for IN-RIL with network

Success Rate
o
w

separation, IL and RL gradients are naturally separated. In 00t T o5 =04
contrast, full-network fine-tuning, applies both gradients to Steps (x10%) Steps (x10%)
the same network. To mitigate interference, we compute IN-RIL w/o gradient separation

batch-wise IL and RL gradients, and apply gradient surgery

updating the network. Figure[7]demonstrates that naive in- Figure 7: Impact of gradient sepa-
terleaving of IL and RL objectives without proper gradient ration on Square using IDQL and
management can significantly impair performance after . One-Leg (Low) using residual PPO.
updates, while separation enables successful learning.

4 CONCLUSION

We presented IN-RIL, a policy fine-tuning approach that interleaves IL and RL updates to leverage
the stability of IL while promoting exploration and generalization through RL. To mitigate potential
conflicts between these distinct learning signals, we introduced gradient separation mechanisms that
prevent destructive interference during optimization, while retaining their benefits. Our theoretical
analysis provides convergence guarantees and sample efficiency bounds, which are supported by
empirical validation across three benchmark suites. As a modular and algorithm-agnostic plug-in,
IN-RIL, when integrated with state-of-the-art RL fine-tuning algorithms, significantly improves
performance across long- and short-horizon tasks with either sparse or dense rewards. Future
directions include developing adaptive mechanisms to dynamically adjust the interleaving ratio based
on gradient alignment, extending IN-RIL to domains beyond robotics, and exploring additional
strategies to further enhance the synergy between IL and RL.

5 ETHICS STATEMENT

All experiments were conducted in simulation environments without involving human subjects,
sensitive user data, or any form of personal information. Thus, there are no privacy, security, or
human participant concerns. The datasets we use are publicly available benchmark datasets, and
no proprietary or restricted data were employed. No conflicts of interest or external sponsorships
influence the reported findings.

6 REPRODUCIBILITY STATEMENT

We take multiple steps to ensure reproducibility of our results. A detailed description of model
architecture, training objectives, and algorithmic choices is provided in the main text. Hyper-
parameters and training configurations are reported in the Appendix. For theoretical derivations,

Under review as a conference paper at ICLR 2026

complete proofs and assumptions are included in the supplementary materials. To facilitate replication,
we include anonymous source code with training scripts, evaluation pipelines, and configuration files
as part of the supplementary material during review. All datasets used are publicly available.

REFERENCES

Lars Ankile, Anthony Simeonov, Idan Shenfeld, Marcel Torne, and Pulkit Agrawal. From imitation
to refinement-residual rl for precise assembly. arXiv preprint arXiv:2407.16677, 2024.

Philip J Ball, Laura Smith, Ilya Kostrikov, and Sergey Levine. Efficient online reinforcement learning
with offline data. In International Conference on Machine Learning, pp. 1577-1594. PMLR, 2023.

Kevin Black, Noah Brown, Danny Driess, Adnan Esmail, Michael Equi, Chelsea Finn, Niccolo Fusai,
Lachy Groom, Karol Hausman, Brian Ichter, et al. 70: A vision-language-action flow model for
general robot control, 2024. URL https://arxiv. org/abs/2410.24164.

Rishi Bommasani, Drew A. Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx,
Michael S. Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al. On the opportuni-
ties and risks of foundation models. arXiv preprint arXiv:2108.07258, 2021.

L. Bottou, F. E. Curtis, and J. Nocedal. Optimization methods for large-scale machine learning.
SIAM Review, 2018.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn,
Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine Hsu, et al. Rt-1: Robotics
transformer for real-world control at scale. arXiv preprint arXiv:2212.06817, 2022.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in Neural Information Processing Systems, 33:1877-1901, 2020.

Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau, Yilun Du, Benjamin Burchfiel, Russ Tedrake,
and Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion. The
International Journal of Robotics Research, pp. 02783649241273668, 2023.

Ian Chuang, Andrew Lee, Dechen Gao, M Naddaf-Sh, Iman Soltani, et al. Active vision might
be all you need: Exploring active vision in bimanual robotic manipulation. arXiv preprint
arXiv:2409.17435, 2024.

Hal Daumé, John Langford, and Daniel Marcu. Search-based structured prediction. volume 75, pp.
297-325, 20009.

Jean-Antoine Désidéri. Multiple-gradient descent algorithm (mgda) for multiobjective optimization.
Comptes Rendus Mathematique, 350(5-6):313-318, 2012.

Pete Florence, Corey Lynch, Andy Zeng, Oscar A Ramirez, Ayzaan Wahid, Laura Downs, Adrian
Wong, Johnny Lee, Igor Mordatch, and Jonathan Tompson. Implicit behavioral cloning. In
Conference on robot learning, pp. 158-168. PMLR, 2022.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning, 2020.

Zipeng Fu, Tony Z Zhao, and Chelsea Finn. Mobile aloha: Learning bimanual mobile manipulation
using low-cost whole-body teleoperation. In 8th Annual Conference on Robot Learning, 2024.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

10

Under review as a conference paper at ICLR 2026

Abhishek Gupta, Vikash Kumar, Corey Lynch, Sergey Levine, and Karol Hausman. Relay policy
learning: Solving long-horizon tasks via imitation and reinforcement learning. arXiv preprint
arXiv:1910.11956, 2019.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International conference
on machine learning, pp. 1861-1870. Pmlr, 2018.

Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse domains
through world models. arXiv preprint arXiv:2301.04104, 2023.

Siddhant Haldar, Vaibhav Mathur, Denis Yarats, and Lerrel Pinto. Watch and match: Supercharging
imitation with regularized optimal transport. In Conference on Robot Learning, pp. 32-43. PMLR,
2023.

Dong Han, Beni Mulyana, Vladimir Stankovic, and Samuel Cheng. A survey on deep reinforcement
learning algorithms for robotic manipulation. Sensors, 23(7):3762, 2023.

Philippe Hansen-Estruch, Ilya Kostrikov, Michael Janner, Jakub Grudzien Kuba, and Sergey Levine.
Idql: Implicit g-learning as an actor-critic method with diffusion policies. arXiv preprint
arXiv:2304.10573, 2023.

Lixuan He, Jie Feng, and Yong Li. Amft: Aligning llm reasoners by meta-learning the optimal
imitation-exploration balance. arXiv preprint arXiv:2508.06944, 2025.

Minho Heo, Youngwoon Lee, Doohyun Lee, and Joseph J Lim. Furniturebench: Reproducible real-
world benchmark for long-horizon complex manipulation. The International Journal of Robotics
Research, pp. 02783649241304789, 2023.

Hengyuan Hu, Suvir Mirchandani, and Dorsa Sadigh. Imitation bootstrapped reinforcement learning.
arXiv preprint arXiv:2311.02198, 2023.

Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian Ibarz, Alexander Herzog, Eric Jang, Deirdre
Quillen, Ethan Holly, Mrinal Kalakrishnan, Vincent Vanhoucke, et al. Scalable deep reinforcement
learning for vision-based robotic manipulation. In Conference on robot learning, pp. 651-673.
PMLR, 2018.

Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao, Ashwin Balakrishna, Suraj Nair,
Rafael Rafailov, Ethan Foster, Grace Lam, Pannag Sanketi, et al. Openvla: An open-source
vision-language-action model. arXiv preprint arXiv:2406.09246, 2024.

Andrew Lee, lan Chuang, Ling-Yuan Chen, and Iman Soltani. Interact: Inter-dependency aware
action chunking with hierarchical attention transformers for bimanual manipulation. arXiv preprint
arXiv:2409.07914, 2024.

Mingyang Liu, Gabriele Farina, and Asuman Ozdaglar. Uft: Unifying supervised and reinforcement
fine-tuning. arXiv preprint arXiv:2505.16984, 2025.

Ajay Mandlekar, Danfei Xu, Josiah Wong, Soroush Nasiriany, Chen Wang, Rohun Kulkarni, Li Fei-
Fei, Silvio Savarese, Yuke Zhu, and Roberto Martin-Martin. What matters in learning from offline
human demonstrations for robot manipulation. arXiv preprint arXiv:2108.03298, 2021.

Ashvin Nair, Abhishek Gupta, Murtaza Dalal, and Sergey Levine. Awac: Accelerating online
reinforcement learning with offline datasets. arXiv preprint arXiv:2006.09359, 2020.

Mitsuhiko Nakamoto, Simon Zhai, Anikait Singh, Max Sobol Mark, Yi Ma, Chelsea Finn, Aviral
Kumar, and Sergey Levine. Cal-ql: Calibrated offline rl pre-training for efficient online fine-tuning.
Advances in Neural Information Processing Systems, 36:62244—62269, 2023.

Yurii Nesterov. Introductory Lectures on Convex Optimization: A Basic Course. Springer Science
& Business Media, 2004.

Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-weighted regression:
Simple and scalable off-policy reinforcement learning. arXiv preprint arXiv:1910.00177, 2019.

11

Under review as a conference paper at ICLR 2026

Pierre Quinton and Valérian Rey. Jacobian descent for multi-objective optimization. arXiv preprint
arXiv:2406.16232, 2024.

A. Rajeswaran, V. Kumar, A. Gupta, G. Vezzani, J. Schulman, E. Todorov, and S. Levine. Learning
complex dexterous manipulation with deep reinforcement learning and demonstrations. In Robotics:
Science and Systems, 2018.

Allen Z Ren, Justin Lidard, Lars L Ankile, Anthony Simeonov, Pulkit Agrawal, Anirudha Majumdar,
Benjamin Burchfiel, Hongkai Dai, and Max Simchowitz. Diffusion policy policy optimization.
arXiv preprint arXiv:2409.00588, 2024.

Herbert Robbins and Sutton Monro. A stochastic approximation method. The Annals of Mathematical
Statistics, 22(3):400-407, 1951.

Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and structured
prediction to no-regret online learning. In Proceedings of the fourteenth international conference
on artificial intelligence and statistics, pp. 627-635. IMLR Workshop and Conference Proceedings,
2011.

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347, 2017.

O. Sener and V. Koltun. Multi-task learning as multi-objective optimization. In Advances in Neural
Information Processing Systems, 2018.

Nur Muhammad Shafiullah, Zichen Cui, Ariuntuya Arty Altanzaya, and Lerrel Pinto. Behavior
transformers: Cloning & modes with one stone. Advances in neural information processing
systems, 35:22955-22968, 2022.

Yuda Song, Yifei Zhou, Ayush Sekhari, J] Andrew Bagnell, Akshay Krishnamurthy, and Wen Sun. Hy-
brid rl: Using both offline and online data can make 1l efficient. arXiv preprint arXiv:2210.06718,
2022.

Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient methods for
reinforcement learning with function approximation. Advances in neural information processing
systems, 12, 1999.

Philipp Wu, Alejandro Escontrela, Danijar Hafner, Pieter Abbeel, and Ken Goldberg. Daydreamer:
World models for physical robot learning. In Conference on robot learning, pp. 2226-2240. PMLR,
2023.

Long Yang, Zhixiong Huang, Fenghao Lei, Yucun Zhong, Yiming Yang, Cong Fang, Shiting
Wen, Binbin Zhou, and Zhouchen Lin. Policy representation via diffusion probability model for
reinforcement learning. arXiv preprint arXiv:2305.13122, 2023.

Xiu Yuan, Tongzhou Mu, Stone Tao, Yunhao Fang, Mengke Zhang, and Hao Su. Policy decorator:
Model-agnostic online refinement for large policy model. arXiv preprint arXiv:2412.13630, 2024.

Wenhao Zhang, Yuexiang Xie, Yuchang Sun, Yanxi Chen, Guoyin Wang, Yaliang Li, Bolin Ding,
and Jingren Zhou. On-policy rl meets off-policy experts: Harmonizing supervised fine-tuning and
reinforcement learning via dynamic weighting. arXiv preprint arXiv:2508.11408, 2025.

Tony Z Zhao, Jonathan Tompson, Danny Driess, Pete Florence, Kamyar Ghasemipour, Chelsea
Finn, and Ayzaan Wahid. Aloha unleashed: A simple recipe for robot dexterity. arXiv preprint
arXiv:2410.13126, 2024.

12

Under review as a conference paper at ICLR 2026

A APPENDIX

B JUSTIFICATIONS ON THE ASSUMPTIONS

Assumption 2 (Pretraining Performance). The initial policy parameters 0y obtained from pretraining
satisfies L11,(00) — L11,(0%) < e, where err, > 0 is a constant and 0* is the optimal solution for
optimizing the IL objective.

Assumption 3 (Data Coverage). The expert demonstration dataset Dy, provides sufficient coverage
of the state space relevant for the target task. Specifically, there exists a constant Cioperage > 0 such
that:

Eour[i s = 5'l] < Comerse

where |1* is the state distribution of the optimal policy for the target task.
Assumption 4 (Smoothness of Objectives). Both the IL and RL objectives are L-smooth:
VoL (0) — VoL (0)]| < L [0 — 0", V0,0
IVoLrL(0) — VoLrr(0)]| < Lrill0 — 0|, V0,6’

Assumption 5 (Bounded Variance). The stochastic gradients have bounded variance:

2

E[[[VoLiw.(0) — VoLlr,(0)]?) < TIL
N

2

E[||VoLrL(8) — VoLrw(0)|?] < ORL.
NrL

where V represents the stochastic gradient estimate, and N1, and Ny, are the batch sizes.

We first provide the detailed justification on the assumptions used in Section 2.

Assumption 1 (Near-Optimal IL Performance) This assumption reflects the practical setting
where we start from a pre-trained policy that already performs well on demonstration data. It’s
commonly used in transfer learning and foundation model literature where models are first trained on
large datasets before task-specific adaptation Brown et al.|(2020); Bommasani et al.|(2021). The small
constant €77, quantifies how close the initial policy is to optimal imitation performance, capturing the
idea that while the model has learned a good behavioral prior, there’s still room for improvement
through reinforcement learning.

Assumption 2 (Data Coverage) The data coverage assumption ensures that the expert demon-
strations provide adequate representation of the states relevant to the target task. This is a standard
assumption in imitation learning Ross et al.|(2011); Daumé et al.| (2009) and reflects the intuition
that learning can only occur for regions of the state space that have been demonstrated. The constant
Ceoverage quantifies the maximum expected distance between a state from the optimal policy and its
nearest neighbor in the demonstration dataset, with smaller values indicating better coverage.

Assumption 3 (Smoothness of Objectives) Smoothness is a standard assumption in optimization
theory [Nesterov| (2004); [Bottou et al.| (2018)that ensures the gradient doesn’t change too drastically
between nearby points. This enables reliable gradient-based optimization and allows us to derive
convergence rates. Practically, this assumption holds for most neural network architectures with
commonly used activation functions when properly normalized, and is critical for establishing the
descent lemma used in our analysis.

Assumption 4 (Gradient Alignment) This assumption characterizes the geometric relationship
between the gradients of the IL and RL objectives. The parameter p(t) captures the cosine similarity
between these gradients, with positive values indicating opposing gradients and negative values
indicating aligned gradients. Similar assumptions appear in multi-task learning literature |Sener
& Koltun| (2018)) and multi-objective optimization |Désidéril (2012)). This formulation allows us to
analyze how the IL updates affect progress on the RL objective, which is crucial for determining the
optimal interleaving strategy.

13

Under review as a conference paper at ICLR 2026

Assumption 5 (Bounded Variance) The bounded variance assumption is standard in stochastic
optimization literature [Robbins & Monro| (1951)); Bottou et al.| (2018) and reflects the fact that
stochastic gradient estimates contain noise due to mini-batch sampling. The variance terms 0%, and
0%, quantify this noise, with the variance decreasing as batch size increases. This assumption is
necessary for establishing convergence rates in the presence of stochastic gradients and is satisfied in
practice when using proper mini-batch sampling techniques.

Based on these assumptions, we first establish the following key results (proofs in the appendix). We
begin our theoretical analysis by establishing convergence analysis for RL-only finetune and IN-RIL,
respectively.

Theorem 3 (Convergence of RL-Only Training). Under Assumptions[2l[3} with learning rate ary, =
CRLL for cry, € (0,1), RL-only training for T iterations achieves:

Lr
2Lrr(Lrr(0o) — L) CRLORL
CRL(l — CRTL)T (1 — CRTL)NRL

in E 0% <
min B[V Lre (00)]%] <
Theorem 4 (Convergence with IN-RIL). Under Assumptions with learning rates o, = EITLL
and agry, = % for e, ery € (0, 1), interleaved 1:m(t) training for T cycles achieves:

2(LrL(LrL(00) — Lf1) — AlL—RL) CRLOEL,

CRL(— CRTL)mT (]. — CRTL)NRL

. 2
OgngE[HVﬁRL(Gt) 7] <

where m = % Z?:?)l m(t) is the average interleaving ratio, and Ayy,_gy, represents the benefit from

— 2 2
IL regularization, i.e., A1r,_r1, = — ZtT:Ol ClzifL(t)HVﬁlL(ﬁt)H NIVLRL(O)| — ;ILLIZI]%,ITL

Theorem 3] establishes that with appropriate learning rates, RL-only finetuning achieves the standard
O(1/T) convergence rate for smooth objectives. Theoremreveals that IN-RIL can achieve better
convergence guarantees than RL-only finetuning through the regularization benefit term Ayy,_Ry,.
This term captures how IL updates can enhance RL performance, especially when gradient alignment
is favorable (p(t) < 0). Having established the benefits of IN-RIL, we now derive the optimal ratio
of RL updates to IL updates. This ratio is crucial for balancing the stability provided by IL updates
with the performance improvements offered by RL updates.

C PROOF OF THEOREM [3]

We first establish the following technical lemmas that will be used in the proof of the main theorems.

Lemma 1 (Descent Lemma). For a function f with L-smoothness, we have:

7)< F@)+ (VS ()y —) + 2y —

Lemma 2 (Progress Bound for Gradient Descent). For a function f with L-smoothness and step size
a = ¢ where c € (0,1), one step of gradient descent gives:

c(1-3%) 5
fle =aVf@)) < f(z) - —FIVF(2)]

Lemma 3 (Error Bound for Stochastic Gradient Descent). For a function f with L-smoothness, step
size « = ¢ where ¢ € (0, 1), and stochastic gradient V f(x) with bounded variance E|[||V f(x) —

i (2)]|?] < "—]\?, one step of stochastic gradient descent gives:

c(1—35)
L

CZ 0.2

V5@ + 55

E[f(x —aVf(2))] < f(x) -

Proof. The RL-only update rule is:
041 = 0, — arL Vo LR (6;)

14

Under review as a conference paper at ICLR 2026

Where @g Lr1,(0:) is the stochastic gradient estimate. Applying Lemma 3 to the RL objective, with

QRL = z‘:;:
CRL(—chL) 62 0'2

E[Lgry (0 < Lri,(0y) — ————22||VLRL(0,)]|? + —RL-RL_
[LrL(0r+1)] < LrL(0r) Trr |VLRL(0:)]" + 9Lt NaL

Rearranging:
cre(1 — “8-) 2 RLIRL
—————|IVLrL(O)I" < Lrr(0:) — E[LRL(Or41)] + 57—
Lrr 2LRr1, NrL

Summing fromt¢ =0to T — 1:

cre(l —) = 2 Lok T
_— VLr1(0 < Lgr1(00) — E[LrL(07)] + ———
Trr tz:; IVLRL(0:)] gL (00) — E[LrL(07)] Lo Nt
By Assumption 6, Lry,(07) > L}, (the optimal value), so:
T—1
cro(l —) 2 RLoaLT
_— VLr1(0 < Lr1(6p) — L} e
Trr ; IVLRL(6)|" < Lri(bo) — Lk + 5L Nt
By the pigeonhole principle, there must exist at least one iteration t* € {0,1,...,T — 1} such that:
=
IVLRLO)I” < 7 > IVLRL(O)?
t=0
Therefore:
1= Liw(Lre(60) — L) 2 o2
: \v/4 0 2<7 \v/s 0 2< RL\~RL 0,7 RL RL BL
o2in VL @I < 7 3 IV L6l < = mimic + il
Simplifying the second term:
Lg1,(Lrw(8o) — Lf 2
win, [V 2 (0| < TR0 Z L) | ot
0<t<T CRL(]- — %)T 2(1 - %)NRL
Taking expectation and adjusting the constant in the second term:
. 2LR1(LrL(%0) — Li1) CRLOR
ElIVL 0 2 < : RL : RL
Ogltl?T [” RL(t)”] = CRL(l _ crsz)T (_ CRTL)NRL

For the IL performance bound, we use the Liy,-smoothness of the IL objective (Assumption 3):

L
Li,(01) — Li1.(60) < (VLiL(6o), 07 — bo) + %HQT — 6|

L
< VL (60)] - 67 — boll + == 167 — 6o

From Assumption 1 (Near-Optimal IL Performance), the gradient ||V Ly, (6)|| is small. For simplic-
ity, we can absorb this term into the quadratic term:

L
Li,(01) — Li.(60) < %HQT — 6|

Combining with Assumption 1, we have:
L1 (07) — L1L(0) = LiL(07) — L1.(00) + L1.(60) — L1n.(07)
L
2
This completes the proof. O

< 1607 — 0o |* + e

15

Under review as a conference paper at ICLR 2026

D PROOF OF THEOREM [4]

Proof. The interleaved training consists of cycles where each cycle has one IL update followed by
m(t) RL updates. Let 6, denote the parameters at the beginning of cycle ¢, and 6, + ke denote the

1+m(t
parameters after the j-th update within cycle ¢.

First, let’s analyze the IL update within cycle ¢:
9t+ 1 = Qt — OZILﬁACIL(Ht)

T+m(t)

Applying Lemma 3 to the IL objective with agp, = ZITE:

e (1 — an) 2 g2
E[Lim (04)] < L (6:) — jlilLQHVﬁIL(@t)H2 + ﬁ

Now, let’s analyze how this IL update affects the RL objective. Using the smoothness of the RL
objective (Assumption 3):

Lr(0

L
) < Lru(6o) + (VLRL(O:), O,y s — 600 + =716,y 1 — 6]

1
t+ 1+m(t) 1+m(t) 1+m(t)

~ Lera2 ~
= Lav(00) + (VLRL(0:), 0 VLIL(0)) + =5 VL (60)]

Taking expectations and using the fact that E[V Ly1,(6;)] = VL, (6;) (unbiased estimator):

L 2 ~
E[LrL (0 1)] < Lru(0:) — ar(VLrL(0:), VLIL(0:)) + %%E[HVEIL(@)HQ]

T¥m(t)

Using Assumption 4 (Gradient align*ment):
(VL (0r), VLRL(0:)) = —p(D)[VLL(0)]] - [V Lre(62)]]

And using Assumption 5 (Bounded Variance):

S 2
BI9L0 (00 %] < 9L0, (602 + T
IL

We get:
E[LrL(0;1 1)] < Lru(0:) + arwp() VLI (00| - [[VLRL(O:) ||

TFm (D)
Lrrod, 5, Ofy
LRLOTL 9 i
+ 5 IV L (6:)]” + it

Substituting aqy, = EITLL:

E[Lrn(0pr 1)] < Lrr(0:) + %P(t)HVﬁIL(@)H [IVLRL(0:) |l

T+m(t)

LRLC%L 2 UI2L
+ VL, (0 + —

Now, let’s analyze the m(¢) RL updates. For each RL update j € {1,...,m(¢)}:

Ottty = Ot ey — R VERL Oy)
Applying Lemma 3 to each RL update, with arr, = E;LL :
cru(l — “5-) 2
E i)] < i) -2 ;
L D)< Lre 0y, TFm (0) Lry IVLreL (6, THm (D))l
+ CRLORL
2Lr1NrL

16

Under review as a conference paper at ICLR 2026

For simplicity of analysis, we can bound the gradient norms at intermediate steps using the gradient
at the beginning of the cycle:

VLR 0,y)P = (1=)2V Lae (6]

t+ 1

for some small § > 0 that depends on the learning rates and smoothness constants. This approximation
is reasonable because the parameters don’t change drastically within a cycle when using small learning
rates.

With this approximation, we get:

) _ CRL<1 — CRTL)<1 — (5)2

) 0 2
1+1Z7,(t) LRL HVERL(t)H

E[ERL(. 1+])] < ERL(o

2
CRLU RL
2Lr1NrL

Applying this recursively for all m(t) RL updates and combining with the effect of the IL update, we
get:

E[LrL(0t41)] < LrL(0:) +

L (VL (0:)]] - [[VLRL(6:)]]
2
LRLCI <|V£IL () 2+ O'IL)
rL(1 —

QL%L N,
)(—0)°

02 0'2
IVLRL(O0)[I* + m(t) 5

m(t) 2Lr1LNRL

For simplicity, we’ll absorb (1 — §)? into the constants. Rearranging:

crr (1 — “5~)

m(t) IVLRL(0:)|? < Lri(6:) — E[Lre(0141)]

Lgy,
+ TP(MV L (0:)]] - [[VLRL(6:)]]
+ L;E%CL%L IV L 0)]1” + L;jf%i%}vf
mit 2212’;5%;
Summing overt =0to 7T — 1:
5 1m MIIVERL(Ht)IIQ < Lri(0o) — E[Lrw(07)]

=0 RL

+ Z AL IV L (0] - |V L (60)]

LRLCIL 2 LrLci, ot
Ti
+Z Ve 0P+ TS
CRLURL
+Z 2LRLNRL

17

Under review as a conference paper at ICLR 2026

By Assumption 6, Lr1,(67) > L., so:

T-1

crr(l — &L
5 m() ™ =B L 0017 < £r000) - L
t=0

+ZQanmwwwmwu

LRLCIL 2 Lrvcfof,

CRL TR,
+
Z 2LRLN RL
For the sum of IL gradient norms, we can use the IL update analysis. From our earlier bound on IL

updates:

e & o2 T
) v @)1 < L0 - Blen @) + gL

This gives us:

LIL(KIL(QO) L) cLoy T
VL (0] < N
Z ” IL ” CIL() 2(CIL)NIL

Substituting this bound and defining m = = Zt -0 m() as the average interleaving ratio:

CRL(— @) 1

nT
m Tre

Z IV LRe(6:)]1” < Lrr(60) — Ly,

+Z“anmwwwmmn

LRLCIL L (L) — L) | pLrichof,
2L, en(l - 9) 2L% N

o2
47 mT RLYRL
2Lr1LNRL

The term with IL gradient norms can be simplified to:

Lricq, Li(Liw(6o) — L3) Lruew (Li (90) L)
)

202 en(1- 4n) 2Ly, (1

By Assumption 1, £y1,(6p) — L3}, < €L, which is small. For large enough 7', this term becomes
negligible.

Define the IL regularization benefit:

=1 CIL C%LO'IQLT
Al,_RL = — —p(t)| - 0 —_—
IL—RL ;:0 LILP(VLI (0| - [[VLrL(O) || + 9L Nt
With this, our bound becomes:
T—1
_cpn(l—4) 1 o _ Lru(0o) — Lip —A-RL | _ ChuORL
- £ L [0 <

18

Under review as a conference paper at ICLR 2026

By the pigeonhole principle, there must exist at least one iteration ¢* € {0,1,...,T — 1} such that:
=
2 2
IVLeL (01 < 7 ; IVLRL(0:)|
Therefore:
L — X A 2 2
min HVLRL(et)HQ < RL(ERL(QO) £’RL IL RL) + CRLORL

ost<T cri(l — =g)mT 2cgr (1 — %) Nrr

Taking expectation and adjusting the constant in the second term:

2(LrL(LrL(00) — Lf1) — AlL—RL) CRLOET,
cr (1 — <5k)mT (1 — <) Naw

omin E[VLrL (0] <

For the IL performance bound, using the earlier bound on IL updates and summing over all cycles:

T-1

L1, (07) — L1(0o) < — Z

t=0

CIL(]- — CITL)
Ly,

2 2
con T

2
IV L (6:)[17 + 5L NoL

Combining with Assumption 1:
LiL(07) — L1, (0*) = Li.(07) — L11.(00) + L1 (00) — L1.(07)

T-1
e (—CITL) 2 C12L(712LT

< - E ——= VL, (0 —

< 2 T I w(0:)|° + 9L Nip + e

Additionally, by the Li1,-smoothness of the IL objective:

L
Liv(67) — L1w(00) < =~ 167 — b0l

Combining these bounds:

T-1

L
Li(0r) — L1, (07) < e, + %HHT 6> ="
=0

CIL(l — CITL)

2
T IV L (6:)]]

This shows that the periodic IL updates in interleaved training help maintain good IL performance
compared to RL-only training. O

E PROOF OF THEOREMI]

Proof. To find the optimal ratio m(t) at iteration ¢, we want to maximize the progress per update.
From our analysis in Theorem 2, the progress for one complete cycle is:

CRL(l — C%L)

Lr(0:) — Lru(0141) = m(t) IV LRL(6:)[?

Lry
CIL
- Tp(t)‘|v£IL(9t)“ ’ ||V£RL(9t)H
1L
_ Lridiofy _CRLORL

m
2L3, N1, 2LrLNrL

Since each cycle consists of 1 + m(t) updates, the progress per update is:

Lry(0;) — LrL(0141)
1+ m(t)

19

Under review as a conference paper at ICLR 2026

To find the optimal m/(t), we differentiate this expression with respect to m(¢) and set it to zero. Let’s
denote:

cre(l — “5-)

A=—— IV LR (6:)>
RL
CIL, LRLC%LO—%L
B=—p@®)||VLw(0)| - ||VLrL(O —_—
eIV LR O IV L (0] + 787
_ ChLORL
2Lr NrrL
Then the progress per update is:
mA — B —mC
14+m

Differentiating with respect to m:

d (mA—B—mC> _(A=O)(1+m) — (mA—B—m0)

dm 1+m (14+m)?
_A-C+mA—-mC—-mA+ B+mC
N (1+m)?
_A-C+B
 (1+m)?

For this to be zero, we need A — C' + B = 0, which is not possible in general if A > C' (which is the

case when the RL objective has room for improvement). Therefore, the derivative is always positive
or always negative.

Since we’re looking for a maximum, we need to check the second derivative:

d*> (mA—B—mC _d (A-C+B
dm? 1+m dm \ (1+m)?

:(A—C+B)-d((1>

dm \ (14 m)?

=(A-C+B)- (2)

(14+m)3
2(A—-C+ B)
 (1+m)3

When A — C' > B, the second derivative is negative, indicating a maximum. In this case, the progress
per update increases with m, and the optimal m(t) would be as large as possible.

However, for practical reasons, we want to maintain some IL updates, so we need to find a suitable
m(t) that balances progress and regularization. One approach is to equate the progress from RL
updates with the potential negative impact of the IL update:

e (1 = 5) 2 o 0 i
e — 0|2 ~ 2 p(t ool LT
m(t) Ton IV LRL(O:) || LILp(VL @) - [V LR (6:)]| + 2L% N,
Solving for m/(t):
. Lryc o3
L BpOIVEL @) -1V Lr (6] + G

cr (1—RL

RL
2|V Lrw(6:))2

_ Lrrewp(t)[| VL (0:) || Lot
Liperu(1 — %)[[VLgL(0:)]] 2L7 Nizerrn(1 — 244 [|VLre(6:)[|?

20

Under review as a conference paper at ICLR 2026

When gradients are opposing (p(t) > 0), this can give a reasonably large m(t). When gradients are
align*ed (p(t) < 0), the optimal m(t) would be smaller.

A more practical approach is to use a square root formula that balances these factors:

IVLrw(0:)[1?

CILL LUI2L
pOIVLL O - [[VLrL(0)] — gLiiNIL

Mopi(t) = max < 1,

This formula ensures that: 1. m(t) is at least 1 (we always do at least one RL update per IL update) 2.
m(t) increases when RL gradients are large relative to IL gradients 3. m(¢) increases when gradients
oppose each other (p(t) > 0 and large) 4. m(t) decreases when gradients align* (p(t) < 0)

The specific constants may need to be adjusted based on empirical observations, but this formula
provides a theoretically justified starting point for adaptive interleaving. O

F PROOF OF THEOREM[2]

Proof. From Theorem 1, the number of iterations required for RL-only training to reach a target
accuracy ming<;<7 | VLR (0:)]? < €is:

T __ 2LrL(LrL(00) — L)
RL-only ~ CRL(l — CRTL)E

From Theorem 2, the number of cycles required for interleaved 1:m(¢) training to reach the same
accuracy is:

2(LrL(LRL(00) — Lf1,) — AIL-RL)

CRL(— CRTL)TTLG

ﬂnterleaved, cycles =

Since each cycle consists of 1 + m(t) updates, the total number of updates required for interleaved
training is:

Timerleaved, updates ~ (1 + m>Timerleaved, cycles

~ (1+7m) 2(Lri(Lrw(bo) — ‘CCRL)if Ar,—RL)
crL(1 — -)me

For a fair comparison, we compare the total number of updates required by both methods. The ratio
is:
2LgL (LrL(00)—Lfy,)
TRL—only o crr (1— Bl)e
2(LrL(LrL(00)— L) —AL—RL)
crL(1— rRTL)'ﬁLe
_m Lri(£Lre(f0) — L)
14+m LriL(Lru(bo) — L) — Am—rL

Tinter]eaved, updates (1 + m)

When A, _grr, > 0 (positive regularization benefit) and m > 1, this ratio can be greater than 1,
indicating that interleaved training requires fewer total updates than RL-only training to achieve the
same level of accuracy.

Specifically, if we define the relative regularization benefit:

ﬁ — AIL—RL
LrL(Lrr(00) — L)

Then the ratio becomes:
TRL—only m 1
Tinterleaved, updates 1+m 1-— B

21

Under review as a conference paper at ICLR 2026

For interleaved training to be more efficient than RL-only training, we need:

m 1 o1
1+4m 1-p
This is satisfied when:
m 1
>l—-— = ——
b 1+m 1+m

For example, with m = 3, interleaved training is more efficient when g > i, i.e., when the

regularization benefit is at least 25% of the potential RL improvement. O

F.1 INTERPRETING THE EFFICIENCY ADVANTAGE

Our theoretical analysis requires careful interpretation to properly understand the efficiency relation-
ship between IN-RIL and RL-only methods. In what follows, we further examine the key results and
their implications.

F.1.1 EFFICIENCY RATIO
From our theoretical analysis, we derived the efficiency ratio comparing RL-only updates to total

interleaved updates:

TRL—nnly _ Mopt . LRL(KRL (90) — £EL)
TIN-RIL.total 1+ mopt Lri(Lrr(0o) — EEL) — A-rL

Let’s examine this ratio’s behavior in different scenarios:

MMopt
1 +Mopt

Lri(LrL(00)—Lyy)
LrL(00)— L) —AL—RL

which is always less than 1, indicating

1. As mgpe — oo: The term — 1, and the ratio approaches T

TMopt
1+ Mopt

2. When Ay, gy, = 0: The ratio simplifies to
that IN-RIL requires more updates

3. When Ay,_ry, > 0: The ratio may exceed 1 if the regularization benefit is sufficiently large

To properly assess when IN-RIL is more efficient (ratio > 1), we need to solve:

Mopt Lrr(Lr(00) — Lip)

. >1
14+ mop Lri(Lri(o) — Lf1,) — AL—RL

Rearranging, we get:

o L — L§
ArL-rL > Lri(Lru(00) — LR1,) - (1 MMhopt) = RL(LR(%) — Lhy)

14 Mopt 1+ mopt
F.1.2 KEY INSIGHTS

1. Asymptotic Behavior: As mqy, — oo, the efficiency condition approaches Ay, _gry, > 0.
This means with very large interleaving ratios, even a small positive regularization benefit
makes IN-RIL more efficient.

2. Impact of Interleaving Ratio: For any finite my, IN-RIL includes an overhead factor of

1+ MMopt
Mopt

3. Alternative View: We can rewrite the ratio as:
TRL—only _ LRL ('CRL (90) - L:EL)
TIN—RIL,toIal LR.L(»CRL (90) _ ‘CI*QL) _ AILfRL + Lrr(£re(00)—L51)

Meopt
LrL(LrL(80)—LR1)
Meopt

that must be overcome by the regularization benefit.

This form explicitly shows the penalty term , which decreases as My

increases.

22

Under review as a conference paper at ICLR 2026

F.1.3 PRACTICAL IMPLICATIONS

Our theoretical analysis provides important practical guidance:

1. Optimal Interleaving Ratio: There is a trade-off in setting mp:

* Small mgp (€.8., Mopt = 1): IN-RIL needs Ay, _gy, > M to be more
efficient
e Lar — 0} TN_ Lry(LrL(00)—LR1)
g€ Mpt (€.8., Mopt = 9): IN-RIL needs Ay, _gry, > === to be more
efficient

* Very large mop: IN-RIL approaches the behavior of RL-only but retains modest
regularization benefits

2. Environment Interaction Efficiency: If we consider only RL updates (environment inter-
actions):
TRL-only Ly, (Lri(00) — L31)

TinriLr. Lri(Lrr(b0) — L1) — Am—rL

This ratio is greater than 1 whenever Ay, gy, > 0, showing that IN-RIL always requires
fewer environment interactions when there is any positive regularization benefit.

3. Practical Recommendation: Based on our empirical evaluations across multiple bench-
marks, interleaving ratios between 3 and 5 typically provide the best balance. This
align*s with our theory: with mqp = 4, IN-RIL is more computationally efficient when

AL_RL > M, a threshold often satisfied in practice.

F.1.4 EMPIRICAL VALIDATION

Our experiments confirm the theoretical predictions:

* Across our benchmark tasks, IN-RIL demonstrated significant improvements in sample
efficiency, significantly reducing required interactions

* The largest efficiency gains occurred in tasks where the estimated regularization benefit
Arqr,_r1 was highest, exactly as predicted by our theory

* The relationship between efficiency gains and interleaving ratio matched our theoretical
expectations, with diminishing returns for very large ratios

G EXTENDED RELATED WORKS

Imitation learning (IL) Brohan et al.[(2022); Kim et al.|(2024)); |Chi et al.| (2023)); [Fu et al.|(2024); Lee
et al.|(2024) and reinforcement learning (RL) Kalashnikov et al.|(2018)); Han et al.|(2023)); \Hafner
et al.| (2023)); Ren et al.| (2024); Wu et al.| (2023)); |/Ankile et al.[(2024) have been widely studied in
robotics. IL assumes access to expert demonstrations and is generally more stable to train|Chi et al.
(2023); |Shafiullah et al.| (2022), but it suffers from distribution shifts and often fails to generalize
beyond demonstrations Rajeswaran et al.| (2018). In addition, collecting high-quality expert data
can be labor-intensive and costly, sometimes requiring hundreds of demonstrations per task Zhao
et al.[(2024) through teleoperation |[Fu et al.[(2024), or VR equipments |Chuang et al.| (2024). RL
enables agents to explore and self-improve, potentially overcoming IL limitations of labor-intensive
data collection and generalization. However, RL is notoriously sample-inefficient|Song et al.| (2022),
especially for long-horizon tasks with sparse rewards |Gupta et al.|(2019), where agents may easily
fail to learn via random exploration. Recent works propose combining IL and RL in a two-stage
pipeline: IL is first used to pre-train a reasonable policy, followed by RL fine-tuning to further
improve generalization via exploration Ren et al.[(2024); [Ankile et al.| (2024)); Hu et al.| (2023). The
same paradigm was also applied to LLM fine-tuning |Guo et al.|(2025). IN-RIL moves beyond the
two-stage paradigm, and shows that the data used for pre-training, even after pre-training plateaus, is
still valuable in improving sample-efficiency and stability during RL fine-tuning.

23

Under review as a conference paper at ICLR 2026

H SUPPLEMENTARY EXPERIMENTS

H.1 ROBOMIMIC AND GYM
H.1.1 ADDITIONAL RESULTS

We have reported success rates of Robomimic tasks in Table[T] Additionally, Table [3|reports the
rewards metrics for Robomimic tasks.

Table 3: Rewards on Robomimic and Gym tasks. Bold values indicate the best within the DPPO
group or the IDQL group. Italic values indicate the overall best across all methods.

Task | IN-RIL (DPPO) DPPO | IN-RIL (IDQL) IDQL | BCReg DIPO AWR
Transport 323.42 299.98 267.27 12.53 | 10145 3191 3191
Can 204.60 207.10 193.88 184.64 | 152.12 110.88 78.06
Lift 136.80 139.75 205.00 162.49 | 52.77 64.56 205.81
Square 237.70 233.80 245.70 158.34 | 116.43 106.73 107.84
Walker2D 4139 3786 4186 4248 3523 3715 4250
Hopper 2930 2929 3042 2988 2896 2938 1427
HalfCheetah 4887 5011 4742 4671 4532 4644 4611

For each task and fine-tuning method in Table[I] we have reported the best success rates or rewards
across all checkpoints. Since some methods collapsed after performance peaked (e.g., DPPO on
Hopper, we include Section [H.I.1]to show the last performance metric at the timestep budget.
IN-RIL consistently outperforms on most tasks, and IN-RIL is overall stable throughout training.

Task | IN-RIL (DPPO) DPPO | IN-RIL (IDQL) IDQL | BCReg DIPO AWR
Transport 0.91 0.78 0.85 0.00 0.37 0.00 0.03
Can 0.99 0.99 0.96 1.00 092 094 034
Lift 0.93 1.00 0.98 0.99 0.97 096 094
Square 0.91 0.86 0.96 0.78 0.58 0.59 0.38
Walker2D 4044 3746 4151 4245 | 3239 3046 4232
Hopper 2890 2517 3024 2907 | 2664 2753 1381
HalfCheetah 4820 4854 4715 4602 | 4393 4644 4611

Table 4: Last performance metrics at budget for all methods on Robomimic (success rates) and Gym
(rewards) tasks. Bold values indicate the best within its group. Italic values indicate the overall best
across all methods.

H.1.2 SELECTION OF m

It has been shown in Figure[6]that, m impacts different tasks in a different way, while IN-RIL is
overall robust to the selection m. For example, our ablation shows that 2 < m < 30 for IDQL on
Transport all yield superior performance. Here we report one of the optimal m in Section

24

Under review as a conference paper at ICLR 2026

Task m (IN-RIL + DPPO) m (IN-RIL + IDQL)
Transport 10 10
Can 5 10
Lift 10 7
Square 30 5
Walker2D 30 10
Hopper 10 10
HalfCheetah 10 10

Table 5: Selection of m for IN-RIL in experiments.

H.2 FURNITUREBENCH
H.2.1 ADDITIONAL RESULTS

We show the pre-training results for different policy parameterizations in Table[6} Gaussian policies
without action chunking are unable to solve FurnitureBench tasks. Gaussian without action chunking
enables the agent to learn reasonable policies on most tasks, while DP still yields the strongest
performance.

Policy Parameterization Oneleg Lamp |RoundTable |MugRack |PegInHole
Low Med|Low Med
Gaussian w/ Action Chunking 0.38 0.17 | 0.07 0.02 0.01 0.14 0.02
BC | Gaussian w/o Action Chunking 0.0 0.0 | 0.0 0.0 0.0 0.0 0.0
DP 0.47 0.28|0.05 0.1 0.10 0.19 0.03

Table 6: Success rates across FurnitureBench tasks |Ankile et al.[(2024)); Heo et al.| (2023)) using
pre-trained policies.

We report two extra tasks, Mug—Rack and Peg-in-Hole provided by ResiP. IN-RIL matches the
ultimate performance, and exceeds in sample efficiency on Peg—in—-Hole that was shown in the
reward curves in Figure[3]

Task ‘ IN-RIL (Residual PPO) Residual PPO ‘ IDQL
Peg-in-Hole 0.93 0.92 0.01
Mug-Rack 0.85 0.85 0.16

Table 7: Comparing IN-RIL with other RL fine-tuning algorithms on FurnitureBench. Bold values
indicate the best of all.

H.2.2 SELECTION OF m

Task

One-Leg (Low)
One-Leg (Med)
Lamp (Low)

Lamp (Med)
Round-Table (Low)
Mug-Rack
Peg-in-Hole

g b uu| 3

Table 8: Selection of m for IN-RIL in FurnitureBench experiments using residual PPO.

25

Under review as a conference paper at ICLR 2026

H.2.3 IN-RIL FROM SCRATCH

Beyond using IN-RIL for fine-tuning, we also consider using IN-RIL to learn policies from scratch.
We compare IN-RIL trained from scratch against RL fine-tuning following a pre-trained policy. We
notice that IN-RIL policies learned from scratch catch up with RL fine-tuning quickly, and learns
stably throughout the process. Similar to what we observed in IN-RIL for fine-tuning, IN-RIL
behaves more stable than residual PPO at around 4 x 10® steps, where residual PPO may slightly
degrade.

One Leg Low One Leg Med
1.0 1.0 -
0.8 A 0.8 A
[}
e
o
e 0.6 0.6 -
0
0
o
Y 0.4 0.4
3
(7}
0.2 A 0.2 A
0.0 : : : 0.0 : : :
0.0 0.5 1.0 1.5 0 2 4 6
Steps le8 Steps les
IN-RIL (from scratch) RL Fine-tuning

Figure 8: Comparing IN-RIL trained from scratch (orange curves that start from 0% success rates)
to RL fine-tuning (green curves that starts from pre-trained policy success rates).

H.2.4 TASK ROLLOUTS

In this section, we show examples of policy rollouts, including successful and failed ones, of IN-RIL
agents on all the FurnitureBench tasks. The tasks are challenging for RL agents because of their long-
horizon and sparse-reward natures. The agent needs to assemble different parts, and and assembly
requires high precision.

t=8.3s t=9.7s t=11.1s t=12.5s t=13.9s t=15.2s

Figure 9: A successful rollout example of the One-Leg (Low) furniture assembly task

26

Under review as a conference paper at ICLR 2026

t=0.0s t=1.4s t=2.8s t=4.2s t=5.6s t=7.0s

t=8.4s t=9.8s t=11.2s t=12.6s t=14.0s t=15.4s

Figure 10: A successful rollout example of the One—Leg (Med) furniture assembly task

t=8.4s t=10.5s

Figure 11: A successful rollout example of the Lamp (Low) assembly task

t=9.2s t=10.8s t=12.3s t=13.9s t=15.4s t=17.0s

Figure 12: A successful rollout example of the Lamp (Med) task

t=10.4s t=12.2s t=13.9s t=15.7s t=17.4s t=19.2s

Figure 13: A successful rollout example of the Round-Table assembly task

27

Under review as a conference paper at ICLR 2026

t=2.0s t=2.4s t=2.8s t=3.1s t=3.5s t=3.8s

Figure 14: A successful rollout example of the Mug—Rack task

t=2.0s t=2.4s t=2.6s t=3.0s t=3.4s t=3.7s

t=14.0s t=16.3s t=18.6s t=21.0s t=23.3s t=25.6s

Figure 16: A failed rollout example of the One-Leg (Med) furniture assembly task

Figure 17: A failed rollout example of the Lamp (Med) assembly task

28

Under review as a conference paper at ICLR 2026

t=8.0s t=9.3s t=10.7s t=12.0s t=13.3s t=14.7s

Figure 18: A failed rollout example of the Mug—-Rack assembly task

Figure 19: A failed rollout example of the Peg—in-Hole task

H.3 OVERVIEW OF TASKS

We evaluate our method across a diverse set of continuous control benchmarks that span locomo-
tion and manipulation. Our experiments include 14 tasks drawn from three widely-used suites:
Robomimic, FurnitureBench, and OpenAl Gym. Each task presents a unique challenge—ranging
from dense-reward locomotion to long-horizon assembly under sparse rewards. Table [9] summarizes
the observation/action dimensionality, horizon, and reward sparsity for each task.

Benchmark Task Obs Dim Act Dim Max Episode Len Sparse Rewards
Lift 19 7 300 Yes
Robomimic Can 23 7 300 Yes
Square 23 7 400 Yes
Transport 59 14 800 Yes
Hopper-v2 11 3 1000 No
Gym Walker2D-v2 17 6 1000 No
HalfCheetah-v2 17 6 1000 No
One-Leg 58 10 700 Yes
Lamp 44 10 1000 Yes
FurnitureBench Round-Table 44 10 1000 Yes
Mug-Rack 44 10 400 Yes
Peg-in-Hole 44 10 400 Yes

Table 9: Task specifications including observation/action dimensions, time horizon, and reward
sparsity. All tasks use state-based input only.

We use FurnitureBench simulation implementation released by ResiP [Ankile et al.| (2024).
Mug-Rack and Peg-in-Hole are two new tasks created by ResiP. The FurnitureBench tasks are

29

Under review as a conference paper at ICLR 2026

among the most challenging in our evaluation, featuring long-horizon multi-stage assembly with
sparse binary rewards. Each task involves interacting with multiple parts, precise insertions, and
coordinated screw actions using a 7-DoF Franka Emika Panda arm operating at 10Hz. Table[10]
details the task-specific attributes. We follow same settings as the ResiP paper. All tasks are designed
with sparse, binary stage-completion rewards, where the agent receives a reward of 1 upon completing
specific assembly stages.

Attribute One-Leg Round-Table Lamp Mug-Rack Peg-in-Hole
Rewards 1 2 2 1 1

Parts to Assemble 2 3 3 2 2
Precise Insertions 1 2 1 0 1
Screwing Steps 1 2 1 0 0
Occluded Insertion no yes no no yes
Precise Grasping no yes no no yes

Table 10: FurnitureBench task attributes.

I MODELLING & TRAINING

We build IN-RIL and all the baselines upon two open-source codebases, the official DPPO imple-
mentationﬂ Ren et al.|(2024), and residual PPO implementation for precise assemblyﬂ Ankile et al.
(2024).

We use a consistent time-step budget across all fine-tuning methods on each task, and train the
models on NVIDIA RTX 4090 GPUs. FurnitureBench can be highly parallelized — 1 GPU-hour
yields roughly 2e7 environment steps with 1,024 parallel environments. Since it is sparse-reward and
particularly challenging, it requires significantly more environment steps than Robomimic or Gym.
Our training typically took 15 to 40 GPU hours as our fine-tuning time step budgets for furniture
tasks range from 3e8 to 8e8 steps. Gym tasks require about 3 GPU-hours per le7 steps with 40
environments. Since Gym tasks are easier with dense rewards, we set task budgets to 2e7-3e7 steps,
and each model training can take up to 10 GPU hours. Robomimic tasks take up to 6 GPU-hours
for every 1e7 steps with 50 parallel environments. Since we conduct periodic batch-wise gradient
surgery for IN-RIL when integrated with DPPO or IDQL, IL updates introduce additional overheads
to training time. For example, training DPPO using 2e7 steps takes around 5.5 GPU hours, and
IN-RIL using m = 10 takes 6.5 GPU hour.

1.1 RESIDUAL PPO

Residual PPO augments a chunked IL policy with a lightweight, timestep-level corrective Gaussian
policy trained via PPO. At each control step 7 within a base action chunk of length 7}, the residual
policy observes the concatenated state and base action,

res __ . base
St4i = [Ster at+i]’

and outputs a corrective action ;7 ;, yielding the final action

__ base res
Atyi = Qppy + Q5.

1.1.1 HYPER-PARAMETERS

We follow the same training hyper-parameters (shown in Table[TT) and networks (shown in Table[12)
as our baseline residual PPO |Ankile et al.|(2024])). For online fine-tuning, we keep using the same
RL hyper-parameters as RL-only fine-tuning; and using fixed batch size and learning rates for IL as
shown in Table 13

"nttps://github.com/irom-princeton/dppo
Thttps://github.com/ankile/robust-rearrangement

30

https://github.com/irom-princeton/dppo
https://github.com/ankile/robust-rearrangement

Under review as a conference paper at ICLR 2026

Parameter Value

Optimization

Optimizer AdamW (actor; n = le—4)

Learning rate scheduler ~ Cosine decay with 10 k warmup steps
Weight decay le—6

Warmup steps 1000

Training loop

Batch size 256

Regularization & misc.
Dropout / feature noise 0.0

Table 11: Hyper-parameters shared across all policy pre-training runs.

Component DP Gaussian
Architecture U-Net backbone Feedforward MLP
Backbone dims [256, 512, 1024] [256, 256, 256]

Parameter count ~66 M ~11M
Horizons

Observation 15, 1 1

Prediction T, 32 1

Action T, 8 8

Diffusion settings -
DDIM Training steps 100 -
DDPM Inference steps 4 -

Regularization
Dropout - 0.1

Table 12: Summary of policy network configurations. DP uses U-Net based networks. Gaussian
policy uses MLP based networks.

31

Under review as a conference paper at ICLR 2026

PPO Hyperparameters

Number of parallel environments 1024
Episode length (one_leg) 700
Episode length (lamp / round_table) 1000
Discount factor ~y 0.999
GAE)\ 0.95
Normalize advantage true
Reward clipping +5.0
Number of gradient epochs 50
Minibatches per update 1

Max grad-norm 1.0
Target KL divergence 0.1
Residual PPO

Residual action scaling factor 0.1

Actor learning rate 3x107*
Critic learning rate 5x 1073

Learning rate schedule
Value-loss coefficient

Cosine (warmup: 5 steps)
1.0

Entropy coefficient 0.0
Initial log-std for actor —1.0
IN-RIL IL

IL update batch size 512

IL learning rate 1x107*

Table 13: Hyper-parameters for online fine-tuning.

.2 DPPO & IDQL

In this section, we present the hyper-parameters, network structures for DPPO and IDQL experiments.
We use the diffusion policy (DP) implementation from the official DPPO codebase Ren et al.|(2024)
for all tasks, as shown in Table [I4] First, we pre-train DP separately on each Gym (Table [T5)
and each Robomimic (Table[I6) task. Then, we fine-tune the same policy using DPPO and IDQL.
Hyper-parameters for online fine-tuning are shown in Section and Section For IN-RIL
fine-tuning, we use the same RL hyper-parameters, along with a fixed batch size of 256 and learning
rates of le-4 with le-6 decay for all the tasks. We use UPGrad |Quinton & Rey|(2024) for gradient
surgery, which does not need hyper-parameter tuning.

1.2.1 DP PRE-TRAINING

Component Diffusion Actor (DP) Critic (DPPO /IDQL)
Backbone MLP-diffusion MLP

Hidden layers [512,512,512] [256, 256, 256]
Condition dim T, X D, same as actor cond dim
Action chunk T, 4 —
Denoising steps (K) 20 (pre); 10 (fine) —

Time embedding dim 16 —

Predict target € value
Activation ReLLU Mish
Residual style yes -

Table 14: Network architectures used for DPPO and IDQL experiments.

32

Under review as a conference paper at ICLR 2026

Gym Pre-training (DP)

Env Obs dim Act dim T, Epochs Batch

Hopper-v2 11 3 4 3000 128

Walker2D-v2 17 6 4 200 128

HalfCheetah-v2 17 6 4 200 128

LR / weight decay LR=1e-3; weight decay=1e-6

Denoise & schedule denoise=20; cosine LR; 1 warmup; min LR=1e—4; EMA=0.995; save every 100

Table 15: Pre-training settings for the diffusion policy on Gym tasks.

Robomimic Pre-training (DP)

Task Obs dim Act dim Ta Epochs Batch

Lift 19 7 4 3000 256

Can 23 7 1 3000 256

Square 23 7 1 3000 256

Transport 59 14 8 3000 256

LR / weight decay LR=1e-4; weight decay=1e-6

Denoise & schedule denoise=20; cosine LR; 100 warmup; min LR=1e-5; EMA=0.995; save every 500

Table 16: Pre-training settings for the diffusion policy on Robomimic tasks.

1.2.2 DPPO FINE-TUNING

Gym Fine-tuning (DPPO)

Env Par envs Iter Steps/it Batch Upd/it

All tasks 40 1000 500 50000 5

RL hyperparams v=0.99; GAE \=0.95; vf coeff=0.5; target KL=1.0
Learning rates actor=1e—4; critic=1e-3; cosine LR; 10 warmup
Clipping & noise clip=0.2; policy-clip=0.01; randn-clip=3; min std=0.1
Denoise schedule discount=0.99; fine-tune K'=10; save every 100

Table 17: DPPO fine-tuning settings on Gym tasks.

Robomimic Fine-tuning (DPPO)

Task Par envs Iter Steps/it Batch Upd/it

Lift 50 81 300 7500 10

Can 40 301 300 6000 10

Square 40 301 400 8000 10
Transport 50 201 400 10000 5

RL hyperparams v = 0.999; GAE \=0.95; vf coeff=0.5; target KL=1.0

Learning rates
Clipping & noise

actor=1e—4; critic=1e-3; cosine LR; 10 warmup
clip=0.2; policy-clip=0.01; randn-clip=3; min std=0.1

Table 18: DPPO fine-tuning settings on Robomimic tasks.

33

Under review as a conference paper at ICLR 2026

1.2.3 IDQL FINE-TUNING

Gym Fine-tuning (IDQL)

Env Par envs Iter Steps/it ~ Batch Grad/it

All tasks 40 1000 500 1000 128

RL hyperparams v = 0.99; GAE \=0.95; vf coeff=0.5; target KL=1.0
Learning rates actor=1e—4; critic=1e-3; cosine LR; 10 warmup
Replay & batch buffer=25 000; batch=1 000; replay=128

Denoise schedule discount=0.99; fine-tune K=10; save every 100

Table 19: IDQL fine-tuning settings on Gym tasks.

Robomimic Fine-tuning (IDQL)

Task Par envs Iter Steps/it ~ Batch Grad/it

Lift 50 120 300 1000 128

Can 40 301 300 1000 128

Square 40 301 400 1000 128
Transport 50 201 400 1000 128

RL hyperparams v = 0.999; GAE \=0.95; vf coeff=0.5; target KL=1.0
Learning rates actor=1e—4; critic=1e-3; cosine LR; 10 warmup
Replay & batch buffer varies; batch=1 000; replay=128

Table 20: IDQL fine-tuning settings on Robomimic tasks.

34

	Introduction
	IN–RIL: Interleaved RL and IL for Efficient Policy Fine-tuning
	Experiments
	Training
	IN–RIL Performance
	Ablation Studies on Interleaving Ratio m
	Ablation of Gradient Separation.

	Conclusion
	Ethics Statement
	Reproducibility Statement
	Appendix
	Justifications on the Assumptions
	Proof of thm:covRL
	Proof of thm:covINT
	Proof of thm:optimal
	Proof of thm:efficiency
	Interpreting the Efficiency Advantage
	 Efficiency Ratio
	Key Insights
	Practical Implications
	Empirical Validation

	Extended Related Works
	Supplementary Experiments
	Robomimic and Gym
	Additional Results
	Selection of m

	FurnitureBench
	Additional Results
	Selection of m
	IN–RIL From Scratch
	Task Rollouts

	Overview of Tasks

	Modelling & Training
	Residual PPO
	Hyper-parameters

	DPPO & IDQL
	DP Pre-training
	DPPO Fine-tuning
	IDQL Fine-tuning

