

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 DATALESS WEIGHT DISENTANGLEMENT IN TASK ARITHMETIC VIA KRONECKER-FACTORED APPROXIMATE CURVATURE

Anonymous authors

Paper under double-blind review

ABSTRACT

Task Arithmetic (TA) provides a modular and scalable way to adapt foundation models. Combining multiple task vectors, however, can lead to cross-task interference, causing representation drift and degraded performance. Representation drift regularization provides a natural remedy to disentangle task vectors, but existing approaches typically require external task data, which conflicts with TA’s modularity and availability constraints like privacy concerns. We propose a data-free approach by framing representation drift regularization as a curvature matrix approximation problem. This allows us to leverage well-established techniques; in particular, we adopt Kronecker-Factored Approximate Curvature (KFAC) to obtain practical regularizers. Our method is data-free, has constant complexity with respect to the number of tasks, and improves performance on TA benchmarks.

1 INTRODUCTION

Task arithmetic (TA). TA (Ilharco et al., 2022) promises a modular and scalable approach for adapting foundation models. By fine-tuning, it produces task-specific parameter updates – so-called *task vectors* – which can be added or subtracted to edit model behavior. This enables reusing of task-specific knowledge across different domains without retraining. In practice, however, composing multiple task vectors often degrades performance due to cross-task interference: introducing a new task vector shifts representations relied on by other tasks. To prevent such interference, task-specific components must be decoupled, ensuring that other tasks’ representations remain stable. This property, whereby distinct directions in parameter space lead to changes confined to non-overlapping regions of the input space, is known as *weight disentanglement* (Ortiz-Jimenez et al., 2023).

Encouraging weight disentanglement. To favor weight disentanglement, one might regularize the fine-tuning procedure to explicitly preserve other tasks’ representations (Yoshida et al., 2025) or, in other words, prevent *representation drift* — i.e., change in a task’s activations when new task vectors are added. Nonetheless, such regularizers often require access to other tasks’ training data, which is impractical under privacy or regulatory constraints and contradicts modularity and reusability.

Therefore, our goal is to design a computationally efficient regularizer for weight disentanglement that can be used without requiring access to the training data.

This task relates to approximating neural network function space distances (Dhawan et al., 2023), which measure how much a model’s behavior changes without requiring access to the original data. Building on this perspective, we incorporate an additional insight specific to TA: fine-tuning the first-order Taylor approximation of the model around its pre-trained parameters empirically enhances weight disentanglement Ortiz-Jimenez et al. (2023). This linearization simplifies the representation drift into a quadratic form of the network Jacobian’s *Gramian*, which can be pre-computed on, and shared instead of, the data. This regularizer enhances weight disentanglement (Fig. 1). However, the Gramian is intractably large, as its size grows quadratically with the number of parameters.

Link to curvature approximation. The Jacobian Gram matrix is an instance of the generalized Gauss-Newton (GGN) matrix (Schraudolph, 2003), an extensively studied object in the context of second-order optimization (Martens, 2010; 2020). This link allows us to leverage prior research

on efficient curvature approximations. Specifically, we adopt Kronecker-factored approximate curvature (KFAC, Martens & Grosse, 2015), a block-diagonal approximation of the GGN where blocks correspond to layers and each block is a *Kronecker product* of two small matrices. KFAC drastically reduces storage and computation while still capturing most intra-layer correlations, bridging the gap between oversimplified diagonal approximations and the intractable full GGN of interest.

Adapting KFAC for TA. KFAC-based regularization faces a key limitation when applied to multi-task arithmetic: its associated regularizer cannot be accumulated exactly across tasks. The per-task regularizers induce memory and computational costs that grow linearly in the number of tasks. Going beyond the existing approximation, we propose an aggregation scheme that merges per-task curvature factors into a single surrogate, yielding *constant* complexity in the number of tasks during regularization. In summary, our contributions are the following:

- We derive a regularizer for task arithmetic that improves weight disentanglement without using external data, achieving state-of-the-art performance on vision and language benchmarks.
- We scale representation drift regularization by aggregating per-task regularizers into a single surrogate, ensuring *constant* complexity and storage regardless of the number of tasks.

2 BACKGROUND: TASK ARITHMETIC AND LINEARIZED FINE-TUNING

Setup. Let $f : \mathbb{R}^D \times \mathbb{R}^P \rightarrow \mathbb{R}^C$ denote a neural network that processes a datum $x \in \mathbb{R}^D$ via parameters $\theta \in \mathbb{R}^P$ into a prediction $f(x, \theta) \in \mathbb{R}^C$. During training, these predictions are compared to a target $y \in \mathbb{R}^Y$ via a criterion function $c : \mathbb{R}^C \times \mathbb{R}^Y \rightarrow \mathbb{R}$ with the goal to minimize the empirical risk over a training data set $\mathcal{D} = \{(x_n, y_n)\}_n$. We start from a model pre-trained on a large source dataset \mathcal{D}_0 , yielding pre-trained weights θ_0 . Our goal is to fine-tune this model on a specific downstream task t with data set \mathcal{D}_t , to obtain the task-specific fine-tuned weights θ_t^* .

Task Arithmetic. The above fine-tuning procedure is typically repeated for multiple (T) tasks, yielding *task vectors* $\{\tau_t := \theta_t^* - \theta_0\}_{t=1}^T$. Such vectors form the core of TA, which posits that simple linear operations in weight space can induce targeted transformations in function space. This enables combining the capabilities of multiple task vectors to build a multi-task model without additional training, through simple linear combination (*task addition*): Given the individual task vectors $\{\tau_t\}_{t=1}^T$, the composed model has parameters $\theta_0 + \sum_{t=1}^T \alpha_t \tau_t$ with $\alpha_t \in \mathbb{R}$ (in the simplest case, $\alpha_t = 1$). TA also addresses the removal of task-specific knowledge (*task negation*) by subtracting, rather than adding, a task vector. However, naïve linear composition is prone to interference, as overlapping task-vector updates often conflict and degrade the composed model’s performance.

Linearized fine-tuning. Ortiz-Jimenez et al. (2023) empirically show that TA benefits from model linearization, particularly when applied during both training and inference. This approach replaces the network with its linear approximation around the pre-trained weights, $(f, \theta_0) \leftrightarrow f_{\text{lin}}$ as

$$f_{\text{lin}}(x, \theta) = f(x, \theta_0) + \mathbf{J}_\theta f(x, \theta_0)(\theta - \theta_0), \quad (1)$$

with $\mathbf{J}_\theta f(x, \theta_0) \in \mathbb{R}^{C \times P}$ the Jacobian of the model’s prediction on datum x w.r.t. its parameters, evaluated at θ_0 . This encourages weight disentanglement in TA, a property whereby task vectors influence the model only on their own tasks, leaving its behavior unchanged elsewhere. Our goal is to construct a regularizer to encourage this property during linearized fine-tuning.

3 MAKING REPRESENTATION DRIFT REGULARIZATION DATA-FREE

Simplified setup with two tasks. Model linearization simplifies the learning dynamics, allowing us to analyze how editing affects the model. We conduct this analysis in feature space through the lens

108

Algorithm 1 Idealized and **practical** representation drift regularizer for task t'

111

Require: Network $f(\cdot, \theta_0)$, tasks $\{\mathcal{D}_t\}_{t=1, t \neq t'}^T$
 1: Compute per-task GGNs $\{\mathbf{G}_{t \neq t'}\}$ (Eq. (3))
 (approximate via KFAC, Sec. 3.3)
 2: Merge over tasks: $\mathbf{G}_{-t'} = \sum_{t \neq t'} \lambda_t \mathbf{G}_t$
 (optional: merge KFACs, Eq. (8))
 3: **return** Quadratic form: $\tau \mapsto \tau^\top \mathbf{G}_{-t'} \tau$

112

113

114

115

116

117

118

119

of *representation drift*, the change in the last-layer activations of a task t when adding a new task t' :

120

121

122

123

$$\begin{aligned} & \underset{\text{(representation)}}{z_t(x)} = f_{\text{lin}}(x, \theta_0 + \alpha_t \tau_t) \xrightarrow{\text{edit}} z_{t,t'}(x) = f_{\text{lin}}(x, \theta_0 + \alpha_t \tau_t + \alpha_{t'} \tau_{t'}) \underset{\text{(representation)}}{\text{(Post-edit)}} \\ & \implies \text{(Representation drift)} \Delta_{t \rightarrow t,t'}(x) := \|z_{t,t'}(x) - z_t(x)\|_2^2 \end{aligned} \quad (2)$$

124

125

126

127

128

129

130

131

132

If the drift $\Delta_{t \rightarrow t,t'}(x)$ vanishes for all $x \in \mathcal{D}_t$, the newly added task vector $\tau_{t'}$ will not interfere as it does not change the model's behavior for inputs from task t . Interference between the two tasks can be reduced by penalizing representation drift Yoshida et al. (2025) via the neural network function space distance (Dhawan et al., 2023) $\mathcal{L}_{t \rightarrow t,t'}^{\text{drift}}(\tau_{t'}) := 1/|\mathcal{D}_t| \sum_{x \in \mathcal{D}_t} \Delta_{t \rightarrow t,t'}(x)$. The regularizer for $\tau_{t'}$ requires accessing data of the external task t . This may violate segregation policies, impose significant storage demands, and prevent independent training, ultimately reducing flexibility for decentralized training. These issues make direct optimization of this objective impractical in many real-world settings, such as decentralized (McMahan et al., 2017; Kairouz et al., 2021) or privacy-preserving learning scenarios (Abadi et al., 2016; Bonawitz et al., 2017).

133

3.1 CONNECTING REPRESENTATION DRIFT REGULARIZATION TO CURVATURE MATRICES

134

135

136

137

138

Now, we reformulate the regularization objective to eliminate its dependence on external task data. Thanks to the linearization, the representation drift from Eq. (2) simplifies into $\Delta_{t \rightarrow t,t'}(x) = \|\mathbf{J}_\theta f_{\text{lin}}(x, \theta_0)(\alpha_t \tau_t - (\alpha_t \tau_t + \alpha_{t'} \tau_{t'}))\|_2^2 = \alpha_{t'}^2 \|\mathbf{J}_\theta f_{\text{lin}}(x, \theta_0) \tau_{t'}\|_2^2$. The associated regularizer is¹

139

140

$$\mathcal{L}_{t \rightarrow t,t'}^{\text{drift}}(\tau_{t'}) = \alpha_{t'}^2 \tau_{t'}^\top \mathbf{G}_t(\theta_0) \tau_{t'} \quad \text{with} \quad \mathbf{G}_t(\theta_0) = \frac{1}{|\mathcal{D}_t|} \sum_{x \in \mathcal{D}_t} \mathbf{J}_\theta f(x, \theta_0)^\top \mathbf{J}_\theta f(x, \theta_0) \quad (3)$$

141

142

143

Note that the network Jacobian's Gramian $\mathbf{G}_t(\theta_0) \in \mathbb{R}^{P \times P}$ – after initial pre-computation – does not require further data access. This idealized training loop is shown in Alg. 1 (black font).

144

145

146

147

148

149

In exchange for eliminating the data dependency, however, we now face the challenge of computing the $P \times P$ Gramian. This is infeasible even for small neural networks. Thankfully, we can interpret \mathbf{G}_t as a curvature matrix that is well-known in the optimization literature: the *generalized Gauss-Newton* (GGN) matrix (Schraudolph, 2003; Martens, 2020). This connection allows us to build on well-established approaches from the optimization literature to efficiently compute structural parametric approximations of \mathbf{G}_t , ultimately allowing us to make Alg. 1 practical (red font).

150

151

3.2 THE GENERALIZED GAUSS-NEWTON (GGN) MATRIX

152

153

154

155

156

157

The GGN is a curvature matrix related to the Hessian and arises from partial linearization: The Hessian of a function composition $\ell = c \circ f$ is $\nabla^2 \ell = \nabla^2(c \circ f)$, while the GGN is $\nabla^2(c \circ f_{\text{lin}})$. The standard setting in the second-order optimization literature sets f to be the neural network, and c the criterion function used for training. We now introduce the GGN in this context, showing that the Jacobian Gram matrix from Eq. (3) is an instance of the GGN that results from replacing the training criterion with the squared loss. We can then easily transfer existing GGN approximations.

158

159

160

161

GGN in the training setting. Let us consider the neural network f with criterion function c (e.g. cross-entropy) and training data \mathcal{D} from Sec. 2. Next, we define the prediction and criterion functions for a datum n , i.e. $f_n := f(\bullet, \mathbf{x}_n)$ and $c_n := c(\bullet, \mathbf{y}_n)$. The loss function for the example \mathbf{x}_n

¹In the following, we suppress $_{\text{lin}}$ since the Jacobians of f and f_{lin} coincide at θ_0 .

162 is then given by the composition $\ell_n = c_n \circ f_n$, and training seeks to minimize the empirical risk
 163

$$\mathcal{L}(\boldsymbol{\theta}) = \frac{1}{|\mathcal{D}|} \sum_n c(f(\mathbf{x}_n, \boldsymbol{\theta}), \mathbf{y}_n) := \frac{1}{|\mathcal{D}|} \sum_n \ell_n(\boldsymbol{\theta}) := \frac{1}{|\mathcal{D}|} \sum_n (c_n \circ f_n)(\boldsymbol{\theta}). \quad (4)$$

166 For brevity, we use c_n to denote the value $c_n(f_n(\boldsymbol{\theta}))$, and $[\bullet]_i$ for slicing (e.g. $[\mathbf{a}]_i$ is the i^{th} entry
 167 of \mathbf{a}). Differentiating the empirical risk twice and applying the chain rule yields the Hessian and its
 168 Gauss–Newton decomposition (Schraudolph, 2003; Martens, 2020), containing the GGN $\mathbf{G}(\boldsymbol{\theta})$:

$$\nabla^2 \mathcal{L}(\boldsymbol{\theta}) = \mathbf{G}(\boldsymbol{\theta}) + \mathbf{R}(\boldsymbol{\theta}) := \frac{1}{|\mathcal{D}|} \sum_n (\mathbf{J}_{\boldsymbol{\theta}} f_n)^\top \nabla^2 c_n(\mathbf{J}_{\boldsymbol{\theta}} f_n) + \frac{1}{|\mathcal{D}|} \sum_n \sum_{m=1}^C [\nabla c_n]_m \nabla^2 [f_n]_m. \quad (5)$$

171 For a linear network, the residual term $\mathbf{R}(\boldsymbol{\theta})$ vanishes as it depends on second derivatives, which are
 172 zero in the linear case. Therefore, the GGN is the Hessian of the empirical risk under a linearized
 173 network ($f \leftrightarrow f_{\text{lin}}$), and is equivalent to the Fisher information matrix (Amari, 2000) for many
 174 common criterion functions (Martens, 2020).

175 **The Jacobian’s Gram matrix as GGN.** The GGN in Eq. (5) generalizes the Jacobian Gram matrix
 176 from Eq. (3), used for representation drift regularization, by additionally weighting the Jacobians
 177 with the criterion function’s Hessian $\nabla^2 c$. If we choose squared error $c_n(\mathbf{f}) = 1/2 \|\mathbf{f} - \mathbf{y}_n\|_2^2$ rather
 178 than the training criterion, the GGN becomes the Jacobian Gram matrix exactly, since $\nabla^2 c_n = \mathbf{I}_C$.
 179 Therefore, the coefficient matrix $\mathbf{G}_t(\boldsymbol{\theta}_0)$ of the quadratic form in Eq. (3) corresponds to a curvature
 180 matrix: the GGN of the loss $\mathcal{L}(\boldsymbol{\theta})$ (Eq. (4)) with the training criterion replaced by the squared loss.

181 While the GGN is impractically large to compute or store for neural networks, the literature has
 182 developed scalable structured approximations for it. In the following, we build on these approximations
 183 (specifically, KFAC) and study how to adapt and extend them in the context of task arithmetic.
 184

185 3.3 KRONECKER-FACTORED APPROXIMATION OF THE GENERALIZED GAUSS-NEWTON

187 We rely on a structured GGN approximation called *Kronecker-Factored Approximate Curvature*
 188 (KFAC) introduced by Martens & Grosse (2015) for fully-connected, then generalized to convolutional
 189 (Grosse & Martens, 2016), recurrent (Martens et al., 2018), and transformer architectures
 190 (Eschenhagen et al., 2023). KFAC has been successfully applied to optimization (Osawa et al.,
 191 2019), pruning (Wang et al., 2019), Laplace approximations (Daxberger et al., 2021; Ritter et al.,
 192 2018) and influence functions (Grosse et al., 2023). For an in-depth tutorial, see Dangel et al. (2025).

193 **Parametric form.** For a net with L layers and parameters $\boldsymbol{\theta}^1, \dots, \boldsymbol{\theta}^L$, KFAC approximates the GGN
 194 as block-diagonal. Each block corresponds to a layer, $\mathbf{G}(\boldsymbol{\theta}) = \text{blockdiag}(\mathbf{G}(\boldsymbol{\theta}^1), \dots, \mathbf{G}(\boldsymbol{\theta}^L))$, and
 195 is further approximated as a Kronecker product, $\mathbf{G}(\boldsymbol{\theta}^l) \approx \mathbf{B}^l \otimes \mathbf{A}^l$. To evaluate the approxima-
 196 tion’s quadratic form for representation drift regularization, we simply store the Kronecker factors
 197 $\{(\mathbf{B}_t^l, \mathbf{A}_t^l)\}_l$ from task t , then evaluate (without instantiating the Kronecker product (Loan, 2000))

$$\mathcal{L}_{t \rightarrow t'}^{\text{drift}}(\boldsymbol{\tau}_{t'}) = \alpha_{t'}^2 \boldsymbol{\tau}_{t'}^\top \mathbf{G}_t(\boldsymbol{\theta}_0) \boldsymbol{\tau}_{t'} \stackrel{\text{KFAC}}{\approx} \alpha_{t'}^2 \sum_{l=1}^L \boldsymbol{\tau}_{t'}^{l\top} (\mathbf{B}_t^l \otimes \mathbf{A}_t^l) \boldsymbol{\tau}_{t'}^l, \quad (6)$$

201 with $\boldsymbol{\tau}^l$ denoting the part of $\boldsymbol{\tau}$ corresponding to the parameters in layer l .

202 **KFAC for a single layer.** To illustrate the approximation, consider a single fully-connected layer l in
 203 a neural network, with associated weights $\mathbf{W}^l \in \mathbb{R}^{D_1 \times D_2}$ (we omit biases for simplicity). The layer
 204 processes an intermediate input representation $\mathbf{a}_n^l \in \mathbb{R}^{D_2}$ for datum \mathbf{x}_n into an intermediate output
 205 representation $\mathbf{z}_n^l = \mathbf{W} \mathbf{a}_n^l \in \mathbb{R}^{D_1}$. Further, let $\boldsymbol{\theta}^l := \text{vec } \mathbf{W}^l \in \mathbb{R}^{D_1 D_2}$ denote the row-flattened
 206 weights. The layer’s GGN block is $\mathbf{G}(\text{vec } \boldsymbol{\theta}^l) = 1/|\mathcal{D}| \sum_n (\mathbf{J}_{\boldsymbol{\theta}^l} f_n)^\top \nabla^2 c_n(\mathbf{J}_{\boldsymbol{\theta}^l} f_n)$ and simplifies
 207 into a sum of Kronecker products by using the chain rule $\mathbf{J}_{\text{vec } \mathbf{W}^l} f_n = (\mathbf{J}_{\mathbf{z}_n^l} f_n)(\mathbf{J}_{\text{vec } \mathbf{W}^l} \mathbf{z}_n^l)$ where
 208 $\mathbf{J}_{\text{vec } \mathbf{W}^l} \mathbf{z}_n^l = \mathbf{I}_{D_1} \otimes \mathbf{a}_n^{l\top}$ (e.g. Dangel et al., 2020) to obtain

$$\mathbf{G}(\text{vec } \mathbf{W}^l) = \frac{1}{|\mathcal{D}|} \sum_n (\mathbf{J}_{\mathbf{z}_n^l} f_n)^\top \nabla^2 c_n(\mathbf{J}_{\mathbf{z}_n^l} f_n) \otimes \mathbf{a}_n^l \mathbf{a}_n^{l\top} := \mathbb{E}_n [\mathbf{B}_n^l \otimes \mathbf{A}_n^l].$$

211 For the last equality, we use $\mathbb{E}_n[\bullet] = 1/|\mathcal{D}| \sum_n \bullet_n$ for averaging over the data set. KFAC assumes
 212 $\mathbb{E}_n[\bullet_n \otimes \star_n] \approx \mathbb{E}_n[\bullet_n] \otimes \mathbb{E}[\star_n]$, yielding a single Kronecker product involving the small factors
 213 $\mathbf{A}_n^l \in \mathbb{R}^{D_2 \times D_2}$, $\mathbf{B}_n^l \in \mathbb{R}^{D_1 \times D_1}$ to approximate the intractable block $\mathbf{G}(\text{vec } \mathbf{W}^l) \in \mathbb{R}^{D_1 D_2 \times D_1 D_2}$:

$$\mathbf{G}(\text{vec } \mathbf{W}^l) \stackrel{\text{KFAC}}{\approx} \left(\frac{1}{|\mathcal{D}|} \sum_n (\mathbf{J}_{\mathbf{z}_n^l} f_n)^\top \nabla^2 c_n(\mathbf{J}_{\mathbf{z}_n^l} f_n) \right) \otimes \left(\frac{1}{|\mathcal{D}|} \sum_n \mathbf{a}_n^l \mathbf{a}_n^{l\top} \right) := \mathbf{B}^l \otimes \mathbf{A}^l.$$

216 **Variations.** KFAC computes two covariances per layer: (i) the input covariance $\mathbf{A}^l = \mathbb{E}_n[\mathbf{a}_n^l \mathbf{a}_n^{l\top}]$,
 217 and (ii) the output gradient covariance $\mathbf{B}^l = \mathbb{E}_{n,m}[\mathbf{g}_{n,m}^l \mathbf{g}_{n,m}^{l\top}]$ of pseudo-gradients $\mathbf{g}_{n,m}^l :=$
 218 $(\mathbf{J}_{\mathbf{z}_n^l} f_n)^\top \mathbf{s}_{n,m} \in \mathbb{R}^C$ obtained by backpropagating vectors $\mathbf{s}_{n,m} \in \mathbb{R}^C$ related to the Hessian $\nabla^2 c_n$. There
 219 exist different variations to compute \mathbf{B}^l and – since it is a priori unclear which approach works best
 220 in the context of TA – we consider two variants that differ in cost (details in (Dangel et al., 2025)): (i) **Exact** (Botev et al., 2017) uses C backpropagations per datum and exactly computes \mathbf{B}^l ; (ii) **Monte-Carlo** (MC, Martens & Grosse, 2015) randomizes the exact approach and computes an unbiased MC estimate of \mathbf{B}^l using $M < C$ backpropagations per datum (typically, $M = 1$).
 221

224 3.4 MULTI-TASK TRAINING PROCEDURE & REGULARIZATION MERGING

225 **Naïve multi-task regularization.** So far, we only considered two tasks. In practice, we want to
 226 add a new task vector given multiple existing task vectors, which introduces new challenges. To
 227 promote disentanglement when training the task vector $\boldsymbol{\tau}_{t'}$, we introduce a penalty against rep-
 228 resentation drift w.r.t. other tasks $t \neq t'$. Starting with the standard training loss $\mathcal{L}_{\mathcal{D}_{t'}}(\boldsymbol{\tau}_{t'}) =$
 229 $1/|\mathcal{D}_{t'}| \sum_{(\mathbf{x}, \mathbf{y}) \in \mathcal{D}_{t'}} c(f_{\text{lin}}(\mathbf{x}, \boldsymbol{\tau}_{t'} + \boldsymbol{\theta}_0), \mathbf{y})$, the overall fine-tuning objective becomes
 230

$$232 \mathcal{L}_{\mathcal{D}_t}(\boldsymbol{\tau}_{t'}) + \beta \sum_{t \neq t'} \lambda_t \mathcal{L}_{t \rightarrow t, t'}^{\text{drift}}(\boldsymbol{\tau}_{t'}) \stackrel{\text{KFAC}}{\approx} \mathcal{L}_{\mathcal{D}_{t'}}(\boldsymbol{\theta}) + \beta \sum_{t \neq t'} \lambda_t \sum_{l=1}^L \boldsymbol{\tau}_{t'}^{l\top} (\mathbf{B}_t^l \otimes \mathbf{A}_t^l) \boldsymbol{\tau}_{t'}^l, \quad (7)$$

233 where β and λ_t control the overall and task-specific regularization strengths, respectively. We weight
 234 tasks by data set size, $\lambda_t = |\mathcal{D}_t| / \sum_{t \neq t'} |\mathcal{D}_t|$. Given a pre-computed KFAC of each task $t \neq t'$, this
 235 formulation enables regularization without requiring direct access to data sets of external tasks.
 236

237 **Accumulated regularizer.** A key limitation of the objective in Eq. (7) is that we must store the Kro-
 238 necker factors individually for each task, incurring $\mathcal{O}(T)$ memory and run time cost. To address this,
 239 we introduce an approximation of the accumulated regularizer $\mathbf{G}_{-t'} = \sum_{t \neq t'} \lambda_t \mathbf{G}_t$, which accounts
 240 for all other tasks simultaneously using a single Kronecker product, via the further approximation
 241

$$242 \mathbf{G}_{-t'} \stackrel{\text{KFAC}}{\approx} \sum_{l=1}^L \sum_{t \neq t'} \lambda_t \mathbf{B}_t^l \otimes \mathbf{A}_t^l \stackrel{\text{merge}}{\approx} \sum_{l=1}^L \left(\sum_{t \neq t'} \mathbf{B}_t^l \right) \otimes \left(\sum_{t \neq t'} \lambda_t \mathbf{A}_t^l \right). \quad (8)$$

244 Empirically, this heuristic (Eq. (8)) matches the un-merged formulation’s performance (Eq. (7)).
 245

246 4 EXPERIMENTS

247 **Vision Tasks.** We evaluate performance on the “8 Vision” benchmark (Ilharco et al., 2022), which
 248 covers eight classification data sets: Stanford Cars (Krause et al., 2013), DTD (Cimpoi et al., 2014),
 249 EuroSAT (Helber et al., 2019), GTSRB (Stallkamp et al., 2011), MNIST (LeCun et al., 2002),
 250 RESISC45 (Cheng et al., 2017), SUN397 (Xiao et al., 2016), and SVHN (Netzer et al., 2011).
 251 We leverage CLIP (Radford et al., 2021) as foundational backbone and compare against non-linear
 252 fine-tuning (Non-Linear FT, Ilharco et al., 2022), linearized fine-tuning (Linear FT, Ortiz-Jimenez
 253 et al., 2023), and τ Jp (Yoshida et al., 2025), which uses external task data to mitigate task-vector
 254 interference. For each method, we collect eight checkpoints during training and subsequently merge
 255 them into a single unified model (see the supplementary materials for additional details). Following
 256 the original setup (Ortiz-Jimenez et al., 2023), we report both absolute and normalized accuracy.
 257 We further analyze the role of the rescaling coefficient α : (i) setting $\alpha_t = \alpha = 1$ for all tasks,
 258 corresponding to a plain addition of task vectors, and (ii) tuning α on a cross-task validation set.
 259

260 **Comparison with related works.** We present a comparative analysis of our regularizer in two
 261 distinct regimes. On one hand, we evaluate it in the *linearized regime*, for which it was originally
 262 designed; on the other, we examine whether its benefits also extend to the *non-linear regime*. If so,
 263 this would broaden the applicability of our approach to most state-of-the-art learning frameworks.

264 **Linearized fine-tuning regime.** Tab. 1 reports the results on the 8Vision benchmark. We also
 265 refer to Fig. 2 (left) for a visual depiction of the per-task absolute accuracy of the merged model in
 266 the linearized regime. The results indicate that our KFAC-regularized approach yields substantial
 267 improvements against the baseline, achieving performance on par with τ Jp (Yoshida et al., 2025)
 268 while avoiding any reliance on external data from other tasks. This makes our method not only more
 269 flexible but also inherently privacy-preserving, without sacrificing accuracy. Furthermore, whereas
 competing methods often require coefficient grid search, our approach proves highly robust: even

270 Table 1: Task addition results on the eight vision datasets. The “ α ” column specifies how task vector
 271 coefficients are chosen. “1.0” denotes that all coefficients are fixed to 1.0, with no tuning.

272 273 274 275 276 277 278 279 280 281 282 283 284 285 286	Method	Dataless	α	ViT-B/32		ViT-B/16		ViT-L/14	
				Abs.	Norm.	Abs.	Norm.	Abs.	Norm.
Pre-trained	–	–	–	48.4	–	55.4	–	65.0	–
Individual	–	–	–	90.9	–	92.4	–	93.8	–
MTL	–	–	–	87.8	–	90.8	–	92.6	–
Linearized Fine-Tuning									
Linear FT	–	1.0	77.4	88.0	–	81.2	90.0	88.0	94.8
	–	Best	78.9	89.8	–	81.9	90.8	88.0	94.8
τ Jp Yoshida et al. (2025)	✗	1.0	85.0	97.4	–	88.2	98.3	90.9	98.3
	–	Best	85.6	98.2	–	88.6	98.7	91.1	98.5
Diag. GGN Porrello et al. (2025)	✓	1.0	80.1	92.3	–	82.9	93.2	87.9	96.3
	–	Best	80.2	92.5	–	83.0	93.3	88.0	96.4
KFAC, Ours	✓	1.0	86.0	97.7	–	88.4	98.0	91.6	99.3
	–	Best	86.1	97.8	–	88.4	98.0	91.6	99.3

287 Table 2: **Task addition results on the eight vision datasets under the non-linear fine-tuning regime.**

289 290 291	Method	Dataless	α	ViT-B/32		ViT-B/16		ViT-L/14	
				Abs.	Norm.	Abs.	Norm.	Abs.	Norm.
Non Linear Fine-Tuning									
Non-linear FT	–	1.0	32.0	32.9	–	27.4	28.2	45.3	47.5
	–	Best	73.5	80.4	–	77.0	82.9	84.5	89.7
TaLoS Iurada et al. (2025)	✓	1.0	53.3	59.7	–	68.2	77.2	46.1	50.8
	–	Best	77.9	87.7	–	79.9	90.1	84.7	91.1
Attn. Only FT Jin et al. (2025)	–	1.0	22.5	23.3	–	22.8	23.4	66.2	69.7
	–	Best	78.2	86.3	–	80.4	87.1	88.2	93.8
Attn. Only FT + KFAC, Ours	✓	1.0	60.3	64.5	–	59.0	62.3	82.1	87.2
	–	Best	83.1	91.3	–	84.3	91.0	89.9	95.9

301
 302
 303 a simple addition of task vectors ($\alpha = 1$) performs competitively, suggesting that post-hoc tuning
 304 can be safely omitted. As a side note, the evidence on ViT-B/32 suggests that the smaller the model
 305 scale, the more crucial curvature regularization becomes for achieving strong final performance.

306 In this setup, we also compare against Porrello et al. (2025), which applies curvature regularization
 307 using a coarse estimate based on the **diagonal** of the Fisher Information Matrix. Both approaches
 308 exploit curvature information of the pre-trained model; however, our method relies on the KFAC ap-
 309 proximation, which provides a more refined estimate that captures intra-layer weight dependencies.
 310 The results clearly show that the more accurate the curvature approximation, the larger the gains
 311 in Task Arithmetic. Notably, even the diagonal-based regularization improves over naïve linear
 312 fine-tuning, highlighting the central role of regularization in enabling weight disentanglement.

313 **Non-linear fine-tuning regime.** We now consider the non-linear fine-tuning regime (Tab. 2 and
 314 Fig. 2, *Right*). In this setting, alternative approaches attempt to approximate linear behavior without
 315 fully linearizing the model. For example, TaLoS Iurada et al. (2025) follows a different route and
 316 identifies a subset of parameters that consistently exhibit low gradient sensitivity across tasks and
 317 updates only these sparse components. This promotes weight disentanglement during fine-tuning
 318 while avoiding the computational bottlenecks of full linearization, enabling efficient task addition
 319 and negation. Instead, the authors of Attention-Only Fine-Tuning Jin et al. (2025) fine-tune only the
 320 attention layers of Transformers, showing that this strategy implicitly induces *kernel-like* behavior.

321 In this regard, although our regularization is not theoretically exact in the non-linear regime, its ap-
 322 plicability can still be justified whenever linearized behavior is implicitly enforced. For this reason,
 323 in the non-linear setting we pair our regularizer with Attention-Only Fine-Tuning, which has been
 324 shown to induce approximately linear dynamics in Transformers, thereby providing a practical and

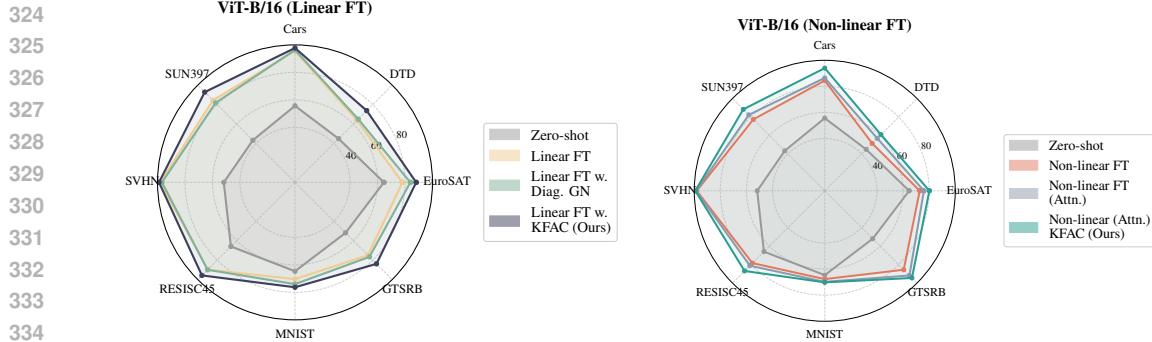


Figure 2: Impact of training and regularization choices on 8 Vision (abs. accuracy). *Left*: linearized regime, compared against the diagonal approximation (Porrello et al., 2025). *Right*: non-linear regime, compared against attention-only fine-tuning (Jin et al., 2025). See supplementary materials for full results (tables/plots) for **CLIP ViT-B/32** and **-L/14** – the finding remain consistent.

Table 3: Task negation on 8 Vision. As Ortiz-Jimenez et al. (2023), we report the minimum accuracy on the target tasks while preserving at least 95% of the pretrained model’s accuracy on control tasks.

Method	Dataless	ViT-B/32		ViT-B/16		ViT-L/14	
		Targ. ↓	Cont. ↑	Targ. ↓	Cont. ↑	Targ. ↓	Cont. ↑
Pre-trained	–	48.4	63.3	55.4	68.3	65.0	75.5
Non-linear FT	–	20.4	60.5	20.4	65.3	18.1	72.4
Linear FT	–	9.3	60.5	8.3	65.5	7.5	72.1
TaLoS Iurada et al. (2025)	✓	11.0	60.7	10.6	66.1	10.7	73.6
τ_{Jp} Yoshida et al. (2025)	✗	6.7	60.8	4.7	66.0	3.7	73.0
KFAC, Ours	✓	3.4	62.4	3.4	66.4	3.5	72.6

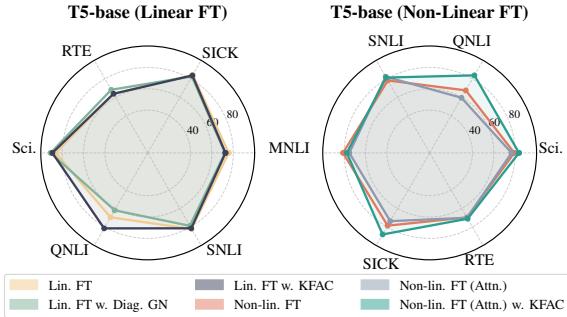
well-motivated way to extend our method beyond the strictly linearized regime. The results in Fig. 2 (*Right*) show that this is the case: when fine-tuning only attention layers, our approach proves beneficial even in the non-linear regime. Moreover, in this setting, the choice of the α coefficient has a stronger impact on the final accuracy. However, our approach still appears to be the most robust on average, a trend further corroborated by the experiment reported in App. F.2.

Unlearning. In Tab. 3 we investigate a setting where each task vector is subtracted from the pretrained model. In doing so, we use ImageNet as a control task to verify whether subtraction selectively removes the corresponding task without erasing general knowledge. Our model achieves stronger forgetting of target tasks while better preserving control task, surpassing that of the main competitor, τ_{Jp} (Yoshida et al., 2025). Notably, since our regularizer is dataless, it avoids the challenges associated with transferring and storing a “large” data set such as ImageNet to perform regularization. This property is particularly promising in the context of the massive data sets used today to train conversational models, where the cost of data access and management is critical.

Language tasks. Following Stoica et al. (2025), we apply our method to the T5-base model (Raffel et al., 2020) across six natural language tasks: SNLI (Bowman et al., 2015), MultiNLI (Williams et al., 2018), SICK (Marelli et al., 2014), SciTail (Khot et al., 2018), RTE (Wang et al., 2018), and QNLI (Wang et al., 2018). As shown in Fig. 3, in the text domain our approach consistently outperforms the baselines, particularly under non-linear fine-tuning, thus corroborating the findings observed in vision. However, leveraging data from other tasks (τ_{Jp}) yields additional gains, suggesting that textual domains may still benefit from even more accurate curvature estimation.

Comparison of model merging strategies. Fig. 4 compares several existing approaches for merging task vectors, including **TIES** (Yadav et al., 2023), **DARE** (Yu et al., 2024), and the more recent state-of-the-art methods **TSV** (Gargiulo et al., 2025) and **ISO** (Marczak et al., 2025). These methods operate post-hoc, i.e., after training, and are therefore complementary to our approach, which instead acts during training. The results indicate that with naïve linear fine-tuning (yellow bars), non-trivial merging strategies such as TSV and ISO are essential to achieve good performance. In contrast, under KFAC regularization (green bars), the simple summation of task vectors (TA) already yields the

Method	Dataless	Abs.	Norm.
Individual	—	85.9	—
MTL	—	83.6	—
Non-lin. FT	—	75.7	87.7
Linear FT	—	76.9	92.8
Attn. Only FT	—	72.9	85.2
TaLoS	✓	76.3	93.4
τ_{Jp}	✗	81.3	100
KFAC, Ours	✓	78.7	98.9



(a) Task addition results for **T5-base**. All reported scores correspond to the best-performing α values; the results obtained with $\alpha = 1$ are provided in the appendix.

(b) Impact of training and regularization choices on language (abs. accuracy). *Left*: linearized regime with no regularization and with the diagonal approximation. *Right* non-linear regime, with attention-only fine-tuning with and without regularization.

Figure 3: Results for language tasks. *Left*: impact of different training strategies and sensitivity to α hyperparameter. *Right*: effects of different regularizations on linear and non-linear fine-tuning.

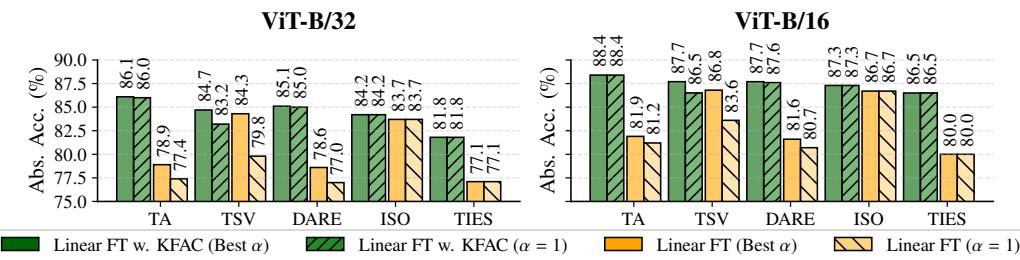


Figure 4: Effect of varying merging strategies and of grid search over the coefficient α , with and without regularization. All models are tested on checkpoints obtained through linearized fine-tuning.

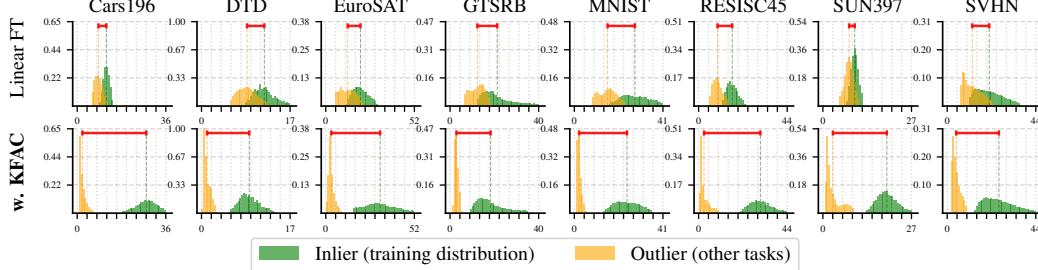
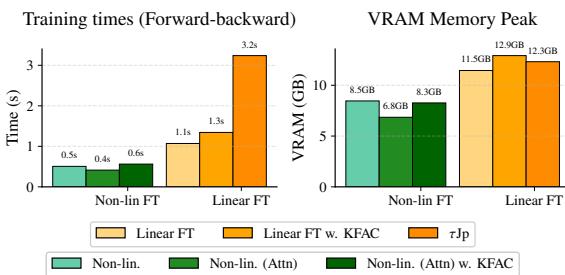
best results and is robust to the choice of the merging coefficient α . This makes the approach suitable for scenarios where model merging must be performed on-the-fly and adaptively (Crisostomi et al., 2025), with negligible overhead, in order to personalize the model for specific user requests.

Naïve multi-task training vs. accumulated regularizer. We herein investigate the impact of the heuristic used in our approach, which accumulates the Kronecker matrices (see Eq. (8)) and thereby avoids a linear cost in the number of tasks. To this end, we run experiments using the idealized naïve multi-task training described in Eq. (7). Our findings, reported in Tab. 4, show that the gap between the idealized and the actual approach is marginal for medium-sized architectures such as ViT-B/16 in vision and T5-base in text. For ViT-B/32, we instead observe a small but consistent gap in favor of the idealized training objective, which aligns with our experience that smaller architectures tend to be more sensitive to curvature regularization and hence to the quality of the approximation.

Curvature regularization enables Task Localization. We show that our approach enables a clear separation between training and out-of-distribution examples. Indeed, given an input x and a task vector τ_t , we measure $\|J_{\theta} f(x, \theta_0) \tau_t\|_2^2$, which we interpret as a *normalcy score* for task t . With our regularization (Eq. (3)), these scores are indeed forced to remain low for examples outside the t -th training distribution. As illustrated in Fig. 5, this is exactly what we observe in practice: the distribution of $\|J_{\theta} f(x, \theta_0) \tau_t\|_2^2$ is pushed toward zero whenever the input does not belong to task t . With the naïve linear fine-tuning, this behavior is instead not as much clear. This indicates that, under KFAC curvature regularization, each task vector influences the network output only for inputs drawn from its own training distribution. Moreover, this property suggests a natural use of our method for out-of-distribution detection, as it provides a principled mechanism to assess whether an input lies within the model training distribution. **A complementary analysis in the nonlinear fine-tuning regime is provided in the supplementary materials**, where we compare our method against TaLoS and attention-only fine-tuning and observe that the same task-localization behavior persists.

Table 4: Our Kronecker-accumulation heuristic *vs.* the idealized multi-task formulation.

Method	Complexity	α	ViT-B/32		ViT-B/16		T5-base	
			Abs.	Norm.	Abs.	Norm.	Abs.	Norm.
Naïve Multi-Task FT	$\mathcal{O}(T)$	1.0	86.5	98.4	88.0	97.5	78.5	97.0
		Best	86.6	98.5	88.1	97.6	78.5	97.0
Accumulated reg.	$\mathcal{O}(1)$	1.0	86.0	97.7	88.4	98.0	78.6	98.7
		Best	86.1	97.8	88.4	98.0	78.7	98.9

Figure 5: Distribution of $\|J_{\theta} f(\mathbf{x}, \theta_0) \tau_t\|_2^2$ for inputs originating from the training distribution of task t (inliers) versus from other tasks (outliers), under both regularized and non-regularized FT.

(a) Computational overhead: training times and GPU peak.

	Exact	MC=1 (ours)
\mathbf{A} [s]	1.4	1.4
\mathbf{B} [s]	91.5	0.2
Total [min]	198.7	3.9

(b) Computation time for the KFAC approximation. Reported times for A and G correspond to the *average* over a batch of 8 examples, while the last row shows the total time (in minutes) required to compute the KFAC approximation for all tasks of 8Vision.

Figure 6: Analysis of the overhead of KFAC regularization during training and pre-computation.

Training costs. Fig. 6 analyzes the overhead introduced by our approach, which is twofold: estimating the KFAC matrices (before training) and computing the regularizer (during training). No overhead is introduced at inference time. With a single Monte Carlo sample, estimating all KFAC matrices for the 8 Vision tasks (128 examples per task) takes only 4 minutes, a very limited amount of time compared to the exact approach from Botev et al. (2017). During training, the overhead mainly depends on the chosen regime, with linearized fine-tuning having the largest computational footprint. Nonetheless, KFAC regularization requires only a negligible amount of additional resources, amounting to roughly one third of the training time of τ_{Jp} (Yoshida et al., 2025). This efficiency arises because the τ_{Jp} penalty requires a second forward–backward pass through the (slower) linearized model. Moreover, since our method does not rely on data for regularization, it avoids the repeated cost of loading new batches into GPU memory, another factor that slows down τ_{Jp} .

Memory footprint. Fig. 6 (right) reports the peak VRAM usage across training regimes. KFAC introduces small increase relative to unregularized baselines: in the linearized regime, it shows a +12% overhead ($11.5 \rightarrow 2.9$ GB) w.r.t. linear fine-tuning, while in the non-linear attention-only training it shows a +22% increase ($6.8 \rightarrow 8.3$ GB). For reference, τ_{Jp} peaks at 12.3 GB (+7% vs. linear FT), and standard non-linear fine-tuning reaches 8.5 GB. No memory overhead incurs at inference since regularization is inactive. Notably, aggregating all per-task KFAC factors into a single surrogate keeps the training footprint of our method at $\mathcal{O}(1)$ w.r.t. the number of tasks.

KFAC estimation. In Fig. 7, we analyze the effect of varying the number of examples and MC samples used for curvature estimation. Our findings (Fig. 7, Left) indicate that using 128–256 examples is already sufficient to saturate performance, yielding results comparable to those obtained

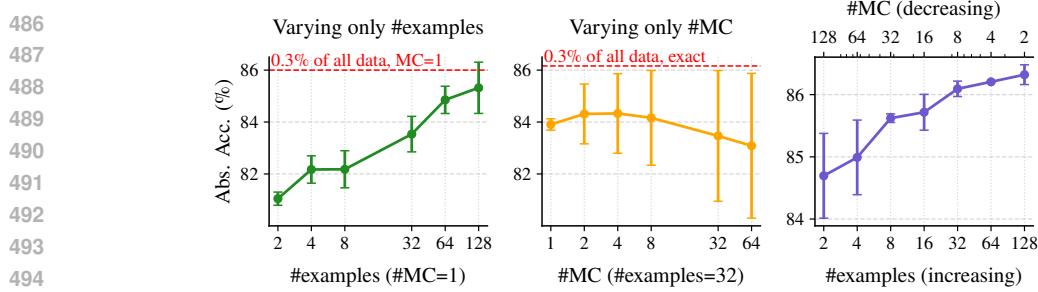
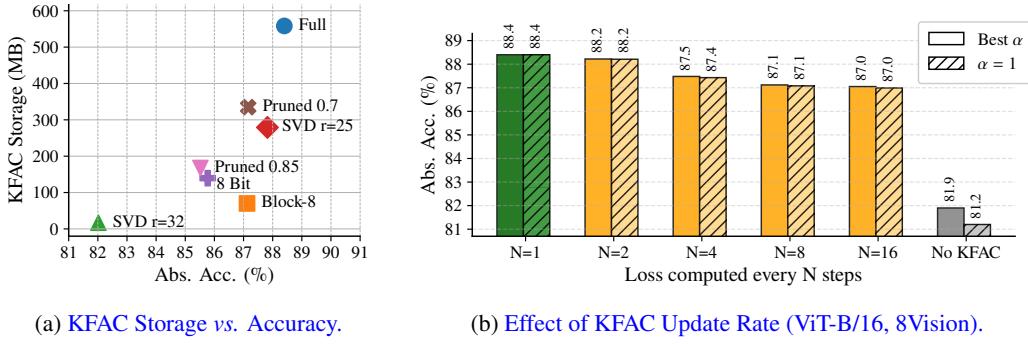


Figure 7: Impact of varying the number of examples and Monte Carlo samples for the KFAC.

Figure 8: Memory-efficiency analysis of the proposed KFAC regularizer. (a) Accuracy under different KFAC compression strategies. (b) Effect of applying the regularization loss every N steps.

with 30% of each training set. Moreover, final performance is generally on par with that obtained with the exact approximation of Botev et al. (2017). With respect to Monte Carlo sampling, only a few samples per example (1–2) are sufficient. Surprisingly, performance deteriorates beyond this point, with variance across seeds increasing as the number of MC samples grows. Overall, increasing the number of MC samples is less effective than using more data with fewer MC samples.

Compressed KFAC. Unfortunately, the memory cost of storing KFAC matrices scales quadratically with the layer width, which may become challenging for very large models. To mitigate this cost, we evaluate how aggressively KFAC matrices can be compressed – via dynamic 8-bit quantization, structured pruning, block-diagonalization, and truncated SVD (see App. F.6) – without harming accuracy. On ViT-B/16 (8 Vision), these techniques yield substantial memory savings with only minor performance loss (Fig. 8a). The block-based strategy provides the best trade-off, decreasing memory from approximately 550 MB (full KFAC) to about 70 MB – 87% reduction – while incurring only ~1-point drop in absolute accuracy (88.40 to 87.12).

We additionally analyze whether the KFAC matrices can be moved off-GPU during training without introducing prohibitive overhead. To do so, we evaluate a regime where the penalty loss is computed and backpropagated **only once** every N training steps. As illustrated in Fig. 8b, applying the loss every 16 steps leads to a modest degradation (~1.4 points) relative to applying it at every iteration. This demonstrates that scheduling curvature updates can effectively amortize memory transfers and enable GPU–CPU factor shuffling without compromising the usefulness of the regularizer.

5 CONCLUSIONS

We investigate curvature-based regularization as a means to enhance Weight Disentanglement in Task Arithmetic. Our approach is dataless, efficient, and effective, making the simple summation of task vectors competitive with state-of-the-art merging strategies, without the need for additional tuning. We demonstrate its applicability in both linearized and non-linear regimes, and show that it enables a clear separation between in- and out-of-distribution examples. Our work calls for releasing additional assets together with the pre-trained weights without having to open-source the training data. Such information, e.g. gradient accumulators of the adaptive optimizer used for training (Li et al., 2025), or in our case KFAC, enable further downstream applications with foundation models.

540 REPRODUCIBILITY STATEMENT
541542 The full codebase used to run our experiments is released along with the paper to facilitate future
543 research.
544545 DISCLOSURE ON THE USE OF LANGUAGE MODELS
546547 Large Language Models (LLMs) were used exclusively to improve the clarity and polish of the
548 writing. All scientific ideas, methodological contributions, experimental designs, analyses, and con-
549 clusions presented in this paper originate entirely from the authors.
550551 REFERENCES
552553 Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal Talwar, and
554 Li Zhang. Deep learning with differential privacy. In *Proceedings of the 2016 ACM SIGSAC*
555 *conference on computer and communications security*, pp. 308–318, 2016.556 Alessandro Achille, Aditya Golatkar, Avinash Ravichandran, Marzia Polito, and Stefano Soatto.
557 Lqf: Linear quadratic fine-tuning. In *Proceedings of the IEEE conference on Computer Vision*
558 *and Pattern Recognition*, pp. 15729–15739, 2021.
559560 Shun-Ichi Amari. Natural gradient works efficiently in learning. *Neural Computation*, 2000.561 Sanjeev Arora, Simon S Du, Wei Hu, Zhiyuan Li, Russ R Salakhutdinov, and Ruosong Wang. On
562 exact computation with an infinitely wide neural net. *Advances in Neural Information Processing*
563 *Systems*, 32, 2019.564 Sanjeev Arora, Simon S Du, Zhiyuan Li, Ruslan Salakhutdinov, Ruosong Wang, and Dingli Yu.
565 Harnessing the power of infinitely wide deep nets on small-data tasks. *International Conference*
566 *on Learning Representations*, 2020.567 Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H Brendan McMahan, Sarvar
568 Patel, Daniel Ramage, Aaron Segal, and Karn Seth. Practical secure aggregation for privacy-
569 preserving machine learning. In *proceedings of the 2017 ACM SIGSAC Conference on Computer*
570 *and Communications Security*, pp. 1175–1191, 2017.572 Aleksandar Botev, Hippolyt Ritter, and David Barber. Practical gauss-newton optimisation for deep
573 learning. In *International Conference on Machine Learning*. PMLR, 2017.
574575 Samuel R. Bowman, Gabor Angeli, Christopher Potts, and Christopher D. Manning. A large an-
576notated corpus for learning natural language inference. In *Proceedings of the 2015 Confer-
577ence on Empirical Methods in Natural Language Processing (EMNLP)*, pp. 632–642, Lisbon,
578 Portugal, 2015. Association for Computational Linguistics. doi: 10.18653/v1/D15-1075. URL
579 <https://aclanthology.org/D15-1075>.580 Gong Cheng, Junwei Han, and Xiaoqiang Lu. Remote sensing image scene classification: Bench-
581 mark and state of the art. *Proceedings of the IEEE*, 105(10):1865–1883, 2017.582 Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy Mohamed, and Andrea Vedaldi. De-
583scribing textures in the wild. In *Proceedings of the IEEE conference on Computer Vision and*
584 *Pattern Recognition*, 2014.586 Donato Crisostomi, Alessandro Zirilli, Antonio Andrea Gargiulo, Maria Sofia Bucarelli, Simone
587 Scardapane, Fabrizio Silvestri, Iacopo Masi, and Emanuele Rodolà. Mass: Moerging through
588 adaptive subspace selection. *arXiv preprint arXiv:2504.05342*, 2025.589 Felix Dangel, Stefan Harmeling, and Philipp Hennig. Modular block-diagonal curvature approxi-
590 mations for feedforward architectures. In *International Conference on Artificial Intelligence and*
591 *Statistics*, 2020.593 Felix Dangel, Runa Eschenhagen, Bálint Mucsányi, and Tobias Weber. Kfac from scratch. *arXiv*,
2025. URL <https://github.com/f-dangel/kfac-tutorial>.

- 594 Erik Daxberger, Agustinus Kristiadi, Alexander Immer, Runa Eschenhagen, Matthias Bauer, and
 595 Philipp Hennig. Laplace redux - effortless bayesian deep learning. In *Advances in Neural Infor-*
 596 *mation Processing Systems*, 2021.
- 597
- 598 Nikita Dhawan, Sicong Huang, Juhan Bae, and Roger Baker Grosse. Efficient parametric approx-
 599 imations of neural network function space distance. In *International Conference on Machine*
 600 *Learning*, 2023.
- 601 Runa Eschenhagen, Alexander Immer, Richard E. Turner, Frank Schneider, and Philipp Hennig.
 602 Kronecker-factored approximate curvature for modern neural network architectures. In *Advances*
 603 *in Neural Information Processing Systems*, 2023.
- 604
- 605 Antonio Andrea Gargiulo, Donato Crisostomi, Maria Sofia Bucarelli, Simone Scardapane, Fabrizio
 606 Silvestri, and Emanuele Rodola. Task singular vectors: Reducing task interference in model
 607 merging. In *Proceedings of the IEEE conference on Computer Vision and Pattern Recognition*,
 608 pp. 18695–18705, 2025.
- 609
- 610 Aditya Golatkar, Alessandro Achille, Avinash Ravichandran, Marzia Polito, and Stefano Soatto.
 611 Mixed-privacy forgetting in deep networks. In *Proceedings of the IEEE conference on Computer*
 612 *Vision and Pattern Recognition*, pp. 792–801, 2021.
- 613
- 614 Roger Grosse and James Martens. A kronecker-factored approximate Fisher matrix for convolution
 615 layers. In *International Conference on Machine Learning*, 2016.
- 616
- 617 Roger Grosse, Juhan Bae, Cem Anil, Nelson Elhage, Alex Tamkin, Amirhossein Tajdini, Benoit
 618 Steiner, Dustin Li, Esin Durmus, Ethan Perez, Evan Hubinger, Kamilé Lukošiūtė, Karina Nguyen,
 Nicholas Joseph, Sam McCandlish, Jared Kaplan, and Samuel R. Bowman. Studying large lan-
 guage model generalization with influence functions, 2023.
- 619
- 620 Patrick Helber, Benjamin Bischke, Andreas Dengel, and Damian Borth. Eurosat: A novel dataset
 621 and deep learning benchmark for land use and land cover classification. *IEEE Journal of Selected*
 622 *Topics in Applied Earth Observations and Remote Sensing*, 12(7):2217–2226, 2019.
- 623
- 624 Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan Dorundo, Rahul
 625 Desai, Tyler Zhu, Samyak Parajuli, Mike Guo, et al. The many faces of robustness: A critical
 626 analysis of out-of-distribution generalization. In *IEEE International Conference on Computer*
 627 *Vision*, 2021.
- 628
- 629 Gabriel Ilharco, Marco Túlio Ribeiro, Mitchell Wortsman, Ludwig Schmidt, Hannaneh Hajishirzi,
 630 and Ali Farhadi. Editing models with task arithmetic. In *International Conference on Learning*
 631 *Representations*, 2022.
- 632
- 633 Leonardo Iurada, Marco Ciccone, and Tatiana Tommasi. Efficient model editing with task-localized
 634 sparse fine-tuning. In *International Conference on Learning Representations*, 2025.
- 635
- 636 Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and gen-
 637 eralization in neural networks. *Advances in Neural Information Processing Systems*, 31, 2018.
- 638
- 639 Ruochen Jin, Bojian Hou, Jiancong Xiao, Weijie Su, and Li Shen. Fine-tuning attention modules
 640 only: Enhancing weight disentanglement in task arithmetic. *International Conference on Learn-*
 641 *ing Representations*, 2025.
- 642
- 643 Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin
 644 Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. Ad-
 645 vances and open problems in federated learning. *Foundations and trends® in machine learning*,
 14(1–2):1–210, 2021.
- 646
- 647 Tushar Khot, Ashish Sabharwal, and Peter Clark. Scitail: A textual entailment dataset from science
 648 question answering. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 32,
 649 2018.
- 650
- 651 Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for fine-grained
 652 categorization. In *Proceedings of the IEEE international conference on computer vision work-*
 653 *shops*, pp. 554–561, 2013.

- 648 Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
 649 *Master's thesis, University of Tront*, 2009.
 650
- 651 Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
 652 document recognition. *Proceedings of the IEEE*, 86(11):2278–2324, 2002.
- 653 Yu Xin Li, Felix Dangel, Tam Derek, and Colin Raffel. Fishers for free? approximating the fisher
 654 information matrix by recycling the squared gradient accumulator. In *International Conference*
 655 *on Machine Learning (ICML)*, 2025.
- 656
- 657 Wu Lin, Felix Dangel, Runa Eschenhagen, Kirill Neklyudov, Agustinus Kristiadi, Richard E. Turner,
 658 and Alireza Makhzani. Structured inverse-free natural gradient descent: Memory-efficient &
 659 numerically-stable KFAC. In *International Conference on Machine Learning (ICML)*, 2024.
- 660 Tian Yu Liu and Stefano Soatto. Tangent model composition for ensembling and continual fine-
 661 tuning. In *IEEE International Conference on Computer Vision*, pp. 18676–18686, 2023.
- 662
- 663 Tian Yu Liu, Aditya Golatkar, and Stefano Soatto. Tangent transformers for composition, privacy
 664 and removal. In *International Conference on Learning Representations*, 2024.
- 665 Charles F. Van Loan. The ubiquitous Kronecker product. *Journal of Computational and Applied*
 666 *Mathematics*, 2000.
- 667
- 668 Sadhika Malladi, Alexander Wettig, Dingli Yu, Danqi Chen, and Sanjeev Arora. A kernel-based
 669 view of language model fine-tuning. In *International Conference on Machine Learning*, pp.
 670 23610–23641. PMLR, 2023.
- 671 Daniel Marczał, Simone Magistri, Sebastian Cygert, Bartłomiej Twardowski, Andrew D Bagdanov,
 672 and Joost van de Weijer. No task left behind: Isotropic model merging with common and task-
 673 specific subspaces. In *International Conference on Machine Learning*, 2025.
- 674
- 675 Marco Marelli, Luisa Bentivogli, Marco Baroni, Raffaella Bernardi, Stefano Menini, and Roberto
 676 Zamparelli. Semeval-2014 task 1: Evaluation of compositional distributional semantic models
 677 on full sentences through semantic relatedness and textual entailment. In *Proceedings of the 8th*
 678 *international workshop on semantic evaluation (SemEval 2014)*, pp. 1–8, 2014.
- 679
- 680 James Martens. Deep learning via Hessian-free optimization. In *International Conference on Ma-*
 681 *chine Learning*, 2010.
- 682
- 683 James Martens. New insights and perspectives on the natural gradient method. *Journal of Machine*
 684 *Learning Research*, 21:1–76, 2020.
- 685
- 686 James Martens and Roger Grosse. Optimizing neural networks with kronecker-factored approximate
 687 curvature. In *International Conference on Machine Learning*. PMLR, 2015.
- 688
- 689 James Martens, Jimmy Ba, and Matt Johnson. Kronecker-factored curvature approximations for
 690 recurrent neural networks. In *International Conference on Learning Representations*, 2018.
- 691
- 692 Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
 693 Communication-efficient learning of deep networks from decentralized data. In *International*
 694 *Conference on Artificial Intelligence and Statistics*. PMLR, 2017.
- 695
- 696 Fangzhou Mu, Yingyu Liang, and Yin Li. Gradients as features for deep representation learning. In
 697 *International Conference on Learning Representations*, 2020.
- 698
- 699 Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y. Ng. Reading
 700 digits in natural images with unsupervised feature learning. In *Proceedings of the NIPS Workshop*
 701 *on Deep Learning and Unsupervised Feature Learning*, Granada, Spain, 2011. URL <http://ufldl.stanford.edu/housenumbers/>.
- 702
- 703 Guillermo Ortiz-Jimenez, Alessandro Favero, and Pascal Frossard. Task arithmetic in the tangent
 704 space: Improved editing of pre-trained models. *Advances in Neural Information Processing Sys-*
 705 *tems*, 36:66727–66754, 2023.

- 702 Kazuki Osawa, Yohei Tsuji, Yuichiro Ueno, Akira Naruse, Rio Yokota, and Satoshi Matsuoka.
 703 Large-scale distributed second-order optimization using kronecker-factored approximate curva-
 704 ture for deep convolutional neural networks. In *Proceedings of the IEEE conference on Computer*
 705 *Vision and Pattern Recognition*, 2019.
- 706 Angelo Porrello, Lorenzo Bonicelli, Pietro Buzzega, Monica Millunzi, Simone Calderara, and Rita
 707 Cucchiara. A second-order perspective on model compositionality and incremental learning. In
 708 *International Conference on Learning Representations*, 2025.
- 709 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 710 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 711 models from natural language supervision. In *International Conference on Machine Learning*,
 712 pp. 8748–8763, 2021.
- 713 Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
 714 Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-
 715 text transformer. *Journal of Machine Learning Research*, 21(140):1–67, 2020. URL <http://jmlr.org/papers/v21/20-074.html>.
- 716 Yi Ren, Shangmin Guo, Wonho Bae, and Danica J Sutherland. How to prepare your task head for
 717 finetuning. In *International Conference on Learning Representations*, 2023.
- 718 Hippolyt Ritter, Aleksandar Botev, and David Barber. Online structured laplace approximations for
 719 overcoming catastrophic forgetting. *Advances in Neural Information Processing Systems*, 2018.
- 720 Nicol N. Schraudolph. Fast curvature matrix-vector products for second-order gradient descent. In
 721 *International Conference on Artificial Intelligence and Statistics*, pp. 535–542, 2003.
- 722 Hyounguk Shon, Janghyeon Lee, Seung Hwan Kim, and Junmo Kim. Dlcft: Deep linear continual
 723 fine-tuning for general incremental learning. In *Proceedings of the European Conference on*
 724 *Computer Vision*, pp. 513–529. Springer, 2022.
- 725 Johannes Stallkamp, Marc Schlipsing, Jan Salmen, and Christian Igel. The german traffic sign
 726 recognition benchmark: a multi-class classification competition. In *The 2011 international joint*
 727 *conference on neural networks*. IEEE, 2011.
- 728 George Stoica, Pratik Ramesh, Boglarka Ecsedi, Leshem Choshen, and Judy Hoffman. Model
 729 merging with svd to tie the knots. In *International Conference on Learning Representations*,
 730 2025.
- 731 Anke Tang, Li Shen, Yong Luo, Yibing Zhan, Han Hu, Bo Du, Yixin Chen, and Dacheng Tao.
 732 Parameter efficient multi-task model fusion with partial linearization. In *International Conference*
 733 *on Learning Representations*, 2024.
- 734 Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman.
 735 Glue: A multi-task benchmark and analysis platform for natural language understanding. In
 736 *International Conference on Learning Representations*, 2018.
- 737 Chaoqi Wang, Roger Grosse, Sanja Fidler, and Guodong Zhang. Eigendamage: Structured pruning
 738 in the kronecker-factored eigenbasis. In *International Conference on Machine Learning*, 2019.
- 739 Alexander Wei, Wei Hu, and Jacob Steinhardt. More than a toy: Random matrix models predict how
 740 real-world neural representations generalize. In *International Conference on Machine Learning*,
 741 pp. 23549–23588. PMLR, 2022.
- 742 Adina Williams, Nikita Nangia, and Samuel Bowman. A broad-coverage challenge corpus for sen-
 743 tence understanding through inference. In *Proceedings of the 2018 Conference of the North Amer-
 744 ican Chapter of the Association for Computational Linguistics: Human Language Technologies,
 745 Volume 1 (Long Papers)*, pp. 1112–1122, 2018.
- 746 Jianxiong Xiao, Krista A Ehinger, James Hays, Antonio Torralba, and Aude Oliva. Sun database:
 747 Exploring a large collection of scene categories. *International Journal of Computer Vision*, 119
 748 (1):3–22, 2016.

756 Prateek Yadav, Derek Tam, Leshem Choshen, Colin A Raffel, and Mohit Bansal. Ties-merging: Re-
757 solving interference when merging models. *Advances in Neural Information Processing Systems*,
758 36, 2023.

759
760 Kotaro Yoshida, Yuji Naraki, Takafumi Horie, Ryosuke Yamaki, Ryotaro Shimizu, Yuki Saito, Julian
761 McAuley, and Hiroki Naganuma. Mastering task arithmetic: $\$\\tau\jp as a key indicator for
762 weight disentanglement. In *International Conference on Learning Representations*, 2025.

763 Le Yu, Bowen Yu, Haiyang Yu, Fei Huang, and Yongbin Li. Language models are super mario:
764 Absorbing abilities from homologous models as a free lunch. In *International Conference on
765 Machine Learning*, 2024.

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810 A APPENDIX / SUPPLEMENTARY MATERIAL
811812 The appendix is organized as follows:
813

- 814
-
- 815 • App. B discusses the main limitations of our approach, including memory requirements
-
- 816 and curvature-estimation challenges.
-
- 817
-
- 818 • App. C provides a derivation and a formal bound on the approximation error introduced
-
- 819 when merging multiple K-FAC factors using the Kronecker heuristic.
-
- 820
-
- 821 • App. D presents additional plots illustrating the disentanglement error.
-
- 822
-
- 823 • App. E details the implementation of our methods, with separate discussions for the vision
-
- 824 and text domains.
-
- 825
-
- 826 • App. F reports additional experiments. These include:
-
- 827 – Core analyses:
-
- 828 * per-task performance analysis,
-
- 829 * alpha-sweep robustness study (App. F.2),
-
- 830 * ablation on the regularization coefficient (App. F.3),
-
- 831 * evaluation of a shared KFAC computed on a reference dataset (App. F.4),
-
- 832 * task-localization analysis under nonlinear fine-tuning (App. F.5);
-
- 833
-
- 834 – extended experiments:
-
- 835 * analysis of task localization under memory-efficient KFAC approximations, in-
-
- 836 cluding block-based, SVD-based, pruning, and 8-bit quantized variants (App. F.6),
-
- 837 * additional results on more challenging vision domains using a class-incremental
-
- 838 partitioning protocol (App. F.7).
-
- 839
-
- 840 • App. G provides a concise overview of prior work on linearized fine-tuning and its recent
-
- 841 developments.
-
- 842
-
- 843
-
- 844

838 B LIMITATIONS
839840
841 KFAC requires storing the Kronecker matrices in GPU memory – two per layer, each with quadratic
842 complexity in the number of units. For large models this can become problematic, suggesting that
843 alternative strategies based on matrix compression or structured Kronecker factors (Grosse et al.,
844 2023; Lin et al., 2024) should be explored. While we combine the well-established KFAC with an
845 accumulation strategy, designing curvature approximations that can easily be merged without sacri-
846 ficing accuracy may be worth exploring in the future. Moreover, our experiments in the text domain
847 indicate room for improvement, raising the question of whether more sophisticated techniques for
848 curvature estimation could further enhance Task Arithmetic.
849
850850 C APPROXIMATION ERROR OF THE MERGED K-FAC FACTORS
851852
853 For clarity, we focus on a single layer and assume all layers contribute equally, omitting the task
854 weights λ_t . Let $\{A_t\}_{t=1}^T$ and $\{B_t\}_{t=1}^T$ denote the K-FAC factors associated with the tasks involved
855 in the merge. The heuristic used in Eq. 8 replaces the sum of Kronecker products with the Kronecker
856 product between aggregated factors
857
858

859
$$\sum_{t=1}^T B_t \otimes A_t \approx \left(\sum_{t=1}^T B_t \right) \otimes \left(\frac{1}{T} \sum_{t=1}^T A_t \right). \quad (9)$$
860
861

862 We now provide a simple bound that quantifies the error introduced by this approximation. To do
863 so, we define the empirical means and the deviations from the mean
864

865
$$\bar{A} = \frac{1}{T} \sum_{t=1}^T A_t, \quad \bar{B} = \frac{1}{T} \sum_{t=1}^T B_t, \quad \Delta A_t = A_t - \bar{A}, \quad \Delta B_t = B_t - \bar{B}. \quad (10)$$
866
867

864

865

866 Note that, by construction, $\sum_t \Delta A_t = \sum_t \Delta B_t = 0$. Substituting $A_t = \bar{A} + \Delta A_t$ and $B_t =$
 867 $\bar{B} + \Delta B_t$ into the left-hand side of Eq. (9) yields

868

869
$$\sum_{t=1}^T B_t \otimes A_t = \sum_{t=1}^T (\bar{B} + \Delta B_t) \otimes (\bar{A} + \Delta A_t) \quad (11)$$

 870

871

872
$$= \sum_{t=1}^T (\bar{B} \otimes \bar{A} + \bar{B} \otimes \Delta A_t + \Delta B_t \otimes \bar{A} + \Delta B_t \otimes \Delta A_t) \quad (12)$$

 873

874

875
$$= \underbrace{\sum_{t=1}^T \bar{B} \otimes \bar{A}}_{T \bar{B} \otimes \bar{A}} + \underbrace{\sum_{t=1}^T \Delta A_t}_{=0} + \underbrace{\left(\sum_{t=1}^T \Delta B_t \right) \otimes \bar{A}}_{=0} + \sum_{t=1}^T \Delta B_t \otimes \Delta A_t \quad (13)$$

 876

877

878
$$= T \bar{B} \otimes \bar{A} + \sum_{t=1}^T \Delta B_t \otimes \Delta A_t. \quad (14)$$

 879

880

881 Substituting $A_t = \bar{A} + \Delta A_t$ and $B_t = \bar{B} + \Delta B_t$ into the right-hand side of Eq. (9), instead, yields
 882

883

884
$$\left(\sum_{t=1}^T B_t \right) \otimes \left(\sum_{t=1}^T A_t \right) = T^2 \bar{B} \otimes \bar{A}. \quad (15)$$

 885

886

887 Hence the approximation error is

888

889
$$E := \sum_{t=1}^T B_t \otimes A_t - \frac{1}{T} \left(\sum_{t=1}^T B_t \right) \otimes \left(\sum_{t=1}^T A_t \right) = \sum_{t=1}^T \Delta B_t \otimes \Delta A_t.$$

 890

891

892

893 **Error bound.** Using the Frobenius norm and the property $\|X \otimes Y\|_F = \|X\|_F \|Y\|_F$, we obtain
 894

895

896
$$\|E\|_F \leq \sum_{t=1}^T \|\Delta B_t\|_F \|\Delta A_t\|_F \leq \sqrt{\sum_{t=1}^T \|\Delta B_t\|_F^2} \sqrt{\sum_{t=1}^T \|\Delta A_t\|_F^2}. \quad (16)$$

 897

898

899 Defining the deviations (standard deviations in matrix space), we obtain:
 900

901

902
$$\sigma_A := \sqrt{\frac{1}{T} \sum_{t=1}^T \|\Delta A_t\|_F^2}, \quad \sigma_B := \sqrt{\frac{1}{T} \sum_{t=1}^T \|\Delta B_t\|_F^2}, \quad (17)$$

 903

904

905 we finally obtain the compact bound
 906

907

908
$$\|E\|_F \leq T \sigma_A \sigma_B. \quad (18)$$

 909

910

911

912 **Interpretation.** The approximation error is proportional to the product of the variations of the K-
 913 FAC factors across tasks. When the task-specific factors (A_t, B_t) cluster tightly around their means,
 914 both σ_A and σ_B are small, yielding a small deviation between the true mixed K-FAC term and its
 915 merged approximation. This situation is particularly likely to occur when the matrices are estimated
 916 from a fixed pre-trained backbone such as CLIP: since the underlying feature extractor remains
 917 unchanged across tasks, the induced activation and gradient statistics tend to vary only mildly. As
 918 a result, the corresponding K-FAC factors exhibit limited task-to-task fluctuation, further justifying
 919 the accuracy of the merged approximation.

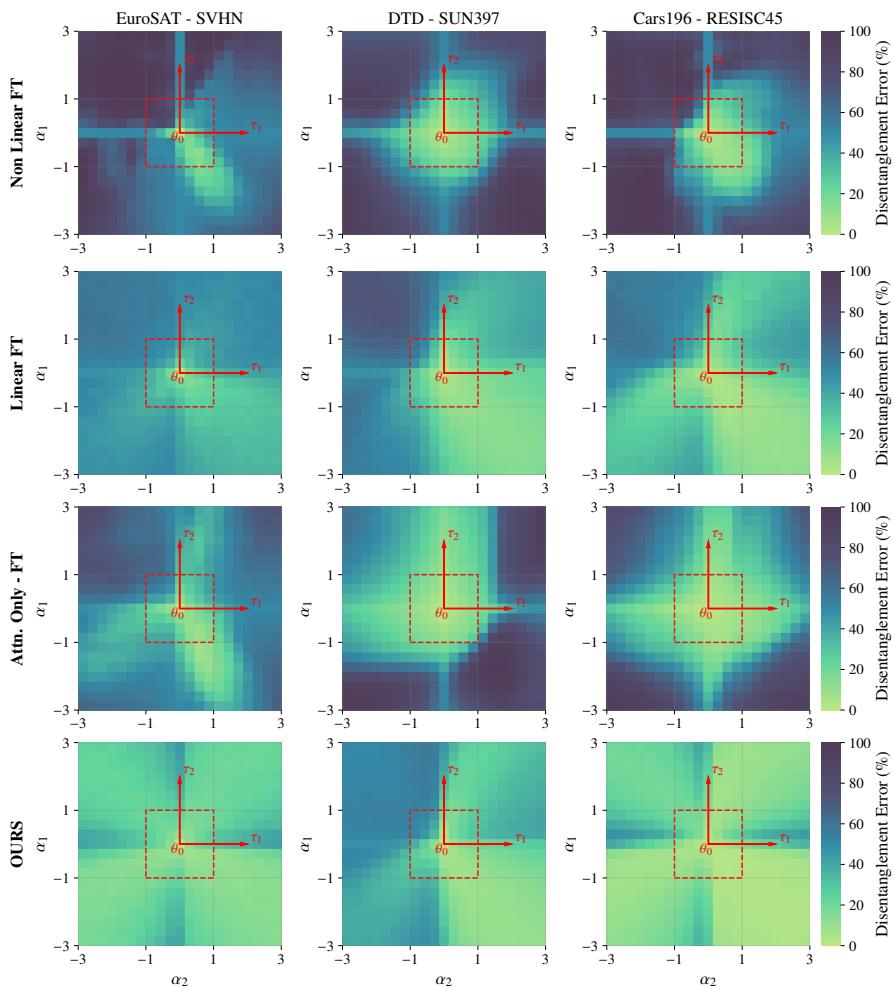


Figure 9: [Visualization of weight disentanglement \(Ortiz-Jimenez et al., 2023\)](#) in ViT-B/16. Non linear fine-tuning Ilharco et al. (2022), Linear fine-tuning Ortiz-Jimenez et al. (2023), Attention-Only fine-tuning Jin et al. (2025), Linear fine-tuning with KFAC regularization.

D ADDITIONAL PLOTS ON WEIGHT DISENTANGLEMENT

In Fig. 9 we report the disentanglement error, a metric introduced by Ortiz-Jimenez et al. (2023):

$$\xi(\alpha_1, \alpha_2) = \sum_{t=1}^2 \mathbb{E}_{\mathbf{x} \sim \mu_t} [\text{dist}(f(\mathbf{x}; \boldsymbol{\theta}_0 + \alpha_t \boldsymbol{\tau}_t), f(\mathbf{x}; \boldsymbol{\theta}_0 + \alpha_1 \boldsymbol{\tau}_1 + \alpha_2 \boldsymbol{\tau}_2))], \quad (19)$$

where $\text{dist}(y_1, y_2) = \mathbb{1}(y_1 \neq y_2)$. When $\xi(\alpha_1, \alpha_2) = 0$, tasks τ_1 and τ_2 merge without interference for the corresponding values of α_1 and α_2 .

As shown in the plots, linearized fine-tuning substantially improves the disentanglement of task vectors. This property is further enhanced under our regularization regime, where only a few darker regions remain, mostly for $\alpha > 1$, a setting that is never used in practice. Notably, in our experiments the disentanglement error is consistently close to zero along the diagonals, which is the most relevant case, since in the literature the common choice is $\alpha_1 = \alpha_2 = \dots = \alpha_n$.

E IMPLEMENTATION DETAILS

The GGN information matrices were estimated using a single Monte Carlo sample and computed on 33% of the available training data. However, our empirical analysis showed that sampling only 250-300 training points is sufficient to obtain a reliable estimation of the curvature matrix.

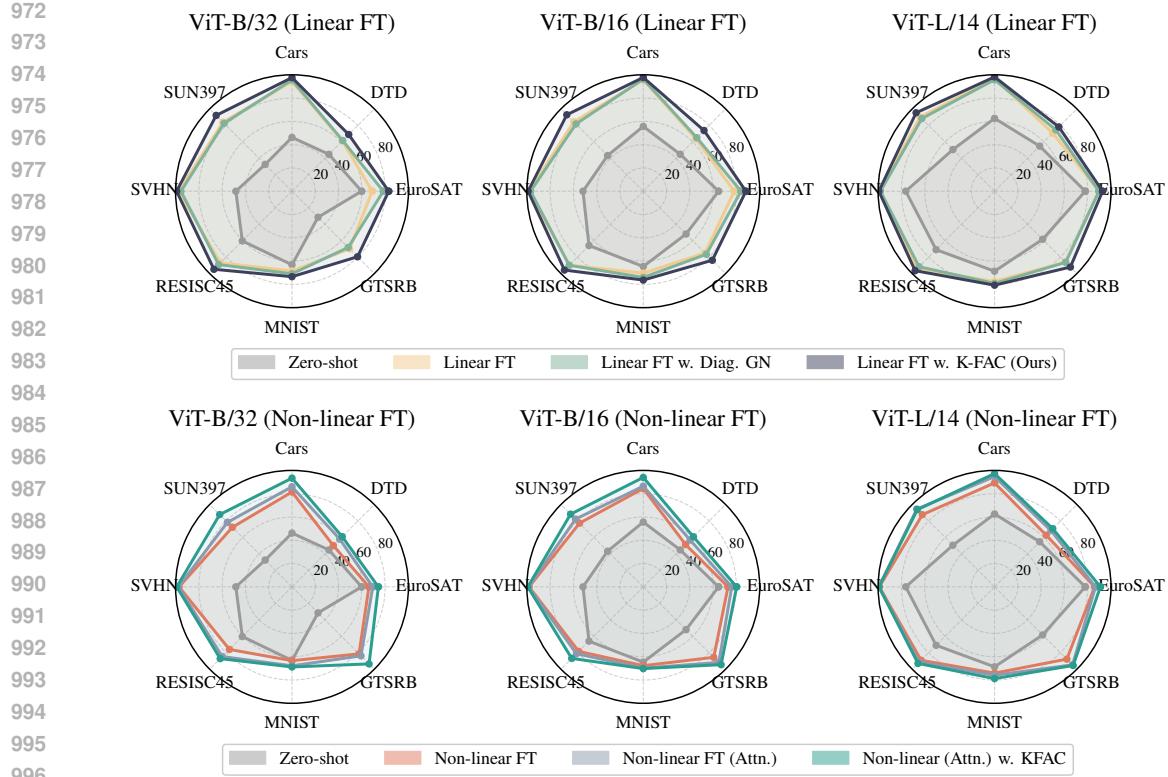


Figure 10: Impact of training and regularization choices on vision tasks (absolute accuracy). Top: linearized regime, compared against the diagonal approximation. Bottom: non-linear regime, compared against attention-only fine-tuning.

E.1 VISION DOMAIN

For training the task vectors, we followed the setup of previous works Ilharco et al. (2022); Ortiz-Jimenez et al. (2023); Yoshida et al. (2025), adopting a batch size of 128. We used the AdamW optimizer with a learning rate of 3×10^{-4} , weight decay of 0.1, and a cosine annealing learning rate scheduler. Unlike prior approaches, we did not apply gradient clipping during training. The regularization term in the loss was weighted by $\lambda = 100$ for ViT-B/32, $\lambda = 500$ for ViT-B/16, and $\lambda = 2000$ for ViT-L/14.

Compared to previous work, we employed a higher learning rate. Since our formulation includes an explicit regularization term in the loss, this allowed us to increase the learning rate without introducing interference across tasks.

E.2 TEXT DOMAIN

SNLI, MultiNLI, and SICK are three-way classification tasks where the relation between a premise and a hypothesis must be identified as entailment, contradiction, or neutral. In contrast, SciTail, RTE, and QNLI are binary entailment tasks, and therefore fine-tuning and evaluation are restricted to two labels.

For training language task vectors, we adopted a batch size of 128, using an AdamW optimizer with a learning rate of 3×10^{-4} with an iteration-based cosine-annealing scheduler and a weight decay of 0.01. Like in vision tasks, we did not apply gradient clipping during training. The regularization term in the loss is set to $\lambda = 20$ for the KFAC regularization and to $\lambda = 0.1$ for the diagonal regularization.

1026 Table 5: 8 Vision - Comparison of different merging strategies on task vectors obtained in the linear
 1027 fine tuning regime Ortiz-Jimenez et al. (2023) with and without KFAC regularization.

Method	α	ViT-B/32		ViT-B/16	
		Abs.	Norm.	Abs.	Norm.
Linear FT + TA Ilharco et al. (2022)	1.0	77.4	88.0	81.2	90.0
	Best	78.9	89.8	81.9	90.8
Linear FT + TIES Yadav et al. (2023)	1.0	77.1	87.6	80.0	88.6
	Best	77.1	87.6	80.0	88.6
Linear FT + ISO Marczak et al. (2025)	1.0	83.7	95.5	86.7	96.4
	Best	83.7	95.5	86.7	96.4
Linear FT + TSV Gargiulo et al. (2025)	1.0	79.8	90.7	83.6	92.7
	Best	84.3	96.2	86.8	96.5
Linear FT + DARE Yu et al. (2024)	1.0	77.0	87.5	80.7	89.4
	Best	78.6	89.6	81.6	90.5
KFAC, Ours + TA Ilharco et al. (2022)	1.0	86.0	97.7	88.4	98.0
	Best	86.1	97.8	88.4	98.0
KFAC, Ours + TIES Yadav et al. (2023)	1.0	81.8	92.5	86.5	95.6
	Best	81.8	92.5	86.5	95.6
KFAC, Ours + ISO Marczak et al. (2025)	1.0	84.2	95.5	87.3	96.7
	Best	84.2	95.5	87.3	96.7
KFAC, Ours + TSV Gargiulo et al. (2025)	1.0	83.2	94.3	86.5	95.7
	Best	84.7	96.2	87.7	97.1
KFAC, Ours + DARE Yu et al. (2024)	1.0	85.0	96.5	87.6	97.0
	Best	85.1	96.6	87.7	97.1

F ADDITIONAL EXPERIMENTS

In this section we present the results of additional experiments on task addition conducted on the 8Vision dataset, complementing those already reported in the main paper.

F.1 PERFORMANCE

Fig. 10 provides a per-task breakdown of the same experiment reported in Tab. 1. Interestingly, the larger ViT-L/14 backbone exhibits smaller relative gains from regularization, particularly in the non-linear regime, where its behavior closely resembles that of its linearized counterpart. Consistent with prior work Ortiz-Jimenez et al. (2023), this suggests that very large models may already display an implicit form of regularization. Conversely, the ViT-B/32 benefits the most from regularization, showing that smaller architectures require more careful fine-tuning to enable effective task arithmetic.

Finally, Tab. 5 reports both absolute and normalized accuracy for different merging strategies: **TIES** (Yadav et al., 2023), **DARE** (Yu et al., 2024), **TSV** (Gargiulo et al., 2025), and **ISO** (Marczak et al., 2025), when applied to task vectors obtained through linearized fine-tuning with and without regularization. As also shown in Fig. 4 and discussed in the main paper, our results indicate that without regularization, non-trivial merging strategies such as TSV and ISO are essential to achieve strong performance. In contrast, under KFAC regularization, simple task arithmetic (TA) already provides the best results and remains robust to the choice of the merging coefficient α .

F.2 ROBUSTNESS UNDER TASK ARITHMETIC: ALPHA-SWEEP ANALYSIS

In this section, we evaluate how different fine-tuning strategies behave when performing task arithmetic, focusing on the stability of performance as the task-vector scaling coefficient α varies in the range $[0, 1]$. The evaluation follows the standard task-arithmetic setup, where multiple task vectors are combined through simple summation. A method is considered robust if its accuracy varies smoothly across the sweep and remains stable over a broad interval of α values.

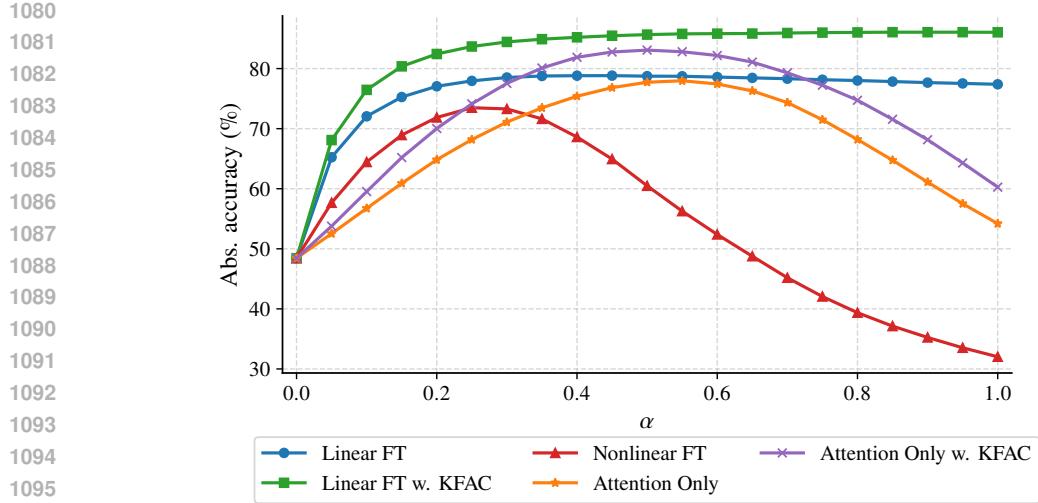


Figure 11: α -sweep analysis on ViT-B/32 (8Vision) under task arithmetic. Accuracy is reported as a function of the scaling coefficient $\alpha \in [0, 1]$. The linearized KFAC-regularized model shows the highest robustness across all α , while in the nonlinear regime it consistently outperforms attention-only fine-tuning (Jin et al., 2025).

Table 6: On 8Vision, ablation of λ on ViT-B/32 (left) and ViT-B/16 (right). All performances are reported in terms of absolute accuracy using $\alpha = 1$.

ViT-B/32					ViT-B/16				
λ	Seed 7	Seed 21	Seed 42	AVG.	λ	Seed 7	Seed 21	Seed 42	AVG.
0	75.0	75.4	75.1	75.2 ± 0.028	0	79.1	78.7	79.1	79.0 ± 0.188
1	82.2	82.4	80.6	81.7 ± 0.648	1	83.2	83.4	83.8	83.5 ± 0.265
10	85.2	85.1	85.1	85.1 ± 0.002	50	86.9	86.8	87.0	86.9 ± 0.059
100	86.2	85.8	86.0	86.0 ± 0.026	500	88.0	87.9	88.2	88.0 ± 0.114
1000	86.5	86.4	86.4	86.4 ± 0.002	5000	88.3	88.4	88.4	88.4 ± 0.015
10000	84.5	84.4	84.3	84.4 ± 0.006	50000	86.7	86.6	86.6	86.6 ± 0.002

We compare several fine-tuning strategies: naive nonlinear fine-tuning, linear fine-tuning, attention-only fine-tuning (Jin et al., 2025), and our KFAC curvature regularization (under both linearized and nonlinear training regimes). The results, shown in Fig. 11, reveal that our linearized model with curvature regularization is consistently the most robust across the entire α sweep. It maintains high accuracy for all values of α and exhibits the smallest sensitivity to task-vector scaling, while other methods display markedly less stable behavior. In the nonlinear setting, our method continues to outperform attention-only fine-tuning across all α values, confirming that the benefits of our approach extend beyond the linear regime.

Overall, this analysis indicates that curvature regularization not only improves absolute performance but also enhances the reliability of task arithmetic, enabling stable and predictable model behavior even when combining multiple task vectors.

F.3 ABLATION ON THE REGULARIZATION COEFFICIENT

This section presents an ablation study investigating the impact of the scaling coefficient λ applied to the regularization term in the loss function. In Tab. 6 we evaluate the performance of ViT-B/32 and ViT-B/16 using six values of the regularization coefficient, ranging over five orders of magnitude from 0 to 10^4 , and repeated each experiment with three random seeds. The case $\lambda = 0$ serves as the baseline, corresponding to non-regularized fine-tuning. It should be noted that these results differ from those reported in Tab. 1, as the linear fine-tuning therein follows the hyperparameter configuration of Ilharco et al. (2022), whereas the experiments presented here employ the hyperparameter setting described in App. E.

1134
 1135
 1136
 1137
 Table 7: Task addition results on the eight vision datasets when using either task-specific KFAC
 factors or a single shared KFAC computed on ImageNet-1k. Results show that a universal, task-
 agnostic KFAC (ImageNet-KFAC) retains most of the benefits of our regularizer while requiring no
 access to auxiliary task-specific data.

Method	Dataless	α	ViT-B/32		ViT-B/16	
			Abs.	Norm.	Abs.	Norm.
Linear FT	–	1.0	77.4	88.0	81.2	90.0
	–	Best	78.9	89.8	81.9	90.8
KFAC, Ours	✓	1.0	86.0	97.7	88.4	98.0
	✓	Best	86.1	97.8	88.4	98.0
ImageNet-KFAC, Ours	✓	1.0	84.7	97.0	86.0	95.4
	✓	Best	84.7	97.0	86.0	95.4

1148
 1149 The results indicate that the proposed method is robust with respect to the choice of λ . Optimal
 1150 performance is observed for values of λ between 10^2 and 10^3 , while only minor degradation occurs
 1151 for $\lambda = 10$ and $\lambda = 10^4$. This behavior confirms that successful model merging primarily depends
 1152 on the presence of regularization based on information from the Generalized Gauss-Newton matrix,
 1153 and that the magnitude of this term must be sufficiently emphasized. However, the results also show
 1154 that no precise tuning of λ is required to achieve strong performance.

F.4 ELIMINATING TASK DEPENDENCE WITH A UNIVERSAL KFAC

1158 Although our framework completely removes the need for raw auxiliary data, it still requires pre-
 1159 computed input and gradient covariance factors from the tasks to be disentangled. This dependence
 1160 may be limiting in scenarios where such factors cannot be shared due to practical difficulties in stor-
 1161 ing or distributing task-specific curvature statistics, or simply because the set of tasks to be composed
 1162 is not known in advance at training time.

1163 To assess whether this dependence can be relaxed, we test whether broad curvature statistics –
 1164 extracted from a large, natural-image distribution – can serve as a proxy and effectively replace
 1165 the per-task KFAC factors. In details, we build a variant, denoted *ImageNet-KFAC*, in which every
 1166 layer uses a single pair of A/B matrices computed on ImageNet-1k. Ideally, these factors capture
 1167 universal visual covariances, and hence they can remain fixed for all downstream tasks. During fine-
 1168 tuning, these shared factors can entirely substitute the task-specific ones normally employed by our
 1169 regularizer.

1170 As shown in Tab. 7, despite using non-task-specific information, this proxy KFAC recovers approx-
 1171 imately 97–99% of the performance obtained with full task-specific factors on both ViT-B/16 and
 1172 ViT-B/32 (8Vision). The absolute accuracy reached by the ImageNet-KFAC variant is 84.7% on
 1173 ViT-B/32 and 86.0% on ViT-B/16, closely matching the performance of the original approach while
 1174 substantially surpassing diagonal or no-regularization baselines as well as competitive alternatives
 1175 such as TaLoS or attention-only fine-tuning.

1176 These results indicate that a task-agnostic curvature prior, captured by a single shared factorization,
 1177 delivers most of the benefits of our dataless regularizer without accessing any task-specific statis-
 1178 tics. In practical scenarios, this makes the method fully data-agnostic with respect to the problem,
 1179 effectively eliminating any residual coupling to external tasks.

F.5 TASK LOCALIZATION UNDER NON-LINEAR FINE-TUNING

1183 In this section we extend the task-localization analysis presented in the main paper to the nonlinear
 1184 fine-tuning regime. The goal is to assess whether the separation between in-task and out-of-task
 1185 examples, induced by our curvature regularizer under linearized training, persists when full model
 1186 parameters are updated. In details, we measure the same editing-localization metric used in the main
 1187 paper, namely the difference between the Jacobian-projected output variation $\|\mathbf{J}_\theta f(\mathbf{x}, \theta_0) \tau_t\|_2^2$ for
 1188 inputs belonging to task t versus those coming from other tasks.

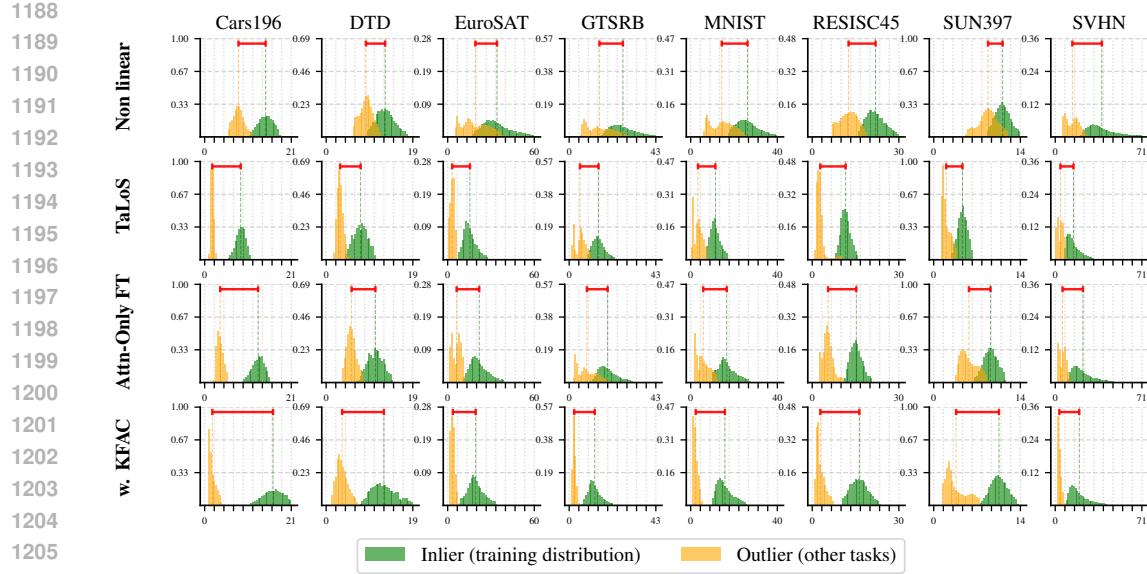


Figure 12: Task localization under **non-linear fine-tuning**. We report the distribution of the Jacobian-projected normalcy scores $\|\mathbf{J}_\theta f(\mathbf{x}, \theta_0) \tau_t\|_2^2$ for inputs belonging to task t (in-task) versus inputs from all other tasks (out-of-task).

As shown in Fig. 12, We evaluate four methods: the standard non-linear fine-tuning, TaLoS Iurada et al. (2025), attention-only fine-tuning Jin et al. (2025), and our proposed KFAC-based curvature regularizer. For each approach, we fine-tune the model in the fully nonlinear setting and compute the distribution of normalcy scores for in-task and out-of-task inputs.

The results show a consistent pattern across all datasets. Our method maintains a clear and sharp separation between in-distribution and out-of-distribution examples, closely mirroring the behavior observed under the linearized regime. TaLoS and attention-only fine-tuning preserve part of this effect but yields a weaker distinction. Overall, these findings confirm that curvature regularization continues to restrict the influence of each task vector to its corresponding training distribution even when the full network is fine-tuned.

F.6 KFAC COMPRESSION STRATEGIES AND TASK LOCALIZATION

To assess the robustness of our curvature regularizer under memory constraints, we evaluate several compression strategies applied directly to the KFAC factors. All strategies described below are applied independently to both A and B matrices for every layer.

The first strategy is a **block-diagonal approximation** (“Block 8”), in which each factor is partitioned into eight equally sized blocks along the main diagonal, with all off-diagonal blocks discarded. This yields a substantial reduction in memory while maintaining a structured representation and preserving dominant second-order interactions.

The second strategy relies on **truncated SVD**. Given the factorization $A = U\Sigma V^\top$, we keep only the top singular components, either by selecting a fixed rank (32 in our experiments) or by retaining a percentage of the original rank (25%). The truncated reconstruction $\hat{A} = U_k \Sigma_k V_k^\top$ provides a low-rank surrogate that preserves the principal curvature directions.

A third strategy applies unstructured **magnitude pruning**. Each KFAC matrix is converted to COO sparse format, and only the largest-magnitude entries are preserved. We consider two keep ratios, 30% and 15%, corresponding to increasingly aggressive sparsification. All remaining entries are set to zero, effectively reducing memory and bandwidth requirements.

Finally, we evaluate **dynamic 8-bit quantization**. Each factor is quantized on-the-fly to an 8-bit integer representation, with per-row scaling ensuring that reconstruction errors remain controlled.

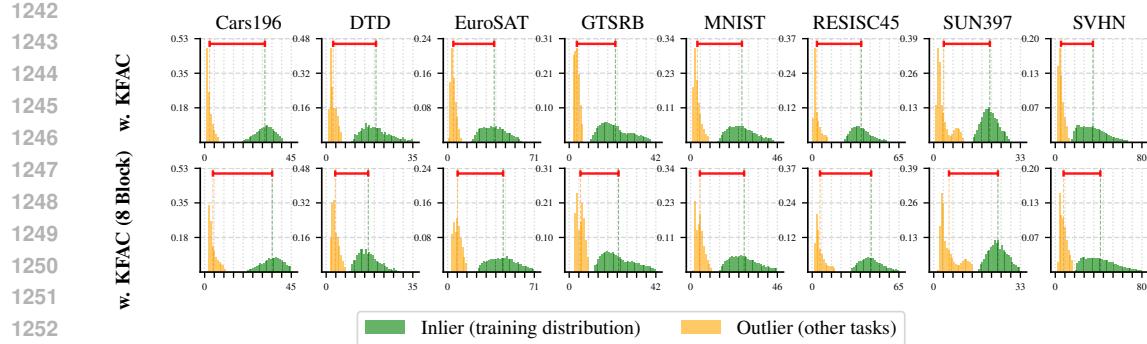


Figure 13: Task localization under linearized fine-tuning with block-compressed KFAC. The separation between the two distributions closely matches that of the full KFAC model, indicating that the block-based compression has negligible impact on task localization and that curvature-based task isolation remains robust even under aggressive memory reductions.

Task localization. We further investigate whether the task-localization behavior observed in the main paper remains stable when applying memory-efficient KFAC approximations. In particular, we focus on the block-based compression strategy, where each KFAC factor is decomposed into 8 diagonal blocks, substantially reducing storage while preserving the structure of the Kronecker approximation. This variant is the most promising among those we evaluated, as it consistently provides the best trade-off between memory savings and accuracy.

The results, shown in Fig. 13, reveal that the block-based KFAC approximation preserves the same localization behavior as the full KFAC model. Even with only eight diagonal blocks per factor, the model continues to sharply distinguish in-distribution from out-of-distribution samples. The compression therefore appears to have negligible impact on this diagnostic, suggesting that curvature-based task localization is robust to coarse, memory-friendly KFAC approximations.

TEXT DOMAIN: RESULTS FOR $\alpha = 1$

Results for $\alpha = 1$. Following the setup described in the main text for language tasks, where we evaluate T5-base using the fixed hyperparameter value $\alpha = 1$. As discussed in Fig. 3, our method exhibits consistently strong performance in the text domain, mirroring the trends observed in the vision setting.

Method	Dataless	Abs.	Norm.
Individual	–	85.9	–
MTL	–	83.6	–
Non-lin. FT	–	65.5	75.9
Linear FT	–	76.1	92.0
Attn-Only FT	–	67.0	78.3
TaLoS	✓	75.8	92.8
τ_{Jp}	✗	81.0	99.5
KFAC, Ours	✓	78.6	98.7

Figure 14: Task addition results for **T5-base** with $\alpha = 1$.

F.7 EXPERIMENT ON OTHER VISION DOMAINS

In Tab. 8 we present additional experiments on a different vision domain to further assess the effectiveness of KFAC regularization on less trivial tasks. Following (Porrello et al., 2025), each dataset is split into partitions containing distinct classes. This procedure ensures task diversity while keeping the domain consistent, since all partitions originate from the same dataset. The number of classes per partition depends on the dataset: ImageNet-R (Hendrycks et al., 2021) is divided into 10 tasks of 20 classes each, RESISC45 Krizhevsky et al. (2009) into 9 tasks of 5 classes each, and EuroSAT (Helber et al., 2019) into 5 tasks of 2 classes each. After fine-tuning the base model on each partition, the resulting models are merged and evaluated on the full test set, considering the union of all classes across tasks rather than restricting evaluation to the classes of the training task

1296 Table 8: Performance comparison across different regularization strategies on ViT-B/16
1297

1298 Model	1299 ImageNet-R	1300 EUROSAT	1301 RESISC
1299 Zero-shot	1300 77.72	1301 49.48	1302 66.02
1300 Non-linear FT	1301 82.32	1302 71.21	1303 73.85
1301 Linear FT	1302 81.66	1303 70.40	1304 72.28
1302 Linear FT w. Diag. GN	1303 81.64	1304 73.94	1305 74.04
1303 τ jP Yoshida et al. (2025)	1304 81.28	1305 84.36	1306 84.83
1304 KFAC, Ours (naive penalty)	1305 82.64	1306 79.64	1307 78.91
1305 KFAC, Ours (aggregated penalty)	1306 82.63	1307 79.64	1308 78.30

1309 only, as done in the 8 Vision benchmark. Accuracy is then reported on this joint classification prob-
1310 lem, following the protocol of (Porrello et al., 2025). These experiments demonstrate that KFAC
1311 regularization achieves state-of-the-art performance even under this more challenging setting.

1313 G RELATED WORKS ON LINEARIZED FINE-TUNING

1315 Linearized models offer a principled lens for analyzing fine-tuning by considering first-order ex-
1316 pansions around a pre-trained initialization. Foundational work (Arora et al., 2019; Jacot et al.,
1317 2018) showed that infinitely wide networks trained with gradient descent follow kernel gradient
1318 flow under the Neural Tangent Kernel (NTK), yielding exact functional characterizations of training
1319 dynamics. This perspective has since been extended to more realistic settings, including represen-
1320 tation learning (Mu et al., 2020), small-data regimes (Arora et al., 2020), and random-matrix studies
1321 of generalization (Wei et al., 2022). Building on these insights, several linearized fine-tuning ap-
1322 proaches have been proposed to improve efficiency and stability, such as LQF (Achille et al., 2021),
1323 privacy-preserving updates (Golatkar et al., 2021), improved task-head initialization (Ren et al.,
1324 2023), continual learning (Shon et al., 2022), and language-model adaptation (Malladi et al., 2023).
1325 More recent work explores model composition and ensembling through tangent-space operations
1326 (Liu & Soatto, 2023; Tang et al., 2024).

1327 The linearized regime has also become central to task arithmetic. Tangent-space representations
1328 have been linked to weight disentanglement and reliable task editing (Ortiz-Jimenez et al., 2023;
1329 Porrello et al., 2025; Yoshida et al., 2025; Liu et al., 2024). Within this framework, NTK-based
1330 approximations enhance task separability and make linear combinations of task vectors more pre-
1331 dictable, further underscoring the versatility of model linearization for fine-tuning, composition, and
1332 editing.

1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349