
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

IDEA-DAC: Integrity-Driven Editing for Accountable
Decentralized Anonymous Credentials

Anonymous Author(s)

ABSTRACT
Decentralized Anonymous Credential (DAC) systems are increas-

ingly relevant, especially when enhancing revocation mechanisms

in the face of complex traceability challenges. This paper introduces

IDEA-DAC, a paradigm shift from the conventional revoke-and-

reissue methods, promoting direct and Integrity-Driven Editing
(IDE) for Accountable DACs, which results in better integrity ac-

countability, traceability, and system simplicity. We further incor-

porate an Edit-bound Conformity Check that ensures tailored in-

tegrity standards during credential amendments using R1CS-based

ZK-SNARKs. Delving deeper, we propose a unique R1CS circuit

design tailored for IDE. This design imposes strictly 𝑂 (𝑁) rank-1
constraints for variable-length JSON documents of up to 𝑁 bytes

in length, encompassing serialization, encryption, and edit-bound

conformity checks. Additionally, our circuits only necessitate a

one-time compilation, setup, and smart contract deployment for

homogeneous JSON documents up to a specified size. While pre-

serving core DAC features such as selective disclosure, anonymity,

and predicate provability, IDEA-DAC achieves precise data modifi-

cation checks that operate without revealing private content, ensur-

ing only authorized edits are permitted. In summary, IDEA-DAC

offers an enhanced methodology for large-scale JSON-formatted

credential systems, setting a new standard in decentralized identity

management efficiency and precision.

CCS CONCEPTS
• Security and privacy→ Privacy-preserving protocols; • Ap-
plied computing→ Version control; • Theory of computation
→ Circuit complexity.

KEYWORDS
Integrity-driven Editing (IDE), Decentralized Anonymous Creden-

tial (DAC), Edit-bound conformity check

ACM Reference Format:
Anonymous Author(s). 2018. IDEA-DAC: Integrity-Driven Editing for Ac-

countable Decentralized Anonymous Credentials. In Proceedings of Make
sure to enter the correct conference title from your rights confirmation emai
(Conference acronym ’XX). ACM, New York, NY, USA, 13 pages. https:

//doi.org/XXXXXXX.XXXXXXX

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00

https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Credentials serve as attestations, confirming an individual’s identity

or qualifications. Anonymous credentials emerged to fuse this veri-

fication process with user privacy preservation [6]. Decentralized

anonymous credentials (DACs) [13] advance this concept, allowing

users to verify specific attributes without revealing their complete

identity, while operating independently of any central governing

entity. Within a DAC framework, there are several pivotal algo-

rithms, such as request, issue, prove, verify, and revoke [11].
The emergence of DACs and Decentralized Identifiers (DIDs)

proffers a shift towards self-sovereign, privacy-centric authentica-

tion, standing in contrast to the predominant centralized models

[4]. This paradigmatic transition towards Self-Sovereign Identity

(SSI) through DAC is gaining momentum, especially with the ad-

vancements in blockchain technology [14, 20, 26]. Recognizing

this evolution, the World Wide Web Consortium (W3C) is mak-

ing strides towards standardizing DID documents [30] and the

data model for verifiable credentials [31]. These standards seek to

establish foundational metadata for identifiers and enhance the

robustness of the verification mechanisms in digital transactions.

Crucially, W3C endorses the expression of verifiable credentials in

JSON-structured formats [31]. Such a credential can encapsulate

facets ranging from issuer identity and subject attributes to specific

conditions like validity periods. Leveraging embedded digital signa-

tures, this JSON-oriented approach ensures data authenticity and

resistance against tampering. To illustrate, W3C furnishes an exem-

plar
1
where an entire JSON document serves as a credential. This

document comprises components like the issuer’s details, issuance

timestamp, and subject information, all enveloped using the JSON

Web Signature to vouchsafe the data’s integrity and authenticity.

Traditionally, updates to credentials necessitate a revoke-and-

reissue approach to ensure system integrity and prevent unau-

thorized modifications [11, 23, 24]. This two-step approach not

only introduces computational redundancy but also necessitates

an additional revocation check during every credential verification,

amplifying the overhead. Further compounding the inefficiency,

these prevailing revoke-and-reissue paradigms frequently neglect

the criticality of editing integrity. Without an integrity mechanism,

systems cannot ensure that each data field consistently adheres to

its established norms or criteria. Such oversight undermines system

resilience and exacerbates risks, especially when data fields are

adjusted to accommodate real-world scenarios.

Given the identified limitations in existing systems, it becomes

beneficial to refine the credential update mechanism and enhance

its integrity. To this end, we introduce IDEA-DAC, a novel method-

ology that facilitates Integrity-Driven Editing (IDE) designed for

Accountable Decentralized Anonymous Credentials. Contrary to

traditional systems, IDEA-DAC enables edit directly to a JSON

credential document, ensuring that security and trustworthiness

1
https://www.w3.org/TR/vc-data-model/

1

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Figure 1: Edit-bound Conformity Check Framework
remain intact. Central to our approach is the application of zero-

knowledge proofs that rigorously assess each edit against robust

integrity standards, thereby presenting an optimized and holistic

framework for the management of JSON credentials.

Furthermore, we introduced an edit-bound conformity check

to ensure the integrity of credentials during modifications, utiliz-

ing ZK-SNARKs built upon Rank-1-Constraint-System (R1CS). The

edit-bound conformity check introduces a framework that empha-

sizes integrity checks in the logic space rather than directly on

the data space, which allows for fine-grained control over human-

readable data, as illustrated in Figure 1. Subsequently, data from this

logic space undergoes serialization into the data space, followed

by encryption into ciphertext. This encrypted form is then suitable

for publication. We formulated a distinctive R1CS circuit designed

for IDE. This design mandates 𝑂 (𝑁) rank-1 constraints for JSON
documents with variable lengths, up to a maximum of 𝑁 bytes, cov-

ering serialization, encryption, and edit-bound conformity checks.

Crucially, our circuits requires only a singular compilation, setup,

and smart contract deployment, catering to homogeneous JSON

documents up to a predefined size.

In our experimental assessment, we implemented IDEA-DAC

and evaluated its performance using a real-world scenario: aca-

demic profiles of Ph.D. students, which demonstrates the potential

data types and associated integrity rules in a JSON credential. We

primarily gauged our algorithm’s efficiency using three metrics:

number of rank-1 constraints, proving time, and verification time.

Our results suggest a linear correlation between the credential file

size and number of constraints. Additionally, the proving time stays

pragmatically efficient, and the verification time remains constant.

While preserving DAC security and privacy properties, such as

selective disclosure, anonymity, and predicate provability, IDEA-

DAC ensures precise data modification checks. These checks oper-

ate without exposing sensitive data during credential edits, thereby

strengthening the system against any unauthorized changes. The

main contributions of IDEA-DAC can be delineated as:

• Integrity-Driven Editing (IDE): IDEA-DAC introduces a new

mechanism to a DAC system named Integrity-Driven Editing

(IDE). It strengthens editing integrity and traceability, harness-

ing the power of ZK-SNARKs built upon R1CS circuits. More-

over, IDEA-DAC introduces edit-bound conformity checks as

specialized sub-circuits. These checks impose concrete integrity

standards during credential amendments. As opposed to generic

methods, our approach ensures that all credential adjustments

strictly comply with established rules. Via our circuit design,

these integrity checks seamlessly operate within the logic struc-

ture of the data, all the while upholding the privacy of credentials.

• Advanced JSON serialization Circuit: IDEA-DAC introduces a

pioneering R1CS circuit design specifically tailored for JSON seri-

alization, achieving𝑂 (𝑁) rank-1 constraint complexity for JSON

documents up to 𝑁 bytes in size. This innovative design not only

lays the groundwork for deeper investigations into R1CS circuit

architectures and JSON-compatible systems but also ensures a

one-time setup with inherent scalability. By adeptly avoiding po-

tential exponential complexities, it proves particularly robust for

handling expansive JSON datasets, such as repositories detailing

an academic’s comprehensive publication history.

2 RELATEDWORK
Decentralized identity research has had a multitude of projects from

both academia and industry. Many Decentralized Identity (DID)

initiatives commonly feature Predicate Provability, enabling users

to demonstrate compliance without exposing personal data. The

W3C DID standard acts as a key reference; systems are typically

classified as compliant or non-compliant. Compliant systems such

as Candid [21], SpruceID [28], and Verite [8] exist, but only Candid

prioritizes privacy-preserving, granting data access solely upon

user approval. Contrastingly, non-W3C compliant systems like zk-

creds [24] and Coconut [27] also emphasize user privacy. However,

a consistent challenge for these systems is the accurate tracking

of Precise Data Modification Checks. Distinctly, IDEA-DAC, show-

cased in Table 1, amalgamates features such as Privacy-preserving,

Predicate Probability, W3C Conformity, and precise data change

monitoring. Notably, while Coconut deploys a decentralized strat-

egy against malicious issuers, IDEA-DAC utilizes edit-bound con-

formity checks, optimizing the oversight of issuer activities.

Another branch of research that aligns with our work delves

into secure data modifications and privacy-preserving verification,

especially when multiple parties are involved. For instance, in the

area of image editing, Naveh et al. presented PhotoProof [22]. Their

solution allows certain image alterations while ensuring the edited

image remains traceable and authentic. Meanwhile, zkDocs [1] em-

phasizes the secure verification of documents in contexts like mort-

gage applications. While these approaches have demonstrated feasi-

bility on real-world data, they pose implementation challenges. The

underlying ZK circuits demand frequent adjustments: any change

in the underlying data requires recompilation, setup, and redeploy-

ment of the circuit. To illustrate, even a minor image adjustment,

such as cropping from 512 × 512 to 384 × 384, would require a

brand new circuit specific to the modified size. Additionally, while

PhotoProof can track pixel-wise transformations, zkDocs lacks the

ability to examine fine-grained edits within the circuit, largely due

to its representation of data that isn’t interpretable by humans. Our

proposed IDEA-DAC addresses these challenges. It features a circuit

design that requires setup only once, suitable for variable-length

JSON documents, and is adept at ensuring detailed edit integrity

checks, leveraging an advanced R1CS circuit framework.

3 PRELIMINRIES
In this section, we delve into the foundational concepts necessary

for constructing the IDEA-DAC system. Specifically, we introduce

ZK-SNARKs, detail the structure and significance of R1CS, and

explore the Hint strategy and its implications.

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

IDEA-DAC: Integrity-Driven Editing for Accountable Decentralized Anonymous Credentials Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Candid [21] SpruceID[28] Verite[8] zk-creds [24] Coconut [27] IDEA-DAC PhotoProof [22] ZKDocs [1]

DAC Security & Privacy Properties

Privacy-preserving

Predicate Provability

W3C Conformity

Precise Data Editing Checks

Multi-party Privacy-preserving

Information Sharing & Verification

Verifiable Information Editing

Fine-grained Editing Check

One-time Setup ZK Circuit

Programmable Editing Bound

Table 1: Comparison between IDEA-DAC and other related systems in terms of DAC Security & Privacy Properties and Multi-
party Privacy-preserving Information Sharing & Verification

3.1 ZK-SNARKs
Zero-Knowledge Proofs (ZKPs) [15, 16] are a cryptographic method

by which one party (the prover) can prove to another party (the

verifier) that they know a value 𝑥 , without conveying any infor-

mation apart from the fact that they know the value 𝑥 . A formal

definition of ZKP can be found in Appendix B.

Zero-Knowledge Succinct Non-Interactive Argument of Knowl-

edge (ZK-SNARKs) [5, 12, 17, 33, 35] are a special form of ZKPs

that have the properties of being non-interactive and succinct. Non-

interactivity means that the proof consists of a single message from

the prover to the verifier. Succinctness means that the size of the

proof is small (polylogarithmic in the size of the statement being

proven), and verification of the proof is fast (also polylogarithmic).

3.2 Rank-1 Constraint System (R1CS)
A Rank-1 Constraint System (R1CS) over a field F serves as a foun-
dational arithmetic representation in the construction of ZKP pro-

tocols. Its structure provides a systematic way to express and verify

computational statements without revealing any information about

the inputs, other than the fact that they satisfy the given statement.

Formally, an R1CS over a field F is described as a triple (𝐴, 𝐵,𝐶),
where each of 𝐴, 𝐵, and 𝐶 are 𝑛 ×𝑚 matrices. Here, 𝑛 denotes the

number of constraints, while 𝑚 represents the number of wires.

An assignment x ∈ F𝑚 is said to satisfy the R1CS if and only if

the following equation is true for all 𝑖: ⟨a𝑖 , x⟩ · ⟨b𝑖 , x⟩ = ⟨c𝑖 , x⟩,
where a𝑖 , b𝑖 , and c𝑖 represent the 𝑖-th rows of matrices 𝐴, 𝐵, and

𝐶 respectively, and ⟨·, ·⟩ denotes the dot product. In the realm of

ZKP protocols, R1CS plays a pivotal role in constructions such as

ZK-SNARKs (e.g., Groth16 [17], Marlin [7], Aurora [3], Orion [34])

and recent folding schemes (e.g., Nova [19], SuperNova [18]). These

protocols exploit the succinctness and efficiency of R1CS to provide

proofs that are both compact and quick to verify, thereby enabling

a myriad of applications in privacy-preserving transactions, secure

computations, and blockchain scalability solutions.

3.3 Hint
R1CS, inherently designed to verify constraints for inputs, extends

its capabilities beyond mere value computations within a circuit. It

introduces two primary methods for calculating values designated

for other circuit sections. The first is a direct approach that uti-

lizes circuit arithmetic for computation. However, when this direct

method becomes inefficient or cumbersome, an alternative strategy,

termed Hint, is preferred. The "Hint" method allows the value to

be computed off-circuit, and validated in-circuit. This implies that

the prover can input the value directly into the circuit, with con-

straints in place to ensure its accurate computation. To illustrate,

consider the computation of 𝑦 = 𝑓 (𝑥). If constructing 𝑓 (·) within
the circuit is challenging, an alternative is to use a function 𝑔(𝑥,𝑦)

that verifies the correctness of this computation in a more efficient

manner. For instance, to compute the inverse of 𝑥 ∈ Z𝑝 , one might

directly compute 𝑦 = 𝑥𝑝−2 in-circuit with ⌈log𝑝⌉ multiplications.

However, with the "Hint" approach, by directly inputting 𝑦, only a

single rank-1 constraint is needed to ensure 𝑥 · 𝑦 = 1. Effectively

deploying the "Hint" strategy in cases where direct computation is

onerous can result in significant in-circuit computational savings,

leading to enhanced proving and verification times.

Figure 2: IDEA-DAC Functionalities

4 IDEA-DAC
Decentralized anonymous credentials (DACs) [13] are essential for

decentralized identity systems. DACs allow users to get verified

without showing their actual identities, balancing privacy with

trust. In simple terms, DACs let users hold multiple credentials, each

approved by the issuer’s private key, eliminating intermediaries

during the verification process.

In a DAC system, three main players exist: issuers, users, and ver-

ifiers. Users ask for credentials by sharing their data and any other

needed information. Issuers, using their private key, grant these

credentials and remain the rights to revoke them. Users can then

show these credentials to verifiers, who can check their authenticity

without contacting the issuer directly.

However, existing DAC systems overlook the integrity of editing.

Within the current DAC’s method of revoking and reissuing as

a form of editing, maintaining the integrity of edits is challeng-

ing. Furthermore, editing goes beyond mere content alterations; it

necessitates setting distinct integrity rules for different editors in

different use cases. In response to this challenge, we present IDEA-

DAC: a system that guarantees editing integrity in JSON-formatted

DACs through edit-bound conformity checks, as depicted in Figure

2. This section delves into the formal definitions of JSON credentials

and the associated edit-bound conformity checks.

4.1 JSON Credentials
A credential 𝑃 is represented as a JSON document, comprised of

various fundamental items. These items include strings, numbers,

arrays, and dictionaries. For the purpose of subsequent definitions,

we introduce a universal object set, O. It is formally defined as

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

O := S ∪ N ∪ A ∪ D, where S,N ,A, and D stand for the sets

of all strings, numbers, arrays, and dictionaries, respectively. This

definition of O will be utilized in the ensuing sections.

Definition 4.1 (String). A String item is denoted by 𝑟 ∈ Σ∗, where
Σ is the set of all the possible characters.

To encompass most practical scenarios, we assume all characters

to be represented as ASCII-encoded byte values; thus, Σ = [0, 255].

Definition 4.2 (Number). Define aNumber item 𝑟 as 𝑟 ∈ {0, 1, 2, 3,
4, 5, 6, 7, 8, 9}∗.

The definition for numbers can be generalized to encompass

positive integers. Furthermore, it can be extended to accommodate

various numerical representations, including negative integers (de-

noted by −𝑟), floating-point numbers (denoted by (−)𝑟1 .𝑟2), and
scientific notations (denoted by (−)𝑟1 .𝑟2𝑒 (−)𝑟3).

Definition 4.3 (Array). An array is 𝑎 ∈ O∗, which means 𝑎 is an

ordered tuple whose elements are all elements in O.

In an array, an element can be of types such as a string, integer,

dictionary, or even another array. The length of the array can be

adjusted by adding or removing items within it.

Definition 4.4 (Dictionary). A dictionary 𝑑 is a set of key-value

pairs with the following properties:

𝑑 ∈ D ⇐⇒ ∃𝑛 ∈ Z+, 𝑑 = {(𝑘1, 𝑣1), (𝑘2, 𝑣2), . . . , (𝑘𝑛, 𝑣𝑛)},
𝑘𝑖 ∈ S, 𝑣𝑖 ∈ O for each 𝑖 ∈ [𝑛],

A dictionary within a credential comprises multiple key-value

pairs; the key must always be a string, whereas the value can be a

string, integer, array, or even another dictionary. Conventionally, a

JSON credential 𝑃 is represented as a dictionary, i.e., 𝑃 ∈ D.

4.2 Edit-bound Conformity Check
Every legitimate editing activity must adhere to several integrity
rules, each represented as a function 𝜎 . These rules ensure that the

editor follows the appropriate rules to undertake such edits. The

integrity verification comes in two variants: the target-only check

and the source-target differential check.

Definition 4.5 (Target-only check). A target-only check is a

function 𝜎\ (𝑟) → {0, 1}, where 𝑟 is the edited credential item and

\ is some pre-defined parameters.

The combination of 𝜎 and \ defines an integrity rule specific
to an editor. As an example, an editor might be constrained to an

integrity rule for a String credential item, termed as “One of the Set".

This rule restricts the editor to only modify the item to a new string

𝑟 ′ such that 𝑟 ′ ∈ \ . Here, \ denotes a pre-defined set of strings

allowable for this particular editor. Thus, the pairing of 𝜎 with \

characterizes a distinct integrity rule for that editor.
At times, merely examining the target credential is inadequate

for regulating an editing activity. A source-target differential check
assesses the disparity between the pre- and post-edited credentials.

Definition 4.6 (Source-target differential check). A source-

target differential check is a function 𝜎′
\
(𝑟, 𝑟 ′) → {0, 1}, where 𝑟

and 𝑟 ′ stand for pre- and post-edited credential items.

Just as with target-only checks, an integrity rule is defined by the
combination of 𝜎′ and \ . For instance, an editor might be subject to

an integrity rule for an array item, termed "Append Only". This rule

dictates that the editor is only permitted to append elements to the

array item 𝑟 . If the augmented array is denoted as 𝑟 ′, 𝜎′
\
(𝑟, 𝑟 ′) =

𝑇𝑟𝑢𝑒 ⇐⇒ 𝑟𝑖 = 𝑟 ′
𝑖
, ∀0 ≤ 𝑖 < |𝑟 |, where |𝑟 | is the length of the

array item 𝑟 . In such a situation, \ is always ⊥, meaning that this

rule does not need additional parameters.

These two checks solely verify if the editing activity adheres

to the appropriate integrity rules. However, if an editor intends

to publish the edited credential item as a public record, additional

checks must be passed. We denote the checks that need to be con-

ducted prior to publishing content as the encoding and encryption
check 𝜔 , which assesses the correctness of the serialization and

encryption procedures. It will grant approval if and only if both the

serialization and encryption processes are executed correctly.

Definition 4.7 (Encoding and Encryption check). An encod-

ing and encryption check is a function: 𝜔 (𝑟, 𝑐, 𝑘) → {0, 1} that
verifies if 𝑐 = 𝐸𝑛𝑐𝑘 (𝑆𝑒𝑟𝑖𝑎𝑙𝑖𝑧𝑒 (𝑟)), where 𝑟 is the credential and

𝐸𝑛𝑐, 𝑆𝑒𝑟𝑖𝑎𝑙𝑖𝑧𝑒 is the symmetric encryption algorithm and the seri-

alization algorithm respectively.

Finally, we define the edit-bound conformity check, which encom-

passes all the checks above.

Definition 4.8 (Edit-bound Conformity Check). Denote _ as

the security parameter. The edit-bound conformity check is repre-

sented by the function 𝜙 (𝑟, 𝑟 ′, 𝑐, 𝑐′, 𝑘, Σ, Σ′) → {0, 1}, where 𝑟 and
𝑟 ′ denote the pre- and post-edited items, respectively, and 𝑐 and

𝑐′ are their corresponding ciphertexts. Additionally, 𝑘 is the en-

cryption key, known to both the user and editors, and Σ, Σ′ stands
for set of all the applied target-only checks and the source-target

differential checks. Note that both 𝑐 and 𝑐′ are encrypted using the

same key 𝑘 . The function 𝜙 possesses the subsequent properties:

• Completeness: If (∀𝜎\ , 𝜎′\ ∈ Σ, Σ′, 𝜎\ (𝑟 ′) = 1, 𝜎′
\
(𝑟, 𝑟 ′) = 1) ∧

(𝜔 (𝑟, 𝑐, 𝑘) = 𝜔 (𝑟 ′, 𝑐′, 𝑘) = 1) : Pr{𝜙 (𝑟, 𝑟 ′, 𝑐, 𝑐′, 𝑘, Σ, Σ′) = 1} = 1

• Soundness: If (∃𝜎\ ∈ Σ, 𝜎\ (𝑟 ′) = 0)∨(∃𝜎′
\
∈ Σ′, 𝜎′

\
(𝑟, 𝑟 ′) = 0)∨

(𝜔 (𝑟, 𝑐, 𝑘) = 0) ∨ (𝜔 (𝑟 ′, 𝑐′, 𝑘) = 0) : Pr{𝜙 (𝑟, 𝑟 ′, 𝑐, 𝑐′, 𝑘, Σ, Σ′} =
1) ≤ 𝑛𝑒𝑔𝑙 (_)

• Privacy-preserving: for any Probabilistic Polynomial Time (PPT)

distinguisherD, the probability thatD can correctly distinguish

which of the two credentials has been randomly sampled, without

knowledge of the key 𝑘 , is bounded as: Pr{D(𝑟, 𝑟) = 1 | 𝑐, 𝑟 $←
𝑅} = 1

2
+ 𝑛𝑒𝑔𝑙 (_), where 𝑅 is the set of all possible credentials.

This property applies to both the pre- and post-edited credentials.

5 INTEGRITY-DRIVEN EDITING (IDE)
In this section, we delve into the intricate R1CS circuit design be-

hind Integrity-Driven Editing (IDE) for IDEA-DAC. With a focus

on modularity and efficiency, the IDE circuit is crafted to validate

every edit made to a JSON document against strict integrity rules,

all while requiring setup only once. Through advanced serialization,

encryption, and efficient batch merging, it guarantees secure and

optimal in-circuit document processing. Coupled with stringent

conformity checks, this design assures both the accuracy and in-

tegrity of document edits, making it a cornerstone for the secure

handling of large-scale JSON credentials in real-world scenarios.

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

IDEA-DAC: Integrity-Driven Editing for Accountable Decentralized Anonymous Credentials Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

5.1 R1CS Primitives
The Rank-1 Constraint System (R1CS) is essential for converting

certain logic structures. To effectively harness the power of R1CS,

we introduce several foundational primitives. A critical element

in this process is the linear combination, which underpins the

necessary composability for circuit logic.

Definition 5.1 (Linear combination). A linear combination, de-

noted as 𝑙 = [(𝑐𝑖 , 𝑥𝑖) | 𝑖 = 1, 2, . . . , 𝑛], comprises an array of 2-tuples

(𝑐𝑖 , 𝑥𝑖) with arbitrary length 𝑛 ∈ Z+. Here, 𝑐𝑖 ∈ F represents the
coefficient, while 𝑥𝑖 ∈ Z≥0 is the wire ID in R1CS, denoting the

𝑥𝑖 -th element in the assignment vector x.

Notably, the variable ID 0 signifies the constant 1. Following

this definition, the conversion of a linear combination into rows

within the matrices𝐴, 𝐵, and𝐶 is intuitive. To streamline our discus-

sions, we’ll use linear combination and variable interchangeably
henceforth. Based on the foundation of linear combinations, we

present the subsequent R1CS primitives:

• 𝑎 [𝑁] ← NewArray(𝑁): Initializes an array of size 𝑁 .

• 𝑐 ← Add(𝑎, 𝑏): Combines the terms of 𝑎 and 𝑏 to produce a new

linear combination. No new wires or constraints are added.

• 𝑐 ← Sub(𝑎, 𝑏): Produces a linear combination by subtracting 𝑏

from 𝑎. To achieve this, all coefficients in 𝑏 are negated in F. No
additional wires or constraints are introduced.

• 𝑐 ← Mul(𝑎, 𝑏): Represents the product of two variables. If ei-

ther variable is constant, the coefficients of the other are scaled.

Otherwise, it creates 𝑐 = [(1, newID)] and a constraint 𝑎 · 𝑏 = 𝑐 .

• 𝑐 ← Or(𝑎, 𝑏): Computes the logical OR between two Boolean-

constrained variables. If both are Boolean-constrained, it results

in the constraint 𝑎 · 𝑏 = 𝑎 + 𝑏 − 𝑐 .
• 𝑐 ← And(𝑎, 𝑏): Computes the logical AND for two Boolean

variables, which is synonymous with Mul(𝑎, 𝑏).
• 𝑏 ← IsZero(𝑎): Determines if variable 𝑎 is zero. Instead of using

⌈log |F|⌉ constraints for direct computation, it uses three con-

straints based on hint. Specifically, the constraints are:𝑏 · (1−𝑏) =
0, 𝑎 · 𝑏 = 0, and, given the inverse 𝑐 of 𝑎 + 𝑏, (𝑎 + 𝑏) · 𝑐 = 1.

• 𝑏 ← IsNotZero(𝑎): Checks if variable 𝑎 is non-zero. This is de-
rived from IsZero(𝑎) using the operation𝑏 ← Sub(1, IsZero(𝑎)).

• 𝑐 ← IsEqual(𝑎, 𝑏): Checks if 𝑎 and 𝑏 are equal, implemented

using IsZero(Sub(𝑎, 𝑏)) with three constraints.

• 𝑐 ← Select(𝑠 , 𝑟0, 𝑟1): Outputs 𝑟0 if 𝑠 = 1 and 𝑟1 otherwise. It

introduces 𝑐 = [(1, newID)] and the constraint 𝑠 · (𝑟0−𝑟1) = 𝑐−𝑟1.
• Assert(𝑎 == 𝑏): Ensures 𝑎 and 𝑏 are equal in the constraint

system using the constraint 𝑎 · 1 = 𝑏.
• 𝑏 ←WithinBinary(𝑎, 𝑁): Verifies if variable 𝑎 has a bit-size of

at most 𝑁 . It inputs the bit decomposition 𝑏𝑖𝑡 [𝑁] of 𝑎 and uses

𝑁 + 3 constraints, specifically: 𝑏𝑖𝑡 [𝑖] · (1 − 𝑏𝑖𝑡 [𝑖]) = 0, ∀𝑖 ∈ [𝑁],
and checks the decomposition with IsEqual((∑𝑛−1𝑖=0 2

𝑖𝑏𝑖𝑡 [𝑖]), 𝑎).
• 𝑟 ← RO(. . .): Utilizes an in-circuit random oracle to generate a

pseudo-random variable derived from existing circuit variables.

This is enforced using collision-resistant ZK-friendly hash func-

tions like MiMC, resulting in efficient R1CS construction.

5.2 Length-prepadded String (LPS)
To standardize a one-time setup for homogeneous documents, the

circuit must accommodate variable-length inputs up to a maximal

threshold. This flexibility allows for efficient version control when

documents of the same kind undergo changes, such as increased

string lengths or added array items. By introducing redundancy

into the circuit structure, we can mitigate the need for frequent

re-compilations, setups, and deployments whenever data undergoes

modifications. Thus, we present a length-prepadded representation

for strings. This encoding embeds the actual string length directly

into the circuit, facilitating efficient string processing. Given that

ASCII characters are byte-encodable, each byte is treated as an

individual variable for easier string operations.

Definition 5.2 (Length-prepadded String (LPS)). An LPS, 𝑠 ,

with a maximum byte-length 𝑁 , is an array of size 𝑁 + 1 described
as 𝑠 = [𝑙, 𝑠0, 𝑠1, . . . , 𝑠𝑙−1, 𝐷, . . . , 𝐷]. Here, 𝑙, 𝑠𝑖 ∈ F with 𝑠𝑖 ∈ [0, 255]
and 𝑙 < 𝑁 . The symbol 𝐷 signifies a dummy constant excluded

from valid string characters, such that 𝐷 ∈ F and 𝐷 ∉ [0, 255]. For
notation simplicity, we use 𝑙 | |𝑠 [𝑁] to represent the string.

To further streamline string operations, we introduce two primi-

tives for handling dummy values:

• 𝑏 ← IsDummy(𝑎): Determines if variable 𝑎 represents a dummy

character in a string, achieved using IsEqual(𝑎, 𝐷).
• 𝑏 ← IsNotDummy(IND)(𝑎): Verifies if variable𝑎 is not a dummy

character, computed via Sub(1, IsDummy(a)).

5.3 LPS Operations
5.3.1 Range Check. To ensure that string inputs to the circuit are

valid, every string variable must either be a byte or the dummy

value𝐷 . Specifically, 𝑠 [𝑖] < 256 or 𝑠 [𝑖] = 𝐷 for all 𝑖 = 0, 1, . . . , 𝑁 −1.
For this purpose, we propose an 𝑂 (𝑁)-sized range check circuit:

Assert
(∑𝑁−1

𝑖=0 (WithinBinary(𝑠 [𝑖], 8)+IsDummy(𝑠 [𝑖])) == 𝑁
)
,

which necessitates 14𝑁 + 1 constraints. The correctness of this

construction is evident when observing that bothWithinBinary
and IsDummy cannot simultaneously be true. If any 𝑠 [𝑖] falsifies
both, the sumwill be less than 𝑁 . Therefore, the assertion mandates

that at least one of these values be true for each 𝑠 [𝑖].

5.3.2 Legitimacy Check. For operations to be correctly executed

later, strings input to the circuit must adhere to the LPS format.

To verify this for all strings up to a maximum length 𝑁 , we pro-

pose an 𝑂 (𝑁) legitimacy check. Given an LPS 𝑙 | |𝑠 [𝑁] , the legiti-
macy check validates three aspects: 1) 𝑠 [𝑖] ≠ 𝐷 for 0 ≤ 𝑖 < 𝑙 ; 2)

𝑠 [𝑖] = 𝐷 for 𝑙 ≤ 𝑖 < 𝑁 ; 3) 𝑙 < 𝑁 . While this may seem straight-

forward, accounting for variable 𝑙 that might assume any value in

F complicates matters. A naive approach involves 𝑂 (𝑁) in-circuit
variable comparisons, resulting in 𝑂 (𝑁 log𝑁) constraints, which
is sub-optimal. We present an optimized legitimacy check that

needs only 𝑂 (𝑁) constraints. The circuit computes a tag 𝑐 [𝑖] for
each variable: 𝑐 [𝑖] = 𝑙 − 𝑖 − 1 if 𝑠 [𝑖] ≠ 𝐷 , and 𝑖 + 1 − 𝑙 otherwise.
This requires 4𝑁 constraints. Then, we establish the following con-

straints based on 𝑐 [𝑖], also taking into account if the end of the

actual string has been reached: 𝑐 [𝑖] == 𝑐 [𝑖 − 1] − 1 if the end

hasn’t been reached, and 𝑐 [𝑖] == 𝑐 [𝑖 − 1] + 1 otherwise. This im-

plementation requires 7𝑁 − 6 constraints. The string ends when

the first index 𝑖 has 𝑐 [𝑖] as a dummy variable. This is tracked us-

ing a Boolean variable, requiring 𝑁 constraints. Then, considering:

0 < 𝑙 < 𝑁 ⇐⇒ ∃0 ≤ 𝑖 < 𝑁, 𝑐 [𝑖] = 0.We need to ensure either: 1)

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

only one 0 exists in 𝑐 [𝑖]; or 2) 𝑙 = 0. This demands 3𝑁 +4 constraints.
An optimized legitimacy check algorithm is shown in Algorithm 2.

5.3.3 Merge Check. During JSON credential serialization, two LPS

strings must be concatenated while retaining format integrity. Con-

structing a generic circuit capable of merging strings of various

lengths poses challenges. It’s essential to design a multipurpose

circuit that merges any two strings efficiently and correctly.

The naive approach requires𝑂 ((𝑁𝑎+𝑁𝑏)2) constraints to merge

two LPS strings of maximal lengths 𝑁𝑎 and 𝑁𝑏 , as shown in Al-

gorithm 6. We propose a hint-based optimization that needs only

𝑂 (𝑁𝑎 + 𝑁𝑏) constraints. Instead of using a multiplexer, the prover

inputs the merged LPS directly. The circuit then verifies its cor-

rectness via various constraints. Given two LPS structures, 𝑠𝑎 =

aLen| |a[𝑁𝑎] and 𝑠𝑏 = bLen| |b[𝑁𝑏] , the prover inputs the result LPS
𝑠𝑐 = cLen| |c[𝑁𝑎+𝑁𝑏] directly into the circuit. We validate 𝑠𝑐 by

ensuring it’s correctly formatted and is the exact merged LPS of 𝑠𝑎
and 𝑠𝑏 through the following checks:

(1) Assert that the length of the merged string is the sum of the

lengths of both strings: Assert(cLen == Add(aLen, bLen)).
(2) Ensure the range check of the merged string: RangeCheck

(
c[𝑁𝑎+𝑁𝑏]

)
, referencing the same circuit as in Section 5.3.1.

(3) Invoke an in-circuit random oracle to produce a pseudo-random

value 𝑟 and validate the equation:∏𝑁𝑎−1
𝑖=0

[𝑟 − (256(𝑖 + 1) + a[𝑖])IND(a[𝑖])]

×
∏𝑁𝑏−1

𝑖=0
[𝑟 − (256(𝑖 + 1 + aLen) + b[𝑖])IND(b[𝑖])]

=
∏𝑁𝑎+𝑁𝑏−1

𝑖=0
[𝑟 − (256(𝑖 + 1) + c[𝑖])IND(c[𝑖])],

(1)

Define sets 𝑆1 = {(256(𝑖 + 1) + a[𝑖])IND(a[𝑖])} ∪ {(256(𝑖 + 1 +
aLen)+b[𝑖])IND(b[𝑖])} and 𝑆2 = {(256(𝑖+1)+c[𝑖])IND(c[𝑖])}.
Each variable in a[𝑁𝑎] and b[𝑁𝑏] is coupled with its target in-

dex in the merged string. The lowest 8 bits store the byte value,

while the subsequent bits indicate the target index starting

from 1. This ensures the uniqueness and non-zero nature of

each non-dummy element in sets 𝑆1 and 𝑆2. Due to the range

check constraints and unique index bits of the variables, we

ensure that the first aLen + bLen variables in 𝑆2 match those in

𝑆1. Given 𝑠𝑎 and 𝑠𝑏 are both legitimate LPS as checked initially,

and there are exactly aLen+bLen non-zero terms in 𝑆1, we infer

that all the other variables in 𝑆2 are dummy variables, ensur-

ing the legitimacy of 𝑠𝑐 . Finally, according to Schwartz–Zippel

lemma [25], this check passes with a negligible soundness er-

ror of
𝑁𝑎+𝑁𝑏

|F | . This final check utilizes |RO| + 10(𝑁𝑎 + 𝑁𝑏) − 2
constraints, a great improvement over the naive method when

employing ZK-friendly hash functions as the random oracle.

5.4 Serialization
Drawing from the foundational LPS operations, we design a JSON

serialization circuit, aligning with the definition in Section 4.1. By

predetermining maximal length parameters for Number, String,

and Array, we eliminate repetitive re-compilations, setups, and

deployments.While changing value types within a Dictionary poses

challenges, we address this by presuming fixed value types given

the typical static nature of JSON document structures. This strategy

allows flexibility with arbitrary keys and values, ensuring a one-

time setup for homogeneous documents. We subsequently detail

the serialization circuit Encode for each JSON data type.

5.4.1 Encoding Number. The process of encoding a number man-

dates its decimal decomposition within the circuit. This operation,

when approached traditionally, can be computationally costly. To

ameliorate this, we employ a strategy similar to the one inWithin-
Binary for bit-decomposition using hints. This strategy involves

computing the decomposition outside the circuit and subsequently

verifying its accuracy within the circuit. For a given number 𝑥

with a maximum of 𝑁 digits, the prover inputs a length-prepadded

decimal decomposition, represented as len| |dec[𝑁] in big-endian

format, with trailing 0s serving as dummy digits. The decomposi-

tion’s accuracy is confirmed using three dedicated sub-circuits:

(1) RangeCheckDecimal(dec[𝑁]): This validates that each dec[𝑖]
lies in [0, 9] for all 𝑖 ∈ [𝑁]: Assert

(∑𝑁−1
𝑖=0 (IsEqual(𝑠 [𝑖], 8) +

IsEqual(𝑠 [𝑖], 9) +WithinBinary(𝑠 [𝑖], 3)) == 𝑁
)
, necessitat-

ing 12𝑁 + 1 constraints. The correctness of this method resem-

bles that for the LPS range check in Section 5.3.1.

(2) Decomposition Check: Utilizing a remLen variable to track

the residual length, and an isEnd variable to signify the ter-

mination of the current digit sequence, we reconstruct the

digits in big-endian format to match the original number us-

ing: 1) sum = Select(isEnd[𝑖], sum,Mul(sum, 10)); 2) sum =

Add(sum, dec[𝑖]). Then, we use an assertion, Assert(sum = 𝑥),

to validate the correctness of the decomposition. It’s notewor-

thy that this mechanism inherently ensures 𝑥 < 10
𝑁
, given the

nonexistence of an 𝑁 -digit decomposition for 𝑥 when 𝑥 ≥ 10
𝑁
.

(3) LegitimacyCheck: This ascertains that the decomposition is in

valid format, ensuring all trailing digits are zeroes, represented

by: Assert(And(isEnd[𝑖], IsNotZero(dec[𝑖])) == 0) .
The final step involves translating the digits into an ASCII-

encoded LPS as: out[𝑖] = Select(isEnd[𝑖], 𝐷,Add(dec[𝑖], 48)) . Col-
lectively, these checks and conversions demand 𝑂 (𝑁) rank-1 con-
straints. A complete algorithm is provided in Algorithm 1.

5.4.2 Encoding String. Before we initiate the encoding of strings,
it’s essential to validate that the strings adhere to the expected LPS

format. This validation is achieved through the range and legitimacy

checks as described in Sections 5.3.1 and 5.3.2. After ensuring they

are in the correct LPS format, we then merge a double quotation

mark at both the beginning and the end of the LPS.

5.4.3 Encoding Array. When encoding an array that contains var-

ious objects, it’s crucial to exclude any empty elements from the

serialized LPS. To this end, we implement the IsEmpty function to

ascertain the status of each object within the array. For a Number

𝑥 , we designate a value 𝐷′, such that 𝐷′ > 10
maxDigit

, to repre-

sent its emptiness, with a slight modification of the number en-

coding circuit. For an LPS structure, 𝑙 | |𝑠 [𝑛] , the emptiness is de-

termined by the condition 𝑙 = 0. Both Arrays and Dictionaries

are assessed recursively to determine their emptiness. Given these

mechanisms, the encoding process for an Array 𝑎 [𝑛] can be out-

lined as: 1) tmpLPS = Merge(oldLPS, Encode(a[i])); 2) newLPS =

SelectArray(IsEmpty(a[i]), oldLPS, tmpLPS), where SelectArray
is Select over each individual variable.

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

IDEA-DAC: Integrity-Driven Editing for Accountable Decentralized Anonymous Credentials Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

5.4.4 Encoding Dictionary. Encoding a Dictionary closely mirrors

the Array encoding process, but there’s a key distinction to note:

Dictionary values are typified from the beginning. Therefore, when

invoking the Encode function, both the key and its paired value

are encoded. This approach offers flexibility, allowing documents

to omit certain predefined Dictionary fields, while still adhering to

a one-time setup. To sum up, given every JSON document inher-

ently represents a Dictionary, the serialization process begins with

this primary Dictionary, and then recursively proceeds to ensure

accurate serialization of the entire JSON document.

5.5 Encryption
Upon obtaining the serialized JSON string 𝑙 | |𝑠𝑁 as an LPS, we pro-

ceed to encrypt it within the circuit using an encryption key. This

encryption conceals the internal data before it is published. Al-

though ZK-friendly encryption algorithms like MiMC can adeptly

encrypt field elements using minimal rank-1 constraints, encrypt-

ing the LPS byte-by-byte could result in a vast ciphertext. This

arises since every byte is encrypted into a separate field element,

potentially consuming up to 254 bits in the BN254 elliptic curve

which is supported by native EVM pre-compiles. To address this, we

emphasize compressing the LPS bytes before encryption. Each byte

occupies a maximum of 8 bits, making it efficient to merge every

⌊ 254
8
⌋ = 31 bytes into a single variable, achieving lossless compres-

sion. Additionally, it’s crucial to encrypt only the actual length bytes,

which necessitates additional constraints to manage the dummy

values. The Compress procedure constructs compressed variables

𝑚 [𝑀] , where𝑀 = ⌈𝑁
31
⌉, and a dummy indicator isDummy[𝑀] as: 1)

𝑚[𝑖] = ∑
min(𝑁,31(𝑖+1))
𝑗=31𝑖

2
8(𝑗−31𝑖)𝑠 [𝑗] ·IND(𝑠 [𝑗]); 2) isDummy[𝑖] =

IsZero
(∑

min(𝑁,31(𝑖+1))
𝑗=31𝑖

IND(𝑠 [𝑗])
)
. Then, the Encrypt operation

generates the ciphertext 𝑐 [𝑀] using the secret key 𝑘 ∈ F: 𝑐 [𝑖] =
Select(isDummy[𝑖], 0, MiMC(𝑘 ,𝑚[𝑖])).Weassign 0 to dummy vari-

ables to simplify the array comparison process in Section 5.8.

5.6 Edit-bound Conformity Check Circuit
Once all the data in the JSON document is logically represented in

the circuit inputs, incorporating checks on this data becomes rela-

tively straightforward, requiring only a modest number of rank-1

constraints. For instance, to ascertain whether a Number lies within

a specific range, merely two in-circuit variable comparisons suffice.

Verifying the correctness of a string’s format can be accomplished

via character-by-character comparison or a range check.

Nonetheless, each edit-bound check circuit is intrinsically tai-

lored to its specific use cases. Attempting to design a universal

circuit capable of managing every conceivable check isn’t prag-

matic. To retain the one-time setup characteristic of the circuit, we

define two sets of sub-circuits: C𝑡 and C𝑠𝑡 . These sets include all
feasible target-only checks 𝜎\,𝑠 (𝑟) and source-target differential

checks 𝜎′
\,𝑠
(𝑟, 𝑟 ′) relevant to the particular use case. Here, \ is also

variables fed into the circuit to ensure utmost flexibility, while 𝑠

acts as a selection bit, indicating the applicability of this edit-bound

check. Consequently, the final edit-bound check circuit, denoted

EditCheck(𝑟, 𝑟 ′, \, 𝑠), operating on an old credential 𝑟 and its new

counterpart 𝑟 ′, is formulated as: Assert
(∑

𝜎\,𝑠 ∈C𝑡 (1 − 𝜎\,𝑠 (𝑟)) · 𝑠+∑
𝜎 ′
\,𝑠
∈C𝑠𝑡 (1−𝜎

′
\,𝑠
(𝑟, 𝑟 ′)) · 𝑠 == 0

)
. Note that both the parameters \

and the selection bits 𝑠 should be accessible to the verifier, ensuring

the edit-bound check adheres to the correct protocol.

5.7 Achieving Strictly Linear Circuit Size
While the Merge technique delineated in Section 5.3.3 produces

constraints linear in relation to the input size, consecutively merg-

ing LPS in a serial manner could culminate in a complexity of

𝑂 (𝑁 2) constraints for documents with a maximum length of 𝑁

bytes. To enhance circuit efficiency, we introduce the BatchMerge
strategy. This approach guarantees a strictly linear𝑂 (𝑁) constraint
complexity for documents that span up to 𝑁 bytes in length. The

main idea behind BatchMerge is to first gather all the LPSs that
need to be merged in sequence. After collecting them, we then

merge them all together using an enhanced version of the merge

check process, detailed in Algorithm 4.

The transition from a 2-LPS merge check to a more comprehen-

sive 𝑛-LPS merge check is similar to what we discussed in Section

5.3.3. We combine the target index with the byte value for each byte

in the input LPS. Afterwards, we ensure the two batch multiplica-

tions are equal using randomness generated by an in-circuit random

oracle. With minor alterations to the serialization procedure pre-

sented in Section 5.4, the entire IDE circuit can attain a linear circuit

complexity in relation to the maximal document size. This optimiza-

tion proves pivotal, especially when contemplating the scaling of

JSON documents to vast dimensions, such as cataloging a scholar’s

complete publications within a singular document.

5.8 Put Everything Together
Using the modules we’ve described earlier, we now present a com-

prehensive circuit for Integrity-driven Editing (IDE) of JSON docu-

ments. The circuit begins with legitimacy and range checks for all

inputted strings. Next, both the old and new credentials are serial-

ized and encrypted. The circuit then compares these two versions

to ensure they adhere to specified editing integrity rules. It’s impor-

tant to emphasize that the IDE circuit is designed to intrinsically

encrypt both the old and new credentials using the same key to

ensure that editors cannot modify the encryption key.

An essential step in finalizing the circuit is to validate that the

in-circuit ciphertext matches the one computed externally. This

ensures both serialization and encryption processes are accurate.

Given the presence of dummy variables in our ciphertext variable

array, we introduce a circuit, AssertArray(𝑎𝑁𝑎
, 𝑏𝑁𝑏

), to validate

the equality of two arrays, even if their lengths differ. It achieves

this by padding the shorter array with zeros until both arrays reach

a common length, 𝑁 = max(𝑁𝑎, 𝑁𝑏). The equality of the arrays

is then verified using: Assert
(∑𝑁−1

𝑖=0 IsEqual(𝑎[𝑖], 𝑏 [𝑖]) == 𝑁
)
.

This wraps up our discussion on the IDE circuit design. Each com-

ponent has been meticulously refined for optimal performance,

ensuring advanced capabilities with a reasonable constraint count.

The complete IDE circuit can be found in Algorithm 5.

6 USE CASE
IDEA-DAC transforms credential management by emphasizing

integrity-driven verification. It offers a more efficient approach

than the traditional revoke-and-reissue method, guaranteeing that

credential alterations uphold system integrity. DACs have diverse

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

applications, from employment to government services and medical

records, underlining their practical significance.

According to the W3C’s production rule [29] and verifiable cre-

dentials data model [31], credentials are serialized into JSON format.

EXAMPLE 33 [32] displays a verifiable credential in a DID docu-

ment linked to a resident card. Organizations can validate this by

examining its JSONWeb Signature and the issuer’s public key. Tech-

nically aligned with the W3C standard, IDEA-DAC explores JSON

serialization through a provable circuit, supporting multi-party

edits. Specific entities, like past employers, can add details about

job titles, employment spans, and roles. Professional organizations

can input data on memberships, certifications, or accolades. Edu-

cational bodies can list degrees, grades, and academic milestones,

while peers or clients might contribute testimonials or skill endorse-

ments. Though individuals can’t modify these entries in their DAC,

they can control their disclosure, like showcasing recent testimo-

nials while withholding older ones. This offers a balance: while

individuals control their data’s visibility, their reputation also relies

on externally verified, immutable inputs.

IDEA-DAC, as elaborated in Appendix C, illustrates a multi-

party editable credential system for DID. This protocol delineates

the creation, reading, and updating of a credential document, akin

to the ethr-did method on Ethereum [10]. While authorized parties

can modify designated fields in the document, the permissions

vary amongst different entities within these parties. In a university

scenario, imagine the following Ph.D. profile acting both as a verifier

of student status within educational institutions and as evidence of

the educational level for job contexts:

{" program_status ":" Ongoing"," program_years ":5,

"publications ":[{" title ":" XXX","year ":2022}] ,

"student_id ":" UNI421",

"duration ":{" start ":"08/01/18" ," end ":"05/31/23"}}

The program_status field uses a specified set of strings to de-

note the student’s current stage, and the program_years reflects
the research duration. New articles can be added to the append-

only publications without altering previous entries. Meanwhile,

student_id provides a uniquely formatted identifier, and duration
denotes the program’s duration in a timeframe format.

7 EXPERIMENTS
We implemented the IDEA-DAC circuit for the PhD Profile use case

described in Section 6 as our benchmark, and conducted experi-

ments to assess our circuit’s performance. Our algorithmic design

is encapsulated within a comprehensive circuit, developed using

the Gnark [9] framework. All experiments were conducted on a

standard AWS EC2 r5a.8xlarge instance, equipped with 32 vCPUs
and 256GB of memory. To evaluate the scalability of our circuit, we

varied the document size by incrementing the maximum number

of publications and then measured three key metrics across these

sizes: the number of rank-1 constraints, the proving time, and ver-

ification time. Beyond the Encoding and Encryption checks, we

incorporates five distinct integrity rules:

(1) One of the Set: Suitable for various data types, this rule lim-

its modifications to a well-defined set of values. For example,

within the program_status field, the permissible values are lim-

ited to "Approved", "Ongoing", "Graduated", and "Withdrawn".

(2) NumberWithin Range: Tailored for numeric entries, this rule

ensures that a number remains within a specified interval. For

example, the program_year should lie between 3 and 8.

(3) Append Only: This rule, apt for list or dictionary, facilitates
the addition of new entries while disallowing the removal of ex-

isting ones. In a scholar’s publication history context, while new

publications can be appended, previous ones are immutable.

(4) Meet Certain Format: Targeted at strings, this rule mandates

edits to align with certain format. For example, the student ID

may necessitate an "AAA111" pattern for a specified institution.

(5) Time Sensitive:Time can be encoded by Unix timestamps. This

rule ensures, for example, that a project’s start date precedes

its end date, and the end date precedes the current date.

Figure 3: Experimental results of IDEA-DAC, showcasing key
metrics across varying credential document sizes.

As depicted in Figure 3, the results highlight the algorithm’s

performance across document sizes ranging from 1KB to 33KB. We

observe a clear linear correlation between the document size and

the number of rank-1 constraints. Specifically, a document size of

1KB requires around 3× 105 constraints, and there is an increase of

approximately 5 × 105 constraints for every 2KB increment in the

document size. Conversely, the proving time, which encompasses

both constraint solving and proof generation, does not scale linearly.

This non-linear behavior can be attributed to the use of ZK-friendly

random oracles, such as MiMC [2], that are not amenable to parallel

constraint solving. However, the time required for proof genera-

tion remains reasonable; for instance, a 32KB document takes just

about 80 seconds. We underscore that our evaluations utilized the

Groth16 [17] protocol over BN254 curve on a 32-vCPU machine—a

basic configuration. Employing servers with enhanced CPU capabil-

ities and leveraging advanced ZKP protocols will further optimize

proving times, especially for large-scale applications. For example,

a R1CS with 2
22

constraints will only require 15𝑠 to prove using

Orion [34] with a single CPU core. In terms of verification, Groth16

performs well, with the time ranging between 1ms and 2ms.

8 CONCLUSION
In the field of decentralized anonymous credentials (DACs) and De-

centralized Identifiers (DIDs), updating credentials efficiently and

with integrity is challenging. We present IDEA-DAC, a method for

managing JSON credentials differently. IDEA-DACutilizes Integrity-

Driven Editing (IDE) with ZK-SNARKs and R1CS circuits for the

editing process. Our R1CS design for JSON serialization optimizes

efficiency. Tests indicate a linear connection between credential

file size and constraint count. Overall, IDEA-DAC advances edit-

ing integrity in DACs, addressing large JSON dataset complexities.

Future work can further build on these insights.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

IDEA-DAC: Integrity-Driven Editing for Accountable Decentralized Anonymous Credentials Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES
[1] a16z crypto. 2023. ZkDocs: Zero-knowledge Information Sharing.

https://a16zcrypto.com/posts/article/zkdocs-zero-knowledge-information-

sharing/.

[2] Martin Albrecht, Lorenzo Grassi, Christian Rechberger, Arnab Roy, and Tyge

Tiessen. 2016. MiMC: Efficient Encryption and Cryptographic Hashing with

Minimal Multiplicative Complexity. In Advances in Cryptology – ASIACRYPT
2016 (Lecture Notes in Computer Science), Jung Hee Cheon and Tsuyoshi Takagi

(Eds.). Springer, Berlin, Heidelberg, 191–219. https://doi.org/10.1007/978-3-662-

53887-6_7

[3] Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas Spooner, Madars

Virza, and Nicholas P Ward. 2019. Aurora: Transparent succinct arguments for

R1CS. In Advances in Cryptology–EUROCRYPT 2019: 38th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Darmstadt,
Germany, May 19–23, 2019, Proceedings, Part I 38. Springer, 103–128.

[4] Clemens Brunner, Ulrich Gallersdörfer, Fabian Knirsch, Dominik Engel, and

Florian Matthes. 2021. DID and VC:Untangling Decentralized Identifiers and

Verifiable Credentials for the Web of Trust. In Proceedings of the 2020 3rd Inter-
national Conference on Blockchain Technology and Applications (Xi’an, China)
(ICBTA ’20). Association for Computing Machinery, New York, NY, USA, 61–66.

https://doi.org/10.1145/3446983.3446992

[5] B. Bunz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell. 2018. Bul-

letproofs: Short Proofs for Confidential Transactions and More. In 2018 IEEE
Symposium on Security and Privacy (SP). IEEE Computer Society, Los Alamitos,

CA, USA, 315–334. https://doi.org/10.1109/SP.2018.00020

[6] David Chaum. 1985. Security without identification: Transaction systems to

make big brother obsolete. Commun. ACM 28, 10 (1985), 1030–1044.

[7] Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Noah Vesely,

and Nicholas Ward. 2020. Marlin: Preprocessing zkSNARKs with Universal and

Updatable SRS. In Advances in Cryptology – EUROCRYPT 2020 (Lecture Notes in
Computer Science), Anne Canteaut and Yuval Ishai (Eds.). Springer International

Publishing, Cham, 738–768. https://doi.org/10.1007/978-3-030-45721-1_26

[8] Circle. 2023. Verite. https://www.circle.com/en/verite.

[9] Consensys. 2023. Gnark. https://docs.gnark.consensys.net/overview.

[10] Veramo core development. 2023. Ethr-DID Library. https://github.com/uport-

project/ethr-did.

[11] Jens Ernstberger, Jan Lauinger, Fatima Elsheimy, Liyi Zhou, Sebastian Steinhorst,

Ran Canetti, Andrew Miller, Arthur Gervais, and Dawn Song. 2023. SoK: Data

Sovereignty. In 2023 IEEE 8th European Symposium on Security and Privacy (Eu-
roS&P). IEEE Computer Society, 122–143. https://doi.org/10.1109/EuroSP57164.

2023.00017

[12] Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru. 2019. PLONK:

Permutations over Lagrange-bases for Oecumenical Noninteractive arguments

of Knowledge. Cryptology ePrint Archive, Paper 2019/953. https://eprint.iacr.

org/2019/953

[13] Christina Garman, Matthew Green, and Ian Miers. 2014. Decentralized Anony-

mous Credentials. In 21st Annual Network and Distributed System Security Sym-
posium, NDSS 2014, San Diego, California, USA, February 23-26, 2014. The Internet
Society. https://www.ndss-symposium.org/ndss2014/decentralized-anonymous-

credentials

[14] Sandro Rodriguez Garzon, Hakan Yildiz, and Axel Küpper. 2022. Decentralized

Identifiers and Self-sovereign Identity in 6G. IEEE Network 36, 4 (2022), 142–148.
[15] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. 2008. Delegating

Computation: Interactive Proofs forMuggles. In Proceedings of the Fortieth Annual
ACM Symposium on Theory of Computing (STOC ’08). Association for Computing

Machinery, New York, NY, USA, 113–122. https://doi.org/10.1145/1374376.

1374396

[16] S Goldwasser, S Micali, and C Rackoff. 1985. The Knowledge Complexity of Inter-

active Proof-Systems. In Proceedings of the Seventeenth Annual ACM Symposium
on Theory of Computing (STOC ’85). Association for Computing Machinery, New

York, NY, USA, 291–304. https://doi.org/10.1145/22145.22178

[17] Jens Groth. 2016. On the Size of Pairing-Based Non-interactive Arguments. In

Advances in Cryptology – EUROCRYPT 2016, Marc Fischlin and Jean-Sébastien

Coron (Eds.). Vol. 9666. Springer Berlin Heidelberg, Berlin, Heidelberg, 305–326.

https://doi.org/10.1007/978-3-662-49896-5_11

[18] Abhiram Kothapalli and Srinath Setty. 2022. SuperNova: Proving universal

machine executions without universal circuits. Cryptology ePrint Archive, Paper

2022/1758. https://eprint.iacr.org/2022/1758

[19] AbhiramKothapalli, Srinath Setty, and Ioanna Tzialla. 2022. Nova: Recursive zero-

knowledge arguments from folding schemes. In Annual International Cryptology
Conference. Springer, 359–388.

[20] Shu Yun Lim, Omar Bin Musa, Bander Ali Saleh Al-Rimy, and Abdullah Almasri.

2022. Trust models for blockchain-based self-sovereign identity management:

A survey and research directions. Advances in Blockchain Technology for Cyber
Physical Systems (2022), 277–302.

[21] Deepak Maram, Harjasleen Malvai, Fan Zhang, Nerla Jean-Louis, Alexander

Frolov, Tyler Kell, Tyrone Lobban, Christine Moy, Ari Juels, and Andrew Miller.

2021. Candid: Can-do decentralized identity with legacy compatibility, sybil-

resistance, and accountability. In 2021 IEEE Symposium on Security and Privacy
(SP). IEEE, 1348–1366.

[22] Assa Naveh and Eran Tromer. 2016. Photoproof: Cryptographic image authenti-

cation for any set of permissible transformations. In 2016 IEEE Symposium on
Security and Privacy (SP). IEEE, 255–271.

[23] Deevashwer Rathee, Guru Vamsi Policharla, Tiancheng Xie, Ryan Cottone, and

Dawn Song. 2022. Zebra: Anonymous credentials with practical on-chain verifi-

cation and applications to kyc in defi. Cryptology ePrint Archive (2022).
[24] M. Rosenberg, J. White, C. Garman, and I. Miers. 2023. zk-creds: Flexible Anony-

mous Credentials from zkSNARKs and Existing Identity Infrastructure. In 2023
IEEE Symposium on Security and Privacy (SP). IEEE Computer Society, Los Alami-

tos, CA, USA, 790–808. https://doi.org/10.1109/SP46215.2023.10179430

[25] J. T. Schwartz. 1980. Fast Probabilistic Algorithms for Verification of Polynomial

Identities. J. ACM 27, 4 (Oct. 1980), 701–717. https://doi.org/10.1145/322217.

322225

[26] Mohammed Shuaib, Noor Hafizah Hassan, Sahnius Usman, Shadab Alam, Surbhi

Bhatia, Parul Agarwal, and Sheikh Mohammad Idrees. 2022. Land registry

framework based on self-sovereign identity (SSI) for environmental sustainability.

Sustainability 14, 9 (2022), 5400.

[27] A. Sonnino, M. Al-Bassam, S. Bano, S. Meiklejohn, and G. Danezis. 2019. Co-

conut: threshold issuance selective disclosure credentials with applications to

distributed ledgers. Proceedings 2019 Network and Distributed System Security
Symposium (2019). https://doi.org/10.14722/ndss.2019.23272

[28] SpruceID. 2023. SpruceID. https://spruceid.com/.

[29] W3C. 2023. Decentralized Identifiers v1.0, Production and Consumption. https:

//www.w3.org/TR/did-core/#dfn-production.

[30] W3C. 2023. Decentralized Identifiers v1.0, Terminology. https://www.w3.org/

TR/did-core/{#}dfn-did-documents.

[31] W3C. 2023. Verifiable Credentials Data Model v1.1. https://www.w3.org/TR/vc-

data-model/#example-a-simple-example-of-a-verifiable-credential.

[32] W3C. 2023. W3C DID. https://www.w3.org/TR/did-core/.

[33] Tiacheng Xie, Jiaheng Zhang, Yupeng Zhang, Charalampos Papamanthou, and

Dawn Song. 2019. Libra: Succinct Zero-Knowledge Proofs with Optimal Prover

Computation. In Advances in Cryptology – CRYPTO 2019 (Lecture Notes in Com-
puter Science), Alexandra Boldyreva and Daniele Micciancio (Eds.). Springer

International Publishing, Cham, 733–764. https://doi.org/10.1007/978-3-030-

26954-8_24

[34] Tiancheng Xie, Yupeng Zhang, and Dawn Song. 2022. Orion: Zero Knowl-

edge Proof with Linear Prover Time. In Advances in Cryptology – CRYPTO
2022, Yevgeniy Dodis and Thomas Shrimpton (Eds.). Vol. 13510. Springer Nature

Switzerland, Cham, 299–328. https://doi.org/10.1007/978-3-031-15985-5_11

[35] Jiaheng Zhang, Tiancheng Xie, Yupeng Zhang, and Dawn Song. 2020. Transpar-

ent Polynomial Delegation and Its Applications to Zero Knowledge Proof. In

2020 IEEE Symposium on Security and Privacy (SP). 859–876. https://doi.org/10.

1109/SP40000.2020.00052

A CIRCUIT PSEUDOCODES
Additionally define the following two R1CS primitives for the naive

Merge algorithm:

• 𝑐 ← Lookup2(𝑠0, 𝑠1, 𝑟0, 𝑟1, 𝑟2, 𝑟3): 2-bit lookup table. Output

𝑟0, 𝑟1, 𝑟2, 𝑟3 if (𝑠0, 𝑠1) = (0, 0), (1, 0), (0, 1), (1, 1), separately. This
functionality can be achieved via a low-degree extension of the

binary function, i.e., 𝑓 (𝑠0, 𝑠1) = (1−𝑠0) (1−𝑠1)𝑟0+𝑠0 (1−𝑠1)𝑟1+(1−
𝑠0)𝑠1𝑟2 + 𝑠0𝑠1𝑟3. Simplifying the polynomial gives us a solution

of using only 3 constraints: 1) (𝑟3 − 𝑟2 − 𝑟1 + 𝑟0) · 𝑠1 = 𝑡1 − 𝑟1 + 𝑟0;
2) 𝑡1 · 𝑠0 = 𝑡2; 3) (𝑟2 − 𝑟0) · 𝑠1 = 𝑐 − 𝑡2 − 𝑟0, where 𝑡1 and 𝑡2 are
newly-added wires.

• 𝑐 ←M(𝑎 [𝑁] , 𝑏): A multiplexer that selects the 𝑏-th element in

𝑎 [𝑁] where 𝑏 is also an in-circuit variable. We show a linear

multiplexer implementation in Algorithm 7.

B FORMAL DEFINITION OF ZERO
KNOWLEDGE PROOF (ZKP)

Formally, a ZKP consists of three algorithms (𝑃,𝑉 , 𝑆), where 𝑃 is

the prover, 𝑉 is the verifier, and 𝑆 is the simulator. A ZKP has the

following properties:

9

https://doi.org/10.1007/978-3-662-53887-6_7
https://doi.org/10.1007/978-3-662-53887-6_7
https://doi.org/10.1145/3446983.3446992
https://doi.org/10.1109/SP.2018.00020
https://doi.org/10.1007/978-3-030-45721-1_26
https://github.com/uport-project/ethr-did
https://github.com/uport-project/ethr-did
https://doi.org/10.1109/EuroSP57164.2023.00017
https://doi.org/10.1109/EuroSP57164.2023.00017
https://eprint.iacr.org/2019/953
https://eprint.iacr.org/2019/953
https://www.ndss-symposium.org/ndss2014/decentralized-anonymous-credentials
https://www.ndss-symposium.org/ndss2014/decentralized-anonymous-credentials
https://doi.org/10.1145/1374376.1374396
https://doi.org/10.1145/1374376.1374396
https://doi.org/10.1145/22145.22178
https://doi.org/10.1007/978-3-662-49896-5_11
https://eprint.iacr.org/2022/1758
https://doi.org/10.1109/SP46215.2023.10179430
https://doi.org/10.1145/322217.322225
https://doi.org/10.1145/322217.322225
https://doi.org/10.14722/ndss.2019.23272
https://www.w3.org/TR/did-core/#dfn-production
https://www.w3.org/TR/did-core/#dfn-production
https://www.w3.org/TR/did-core/{#}dfn-did-documents
https://www.w3.org/TR/did-core/{#}dfn-did-documents
https://www.w3.org/TR/vc-data-model/#example-a-simple-example-of-a-verifiable-credential
https://www.w3.org/TR/vc-data-model/#example-a-simple-example-of-a-verifiable-credential
https://doi.org/10.1007/978-3-030-26954-8_24
https://doi.org/10.1007/978-3-030-26954-8_24
https://doi.org/10.1007/978-3-031-15985-5_11
https://doi.org/10.1109/SP40000.2020.00052
https://doi.org/10.1109/SP40000.2020.00052

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

Algorithm 1 Encoding a Number in ASCII String Format

1: function encodeNumber(x, maxDigit)

⊲ Input the decomposed decimals computed off-circuit

2: len||dec[maxDigit] ← GetDecimal(x,maxDigit)

3: RangeCheckDecimal
(
dec[maxDigit]

)
⊲ Check 1

⊲ Check the correctness of decomposition

4: sum← 0, remLen← len

5: isEnd[𝑚𝑎𝑥𝐷𝑖𝑔𝑖𝑡] ← NewArray(maxDigit)

6: for i = 0; i < maxDigit; i++ do
7: isEnd[i]← IsZero(remLen)

8: sum← Select(isEnd, sum,Mul(sum, 10))

9: Assert(And(isEnd, IsNotZero(dec[i])) == 0) ⊲ Check 2

10: sum← Add(sum, dec[i]) ⊲ No effect on dummy 0s

11: remLen← Select(isEnd, 0, Sub(remLen, 1))

12: Assert(sum == x) ⊲ Check 3

⊲ Get the ASCII-encoded LPS Representation

13: res[maxDigit] ← NewArray(maxDigit)

14: for i = 0; i < maxDigit; i++ do
15: res[i]← Select(isEnd[i], 𝐷 , Add(dec[i], 48))
16: return len||res[maxDigit]

Algorithm 2 LPS Legitimacy Check

1: function legitimacyCheck(aLen||a[𝑁])
2: isEnd← 0, numZero← 0, numValid← 0

3: c[𝑁] ← NewArray(𝑁)

4: for i = 0; i < 𝑁 ; i++ do
5: d← IsDummy(a[i])
6: isEnd← Or(isEnd, d)
7: c[i]← Select(d, Sub(i+1, aLen), Sub(aLen, i+1))
8: numZero← Add(numZero, IsZero(c[i]))
9: if i > 0 then
10: v1← IsEqual(c[i], Add(c[i-1], 1))
11: v2← IsEqual(c[i], Sub(c[i-1], 1))
12: valid← Select(isEnd, v1, v2)
13: numValid← Add(numValid, valid)

14: Assert(numValid == 𝑁 − 1)
15: Assert(IsEqual(numZero, 1)+IsZero(aLen) == 1)

Algorithm 3 Hint-based Linear LPS Merge

1: function merge(aLen||a[𝑁𝑎] , bLen||b[𝑁𝑏])
⊲ Input the merged string computed off-circuit

2: cLen||c[𝑁𝑎+𝑁𝑏] ←Merge(aLen||a[𝑁𝑎] , bLen||b[𝑁𝑏])
3: Assert(cLen == Add(aLen, bLen)) ⊲ Check 1

4: RangeCheck
(
c[𝑁𝑎+𝑁𝑏]

)
⊲ Check 2

⊲ Check3: the correctness of LPS merge

5: 𝑟 ← RO(aLen||a[𝑁𝑎] , bLen||b[𝑁𝑏] , cLen||c[𝑁𝑎+𝑁𝑏])
⊲ IND stands for IsNotDummy

6: aMul←∏𝑁𝑎−1
𝑖=0

[𝑟 − (256(𝑖 + 1) + a[𝑖])IND(a[𝑖])]
7: bMul←∏𝑁𝑏−1

𝑖=0
[𝑟 − (256(𝑖 + 1 + 𝑎𝐿𝑒𝑛) + b[𝑖])IND(b[𝑖])]

8: cMul←∏𝑁𝑎+𝑁𝑏−1
𝑖=0

[𝑟 − (256(𝑖 + 1) + c[𝑖])IND(c[𝑖])]
9: Assert(Mul(aMul, bMul) == cMul)

10: return cLen||c[𝑁𝑎+𝑁𝑏]

Algorithm 4 Hint-based Linear Batch LPS Merge

1: function batchMerge(𝑙 (0) | |𝑠 (0)[𝑁0] , . . . , 𝑙
(𝑛−1) | |𝑠 (𝑛−1)[𝑁𝑛−1])

⊲ Input the merged string computed off-circuit

2: MaxLen← ∑𝑛−1
𝑖=0 𝑁𝑖

3: oLen||o[MaxLen] ←Merge(𝑙 (0) | |𝑠 (0)
𝑁0

, . . . , 𝑙 (𝑛−1) | |𝑠 (𝑛−1)
𝑁𝑛−1

)

4: Assert
(
oLen == Add(𝑙 (0) , 𝑙 (1) , . . . , 𝑙 (𝑛−1))

)
⊲ Check 1

5: RangeCheck
(
o[MaxLen]

)
⊲ Check 2

⊲ Check3: the correctness of LPS merge

6: 𝑟 ← RO(𝑙 (0) | |𝑠 (0)[𝑁0] , . . . , 𝑙
(𝑛−1) | |𝑠 (𝑛−1)[𝑁𝑛−1] , oLen||o[MaxLen])

⊲ IND stands for IsNotDummy
7: cumLen𝑖 ←

∑𝑖−1
𝑗=0 𝑙

(𝑗)

8: sMul𝑖←
∏𝑁𝑖−1
𝑗=0
[𝑟−(256(𝑗+1+cumLen𝑖)+𝑠 [𝑗])IND(𝑠 [𝑗])]

9: oMul←∏
MaxLen−1
𝑖=0 [𝑟 − (256(𝑖 + 1) + o[𝑖])IND(o[𝑖])]

10: Assert(Mul(sMul0, sMul1, . . . , sMul𝑛−1) == oMul)

11: return oLen||o[MaxLen]

Algorithm 5 Integrity-driven Editing Circuit

1: function IDE(𝑟𝑜𝑙𝑑 , 𝑟𝑛𝑒𝑤 : D, 𝑘 : F, 𝑐𝑜𝑙𝑑 , 𝑐𝑛𝑒𝑤 : [F], \, 𝑠 : [F])
2: 𝑐′

𝑜𝑙𝑑
← Encrypt(𝑘 , Compress(Encode(𝑟𝑜𝑙𝑑)))

3: 𝑐′𝑛𝑒𝑤 ← Encrypt(𝑘 , Compress(Encode(𝑟𝑛𝑒𝑤)))
⊲ Assert the equivalence of two arrays with unequal length

4: AssertArray(𝑐′
𝑜𝑙𝑑

== 𝑐𝑜𝑙𝑑)

5: AssertArray(𝑐′𝑛𝑒𝑤 == 𝑐𝑛𝑒𝑤)

6: EditCheck(𝑟𝑜𝑙𝑑 , 𝑟𝑛𝑒𝑤 , \, 𝑠)

Algorithm 6 Naive LPS Merge

1: function naiveMerge(aLen||a[𝑁𝑎] , bLen||b[𝑁𝑏])
2: 𝑙1← aLen, 𝑙2← bLen, outLen← Add(𝑙1, 𝑙2)
3: out[𝑁𝑎+𝑁𝑏] ← NewArray(𝑁𝑎 + 𝑁𝑏)
4: a[𝑁𝑎+𝑁𝑏] ← pad(a[𝑁𝑎] , 0[𝑁𝑏])
5: b[𝑁𝑎+𝑁𝑏] ← pad(0[𝑁𝑎] , b[𝑁𝑏]) ⊲ Avoid index overflow

⊲ Extract the output array

6: for i = 0; i < 𝑁𝑎 + 𝑁𝑏 ; i++ do
7: 𝛼 ← IsZero(𝑙1), 𝛽 ← IsZero(𝑙2)
8: out[i]← Lookup2(𝛼 ,𝛽 ,a[i],b[i+𝑵𝒂-aLen],a[i],0)

⊲ b[i+𝑵𝒂-aLen] computed by a linear multiplexer

9: 𝑙1← Select(𝛼 , 0, Sub(𝑙1, 1))
10: 𝑙2← Lookup2(𝛼 , 𝛽 , 𝑙2, Sub(𝑙2, 1), 𝑙2, 0)
11: return outLen||out[𝑁𝑎+𝑁𝑏]

Algorithm 7 Linear Multiplexer

1: functionM(x[𝑁] , idx: |F|)
2: logN← logCeil(𝑁) ⊲ ⌈log

2
𝑁 ⌉

3: res[2logN] ← pad(x[𝑁] , 0[2logN−𝑁])
4: idxBin[logN] ← ToBinary(idx, logN)
5: for i = 0; i < logN; i++ do
6: for j = 0; j < 2

(logN−𝑖−1)
; j++ do

7: res[j]← Select(idxBin[i], res[2j+1], res[2j])
8: return res[0]

10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

IDEA-DAC: Integrity-Driven Editing for Accountable Decentralized Anonymous Credentials Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

• Completeness: If the statement is true, the honest verifier (that

is, one following the protocol properly) will be convinced of this

fact by an honest prover. Formally, for any 𝑥,𝑤 such that 𝑥 ∈ 𝐿𝑤
and any verifier strategy 𝑉 ∗,

Pr[(𝑃 (𝑥,𝑤),𝑉 ∗ (𝑥)) = 1] = 1.

• Soundness: If the statement is false, no cheating prover can

convince the honest verifier that it is true, except with some

small probability. Formally, for any 𝑥 ∉ 𝐿𝑤 , any prover strategy

𝑃∗, and any𝑤 ′,

Pr[(𝑃∗ (𝑥,𝑤 ′),𝑉 (𝑥)) = 1] ≤ 𝑛𝑒𝑔𝑙 (_),

where 𝑛𝑒𝑔𝑙 (_) is a negligible function.
• Zero-knowledge: If the statement is true, no verifier learns any-

thing other than this fact. This is formalized by showing that

every verifier has some simulator that, given only the statement

to be proved (and no access to the prover), can produce a tran-

script that "looks like" an interaction between the honest prover

and the verifier in question. Formally, for any 𝑥,𝑤 such that

𝑥 ∈ 𝐿𝑤 , any verifier strategy 𝑉 ∗, and any𝑤 ′,

{(𝑃 (𝑥,𝑤),𝑉 ∗ (𝑥))} ≈ {(𝑆 (𝑥,𝑤 ′),𝑉 ∗ (𝑥))},

where the approximation symbol ≈ denotes computational indis-

tinguishability.

C A TENTATIVE SYSTEM DESIGN OF
IDEA-DAC

In this section, we introduce a potential design of the whole IDEA-

DAC system.

C.1 Identity Configuration
In the IDEA-DAC system, the Identity Configuration process is

crucial for transparent user identity establishment, involving both

users and editors. Protocol "SetupIdentity" (Protocol 8) outlines es-

sential steps for identity creation. It takes inputs 𝑟 , a public number,

and the user’s key pair 𝑃𝑘 , 𝑆𝑘 , producing a new key pair, 𝑃𝐼𝐷 and

𝑆𝐼𝐷 .

Protocol 8 SetupIdentity

Input: 𝑟, 𝑃𝑘 , 𝑆𝑘
Output: 𝑃𝐼𝐷 , 𝑆𝐼𝐷
if 𝑐ℎ𝑜𝑜𝑠𝑒 𝑡𝑜 𝑒𝑥𝑝𝑜𝑠𝑒 𝑎𝑐𝑐𝑜𝑢𝑛𝑡 then

𝑃𝐼𝐷 = 𝑃𝑘
𝑆𝐼𝐷 = 𝑆𝑘

else
𝑆𝐼𝐷 = 𝑆𝑘 ⊕ 𝑟
𝑃𝐼𝐷 = 𝑃𝑢𝑏𝐺𝑒𝑛(𝑆𝐼𝐷)

return 𝑃𝐼𝐷 , 𝑆𝐼𝐷

Users can either reveal their account or stay anonymous. If re-

vealed, the key pair remains as (𝑃𝐼𝐷 = 𝑃𝑘 , 𝑆𝐼𝐷 = 𝑆𝑘). For anonymity,

𝑆𝐼𝐷 is formed by XORing 𝑆𝑘 with 𝑟 and 𝑃𝐼𝐷 is then obtained using

the PubGen function on 𝑆𝐼𝐷 . After this, the algorithm provides the

identity key pair, 𝑃𝐼𝐷 and 𝑆𝐼𝐷 , for all in the IDEA-DAC system,

ensuring secure, private exchanges.

C.2 Editor Configuration
In the IDEA-DAC system, editor configuration is achieved through

two protocols: SetupEditorDAO (Protocol 10) and SetupEditor (Pro-

tocol 9). The former sets the foundation for the Editor DAO through

steps like proposing, voting, and establishing the Editor DAO.

Protocol 9 SetupEditor

On behalf of editor 𝐸𝑖 :
𝜎𝑖 , 𝑀𝑘𝑝,𝑀𝑘𝑟 = 𝑀𝑃𝐶 (𝜙𝑖) # 𝜙𝑖 is the qualification of 𝐸𝑖 , and 𝜎𝑖 is

the edit limitation

Upload Mkr or 𝑃𝑒 to smart contract if needed

Algorithm MPC:
Input: Each user’s qualification 𝜙𝑖 as secret inputs

Output: Edit Limit El, Merkle Path Mkp, Merkle Root Mkr

Give each editor an appropriate edit limitation

Build Merkle trees for different edit limitations

Generate new common public key 𝑃𝑒

In the IDEA-DAC system, the Manager DAO starts the editor

configuration process. A member, denoted as 𝑖 , proposes a new

credential type 𝑅 = (𝐷𝑒𝑠,𝑚,𝑤), with 𝐷𝑒𝑠 being the content de-

scription, 𝑚 the MPC code, and 𝑤 the edit circuit. The proposal

undergoes a voting process among Manager DAO members. If it

gains approval, the members reach a consensus on the Edit Circuit

Setup, co-sign the Edit Verifier contract (VC), and upload it. The

Manager DAO then establishes the Editor DAO, with interested

editors joining the computation𝑚 and getting their limitations and

related information. The updated Merkle Root for the credential

type and editing limitation is then uploaded.

Protocol 9, termed SetupEditor, focuses on an individual editor 𝐸𝑖 .

It determines the editor’s edit limitation, 𝜎𝑖 , as well as their Merkle

Path (Mkp) and Merkle Root (Mkr) using the MPC algorithm, based

on their qualification, 𝜙𝑖 . The MPC then assigns edit limitations,

constructs Merkle trees for these, and creates a new public key, 𝑃𝑒 .

Editors may upload the Mkr or 𝑃𝑒 to a smart contract as needed.

Together, these protocols set up the Editor DAO in the IDEA-DAC

system, ensuring a decentralized approach to editor management.

C.3 User Configuration
In the IDEA-DAC system, user setup is handled by both a protocol,

SetupUser, and a circuit, SetupUserCircuit.

The SetupUser protocol (Protocol 11) focuses on user 𝑈𝑖 =

(𝑃𝑘𝑖 , 𝑆𝑘𝑖). Its primary goal is to generate and manage unique keys

for each of the user’s credentials. When a user has a credential 𝑟𝑖 ,

they create a distinct encryption key, 𝐾𝑟𝑖 , with the KeyGen func-

tion. This key is then signed using their secret identity key, 𝑆𝐼𝐷 ,

resulting in signature, 𝜏 . The composed pair 𝐾𝑟𝑖 | |𝜏 is forwarded to

the Editor DAO. In response, the Editor DAO provides the user with

a threshold signature, 𝜏 ′, for the encryption key, 𝐾𝑟𝑖 . Subsequently,

the user crafts a SetupUserCircuit proof, which is uploaded to the

blockchain.

The SetupUserCircuit (Circuit 12) is a zero-knowledge proof

circuit, ensuring the validity of the user’s key and signature with-

out exposing any private information. It uses public inputs like

the committed encryption key, 𝐾𝑐𝑟𝑖 , and the EditorDAO public

key, 𝑃𝐷𝐴𝑂𝑟𝑖
. Secret inputs encompass the encryption key, 𝐾𝑟𝑖 ,

11

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

Protocol 10 SetupEditorDAO

Propose:
Member 𝑖 in Manager DAO raises proposal for a new kind of

credential 𝑅 = (𝐷𝑒𝑠,𝑚,𝑤):
𝐷𝑒𝑠 := Content description

𝑚 := MPC code

𝑐 := Edit circuit

Voting:
Members in Manager DAO will vote to decide whether to accept

Uploading:
Proposer run 𝑆𝑒𝑡𝑢𝑝 (1_, 𝑐)
Majority of Members agree on a version of Edit Circuit Setup

Majority of Members threshold sign on the Edit Verifier contract

(VC) and upload

Form Editor DAO:
Each inclined editor joins the computation𝑚 and gets her limi-

tation and other information (refer to 9)

Manager DAO then upload updated Merkle Root in the corre-

sponding credential type and editing limitation

and the EditorDAO signature on it, 𝜏 . The circuit’s task is to con-

firm a statement. This statement checks the signature’s authen-

ticity and the commitment of the encryption key. It is only vali-

dated if both the signature and commitment evaluations succeed

(𝑇𝑟𝑢𝑒 == 𝑆𝑖𝑔𝑉𝑒𝑟𝑖 𝑓 𝑦 (𝐾𝑟𝑖 , 𝜏)
∧
𝐾𝑐𝑟𝑖 == 𝐶𝑜𝑚𝑚𝑖𝑡 (𝐾𝑟𝑖)).

In essence, this approach ensures a secure and private way for

users to set up their credentials in the IDEA-DAC system.

Protocol 11 SetupUser

On behalf of user𝑈𝑖 = (𝑃𝑘𝑖 , 𝑆𝑘𝑖)
for each credential 𝑟𝑖 do

𝐾𝑟𝑖 = 𝐾𝑒𝑦𝐺𝑒𝑛()
𝜏 = 𝑆𝑖𝑔𝑛𝑆𝐼𝐷 (𝐾𝑟𝑖)
Send 𝐾𝑟𝑖 | |𝜏 to editors’ DAO

Receive

𝜏 ′ = 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑆𝑖𝑔𝑛𝐸𝑑𝑖𝑡𝑜𝑟𝑠 (𝐾𝑟𝑖)
Generate SetupUserCircuit Proof and upload on chain

On behalf of Editors
Receive (𝐾𝑟𝑖 | |𝜏, 𝑃𝐼𝐷)
Verify 𝜏

if Success then
Store mapping from 𝑃𝐼𝐷 to 𝐾𝑟𝑖

else
Abort

Circuit 12 SetupUserCircuit

Input: Public: Committed encryption key𝐾𝑐𝑟𝑖 , EditorDAOPublic

Key 𝑃𝐷𝐴𝑂𝑟𝑖

Secret: encryption key 𝐾𝑟𝑖 , Signature of EditorDAO on encryp-

tion key 𝜏

Statement:
𝑇𝑟𝑢𝑒 == 𝑆𝑖𝑔𝑉𝑒𝑟𝑖 𝑓 𝑦 (𝐾𝑐𝑟𝑖 , 𝜏)

∧
𝐾𝑐𝑟𝑖 == 𝐶𝑜𝑚𝑚𝑖𝑡 (𝐾𝑟𝑖)

C.4 Editing Process
The Editing Process in the IDEA-DAC system ensures editors can

alter users’ encrypted credentials, safeguarding privacy and up-

holding data integrity, as articulated in Protocol 13 (Edit) and il-

lustrated via two circuits: EditCircuit(General) (Circuit 14) and

EditCircuit(FastTrack) (Circuit 15).

When an editor, recognized by the public identity 𝑃𝐼𝐷𝑒
, intends

to edit user 𝑃𝐼𝐷 ’s encrypted credential 𝑟𝑖 , they firstly decrypt

it utilizing the disclosure key 𝐾𝑟𝑖 to access the original content

𝐶 . Post-editing to form modified content 𝐶′, and depending on

blockchain Merkle Root changes since the last edit, either an Edit-

Circuit(General) proof or an EditCircuit(FastTrack) proof is gener-

ated and later verified in the Profile Contract.

EditCircuit(General) (Circuit 14) entails both public and secret

inputs. Public ones encompass the prior credential 𝑟 , the updated

𝑟 ′, user 𝑃𝐼𝐷𝑢
, edit limit 𝜎 , Merkle Root 𝑟𝑜𝑜𝑡 , and key commitment

𝐾𝑐𝑟𝑖 . Secret inputs include the editor’s secret identity 𝑆𝐼𝐷𝑒
, original

content 𝐶 , revised content 𝐶′, Merkle Path 𝑝𝑎𝑡ℎ, and the encryp-

tion key 𝐾𝑟𝑖 . This circuit authenticates a statement, validating the

editor’s identity, Merkle Root, edit limit, key commitment, and the

content’s encryption and decryption processes.

This structured, rigorous approach warrants precise, confidential

editing of encrypted credentials within the IDEA-DAC systemwhile

maintaining data veracity and user privacy.

Protocol 13 Edit

Assume Editor 𝑃𝐼𝐷𝑒
wants to edit the user 𝑃𝐼𝐷 ’s encrypted cre-

dential 𝑟𝑖 . Closure Key for this user’s credential is 𝐾𝑟𝑖 .

Original content 𝐶 = 𝐷𝑒𝑐𝐾𝑟𝑖
(𝑟𝑖)

Modify the content and get modified content 𝐶′

if Merkle Root on chain not changed since last editing then
Generate EditCircuit(General) Proof and get verified in Profile

Contract

else
Generate EditCircuit(FastTrack) Proof and get verified in

Profile Contract

Circuit 14 EditCircuit(General)

Input: Public: Old Credential 𝑟 , New Credential 𝑟 ′, User 𝑃𝐼𝐷𝑢
,

EditLimit 𝜎 , Merkle Root 𝑟𝑜𝑜𝑡 , KeyCommit 𝐾𝑐𝑟𝑖
Secret: Editor 𝑆𝐼𝐷𝑒

, Old Content𝐶 , New Content𝐶′, Merkle Path

𝑝𝑎𝑡ℎ, encryption key 𝐾𝑟𝑖
Statement:
𝑃𝐼𝐷𝑒

= 𝑃𝑢𝑏𝐺𝑒𝑛(𝑆𝐼𝐷𝑒
) ∧

𝑃𝐼𝐷𝑒
and 𝑝𝑎𝑡ℎ can generate 𝑟𝑜𝑜𝑡

∧
𝐶 −𝐶′ ≤ 𝜎 ∧
𝐾𝑐𝑟𝑖 == 𝐶𝑜𝑚𝑚𝑖𝑡 (𝐾𝑟𝑖)

∧
𝑟 == 𝐸𝑛𝑐𝐾𝑟𝑖

(𝐶) ∧
𝑟 ′ == 𝐸𝑛𝑐𝐾𝑟𝑖

(𝐶′)

The EditCircuit(FastTrack) (Circuit 15) offers a more efficient

alternative to EditCircuit(General), optimized for reduced computa-

tional demands. By bypassing the verification of the editor’s identity

andMerkle Root, it necessitates a more concise set of inputs. Within

12

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

IDEA-DAC: Integrity-Driven Editing for Accountable Decentralized Anonymous Credentials Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

Protocol 17 ProfileContract

𝑀𝑅 denotes a dictionary

{𝑘𝑒𝑦 : 𝐸𝑑𝑖𝑡𝐿𝑖𝑚𝑖𝑡 𝜎,

𝑣𝑎𝑙𝑢𝑒 : [𝑀𝑒𝑟𝑘𝑙𝑒 𝑅𝑜𝑜𝑡 𝑟 , 𝑃𝑢𝑏𝑙𝑖𝑐𝐾𝑒𝑦 𝑃𝑒]}
𝑅 denotes a dictionary

{𝑘𝑒𝑦 : (𝑈𝑠𝑒𝑟𝐼𝐷 𝑃𝐼𝐷𝑢
,𝐶𝑟𝑒𝑑𝑒𝑛𝑡𝑖𝑎𝑙𝐼𝐷 𝑅𝑖𝑑),

𝑣𝑎𝑙𝑢𝑒 : 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑 𝐶𝑟𝑒𝑑𝑒𝑛𝑡𝑖𝑎𝑙 𝐶𝑜𝑛𝑡𝑒𝑛𝑡 𝐶}
𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝑒𝑠 denotes a dictionary

{𝑘𝑒𝑦 : 𝑎𝑑𝑑𝑟𝑒𝑠𝑠, 𝑣𝑎𝑙𝑢𝑒 : 𝐸𝑑𝑖𝑡𝐿𝑖𝑚𝑖𝑡 𝜎}
𝐾𝑒𝑦𝑠 denote a dictionary

{𝑘𝑒𝑦 : (𝑈𝑠𝑒𝑟𝐼𝑑,𝐶𝑟𝑒𝑑𝑒𝑛𝑡𝑖𝑎𝑙𝐼𝑑),
𝑣𝑎𝑙𝑢𝑒 : 𝑐𝑜𝑚𝑚𝑖𝑡 (𝐶𝑙𝑜𝑠𝑢𝑟𝑒𝐾𝑒𝑦 𝐾)}
Function SetupUser:
Input: SetupUserProof 𝑝 , SetupUserWitness𝑤 , CredentialID 𝑅𝑖𝑑
Check𝑤.𝑃𝑒 == 𝑀𝑅 [𝑤.𝜎] .𝑃𝑒
Check 𝑇𝑟𝑢𝑒 == 𝑉𝑒𝑟𝑖 𝑓 𝑦 (𝑝,𝑤)
if all pass, 𝐾𝑒𝑦𝑠 [(𝑃𝐼𝐷𝑢

, 𝑅𝑖𝑑)] = 𝑤.𝐾𝑐𝑟𝑖
Function Edit:
if sender not in 𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝑒𝑠 then

Input: EditCircuitProof 𝑝 , EditCircuitPublicWitness𝑤 , Cre-

dentialID 𝑅𝑖𝑑
Check𝑀𝑅 [𝑤.𝜎] == 𝑤.𝑟𝑜𝑜𝑡
Check 𝑅 [(𝑤.𝑃𝐼𝐷𝑢

, 𝑅𝑖𝑑)] == 𝑤.𝑟
Check𝑤.𝐾𝑐𝑟𝑖 == 𝐾𝑒𝑦𝑠 [(𝑤.𝑃𝐼𝐷𝑢

, 𝑅𝑖𝑑)]
Check 𝑉𝑒𝑟𝑖 𝑓 𝑦 (𝑝,𝑤) == 𝑇𝑟𝑢𝑒
If any of the checks failed, Reject
If all pass, 𝑅 [(𝑤.𝑃𝐼𝐷𝑢

, 𝑅𝑖𝑑)] = 𝑤.𝑟 ′
else

Input: EditCircuitProof(FastTrack) 𝑝 , EditCircuitPublicWit-

ness(Fast track)𝑤 , CredentialID 𝑅𝑖𝑑
Check 𝑅 [(𝑤.𝑃𝐼𝐷𝑢

, 𝑅𝑖𝑑)] == 𝑤.𝑟
Check𝑤.𝐾𝑐𝑟𝑖 == 𝐾𝑒𝑦𝑠 [(𝑤.𝑃𝐼𝐷𝑢

, 𝑅𝑖𝑑)]
Check 𝑉𝑒𝑟𝑖 𝑓 𝑦 (𝑝,𝑤) == 𝑇𝑟𝑢𝑒
If any of the checks failed, Reject
If all pass, 𝑅 [(𝑤.𝑃𝐼𝐷𝑢

, 𝑅𝑖𝑑)] = 𝑤.𝑟 ′

Circuit 15 EditCircuit(FastTrack)

Input: Public: Old Credential 𝑟 , New Credential 𝑟 ′, User 𝑃𝐼𝐷𝑢
,

EditLimit 𝜎 , KeyCommit 𝐾𝑐𝑟𝑖
Secret: Old Content 𝐶 , New Content 𝐶′, encryption key 𝐾𝑟𝑖
Statement:
𝐶 −𝐶′ ≤ 𝜎 ∧
𝐾𝑐𝑟𝑖 == 𝐶𝑜𝑚𝑚𝑖𝑡 (𝐾𝑟𝑖)

∧
𝑟 == 𝐸𝑛𝑐𝐾𝑟𝑖

(𝐶) ∧
𝑟 ′ == 𝐸𝑛𝑐𝐾𝑟𝑖

(𝐶′)

EditCircuit(FastTrack), the validation is confined to checking the

edit limit, key commitment, and the accurate encryption and de-

cryption of the content.

To wrap up, the Editing Process within the IDEA-DAC frame-

work, encompassing the Edit protocol and both EditCircuit forms,

delivers a robust mechanism for safely and adeptly editing en-

crypted user credentials. It upholds user privacy and the integrity

of the data. The FastTrack circuit variant offers a computational

advantage, especially beneficial when edits are made without alter-

ations to the Merkle Root since the previous edit.

Circuit 16 ValidationCircuit

Input: Public: Credential 𝑟 , EditorDAO Common Pubkey 𝑃𝑒 ,

Criteria 𝜖 , Committed encryption key𝐾𝑐𝑟𝑖
Secret: Content 𝐶 , encryption key 𝐾𝑟𝑖
Statement:
𝐾𝑐𝑟𝑖 == 𝐶𝑜𝑚𝑚𝑖𝑡 (𝐾𝑟𝑖)

∧
𝑟 == 𝐸𝑛𝑐𝐾𝑟𝑖

(𝐶)∧
𝐶 𝑠𝑎𝑡𝑖𝑠 𝑓 𝑦 𝜖

C.5 Profile Contract and Verification
The IDEA-DAC system’s Profile Contract (Protocol 17) manages

user credentials, edit rules, and cryptographic keys, with directories

for Merkle Roots, encrypted data, and editor identities. It primar-

ily executes the SetupUser and Edit functions for user credential

handling.

The system’s unique feature is the ValidationCircuit (Circuit 16),

allowing users to verify compliance with criteria without revealing

raw credentials. This circuit uses public inputs like the credential

𝑟 and EditorDAO public key 𝑃𝑒 , and secret ones like content 𝐶 . It

checks the validity of encrypted content and adherence to criteria,

ensuring users can confirm their alignment to standards without

exposing plaintext credentials.

13

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminries
	3.1 ZK-SNARKs
	3.2 Rank-1 Constraint System (R1CS)
	3.3 Hint

	4 IDEA-DAC
	4.1 JSON Credentials
	4.2 Edit-bound Conformity Check

	5 Integrity-Driven Editing (IDE)
	5.1 R1CS Primitives
	5.2 Length-prepadded String (LPS)
	5.3 LPS Operations
	5.4 Serialization
	5.5 Encryption
	5.6 Edit-bound Conformity Check Circuit
	5.7 Achieving Strictly Linear Circuit Size
	5.8 Put Everything Together

	6 Use case
	7 Experiments
	8 Conclusion
	References
	A Circuit Pseudocodes
	B Formal Definition of Zero Knowledge Proof (ZKP)
	C A Tentative System Design of IDEA-DAC
	C.1 Identity Configuration
	C.2 Editor Configuration
	C.3 User Configuration
	C.4 Editing Process
	C.5 Profile Contract and Verification

