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Abstract

Variational regularization has remained one of the most successful approaches
for reconstruction in imaging inverse problems for several decades. With the
emergence and remarkable success of deep learning in recent years, a considerable
amount of research has gone into data-driven modeling of the regularizer in the
variational setting. Our work extends a recently proposed method, referred to as
adversarial convex regularization (ACR), that seeks to learn a data-driven convex
regularizer via adversarial training in an attempt to combine the power of data with
the classical convex regularization theory. Specifically, we leverage the variational
source condition (SC) during training to enforce that the ground-truth images
minimize the variational loss corresponding to the learned convex regularizer. This
is achieved by adding an appropriate penalty term to the ACR training objective.
The resulting regularizer (abbreviated as ACR-SC) performs on par with standard
ACR, but unlike ACR, comes with a quantitative convergence rate estimate.

1 Introduction

Linear inverse problems seek to recover an unknown parameter x∗ ∈ X from its noisy measurement
yδ = Ax∗ + e ∈ Y , where A : X → Y is a bounded linear operator between the Hilbert spaces X
and Y , and e denotes measurement noise with ‖e‖Y ≤ δ. The clean measurement corresponds to
δ = 0 and is denoted by y0. Inverse problems are typically ill-posed, in the sense that A is either
non-invertible or poorly conditioned, leading to noise amplification in the solution obtained via naïve
inversion. Variational methods [4, 13], wherein one seeks to trade-off data-fidelity with a regularizer,
has traditionally been the most popular and successful approach for computing a stable solution to
ill-posed inverse problems, and are rooted in a rigorous function-analytic foundation.

With the advent of deep learning, considerable attention has been devoted to leveraging the availability
of data for solving inverse problems [3]. A particularly notable deep learning-based endeavor has
sought to model the regularizer via over-parametrized deep neural networks and learn it in a data-
driven manner, instead of using hand-crafted functionals [9, 10, 12, 8]. Such methods inherit the
theoretical guarantees (such as stability and convergence) offered by the variational framework while
effectively utilizing the power of data, provided that the regularizer fulfills certain conditions (such as
convexity [12]). This work essentially builds upon the approach introduced in [12]. By incorporating
an additional penalty term during training, our approach encourages the ground-truth images to satisfy
the so-called variational source condition (SC), which leads to precise convergence rate estimates.

2 Variational source condition

In [5], convergence rate estimates for variational reconstruction with convex regularizers were derived
under the source condition, which provides an additional regularity condition on the solution of
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ill-posed inverse problems (see [4] for a detailed discussion). Here, we briefly recall the key results to
make the exposition self-contained. Consider the variational regularization approach that minimizes
an energy functional, given by

xλ ∈ argmin
x∈X

1

2
‖yδ −Ax‖22 + λψθ(x). (1)

Here, {ψθ}θ∈Θ is a convex regularizer parametrized by an input-convex neural network (ICNN) [2].
Definition 1 (Source condition). The ψθ-minimizing solution is defined as

x̃ ∈ argmin
x∈X

ψθ(x) subject to Ax = y0. (2)

The variational source condition is satisfied if there exists some w̃ ∈ Y such that A∗w̃ ∈ ∂ ψθ(x̃).

One can show that the set of x̃ satisfying the SC is the same as the set of solutions to the variational
problem (1), see [5, Proposition 1]. This serves as the main motivation behind our approach, in that
we encourage the ground-truth images during training to satisfy the SC and thereby be the solution to
the variational problem corresponding to the learned regularizer.

Let Dψθ
(x1, x2) :=

{
ψθ(x1)− ψθ(x2)− 〈u, x1 − x2〉

∣∣u ∈ ∂ψθ(x2)
}

be the Bregman distance
corresponding to ψθ. Then, the following convergence rate can be established (see [5]):
Theorem 1. Let ‖yδ−y0‖ ≤ δ, x̃ be a ψθ-minimizing solution as defined in (2), and suppose that the
SC holds. Then, for each minimizer xλ of (1), there exists d ∈ Dψθ

(xλ, x̃) such that d ≤ λ‖w̃‖
2

2 + δ2

2λ
holds. Therefore, choosing λ ∝ δ leads to an O(δ) convergence rate.

Consequently, SC enables one to derive quantitative convergence rate estimates in terms of the
Bregman distance induced by the learned convex regularizer. In contrast, [12] shows convergence,
without any quantitative rate estimate, while having to incorporate an additional Tikhonov term.

2.1 Learning ACR with the source condition (ACR-SC)

If the forward operator A is invertible, SC dictates that `sc(x; θ) = ‖(A∗)−1∇xψθ(x)‖ <∞ must
be satisfied whenever x is a solution to (1). Therefore, the smaller the quantity `sc(x; θ) is, the
more suitable x would be as a solution to (1). A natural way to encourage this is to penalize
Lsc(θ) =

1
n

∑n
i=1 `sc(xi; θ), where xi ∼ Pr are the ground-truth images. For non-invertible A, one

can replace the inverse with the Moore-Penrose pseudo-inverse. Denoting by Pn the distribution of
the undesirable images in the adversarial training framework, the overall training objective becomes

L(θ) =
1

n

n∑
i=1

ψθ(xi)−
1

n

n∑
i=1

ψθ(zi) + λgpLgp(θ) + λscLsc(θ). (3)

Here, xi ∼ Pr and zi ∼ Pn are the ground-truth and noisy/undesirable images in the training dataset,
respectively. The gradient penalty is given by Lgp(θ) =

1
n

∑n
i=1 (‖∇ψθ (εxi + (1− ε)zi)‖2 − 1)

2,
where ε ∼ uniform[0, 1], which encourages the regularizer to be 1-Lipschitz (cf. [10, 6]). Notably,
the training loss in (3) can be computed without direct supervision (i.e., without pairs of noisy and
ground-truth images), thus offering more flexibility. For solving the variational problem (1) with
the learned convex ψθ, one can employ a simple iterative sub-gradient algorithm for minimization.
Notably, an advantage of the enforced SC is that Bregman iteration techniques are available for (1)
and well understood (cf. [4] for details). We show some preliminary promising results here (see
Figure 1) and will further pursue this approach in future research.

3 Numerical results

We first show a proof-of-concept of the proposed ACR-SC method considering a denoising problem
on MNIST and subsequently compare it with a number of state-of-the-art supervised and unsu-
pervised data-driven methods for the prototypical inverse problem of computed tomography (CT)
reconstruction from sparse-view projection data. In both experiments, the reconstruction quality is
evaluated in terms of the peak signal-to-noise ratio (PSNR) and the structural similarity index (SSIM)
with respect to the target ground-truth.
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Figure 1: Representative denoising examples on MNIST. The average PSNR and SSIM over 100 randomly
chosen test images are as follows: (i) noisy: 13.93± 0.13 dB, 0.51± 0.08 ; (ii) ACR-SC (GD): 22.72± 0.64,
0.77 ± 0.04; and (iii) ACR-SC (Bregman): 20.29 ± 0.88, 0.86 ± 0.03. The Bregman technique is executed
with λ = 25 as opposed to λ = 5 in vanilla GD, and it does a comparatively better job of recovering the contrast
while yielding effective denoising.

method PSNR (dB) SSIM # param. reconstruction time (ms)
FBP 21.28± 0.13 0.20± 0.02 1 37.0± 4.6
TV 30.31± 0.52 0.78± 0.01 1 28371.4± 1281.5

Supervised methods
U-Net 34.50± 0.65 0.90± 0.01 7215233 44.4± 12.5
LPD 35.69± 0.60 0.91± 0.01 1138720 279.8± 12.8

Unsupervised methods
AR 33.84± 0.63 0.86± 0.01 19338465 22567.1± 309.7
ACR 31.55± 0.54 0.85± 0.01 606610 109952.4± 497.8
ACR-SC 31.28± 0.50 0.84± 0.01 590928 105232.1± 378.5

Table 1: PSNR and SSIM statistics over 128 test slices for CT reconstruction on Mayo-clinic data. ACR-SC is
competitive with ACR, uses fewer learnable parameters, and leads to convergence rate estimates.

For the denoising experiment on MNIST, the clean digits are corrupted with an additive white
Gaussian noise with σ = 0.2. The regularizer is trained over 10 epochs with a batch-size of 64 (with
λsc = 2.0 and λgp = 10.0), by minimizing the training loss (3). Subsequently, the learned regularizer
is plugged into the variational framework (1). We employ both gradient-descent (with λ = 5, 300
iterations with a step-size of 0.01) and Bregman iterations [4] (with λ = 25) for solving (1). The
numerical examples shown in Fig. 1 demonstrate that ACR-SC performs a reasonable denoising
and significantly improves the PSNR and SSIM over the noisy input. As shown in Fig. 1, Bregman
iterations do a noticeably better job of circumventing loss of contrast in the reconstruction.

For Sparse-view CT reconstruction, We adopt the same experimental setting considered in [12] to
ensure a fair comparison, and we briefly recall it here for the sake of completeness. For training
the models, we use the publicly available data for the Mayo-clinic low-dose CT challenge [11]. All
models are trained on 9 patients (2250 2D slices) and tested on the remaining one patient (128 slices).
Parallel-beam projection data are simulated in ODL [1] with 200 uniformly spaced angles and 400
lines per angle, followed by additive Gaussian noise contamination (with σ = 2.0). For comparison,
we consider the classical filtered back-projection (FBP) and total variation (TV) regularization as
two representative model-based approaches. Among data-driven approaches, we compare with two
supervised methods, namely (i) U-Net-based post-processing of FBP [7] and (ii) learned primal-dual
(LPD); and two unsupervised approaches, namely (i) the adversarial regularization (AR) method
introduced in [10] and (ii) its convex variant ACR [12]. Together with PSNR and SSIM, the
reconstruction times are also reported to facilitate an easier assessment of the quality-vs.-time
trade-off for different approaches (c.f. Table 1).

The architecture of the ICNN that models the regularizer in ACR-SC is taken to be identical to the
one considered in [12]. However, unlike [12], our regularizer does not have the sparsifying filter-bank
and the squared-`2 terms. We choose λsc = 2.0 and λgp = 5.0, and the regularizer is trained over
10 epochs with a batch-size of four. Adam optimizer with η, β1, β2 = 10−5, 0.90, 0.99 is used
for training. The variational problem with the resulting regularizer is solved via gradient-descent
(λ = 0.05, step-size 0.8, 400 iterations). The numerical results reported in Table 1 and Fig. 2

3



(a) ground-truth (b) FBP: 21.19, 0.22 (c) TV: 29.85, 0.79 (d) U-net: 34.42, 0.90

(e) LPD: 35.76, 0.92 (f) AR: 33.52, 0.86 (g) ACR: 31.24, 0.86 (h) ACR-SC: 30.93, 0.85

(i) ground-truth (j) FBP: 21.59, 0.24 (k) TV: 29.16, 0.77 (l) U-net: 32.69, 0.87

(m) LPD: 34.05, 0.89 (n) AR: 32.14, 0.84 (o) ACR: 30.14, 0.83 (p) ACR-SC: 29.88, 0.82

Figure 2: CT reconstruction on Mayo clinic data with the respective PSNR (dB) and SSIM scores indicated
below. Enforcing the source condition leads to minor deterioration in the performance of the ACR, but we gain
in terms of theoretical convergence properties.

indicate that ACR-SC is only marginally inferior to ACR in terms of the quality metrics, while it still
outperforms classical hand-crafted regularizers such as total-variation (TV). The slight deterioration
as compared to ACR can be attributed to the additional regularity constraint imposed by the SC.

4 Conclusions

We addressed the problem of learning data-adaptive convex regularizers for inverse problems and
proposed an approach to augment the existing adversarial learning framework with a suitable penalty
that enforces the variational source condition. Incorporating the source condition penalty leads to only
minor degradation in the numerical performance, but it simultaneously offers a theoretical grounding
for Bregman iterations and paves the way for deriving convergence rate estimates for the resulting
variational reconstruction problem as the noise-level approaches zero.
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