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ABSTRACT

Task Arithmetic (TA) provides a modular and scalable way to adapt foundation
models. Combining multiple task vectors, however, can lead to cross-task inter-
ference, causing representation drift and degraded performance. Representation
drift regularization provides a natural remedy to disentangle task vectors, but ex-
isting approaches typically require external task data, which conflicts with TA’s
modularity and availability constraints like privacy concerns. We propose a data-
free approach by framing representation drift regularization as a curvature matrix
approximation problem. This allows us leverage well-established techniques; in
particular, we adopt Kronecker-Factored Approximate Curvature (KFAC) to ob-
tain practical regularizers. Our method is data-free, has constant complexity with
respect to the number of tasks, and improves performance on TA benchmarks.

1 INTRODUCTION

Task arithmetic (TA). TA (Ilharco et al., 2022) promises a modular and scalable approach for adapt-
ing foundation models. By fine-tuning, it produces task-specific parameter updates – so-called task
vectors – which can be added or subtracted to edit model behavior. This enables reusing of task-
specific knowledge across different domains without retraining. In practice, however, composing
multiple task vectors often degrades performance due to cross-task interference: introducing a new
task vector shifts representations relied on by other tasks. To prevent such interference, task-specific
components must be decoupled, ensuring that other tasks’ representations remain stable. This prop-
erty, whereby distinct directions in parameter space lead to changes confined to non-overlapping
regions of the input space, is known as weight disentanglement (Ortiz-Jimenez et al., 2023).

Encouraging weight disentanglement. To favor weight disentanglement, one might regularize the
fine-tuning procedure to explicitly preserve other tasks’ representations (Yoshida et al., 2025) or, in
other words, prevent representation drift — i.e., change in a task’s activations when new task vectors
are added. Nonetheless, such regularizers often require access to other tasks’ training data, which is
impractical under privacy or regulatory constraints and contradicts modularity and reusability.

Therefore, our goal is to design a computationally efficient regularizer for weight
disentanglement that can be used without requiring access to the training data.

This task relates to approximating neural network function space distances (Dhawan et al., 2023),
which measure how much a model’s behavior changes without requiring access to the original data.
Building on this perspective, we incorporate an additional insight specific to TA: fine-tuning the first-
order Taylor approximation of the model around its pre-trained parameters empirically enhances
weight disentanglement Ortiz-Jimenez et al. (2023). This linearization simplifies the representation
drift into a quadratic form of the network Jacobian’s Gramian, which can be pre-computed on, and
shared instead of, the data. This regularizer enhances weight disentanglement (Fig. 1). However,
the Gramian is intractably large, as its size grows quadratically with the number of parameters.

Link to curvature approximation. The Jacobian Gram matrix is an instance of the generalized
Gauss-Newton (GGN) matrix (Schraudolph, 2003), an extensively studied object in the context of
second-order optimization (Martens, 2010; 2020). This link allows us to leverage prior research
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Figure 1: Weight disentanglement (left) without
and (right) with Jacobian Gram regularization.

on efficient curvature approximations. Specif-
ically, we adopt Kronecker-factored approx-
imate curvature (KFAC, Martens & Grosse,
2015), a block-diagonal approximation of the
GGN where blocks correspond to layers and
each block is a Kronecker product of two small
matrices. KFAC drastically reduces storage
and computation while still capturing most
intra-layer correlations, bridging the gap be-
tween oversimplified diagonal approximations
and the intractable full GGN of interest.

Adapting KFAC for TA. KFAC–based regularization faces a key limitation when applied to multi-
task arithmetic: its associated regularizer cannot be accumulated exactly across tasks. The per-task
regularizers induce memory and computational costs that grow linearly in the number of tasks.
Going beyond the existing approximation, we propose an aggregation scheme that merges per-task
curvature factors into a single surrogate, yielding constant complexity in the number of tasks during
regularization. In summary, our contributions are the following:

• We derive a regularizer for task arithmetic that improves weight disentanglement without using
external data, achieving state-of-the-art performance on vision and language benchmarks.

• We scale representation drift regularization by aggregating per-task regularizers into a single
surrogate, ensuring constant complexity and storage regardless of the number of tasks.

2 BACKGROUND: TASK ARITHMETIC AND LINEARIZED FINE-TUNING

Setup. Let f : RD × RP → RC denote a neural network that processes a datum x ∈ RD via
parameters θ ∈ RP into a prediction f(x,θ) ∈ RC . During training, these predictions are compared
to a target y ∈ RY via a criterion function c : RC × RY → R with the goal to minimize the
empirical risk over a training data set D = {(xn,yn)}n. We start from a model pre-trained on a
large source dataset D0, yielding pre-trained weights θ0. Our goal is to fine-tune this model on a
specific downstream task t with data set Dt, to obtain the task-specific fine-tuned weights θ⋆

t .

Task Arithmetic. The above fine-tuning procedure is typically repeated for multiple (T ) tasks,
yielding task vectors {τt := θ⋆

t − θ0}Tt=1. Such vectors form the core of TA, which posits that
simple linear operations in weight space can induce targeted transformations in function space. This
enables combining the capabilities of multiple task vectors to build a multi-task model without addi-
tional training, through simple linear combination (task addition): Given the individual task vectors
{τt}Tt=1, the composed model has parameters θ0 +

∑T
t=1 αtτt with αt ∈ R (in the simplest case,

αt = 1). TA also addresses the removal of task-specific knowledge (task negation) by subtracting,
rather than adding, a task vector. However, naı̈ve linear composition is prone to interference, as
overlapping task-vector updates often conflict and degrade the composed model’s performance.

Linearized fine-tuning. Ortiz-Jimenez et al. (2023) empirically show that TA benefits from model
linearization, particularly when applied during both training and inference. This approach replaces
the network with its linear approximation around the pre-trained weights, (f,θ0) ↔ flin as

flin(x,θ) = f(x,θ0) + Jθf(x,θ0)(θ − θ0), (1)

with Jθf(x,θ0) ∈ RC×P the Jacobian of the model’s prediction on datum x w.r.t. its parameters,
evaluated at θ0. This encourages weight disentanglement in TA, a property whereby task vectors
influence the model only on their own tasks, leaving its behavior unchanged elsewhere. Our goal is
to construct a regularizer to encourage this property during linearized fine-tuning.

3 MAKING REPRESENTATION DRIFT REGULARIZATION DATA-FREE

Simplified setup with two tasks. Model linearization simplifies the learning dynamics, allowing us
to analyze how editing affects the model. We conduct this analysis in feature space through the lens
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Algorithm 1 Idealized and practical representa-
tion drift regularizer for task t′

Require: Network f(·,θ0), tasks {Dt}Tt=1,t̸=t′

1: Compute per-task GGNs {Gt ̸=t′} (Eq. (3))
(approximate via KFAC, Sec. 3.3)

2: Merge over tasks: G−t′ =
∑

t ̸=t′ λtGt

(optional: merge KFACs, Eq. (8))
3: return Quadratic form: τ 7→ τ⊤G−t′τ

Algorithm 2 Linearized FT on task vector τt′

Require: Initial weights θ0, dataset Dt′ , task
vector τt′ merged curvature matrix G−t′

1: Linearize the net: (f,θ0) → flin(•, τt′ − θ0)
2: while not converged do
3: Draw a mini-batch B ∼ Dt′

4: Minimize objective Eq. (7) on B w.r.t. τt′
5: end while
6: return Task vector τt′

of representation drift, the change in the last-layer activations of a task t when adding a new task t′:(
Pre-edit

representation
)
zt(x) = flin(x,θ0 + αtτt)

edit→ zt,t′(x) = flin(x,θ0 + αtτt + αt′τt′)
(

Post-edit
representation

)
=⇒ (Representation drift) ∆t→t,t′(x) := ∥zt,t′(x)− zt(x)∥22 (2)

If the drift ∆t→t,t′(x) vanishes for all x ∈ Dt, the newly added task vector τt′ will not interfere as it
does not change the model’s behavior for inputs from task t. Interference between the two tasks can
be reduced by penalizing representation drift Yoshida et al. (2025) via the neural network function
space distance (Dhawan et al., 2023) Ldrift

t→t,t′(τt′) := 1/|Dt|
∑

x∈Dt
∆t→t,t′(x). The regularizer for

τt′ requires accessing data of the external task t. This may violate segregation policies, impose
significant storage demands, and prevent independent training, ultimately reducing flexibility for
decentralized training. These issues make direct optimization of this objective impractical in many
real-world settings, such as decentralized (McMahan et al., 2017; Kairouz et al., 2021) or privacy-
preserving learning scenarios (Abadi et al., 2016; Bonawitz et al., 2017).

3.1 CONNECTING REPRESENTATION DRIFT REGULARIZATION TO CURVATURE MATRICES

Now, we reformulate the regularization objective to eliminate its dependence on external task data.
Thanks to the linearization, the representation drift from Eq. (2) simplifies into ∆t→t,t′(x) =
∥Jθflin(x,θ0)(αtτt − (αtτt + αt′τt′))∥22 = α2

t′∥Jθflin(x,θ0) τt′∥22. The associated regularizer is1

Ldrift
t→t,t′(τt′) = α2

t′τ
⊤
t′ Gt(θ0)τt′ with Gt(θ0) =

1
|Dt|

∑
x∈Dt

Jθf(x,θ0)
⊤Jθf(x,θ0) (3)

Note that the network Jacobian’s Gramian Gt(θ0) ∈ RP×P – after initial pre-computation – does
not require further data access. This idealized training loop is shown in Alg. 1 (black font).

In exchange for eliminating the data dependency, however, we now face the challenge of computing
the P × P Gramian. This is infeasible even for small neural networks. Thankfully, we can interpret
Gt as a curvature matrix that is well-known in the optimization literature: the generalized Gauss-
Newton (GGN) matrix (Schraudolph, 2003; Martens, 2020). This connection allows us to build
on well-established approaches from the optimization literature to efficiently compute structural
parametric approximations of Gt, ultimately allowing us to make Alg. 1 practical (red font).

3.2 THE GENERALIZED GAUSS-NEWTON (GGN) MATRIX

The GGN is a curvature matrix related to the Hessian and arises from partial linearization: The
Hessian of a function composition ℓ = c ◦ f is ∇2ℓ = ∇2(c ◦ f), while the GGN is ∇2(c ◦ flin).
The standard setting in the second-order optimization literature sets f to be the neural network, and
c the criterion function used for training. We now introduce the GGN in this context, showing that
the Jacobian Gram matrix from Eq. (3) is an instance of the GGN that results from replacing the
training criterion with the squared loss. We can then easily transfer existing GGN approximations.

GGN in the training setting. Let us consider the neural network f with criterion function c (e.g.
cross-entropy) and training data D from Sec. 2. Next, we define the prediction and criterion func-
tions for a datum n, i.e. fn := f(•,xn) and cn := c(•,yn). The loss function for the example xn

1In the following, we suppress lin since the Jacobians of f and flin coincide at θ0.
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is then given by the composition ℓn = cn ◦ fn, and training seeks to minimize the empirical risk

L(θ) = 1
|D|
∑

n c(f(xn,θ),yn) :=
1

|D|
∑

n ℓn(θ) :=
1

|D|
∑

n(cn ◦ fn)(θ). (4)

For brevity, we use cn to denote the value cn(fn(θ)), and [•]i for slicing (e.g. [a]i is the ith entry
of a). Differentiating the empirical risk twice and applying the chain rule yields the Hessian and its
Gauss–Newton decomposition (Schraudolph, 2003; Martens, 2020), containing the GGN G(θ):

∇2L(θ) = G(θ) + R(θ) := 1
|D|
∑

n(Jθfn)
⊤∇2cn(Jθfn) +

1
|D|
∑

n

∑C
m=1[∇cn]m∇2[fn]m . (5)

For a linear network, the residual term R(θ) vanishes as it depends on second derivatives, which are
zero in the linear case. Therefore, the GGN is the Hessian of the empirical risk under a linearized
network (f ↔ flin), and is equivalent to the Fisher information matrix (Amari, 2000) for many
common criterion functions (Martens, 2020).

The Jacobian’s Gram matrix as GGN. The GGN in Eq. (5) generalizes the Jacobian Gram matrix
from Eq. (3), used for representation drift regularization, by additionally weighting the Jacobians
with the criterion function’s Hessian ∇2c. If we choose squared error cn(f) = 1/2∥f − yn∥22 rather
than the training criterion, the GGN becomes the Jacobian Gram matrix exactly, since ∇2cn = IC .
Therefore, the coefficient matrix Gt(θ0) of the quadratic form in Eq. (3) corresponds to a curvature
matrix: the GGN of the loss L(θ) (Eq. (4)) with the training criterion replaced by the squared loss.

While the GGN is impractically large to compute or store for neural networks, the literature has
developed scalable structured approximations for it. In the following, we build on these approxima-
tions (specifically, KFAC) and study how to adapt and extend them in the context of task arithmetic.

3.3 KRONECKER-FACTORED APPROXIMATION OF THE GENERALIZED GAUSS-NEWTON

We rely on a structured GGN approximation called Kronecker-Factored Approximate Curvature
(KFAC) introduced by Martens & Grosse (2015) for fully-connected, then generalized to convo-
lutional (Grosse & Martens, 2016), recurrent (Martens et al., 2018), and transformer architectures
(Eschenhagen et al., 2023). KFAC has been successfully applied to optimization (Osawa et al.,
2019), pruning (Wang et al., 2019), Laplace approximations (Daxberger et al., 2021; Ritter et al.,
2018) and influence functions (Grosse et al., 2023). For an in-depth tutorial, see Dangel et al. (2025).

Parametric form. For a net with L layers and parameters θ1, . . . ,θL, KFAC approximates the GGN
as block-diagonal. Each block corresponds to a layer, G(θ) = blockdiag(G(θ1), . . . ,G(θL)), and
is further approximated as a Kronecker product, G(θl) ≈ Bl ⊗ Al. To evaluate the approxima-
tion’s quadratic form for representation drift regularization, we simply store the Kronecker factors
{(Bl

t,A
l
t)}l from task t, then evaluate (without instantiating the Kronecker product (Loan, 2000))

Ldrift
t→t,t′(τt′) = α2

t′τ
⊤
t′ Gt(θ0)τt′

KFAC
≈ α2

t′
∑L

l=1 τ
l⊤
t′ (Bl

t ⊗Al
t)τ

l
t′ , (6)

with τ l denoting the part of τ corresponding to the parameters in layer l.

KFAC for a single layer. To illustrate the approximation, consider a single fully-connected layer l in
a neural network, with associated weights W l ∈ RD1×D2 (we omit biases for simplicity). The layer
processes an intermediate input representation al

n ∈ RD2 for datum xn into an intermediate output
representation zl

n = Wal
n ∈ RD1 . Further, let θl := vecW l ∈ RD1D2 denote the row-flattened

weights. The layer’s GGN block is G(vecθl) = 1/|D|
∑

n (Jθlfn)
⊤∇2cn(Jθlfn) and simplifies

into a sum of Kronecker products by using the chain rule JvecW lfn = (Jzl
n
fn)(JvecW lzl

n) where
JvecW lzl

n = ID1
⊗ al⊤

n (e.g. Dangel et al., 2020) to obtain

G(vecW l) = 1
|D|
∑

n(Jzl
n
fn)

⊤∇2cn(Jzl
n
fn)⊗ al

na
l⊤
n := En[B

l
n ⊗Al

n].

For the last equality, we use En[•] = 1/|D|
∑

n •n for averaging over the data set. KFAC assumes
En[•n ⊗ ⋆n] ≈ En[•n] ⊗ E[⋆n], yielding a single Kronecker product involving the small factors
Al ∈ RD2×D2 , Bl ∈ RD1×D1 to approximate the intractable block G(vecW l) ∈ RD1D2×D1D2 :

G(vecW l)
KFAC
≈
(

1
|D|
∑

n(Jzl
n
fn)

⊤∇2cn(Jzl
n
fn)
)
⊗
(

1
|D|
∑

n a
l
na

l⊤
n

)
:= Bl ⊗Al .

4
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Variations. KFAC computes two covariances per layer: (i) the input covariance Al = En[a
l
na

l⊤
n ],

and (ii) the output gradient covariance Bl = En,m[gl
n,mgl⊤

n,m] of pseudo-gradients gl
n,m :=

(Jzl
n
fn)

⊤sn,m obtained by backpropagating vectors sn,m ∈ RC related to the Hessian ∇2cn. There
exist different variations to compute Bl and – since it is a priori unclear which approach works best
in the context of TA – we consider two variants that differ in cost (details in (Dangel et al., 2025)):
(i) Exact (Botev et al., 2017) uses C backpropagations per datum and exactly computes Bl; (ii)
Monte-Carlo (MC, Martens & Grosse, 2015) randomizes the exact approach and computes an un-
biased MC estimate of Bl using M < C backpropagations per datum (typically, M = 1).

3.4 MULTI-TASK TRAINING PROCEDURE & REGULARIZATION MERGING

Naı̈ve multi-task regularization. So far, we only considered two tasks. In practice, we want to
add a new task vector given multiple existing task vectors, which introduces new challenges. To
promote disentanglement when training the task vector τt′ , we introduce a penalty against rep-
resentation drift w.r.t. other tasks t ̸= t′. Starting with the standard training loss LDt′ (τt′) =
1/|Dt′ |

∑
(x,y)∈Dt′

c(flin(x, τt′ + θ0),y), the overall fine-tuning objective becomes

LDt
(τt′) + β

∑
t ̸=t′ λtLdrift

t→t,t′(τt′)
KFAC
≈ LDt′ (θ) + β

∑
t ̸=t′ λt

∑L
l=1 τ

l⊤
t′ (Bl

t ⊗Al
t)τ

l
t′ , (7)

where β and λt control the overall and task-specific regularization strengths, respectively. We weight
tasks by data set size, λt = |Dt|/

∑
t ̸=t′ |Dt|. Given a pre-computed KFAC of each task t ̸= t′, this

formulation enables regularization without requiring direct access to data sets of external tasks.

Accumulated regularizer. A key limitation of the objective in Eq. (7) is that we must store the Kro-
necker factors individually for each task, incurring O(T ) memory and run time cost. To address this,
we introduce an approximation of the accumulated regularizer G−t′ =

∑
t̸=t′λtGt, which accounts

for all other tasks simultaneously using a single Kronecker product, via the further approximation

G−t′
KFAC
≈
∑L

l=1

∑
t̸=t′ λtB

l
t ⊗Al

t

merge
≈
∑L

l=1

(∑
t ̸=t′ B

l
t

)
⊗
(∑

t̸=t′ λtA
l
t

)
. (8)

Empirically, this heuristic (Eq. (8)) matches the un-merged formulation’s performance (Eq. (7)).

4 EXPERIMENTS

Vision Tasks. We evaluate performance on the “8 Vision” benchmark (Ilharco et al., 2022), which
covers eight classification data sets: Stanford Cars (Krause et al., 2013), DTD (Cimpoi et al., 2014),
EuroSAT (Helber et al., 2019), GTSRB (Stallkamp et al., 2011), MNIST (LeCun et al., 2002),
RESISC45 (Cheng et al., 2017), SUN397 (Xiao et al., 2016), and SVHN (Netzer et al., 2011).
We leverage CLIP (Radford et al., 2021) as foundational backbone and compare against non-linear
fine-tuning (Non-Linear FT, Ilharco et al., 2022), linearized fine-tuning (Linear FT, Ortiz-Jimenez
et al., 2023), and τJp (Yoshida et al., 2025), which uses external task data to mitigate task-vector
interference. For each method, we collect eight checkpoints during training and subsequently merge
them into a single unified model (see the supplementary materials for additional details). Following
the original setup (Ortiz-Jimenez et al., 2023), we report both absolute and normalized accuracy.
We further analyze the role of the rescaling coefficient α: (i) setting αt = α = 1 for all tasks,
corresponding to a plain addition of task vectors, and (ii) tuning α on a cross-task validation set.

Comparison with related works. We present a comparative analysis of our regularizer in two
distinct regimes. On one hand, we evaluate it in the linearized regime, for which it was originally
designed; on the other, we examine whether its benefits also extend to the non-linear regime. If so,
this would broaden the applicability of our approach to most state-of-the-art learning frameworks.

Linearized fine-tuning regime. Tab. 1 reports the results on the 8Vision benchmark. We also
refer to Fig. 2 (left) for a visual depiction of the per-task absolute accuracy of the merged model in
the linearized regime. The results indicate that our KFAC-regularized approach yields substantial
improvements against the baseline, achieving performance on par with τJp (Yoshida et al., 2025)
while avoiding any reliance on external data from other tasks. This makes our method not only more
flexible but also inherently privacy-preserving, without sacrificing accuracy. Furthermore, whereas
competing methods often require coefficient grid search, our approach proves highly robust: even

5
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Table 1: Task addition results on the eight vision datasets. The “α” column specifies how task vector
coefficients are chosen. “1.0” denotes that all coefficients are fixed to 1.0, with no tuning.

Method Dataless α ViT-B/32 ViT-B/16 ViT-L/14
Abs. Norm. Abs. Norm. Abs. Norm.

Pre-trained – – 48.4 – 55.4 – 65.0 –
Individual – – 90.9 – 92.4 – 93.8 –
MTL – – 87.8 – 90.8 – 92.6 –

Linearized Fine-Tuning

Linear FT – 1.0 77.4 88.0 81.2 90.0 88.0 94.8
– Best 78.9 89.8 81.9 90.8 88.0 94.8

τJp Yoshida et al. (2025) × 1.0 85.0 97.4 88.2 98.3 90.9 98.3
Best 85.6 98.2 88.6 98.7 91.1 98.5

Diag. GGN Porrello et al. (2025) ✓
1.0 80.1 92.3 82.9 93.2 87.9 96.3

Best 80.2 92.5 83.0 93.3 88.0 96.4

KFAC, Ours ✓
1.0 86.0 97.7 88.4 98.0 91.6 99.3

Best 86.1 97.8 88.4 98.0 91.6 99.3

Table 2: Task addition results on the eight vision datasets under the non-linear fine-tuning regime.

Method Dataless α ViT-B/32 ViT-B/16 ViT-L/14
Abs. Norm. Abs. Norm. Abs. Norm.

Non Linear Fine-Tuning

Non-linear FT – 1.0 32.0 32.9 27.4 28.2 45.3 47.5
– Best 73.5 80.4 77.0 82.9 84.5 89.7

TaLoS Iurada et al. (2025) ✓
1.0 53.3 59.7 68.2 77.2 46.1 50.8

Best 77.9 87.7 79.9 90.1 84.7 91.1

Attn. Only FT Jin et al. (2025) – 1.0 22.5 23.3 22.8 23.4 66.2 69.7
– Best 78.2 86.3 80.4 87.1 88.2 93.8

Attn. Only FT
✓

1.0 60.3 64.5 59.0 62.3 82.1 87.2
+ KFAC, Ours Best 83.1 91.3 84.3 91.0 89.9 95.9

a simple addition of task vectors (α = 1) performs competitively, suggesting that post-hoc tuning
can be safely omitted. As a side note, the evidence on ViT-B/32 suggests that the smaller the model
scale, the more crucial curvature regularization becomes for achieving strong final performance.

In this setup, we also compare against Porrello et al. (2025), which applies curvature regularization
using a coarse estimate based on the diagonal of the Fisher Information Matrix. Both approaches
exploit curvature information of the pre-trained model; however, our method relies on the KFAC ap-
proximation, which provides a more refined estimate that captures intra-layer weight dependencies.
The results clearly show that the more accurate the curvature approximation, the larger the gains
in Task Arithmetic. Notably, even the diagonal-based regularization improves over naı̈ve linear
fine-tuning, highlighting the central role of regularization in enabling weight disentanglement.

Non-linear fine-tuning regime. We now consider the non-linear fine-tuning regime (Tab. 2 and
Fig. 2, Right). In this setting, alternative approaches attempt to approximate linear behavior without
fully linearizing the model. For example, TaLoS Iurada et al. (2025) follows a different route and
identifies a subset of parameters that consistently exhibit low gradient sensitivity across tasks and
updates only these sparse components. This promotes weight disentanglement during fine-tuning
while avoiding the computational bottlenecks of full linearization, enabling efficient task addition
and negation. Instead, the authors of Attention-Only Fine-Tuning Jin et al. (2025) fine-tune only the
attention layers of Transformers, showing that this strategy implicitly induces kernel-like behavior.

In this regard, although our regularization is not theoretically exact in the non-linear regime, its ap-
plicability can still be justified whenever linearized behavior is implicitly enforced. For this reason,
in the non-linear setting we pair our regularizer with Attention-Only Fine-Tuning, which has been
shown to induce approximately linear dynamics in Transformers, thereby providing a practical and
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Figure 2: Impact of training and regularization choices on 8 Vision (abs. accuracy). Left: linearized
regime, compared against the diagonal approximation (Porrello et al., 2025). Right: non-linear
regime, compared against attention-only fine-tuning (Jin et al., 2025). See supplementary materials
for full results (tables/plots) for CLIP ViT-B/32 and -L/14 – the finding remain consistent.

Table 3: Task negation on 8 Vision. As Ortiz-Jimenez et al. (2023), we report the minimum accuracy
on the target tasks while preserving at least 95% of the pretrained model’s accuracy on control tasks.

Method Dataless ViT-B/32 ViT-B/16 ViT-L/14
Targ. ↓ Cont. ↑ Targ. ↓ Cont. ↑ Targ. ↓ Cont. ↑

Pre-trained – 48.4 63.3 55.4 68.3 65.0 75.5

Non-linear FT – 20.4 60.5 20.4 65.3 18.1 72.4
Linear FT – 9.3 60.5 8.3 65.5 7.5 72.1
TaLoS Iurada et al. (2025) ✓ 11.0 60.7 10.6 66.1 10.7 73.6
τJp Yoshida et al. (2025) × 6.7 60.8 4.7 66.0 3.7 73.0

KFAC, Ours ✓ 3.4 62.4 3.4 66.4 3.5 72.6

well-motivated way to extend our method beyond the strictly linearized regime. The results in Fig. 2
(Right) show that this is the case: when fine-tuning only attention layers, our approach proves ben-
eficial even in the non-linear regime. Moreover, in this setting, the choice of the α coefficient has a
stronger impact on the final accuracy. However, our approach still appears to be the most robust on
average, a trend further corroborated by the experiment reported in App. F.2.

Unlearning. In Tab. 3 we investigate a setting where each task vector is subtracted from the pre-
trained model. In doing so, we use ImageNet as a control task to verify whether subtraction se-
lectively removes the corresponding task without erasing general knowledge. Our model achieves
stronger forgetting of target tasks while better preserving control task, surpassing that of the main
competitor, τJp (Yoshida et al., 2025). Notably, since our regularizer is dataless, it avoids the chal-
lenges associated with transferring and storing a “large” data set such as ImageNet to perform regu-
larization. This property is particularly promising in the context of the massive data sets used today
to train conversational models, where the cost of data access and management is critical.

Language tasks. Following Stoica et al. (2025), we apply our method to the T5-base model (Raffel
et al., 2020) across six natural language tasks: SNLI (Bowman et al., 2015), MultiNLI (Williams
et al., 2018), SICK (Marelli et al., 2014), SciTail (Khot et al., 2018), RTE (Wang et al., 2018),
and QNLI (Wang et al., 2018). As shown in Fig. 3, in the text domain our approach consistently
outperforms the baselines, particularly under non-linear fine-tuning, thus corroborating the findings
observed in vision. However, leveraging data from other tasks (τJp) yields additional gains, sug-
gesting that textual domains may still benefit from even more accurate curvature estimation.

Comparison of model merging strategies. Fig. 4 compares several existing approaches for merg-
ing task vectors, including TIES (Yadav et al., 2023), DARE (Yu et al., 2024), and the more recent
state-of-the-art methods TSV (Gargiulo et al., 2025) and ISO (Marczak et al., 2025). These methods
operate post-hoc, i.e., after training, and are therefore complementary to our approach, which instead
acts during training. The results indicate that with naı̈ve linear fine-tuning (yellow bars), non-trivial
merging strategies such as TSV and ISO are essential to achieve good performance. In contrast, un-
der KFAC regularization (green bars), the simple summation of task vectors (TA) already yields the
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Method Dataless Abs. Norm.
Individual – 85.9 –
MTL – 83.6 –

Non-lin. FT – 75.7 87.7
Linear FT – 76.9 92.8
Attn. Only FT – 72.9 85.2
TaLoS ✓ 76.3 93.4
τJp × 81.3 100
KFAC, Ours ✓ 78.7 98.9

(a) Task addition results for T5-base. All
reported scores correspond to the best-
performing α values; the results obtained
with α = 1 are provided in the appendix.
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(b) Impact of training and regularization choices on language
(abs. accuracy). Left: linearized regime with no regularization
and with the diagonal approximation. Right non-linear regime,
with attention-only fine-tuning with and without regularization.

Figure 3: Results for language tasks. Left: impact of different training strategies and sensitivity to α
hyperparameter. Right: effects of different regularizations on linear and non-linear fine-tuning.
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Figure 4: Effect of varying merging strategies and of grid search over the coefficient α, with and
without regularization. All models are tested on checkpoints obtained through linearized fine-tuning.

best results and is robust to the choice of the merging coefficient α. This makes the approach suit-
able for scenarios where model merging must be performed on-the-fly and adaptively (Crisostomi
et al., 2025), with negligible overhead, in order to personalize the model for specific user requests.

Naı̈ve multi-task training vs. accumulated regularizer. We herein investigate the impact of the
heuristic used in our approach, which accumulates the Kronecker matrices (see Eq. (8)) and thereby
avoids a linear cost in the number of tasks. To this end, we run experiments using the idealized naı̈ve
multi-task training described in Eq. (7). Our findings, reported in Tab. 4, show that the gap between
the idealized and the actual approach is marginal for medium-sized architectures such as ViT-B/16
in vision and T5-base in text. For ViT-B/32, we instead observe a small but consistent gap in favor
of the idealized training objective, which aligns with our experience that smaller architectures tend
to be more sensitive to curvature regularization and hence to the quality of the approximation.

Curvature regularization enables Task Localization. We show that our approach enables a clear
separation between training and out-of-distribution examples. Indeed, given an input x and a task
vector τt, we measure ∥Jθf(x,θ0)τt∥22, which we interpret as a normalcy score for task t. With
our regularization (Eq. (3)), these scores are indeed forced to remain low for examples outside the
t-th training distribution. As illustrated in Fig. 5, this is exactly what we observe in practice: the
distribution of ∥Jθf(x,θ0)τt∥22 is pushed toward zero whenever the input does not belong to task
t. With the naı̈ve linear fine-tuning, this behavior is instead not as much clear. This indicates that,
under KFAC curvature regularization, each task vector influences the network output only for inputs
drawn from its own training distribution. Moreover, this property suggests a natural use of our
method for out-of-distribution detection, as it provides a principled mechanism to assess whether an
input lies within the model training distribution. A complementary analysis in the nonlinear fine-
tuning regime is provided in the supplementary materials, where we compare our method against
TaLoS and attention-only fine-tuning and observe that the same task-localization behavior persists.
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Table 4: Our Kronecker-accumulation heuristic vs. the idealized multi-task formulation.

Method Complexity α ViT-B/32 ViT-B/16 T5-base
Abs. Norm. Abs. Norm. Abs. Norm.

Naı̈ve Multi-Task FT O(T )
1.0 86.5 98.4 88.0 97.5 78.5 97.0

Best 86.6 98.5 88.1 97.6 78.5 97.0

Accumulated reg. O(1)
1.0 86.0 97.7 88.4 98.0 78.6 98.7

Best 86.1 97.8 88.4 98.0 78.7 98.9
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Figure 6: Analysis of the overhead of KFAC regularization during training and pre-computation.

Training costs. Fig. 6 analyzes the overhead introduced by our approach, which is twofold: es-
timating the KFAC matrices (before training) and computing the regularizer (during training). No
overhead is introduced at inference time. With a single Monte Carlo sample, estimating all KFAC
matrices for the 8 Vision tasks (128 examples per task) takes only 4 minutes, a very limited amount of
time compared to the exact approach from Botev et al. (2017). During training, the overhead mainly
depends on the chosen regime, with linearized fine-tuning having the largest computational foot-
print. Nonetheless, KFAC regularization requires only a negligible amount of additional resources,
amounting to roughly one third of the training time of τJp (Yoshida et al., 2025). This efficiency
arises because the τJp penalty requires a second forward–backward pass through the (slower) lin-
earized model. Moreover, since our method does not rely on data for regularization, it avoids the
repeated cost of loading new batches into GPU memory, another factor that slows down τJp.

Memory footprint. Fig. 6 (right) reports the peak VRAM usage across training regimes. KFAC
introduces small increase relative to unregularized baselines: in the linearized regime, it shows a
+12% overhead (11.5 → 2.9 GB) w.r.t. linear fine-tuning, while in the non-linear attention-only
training it shows a +22% increase (6.8 → 8.3 GB). For reference, τJp peaks at 12.3 GB (+7%
vs. linear FT), and standard non-linear fine-tuning reaches 8.5 GB. No memory overhead incurs
at inference since regularization is inactive. Notably, aggregating all per-task KFAC factors into a
single surrogate keeps the training footprint of our method at O(1) w.r.t. the number of tasks.

KFAC estimation. In Fig. 7, we analyze the effect of varying the number of examples and MC
samples used for curvature estimation. Our findings (Fig. 7, Left) indicate that using 128–256
examples is already sufficient to saturate performance, yielding results comparable to those obtained
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Figure 8: Memory–efficiency analysis of the proposed KFAC regularizer. (a) Accuracy under dif-
ferent KFAC compression strategies. (b) Effect of applying the regularization loss every N steps.

with 30% of each training set. Moreover, final performance is generally on par with that obtained
with the exact approximation of Botev et al. (2017). With respect to Monte Carlo sampling, only
a few samples per example (1–2) are sufficient. Surprisingly, performance deteriorates beyond this
point, with variance across seeds increasing as the number of MC samples grows. Overall, increasing
the number of MC samples is less effective than using more data with fewer MC samples.

Compressed KFAC. Unfortunately, the memory cost of storing KFAC matrices scales quadratically
with the layer width, which may become challenging for very large models. To mitigate this cost,
we evaluate how aggressively KFAC matrices can be compressed – via dynamic 8-bit quantization,
structured pruning, block-diagonalization, and truncated SVD (see App. F.6) – without harming ac-
curacy. On ViT-B/16 (8 Vision), these techniques yield substantial memory savings with only minor
performance loss (Fig. 8a). The block-based strategy provides the best trade-off, decreasing memory
from approximately 550 MB (full KFAC) to about 70 MB – 87% reduction – while incurring only
∼1-point drop in absolute accuracy (88.40 to 87.12).

We additionally analyze whether the KFAC matrices can be moved off-GPU during training without
introducing prohibitive overhead. To do so, we evaluate a regime where the penalty loss is computed
and backpropagated only once every N training steps. As illustrated in Fig. 8b, applying the loss
every 16 steps leads to a modest degradation (∼1.4 points) relative to applying it at every iteration.
This demonstrates that scheduling curvature updates can effectively amortize memory transfers and
enable GPU–CPU factor shuffling without compromising the usefulness of the regularizer.

5 CONCLUSIONS

We investigate curvature-based regularization as a means to enhance Weight Disentanglement in
Task Arithmetic. Our approach is dataless, efficient, and effective, making the simple summation
of task vectors competitive with state-of-the-art merging strategies, without the need for additional
tuning. We demonstrate its applicability in both linearized and non-linear regimes, and show that it
enables a clear separation between in- and out-of-distribution examples. Our work calls for releasing
additional assets together with the pre-trained weights without having to open-source the training
data. Such information, e.g. gradient accumulators of the adaptive optimizer used for training (Li
et al., 2025), or in our case KFAC, enable further downstream applications with foundation models.
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REPRODUCIBILITY STATEMENT

The full codebase used to run our experiments is released along with the paper to facilitate future
research.

DISCLOSURE ON THE USE OF LANGUAGE MODELS

Large Language Models (LLMs) were used exclusively to improve the clarity and polish of the
writing. All scientific ideas, methodological contributions, experimental designs, analyses, and con-
clusions presented in this paper originate entirely from the authors.
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A APPENDIX / SUPPLEMENTARY MATERIAL

The appendix is organized as follows:

• App. B discusses the main limitations of our approach, including memory requirements
and curvature-estimation challenges.

• App. C provides a derivation and a formal bound on the approximation error introduced
when merging multiple K-FAC factors using the Kronecker heuristic.

• App. D presents additional plots illustrating the disentanglement error.
• App. E details the implementation of our methods, with separate discussions for the vision

and text domains.
• App. F reports additional experiments. These include:

– Core analyses:
* per-task performance analysis,
* alpha-sweep robustness study (App. F.2),
* ablation on the regularization coefficient (App. F.3),
* evaluation of a shared KFAC computed on a reference dataset (App. F.4),
* task-localization analysis under nonlinear fine-tuning (App. F.5);

– extended experiments:
* analysis of task localization under memory-efficient KFAC approximations, in-

cluding block-based, SVD-based, pruning, and 8-bit quantized variants (App. F.6),
* additional results on more challenging vision domains using a class-incremental

partitioning protocol (App. F.7).
• App. G provides a concise overview of prior work on linearized fine-tuning and its recent

developments.

B LIMITATIONS

KFAC requires storing the Kronecker matrices in GPU memory – two per layer, each with quadratic
complexity in the number of units. For large models this can become problematic, suggesting that
alternative strategies based on matrix compression or structured Kronecker factors (Grosse et al.,
2023; Lin et al., 2024) should be explored. While we combine the well-established KFAC with an
accumulation strategy, designing curvature approximations that can easily be merged without sacri-
ficing accuracy may be worth exploring in the future. Moreover, our experiments in the text domain
indicate room for improvement, raising the question of whether more sophisticated techniques for
curvature estimation could further enhance Task Arithmetic.

C APPROXIMATION ERROR OF THE MERGED K-FAC FACTORS

For clarity, we focus on a single layer and assume all layers contribute equally, omitting the task
weights λt. Let {At}Tt=1 and {Bt}Tt=1 denote the K-FAC factors associated with the tasks involved
in the merge. The heuristic used in Eq. 8 replaces the sum of Kronecker products with the Kronecker
product between aggregated factors

T∑
t=1

Bt ⊗At ≈

(
T∑

t=1

Bt

)
⊗

(
1

T

T∑
t=1

At

)
. (9)

We now provide a simple bound that quantifies the error introduced by this approximation. To do
so, we define the empirical means and the deviations from the mean

Ā =
1

T

T∑
t=1

At, B̄ =
1

T

T∑
t=1

Bt, ∆At = At − Ā, ∆Bt = Bt − B̄. (10)

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Note that, by construction,
∑

t ∆At =
∑

t ∆Bt = 0. Substituting At = Ā + ∆At and Bt =
B̄ +∆Bt into the left-hand side of Eq. (9) yields

T∑
t=1

Bt ⊗At =

T∑
t=1

(B̄ +∆Bt)⊗ (Ā+∆At) (11)

=

T∑
t=1

(
B̄ ⊗ Ā+ B̄ ⊗∆At +∆Bt ⊗ Ā+∆Bt ⊗∆At

)
(12)

=

T∑
t=1

B̄ ⊗ Ā︸ ︷︷ ︸
T B̄⊗Ā

+ B̄ ⊗
T∑

t=1

∆At︸ ︷︷ ︸
=0

+

(
T∑

t=1

∆Bt

)
⊗ Ā︸ ︷︷ ︸

=0

+

T∑
t=1

∆Bt ⊗∆At (13)

= T B̄ ⊗ Ā +

T∑
t=1

∆Bt ⊗∆At. (14)

Substituting At = Ā+∆At and Bt = B̄ +∆Bt into the right-hand side of Eq. (9), instead, yields

(
T∑

t=1

Bt

)
⊗

(
T∑

t=1

At

)
= T 2 B̄ ⊗ Ā. (15)

Hence the approximation error is

E :=

T∑
t=1

Bt ⊗At − 1

T

(
T∑

t=1

Bt

)
⊗

(
T∑

t=1

At

)
=

T∑
t=1

∆Bt ⊗∆At.

Error bound. Using the Frobenius norm and the property ∥X ⊗ Y ∥F = ∥X∥F ∥Y ∥F , we obtain

∥E∥F ≤
T∑

t=1

∥∆Bt∥F ∥∆At∥F ≤

√√√√ T∑
t=1

∥∆Bt∥2F

√√√√ T∑
t=1

∥∆At∥2F . (16)

Defining the deviations (standard deviations in matrix space), we obtain:

σA :=

√√√√ 1

T

T∑
t=1

∥∆At∥2F , σB :=

√√√√ 1

T

T∑
t=1

∥∆Bt∥2F , (17)

we finally obtain the compact bound

∥E∥F ≤ T σA σB . (18)

Interpretation. The approximation error is proportional to the product of the variations of the K-
FAC factors across tasks. When the task-specific factors (At, Bt) cluster tightly around their means,
both σA and σB are small, yielding a small deviation between the true mixed K-FAC term and its
merged approximation. This situation is particularly likely to occur when the matrices are estimated
from a fixed pre-trained backbone such as CLIP: since the underlying feature extractor remains
unchanged across tasks, the induced activation and gradient statistics tend to vary only mildly. As
a result, the corresponding K-FAC factors exhibit limited task-to-task fluctuation, further justifying
the accuracy of the merged approximation.
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Figure 9: Visualization of weight disentanglement (Ortiz-Jimenez et al., 2023) in ViT-B/16. Non
linear fine-tuning Ilharco et al. (2022), Linear fine-tuning Ortiz-Jimenez et al. (2023), Attention-
Only fine-tuning Jin et al. (2025), Linear fine-tuning with KFAC regularization.

D ADDITIONAL PLOTS ON WEIGHT DISENTANGLEMENT

In Fig. 9 we report the disentanglement error, a metric introduced by Ortiz-Jimenez et al. (2023):

ξ(α1, α2) =

2∑
t=1

Ex∼µt
[dist (f(x;θ0 + αtτt), f(x;θ0 + α1τ1 + α2τ2))] , (19)

where dist(y1, y2) = 1(y1 ̸= y2). When ξ(α1, α2) = 0, tasks τ1 and τ2 merge without interference
for the corresponding values of α1 and α2.

As shown in the plots, linearized fine-tuning substantially improves the disentanglement of task
vectors. This property is further enhanced under our regularization regime, where only a few darker
regions remain, mostly for α > 1, a setting that is never used in practice. Notably, in our experiments
the disentanglement error is consistently close to zero along the diagonals, which is the most relevant
case, since in the literature the common choice is α1 = α2 = · · · = αn.

E IMPLEMENTATION DETAILS

The GGN information matrices were estimated using a single Monte Carlo sample and computed
on 33% of the available training data. However, our empirical analysis showed that sampling only
250-300 training points is sufficient to obtain a reliable estimation of the curvature matrix.
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Figure 10: Impact of training and regularization choices on vision tasks (absolute accuracy). Top:
linearized regime, compared against the diagonal approximation. Bottom: non-linear regime, com-
pared against attention-only fine-tuning.

E.1 VISION DOMAIN

For training the task vectors, we followed the setup of previous works Ilharco et al. (2022); Ortiz-
Jimenez et al. (2023); Yoshida et al. (2025), adopting a batch size of 128. We used the AdamW
optimizer with a learning rate of 3 × 10−4, weight decay of 0.1, and a cosine annealing learning
rate scheduler. Unlike prior approaches, we did not apply gradient clipping during training. The
regularization term in the loss was weighted by λ = 100 for ViT-B/32, λ = 500 for ViT-B/16, and
λ = 2000 for ViT-L/14.

Compared to previous work, we employed a higher learning rate. Since our formulation includes an
explicit regularization term in the loss, this allowed us to increase the learning rate without intro-
ducing interference across tasks.

E.2 TEXT DOMAIN

SNLI, MultiNLI, and SICK are three-way classification tasks where the relation between a premise
and a hypothesis must be identified as entailment, contradiction, or neutral. In contrast, SciTail,
RTE, and QNLI are binary entailment tasks, and therefore fine-tuning and evaluation are restricted
to two labels.

For training language task vectors, we adopted a batch size of 128, using an AdamW optimizer with
a learning rate of 3 × 10−4 with an iteration-based cosine-annealing scheduler and a weight decay
of 0.01. Like in vision tasks, we did not apply gradient clipping during training. The regularization
term in the loss is set to λ = 20 for the KFAC regularization and to λ = 0.1 for the diagonal
regularization.
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Table 5: 8 Vision - Comparison of different merging strategies on task vectors obtained in the linear
fine tuning regime Ortiz-Jimenez et al. (2023) with and without KFAC regularization.

Method α ViT-B/32 ViT-B/16
Abs. Norm. Abs. Norm.

Linear FT + TA Ilharco et al. (2022) 1.0 77.4 88.0 81.2 90.0
Best 78.9 89.8 81.9 90.8

Linear FT + TIES Yadav et al. (2023) 1.0 77.1 87.6 80.0 88.6
Best 77.1 87.6 80.0 88.6

Linear FT + ISO Marczak et al. (2025) 1.0 83.7 95.5 86.7 96.4
Best 83.7 95.5 86.7 96.4

Linear FT + TSV Gargiulo et al. (2025) 1.0 79.8 90.7 83.6 92.7
Best 84.3 96.2 86.8 96.5

Linear FT + DARE Yu et al. (2024) 1.0 77.0 87.5 80.7 89.4
Best 78.6 89.6 81.6 90.5

KFAC, Ours + TA Ilharco et al. (2022) 1.0 86.0 97.7 88.4 98.0
Best 86.1 97.8 88.4 98.0

KFAC, Ours + TIES Yadav et al. (2023) 1.0 81.8 92.5 86.5 95.6
Best 81.8 92.5 86.5 95.6

KFAC, Ours + ISO Marczak et al. (2025) 1.0 84.2 95.5 87.3 96.7
Best 84.2 95.5 87.3 96.7

KFAC, Ours + TSV Gargiulo et al. (2025) 1.0 83.2 94.3 86.5 95.7
Best 84.7 96.2 87.7 97.1

KFAC, Ours + DARE Yu et al. (2024) 1.0 85.0 96.5 87.6 97.0
Best 85.1 96.6 87.7 97.1

F ADDITIONAL EXPERIMENTS

In this section we present the results of additional experiments on task addition conducted on the
8Vision dataset, complementing those already reported in the main paper.

F.1 PERFORMANCE

Fig. 10 provides a per-task breakdown of the same experiment reported in Tab. 1. Interestingly,
the larger ViT-L/14 backbone exhibits smaller relative gains from regularization, particularly in the
non-linear regime, where its behavior closely resembles that of its linearized counterpart. Consis-
tent with prior work Ortiz-Jimenez et al. (2023), this suggests that very large models may already
display an implicit form of regularization. Conversely, the ViT-B/32 benefits the most from regular-
ization, showing that smaller architectures require more careful fine-tuning to enable effective task
arithmetic.

Finally, Tab. 5 reports both absolute and normalized accuracy for different merging strategies:
TIES (Yadav et al., 2023), DARE (Yu et al., 2024), TSV (Gargiulo et al., 2025), and ISO (Marczak
et al., 2025), when applied to task vectors obtained through linearized fine-tuning with and without
regularization. As also shown in Fig. 4 and discussed in the main paper, our results indicate that
without regularization, non-trivial merging strategies such as TSV and ISO are essential to achieve
strong performance. In contrast, under KFAC regularization, simple task arithmetic (TA) already
provides the best results and remains robust to the choice of the merging coefficient α.

F.2 ROBUSTNESS UNDER TASK ARITHMETIC: ALPHA-SWEEP ANALYSIS

In this section, we evaluate how different fine-tuning strategies behave when performing task arith-
metic, focusing on the stability of performance as the task-vector scaling coefficient α varies in the
range [0, 1]. The evaluation follows the standard task-arithmetic setup, where multiple task vec-
tors are combined through simple summation. A method is considered robust if its accuracy varies
smoothly across the sweep and remains stable over a broad interval of α values.
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Figure 11: α-sweep analysis on ViT-B/32 (8Vision) under task arithmetic. Accuracy is reported as
a function of the scaling coefficient α ∈ [0, 1]. The linearized KFAC-regularized model shows the
highest robustness across all α, while in the nonlinear regime it consistently outperforms attention-
only fine-tuning (Jin et al., 2025).

Table 6: On 8Vision, ablation of λ on ViT-B/32 (left) and ViT-B/16 (right). All performances are
reported in terms of absolute accuracy using α = 1.

ViT-B/32
λ Seed 7 Seed 21 Seed 42 AVG.
0 75.0 75.4 75.1 75.2± 0.028
1 82.2 82.4 80.6 81.7± 0.648
10 85.2 85.1 85.1 85.1± 0.002
100 86.2 85.8 86.0 86.0± 0.026
1000 86.5 86.4 86.4 86.4± 0.002
10000 84.5 84.4 84.3 84.4± 0.006

ViT-B/16
λ Seed 7 Seed 21 Seed 42 AVG.
0 79.1 78.7 79.1 79.0± 0.188
1 83.2 83.4 83.8 83.5± 0.265
50 86.9 86.8 87.0 86.9± 0.059
500 88.0 87.9 88.2 88.0± 0.114
5000 88.3 88.4 88.4 88.4± 0.015
50000 86.7 86.6 86.6 86.6± 0.002

We compare several fine-tuning strategies: naive nonlinear fine-tuning, linear fine-tuning, attention-
only fine-tuning (Jin et al., 2025), and our KFAC curvature regularization (under both linearized
and nonlinear training regimes). The results, shown in Fig. 11, reveal that our linearized model
with curvature regularization is consistently the most robust across the entire α sweep. It maintains
high accuracy for all values of α and exhibits the smallest sensitivity to task-vector scaling, while
other methods display markedly less stable behavior. In the nonlinear setting, our method continues
to outperform attention-only fine-tuning across all α values, confirming that the benefits of our
approach extend beyond the linear regime.

Overall, this analysis indicates that curvature regularization not only improves absolute performance
but also enhances the reliability of task arithmetic, enabling stable and predictable model behavior
even when combining multiple task vectors.

F.3 ABLATION ON THE REGULARIZATION COEFFICIENT

This section presents an ablation study investigating the impact of the scaling coefficient λ applied to
the regularization term in the loss function. In Tab. 6 we evaluate the performance of ViT-B/32 and
ViT-B/16 using six values of the regularization coefficient, ranging over five orders of magnitude
from 0 to 104, and repeated each experiment with three random seeds. The case λ = 0 serves as the
baseline, corresponding to non-regularized fine-tuning. It should be noted that these results differ
from those reported in Tab. 1, as the linear fine-tuning therein follows the hyperparameter configu-
ration of Ilharco et al. (2022), whereas the experiments presented here employ the hyperparameter
setting described in App. E.
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Table 7: Task addition results on the eight vision datasets when using either task-specific KFAC
factors or a single shared KFAC computed on ImageNet-1k. Results show that a universal, task-
agnostic KFAC (ImageNet-KFAC) retains most of the benefits of our regularizer while requiring no
access to auxiliary task-specific data.

Method Dataless α ViT-B/32 ViT-B/16
Abs. Norm. Abs. Norm.

Linear FT – 1.0 77.4 88.0 81.2 90.0
– Best 78.9 89.8 81.9 90.8

KFAC, Ours ✓
1.0 86.0 97.7 88.4 98.0

Best 86.1 97.8 88.4 98.0

ImageNet-KFAC, Ours ✓
1.0 84.7 97.0 86.0 95.4

Best 84.7 97.0 86.0 95.4

The results indicate that the proposed method is robust with respect to the choice of λ. Optimal
performance is observed for values of λ between 102 and 103, while only minor degradation occurs
for λ = 10 and λ = 104. This behavior confirms that successful model merging primarily depends
on the presence of regularization based on information from the Generalized Gauss-Newton matrix,
and that the magnitude of this term must be sufficiently emphasized. However, the results also show
that no precise tuning of λ is required to achieve strong performance.

F.4 ELIMINATING TASK DEPENDENCE WITH A UNIVERSAL KFAC

Although our framework completely removes the need for raw auxiliary data, it still requires pre-
computed input and gradient covariance factors from the tasks to be disentangled. This dependence
may be limiting in scenarios where such factors cannot be shared due to practical difficulties in stor-
ing or distributing task-specific curvature statistics, or simply because the set of tasks to be composed
is not known in advance at training time.

To assess whether this dependence can be relaxed, we test whether broad curvature statistics –
extracted from a large, natural-image distribution – can serve as a proxy and effectively replace
the per-task KFAC factors. In details, we build a variant, denoted ImageNet-KFAC, in which every
layer uses a single pair of A/B matrices computed on ImageNet-1k. Ideally, these factors capture
universal visual covariances, and hence they can remain fixed for all downstream tasks. During fine-
tuning, these shared factors can entirely substitute the task-specific ones normally employed by our
regularizer.

As shown in Tab. 7, despite using non–task-specific information, this proxy KFAC recovers approx-
imately 97–99% of the performance obtained with full task-specific factors on both ViT-B/16 and
ViT-B/32 (8Vision). The absolute accuracy reached by the ImageNet-KFAC variant is 84.7% on
ViT-B/32 and 86.0% on ViT-B/16, closely matching the performance of the original approach while
substantially surpassing diagonal or no-regularization baselines as well as competitive alternatives
such as TaLoS or attention-only fine-tuning.

These results indicate that a task-agnostic curvature prior, captured by a single shared factorization,
delivers most of the benefits of our dataless regularizer without accessing any task-specific statis-
tics. In practical scenarios, this makes the method fully data-agnostic with respect to the problem,
effectively eliminating any residual coupling to external tasks.

F.5 TASK LOCALIZATION UNDER NON-LINEAR FINE-TUNING

In this section we extend the task-localization analysis presented in the main paper to the nonlinear
fine-tuning regime. The goal is to assess whether the separation between in-task and out-of-task
examples, induced by our curvature regularizer under linearized training, persists when full model
parameters are updated. In details, we measure the same editing-localization metric used in the main
paper, namely the difference between the Jacobian-projected output variation ∥Jθf(x,θ0) τt∥22 for
inputs belonging to task t versus those coming from other tasks.
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Figure 12: Task localization under non-linear fine-tuning. We report the distribution of the
Jacobian-projected normalcy scores ∥Jθf(x,θ0) τt∥22 for inputs belonging to task t (in-task) ver-
sus inputs from all other tasks (out-of-task).

As shown in Fig. 12, We evaluate four methods: the standard non-linear fine-tuning, TaLoS Iurada
et al. (2025), attention-only fine-tuning Jin et al. (2025), and our proposed KFAC-based curvature
regularizer. For each approach, we fine-tune the model in the fully nonlinear setting and compute
the distribution of normalcy scores for in-task and out-of-task inputs.

The results show a consistent pattern across all datasets. Our method maintains a clear and sharp
separation between in-distribution and out-of-distribution examples, closely mirroring the behavior
observed under the linearized regime. TaLoS and attention-only fine-tuning preserve part of this
effect but yields a weaker distinction. Overall, these findings confirm that curvature regularization
continues to restrict the influence of each task vector to its corresponding training distribution even
when the full network is fine-tuned.

F.6 KFAC COMPRESSION STRATEGIES AND TASK LOCALIZATION

To assess the robustness of our curvature regularizer under memory constraints, we evaluate several
compression strategies applied directly to the KFAC factors. All strategies described below are
applied independently to both A and B matrices for every layer.

The first strategy is a block-diagonal approximation (“Block 8”), in which each factor is parti-
tioned into eight equally sized blocks along the main diagonal, with all off-diagonal blocks dis-
carded. This yields a substantial reduction in memory while maintaining a structured representation
and preserving dominant second-order interactions.

The second strategy relies on truncated SVD. Given the factorization A = UΣV ⊤, we keep only
the top singular components, either by selecting a fixed rank (32 in our experiments) or by retaining
a percentage of the original rank (25%). The truncated reconstruction Ã = UkΣkV

⊤
k provides a

low-rank surrogate that preserves the principal curvature directions.

A third strategy applies unstructured magnitude pruning. Each KFAC matrix is converted to COO
sparse format, and only the largest-magnitude entries are preserved. We consider two keep ratios,
30% and 15%, corresponding to increasingly aggressive sparsification. All remaining entries are set
to zero, effectively reducing memory and bandwidth requirements.

Finally, we evaluate dynamic 8-bit quantization. Each factor is quantized on-the-fly to an 8-bit
integer representation, with per-row scaling ensuring that reconstruction errors remain controlled.
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Figure 13: Task localization under linearized fine-tuning with block-compressed KFAC. The sepa-
ration between the two distributions closely matches that of the full KFAC model, indicating that the
block-based compression has negligible impact on task localization and that curvature-based task
isolation remains robust even under aggressive memory reductions.

Task localization. We further investigate whether the task-localization behavior observed in the
main paper remains stable when applying memory-efficient KFAC approximations. In particular,
we focus on the block-based compression strategy, where each KFAC factor is decomposed into
8 diagonal blocks, substantially reducing storage while preserving the structure of the Kronecker
approximation. This variant is the most promising among those we evaluated, as it consistently
provides the best trade-off between memory savings and accuracy.

The results, shown in Fig. 13, reveal that the block-based KFAC approximation preserves the same
localization behavior as the full KFAC model. Even with only eight diagonal blocks per factor, the
model continues to sharply distinguish in-distribution from out-of-distribution samples. The com-
pression therefore appears to have negligible impact on this diagnostic, suggesting that curvature-
based task localization is robust to coarse, memory-friendly KFAC approximations.

TEXT DOMAIN: RESULTS FOR α = 1

Results for α = 1. Following the setup described in
the main text for language tasks, where we evaluate T5-
base using the fixed hyperparameter value α = 1. As
discussed in Fig. 3, our method exhibits consistently
strong performance in the text domain, mirroring the
trends observed in the vision setting.

Method Dataless Abs. Norm.
Individual – 85.9 –
MTL – 83.6 –

Non-lin. FT – 65.5 75.9
Linear FT – 76.1 92.0
Attn-Only FT – 67.0 78.3
TaLoS ✓ 75.8 92.8
τJp × 81.0 99.5
KFAC, Ours ✓ 78.6 98.7

Figure 14: Task addition results for T5-base with α = 1.

F.7 EXPERIMENT ON OTHER VISION DOMAINS

In Tab. 8 we present additional experiments on a different vision domain to further assess the ef-
fectiveness of KFAC regularization on less trivial tasks. Following (Porrello et al., 2025), each
dataset is split into partitions containing distinct classes. This procedure ensures task diversity while
keeping the domain consistent, since all partitions originate from the same dataset. The number of
classes per partition depends on the dataset: ImageNet-R (Hendrycks et al., 2021) is divided into
10 tasks of 20 classes each, RESISC45 Krizhevsky et al. (2009) into 9 tasks of 5 classes each, and
EuroSAT (Helber et al., 2019) into 5 tasks of 2 classes each. After fine-tuning the base model on
each partition, the resulting models are merged and evaluated on the full test set, considering the
union of all classes across tasks rather than restricting evaluation to the classes of the training task
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Table 8: Performance comparison across different regularization strategies on ViT-B/16

Model ImageNet-R EUROSAT RESISC
Zero-shot 77.72 49.48 66.02

Non-linear FT 82.32 71.21 73.85
Linear FT 81.66 70.40 72.28

Linear FT w. Diag. GN 81.64 73.94 74.04

τ jP Yoshida et al. (2025) 81.28 84.36 84.83

KFAC, Ours (naive penalty) 82.64 79.64 78.91
KFAC, Ours (aggregated penalty) 82.63 79.64 78.30

only, as done in the 8 Vision benchmark. Accuracy is then reported on this joint classification prob-
lem, following the protocol of (Porrello et al., 2025). These experiments demonstrate that KFAC
regularization achieves state-of-the-art performance even under this more challenging setting.

G RELATED WORKS ON LINEARIZED FINE-TUNING

Linearized models offer a principled lens for analyzing fine-tuning by considering first-order ex-
pansions around a pre-trained initialization. Foundational work (Arora et al., 2019; Jacot et al.,
2018) showed that infinitely wide networks trained with gradient descent follow kernel gradient
flow under the Neural Tangent Kernel (NTK), yielding exact functional characterizations of training
dynamics. This perspective has since been extended to more realistic settings, including representa-
tion learning (Mu et al., 2020), small-data regimes (Arora et al., 2020), and random-matrix studies
of generalization (Wei et al., 2022). Building on these insights, several linearized fine-tuning ap-
proaches have been proposed to improve efficiency and stability, such as LQF (Achille et al., 2021),
privacy-preserving updates (Golatkar et al., 2021), improved task-head initialization (Ren et al.,
2023), continual learning (Shon et al., 2022), and language-model adaptation (Malladi et al., 2023).
More recent work explores model composition and ensembling through tangent-space operations
(Liu & Soatto, 2023; Tang et al., 2024).

The linearized regime has also become central to task arithmetic. Tangent-space representations
have been linked to weight disentanglement and reliable task editing (Ortiz-Jimenez et al., 2023;
Porrello et al., 2025; Yoshida et al., 2025; Liu et al., 2024). Within this framework, NTK-based
approximations enhance task separability and make linear combinations of task vectors more pre-
dictable, further underscoring the versatility of model linearization for fine-tuning, composition, and
editing.
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