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Abstract

Generating reasonable and high-quality human inter-
active motions in a given dynamic environment is crucial
for understanding, modeling, transferring, and applying
human behaviors to both virtual and physical robots. In
this paper, we introduce an effective method, SemGeoMo,
for dynamic contextual human motion generation, which
fully leverages the text-affordance-joint multi-level seman-
tic and geometric guidance in the generation process, im-
proving the semantic rationality and geometric correctness
of generative motions. Our method achieves state-of-the-art
performance on three datasets and demonstrates superior
generalization capability for diverse interaction scenarios.
The project page and code can be found at https://
4dvlab.github.io/project_page/semgeomo/.

1. Introduction

Dynamic contextual human motion generation [19, 21, 22]
aims to generate human interaction motions that are both
commonsense and geometrically accurate, adapting seam-
lessly to real dynamic environments. Its core lies in con-
structing an interaction-oriented world model for humans,
enabling reasonable adaptation to changes of interactive
objects or people. This interaction-oriented world model
can support a wide range of applications, including human-
robot interaction, closed-loop simulators, intelligent sports
coaching, and immersive VR/AR gaming experiences.

As the importance of interaction becomes increasingly
recognized, some studies have evolved from text-driven hu-
man motion generation [4, 6, 16, 31, 32, 49] to text-driven
joint generation of human-object or human-human inter-
actions [2, 22, 23, 37, 42]. However, generating motions
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Figure 1. Given sequential point clouds of interactive targets, Sem-
GeoMo generates realistic and high-quality human interactive mo-
tions along with corresponding textual descriptions. By leveraging
both semantic and geometric guidance, our method ensures the se-
mantic coherence and geometric accuracy of the generated results.

jointly for both the human and the interactive target cre-
ates an excessively large search space, often leading to sub-
optimal generation results. Additionally, the lack of fine-
grained control over the generated data hinders the creation
of personalized interactive motions, limiting its applicabil-
ity to real-world scenarios such as humanoid operation and
human-robot interaction.

Recently, contextual human motion generation has gar-
nered increasing attention for its ability to produce con-
trollable interactions based on specified scenario condi-
tions. However, many works [3, 14, 35, 38, 40] only focus
on generating coarse-grained human trajectories and mo-
tions in static environments with fixed furniture or layouts
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rather than the fine-grained details of interactions, limit-
ing adaptability to dynamic conditions. A few recent stud-
ies [5, 22, 43] have begun to explore dynamic contextual
human motion generation. However, these approaches have
notable limitations: 1) they lack textual guidance, which un-
dermines the semantic coherence of interactions and limits
the generalization capability of the approach, and 2) they
fail to incorporate fine-grained geometric representations,
resulting in insufficient constraints on the geometric accu-
racy of generated interaction motions.

In this work, we propose a novel dynamic contextual hu-
man motion generation method, named SemGeoMo, illus-
trated in Fig.1, which could generate reasonable and high-
quality interactive motions by comprehensively integrating
semantic information from textual descriptions with hier-
archical geometric features extracted from interactive ob-
jects. The first challenge is how to construct the semantic
guidance. Given that large language models (LLMs) pos-
sess general knowledge and can provide rich information
on the attributes of interacting objects as well as guidance
for the interaction process, we introduce an automated inter-
action text annotator. By leveraging careful prompt design
and fine-tuning of the model [30, 33], our LLM Annota-
tor eliminates the need for manual text labeling, offering
strong support for the semantic coherence and generaliza-
tion of generated human interaction behaviors. The second
challenge is how to construct the geometric guidance. To
ensure the geometric accuracy of interactive motions, such
as avoiding geometric penetration and ensuring appropri-
ate contact between human and object, we propose a two-
stage framework that decouples contact geometry genera-
tion from interactive motion generation. In the first stage,
SemGeo Hierarchical Guidance Generation, a diffusion
model generates affordance-level and joint-level interaction
cues guided by semantic information to capture both coarse
and precise geometric positioning. In the second stage,
SemGeo-guided Motion Generation, these cues are ef-
fectively utilized to guide the generation of detailed human
motions, improving both semantic plausibility and geomet-
ric accuracy. It is worth noting that our model simultane-
ously generates human motions and language descriptions
at varying levels of granularity, which not only improves
the quality of the generated motions but also enhances the
interpretability and comprehensibility of the interactions.

Extensive experiments demonstrate that we achieve
state-of-the-art performance on three human-object inter-
action datasets. Moreover, we demonstrate the generaliza-
tion capability of our method in more challenging scenarios,
including interactions with unseen objects, human-human
interactions, and interactions with deformable objects. To
summarize, our work makes the following contributions:
• We propose a novel method that generates responsive

human motions and corresponding textual descriptions

based on observed dynamic interactive targets.
• We introduce an automated text annotator that interprets

reactions during interactions, reducing the burden of man-
ual labeling and enhancing the generalization capability.

• Our method fully utilizes multi-level semantic and geo-
metric guidance—including text, affordance, and joint-
level cues—throughout the generation process, improv-
ing both the semantic rationality and geometric accuracy
of interactive motion.

• Our method generates high-quality human motions and
achieves state-of-the-art performance across three bench-
marks and an unseen dataset.

2. Related Work

2.1. Text-guided Human Motion Generation
Text-conditioned human motion generation [6, 7, 15, 31, 32,
34, 49, 50] have made significant progress with the rise of
diffusion models [11, 12]. With the emergence of human-
object interaction datasets [2, 22, 47, 51] and human-human
interaction datasets [23, 42], some works have begun to
explore text-driven interaction motion generation. Several
studies [8, 27, 39, 44] dive into jointly generating a se-
quence of human and object poses based on textual con-
ditions. HOI-Diff [27] emphasizes the significance of af-
fordance information and Thor [39] refines object rotation
during each inverse diffusion step for human-object inter-
action. Furthermore, CHOIS [21] further integrates the 2D
waypoints with object geometry loss during sampling pro-
cess. Other studies [23, 42] focus on human-human in-
teraction, where two human motions are jointly generated
based on language descriptions. However, the joint gen-
eration of human motions and interactive targets creates a
large optimization search space during training, leading to
lower quality in the generated motions. Moreover, condi-
tioning solely on text lacks fine-grained control over the
generation process, limiting its applicability in areas such
as robotic operations, human-robot interaction, and AR/VR
immersive experiences.

2.2. Contextual Human Motion Generation
Contextual human motion generation explores settings that
are more applicable to real-world scenarios, where human
motion is influenced by and interacts with the given envi-
ronment. Several works [18, 20] focus on interactions with
seating furniture [17] and others [3, 14, 35, 38] generate
natural human motions in 3D indoor scenes [1, 9, 19, 36,
40, 45]. SceneDiff [14] utilizes point clouds as conditions
to generate feasible interactions. AffordMotion [38] pro-
vides a two-stage framework that employs a scene affor-
dance map as an intermediary. However, these works are
limited to static environments, where interacted objects are
often restricted to fixed furniture like beds and chairs, and
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Figure 2. The pipeline of our two-stage framework. LLM Annotator provides the semantic guidance. SemGeo Hierarchical Guidance
Generation takes textual information and sequential point cloud as condition and generate affordance-level and joint-level guidance. Then
SemGeo-guided Motion Generation utlizes semantic and geometric information to generate responsive human motion.

the category of motions is limited to sitting, lying, and walk-
ing. They focus on the trajectory and the goal state, rather
than interacting with dynamic, ever-changing targets.

Following works [5, 22, 43] introduce dynamic, inter-
active targets, such as movable objects or other people.
ReGenNet [43] generates human reactions conditioned on
given human motion in SMPL [25] representation and the
action condition. However, SMPL representation requires
additional processing on raw sensor data and is not suit-
able for all dynamic targets such as objects. A more flex-
ible point cloud-based representation is used in [5] for
interacting scenes or objects. However, it lacks a care-
fully designed feature modeling method for geometric and
temporal information, resulting in suboptimal performance.
OMOMO [22] presents a framework for generating human
behaviors based on object motions, utilizing conditional dif-
fusion to generate hand joint positions as extra guidance.
While this work lacks the integration of textual informa-
tion, which can provide important semantic guidance. By
contrast, our method fully leverages textual reasoning and
incorporates hierarchical semantic and geometric features
to enhance contextual motion generation.

3. Method

Our goal is to generate responsive human motions condi-
tioned solely on the interactive target, represented as a 4D
sequential point cloud. To achieve this, we introduce the

LLM Annotator to provide semantic features, which are
then processed in the following two stages: SemGeo Hier-
archical Guidance Generation and SemGeo-guided Motion
Generation. In the first stage, multi-level geometric infor-
mation is generated in a coarse-to-fine manner. These gen-
erated guidance signals are then used in the second stage
to guide the motion generation process, enhancing both se-
mantic plausibility and geometric accuracy. The overall ar-
chitecture is shown in Fig. 2.

3.1. Data Representation
Motion Representations. We denote the human motion
as xh ∈ RL×D, where L represents the number of frames
in the sequence and D is the feature dimension, which in-
cludes the pelvis velocity, local joint positions, rotations and
velocities of other joints in the pelvis space, as well as bi-
nary foot-ground contact labels, following the representa-
tion in MDM [32].
Point Cloud Representations. To extract geometric fea-
tures, point clouds are well-suited for capturing the dy-
namic changes of objects, providing a unified input modal-
ity for representing deformable or non-rigid interactive tar-
gets without the need for additional preprocessing. The se-
quential point cloud is down-sampled to N = 1024 points
per frame, denoted as P ∈ RL×N×3. We then adopt Basis
Point Set [28] (BPS) representation, following the approach
in [22], to encode the object geometry. The process begins
by uniform sampling the basis points from a unit ball with
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Figure 3. LLM Annotator pipeline. It first takes a sequential point cloud to infer a coarse text description. Then uses joint positions, the
coarse text, and geometric features to generate a fine-grained sentence with a designed prompt.

a radius of 1 meter, followed by calculating the minimum
Euclidean distance from the basis points to their nearest
neighbors. Finally, these distances are concatenated with
the center position of the original point cloud. The result-
ing point cloud representation for each frame is denoted as
p ∈ RN×3+3. An MLP is then applied to project the BPS
representation into a lower-dimensional space, yielding the
sequential geometry features Fpc ∈ RL×256.
Affordance Map Representations. The affordance map
serves as an intermediate representation, providing crucial
geometric information regarding which parts of the target
are most likely to come into contact during the interaction.
For each frame, we calculate the ℓ2 distance between each
point and the skeleton joints, resulting in a per-frame dis-
tance map d ∈ RL×N×J , where J is the number of skeleton
joints. We then transform this distance field into a normal-
ized distance map, Affordance, denoted as A, which en-
codes the spatial relationship between the target and the in-
teractive human. The affordance map is computed as:

Affordance(n, j) = exp

(
−1

2

d(n, j)

σ2

)
, (1)

where σ is the normalizing factor.

3.2. LLM Annotator
Textual descriptions provide essential semantic informa-
tion. Given the interactive targets, envisioning how to inter-
act with them is crucial for generating realistic human mo-
tion. Previous work [31, 32, 49] on text-to-motion has also
validated the effectiveness of feature mapping from textual
descriptions to motion generation.

To obtain textual guidance, we employ a Large Language
Model (LLM) as an annotator in the initial stage to gen-
erate a coarse motion description. The whole pipeline is
shown in Fig. 3. From the sequential point cloud, we ex-
tract the bounding box of the interactive target along with
its movement trajectory. Utilizing a predefined list of ac-
tions and categories, we derive initial language-based guid-
ance. Specifically, we utilize the pre-trained LLaMA model

[33], enhanced with LoRA [13] finetuning on given text-
interaction pairs from [22].

More detailed, context-aware cues can capture the dy-
namic changes in contact, guiding the model to generate
more precise body movements. Leveraging the strong rea-
soning capabilities of LLMs, we design a coarse-to-fine au-
tomated language guidance annotation system. After gen-
erating initial textual guidance and predicting hand joint
positions, we determine sequential contact information by
calculating distances between predicted joint positions and
interactive targets, inferring where the body should make
contact with each part of the targets. The LLM then or-
ganizes this contact information into language descriptors
(e.g., “the left-hand contacts the lower left of the box”). Si-
multaneously, we let the LLM divide the interaction into
three steps, with the textual descriptions reflecting changes
in contact at each step, with also deducing finer body move-
ments of the arms and legs.

Thus, the generated textual descriptions assist in the mo-
tion generation task by providing semantic information. On
the other hand, our entire pipeline also enables reason-
ing capabilities, allowing for a more comprehensive under-
standing and generation of human motion.

3.3. SemGeo Hierarchical Guidance Generation
The joint position Jh ∈ RL×J×3 provides precise spatial
information, and the affordance map A offers coarse geo-
metric clues. These two types of features are crucial for
modeling interactions in a coarse-to-fine manner, thus we
introduce a conditional diffusion model with dual-branch
transformer to jointly generate contact information with
capturing their mutual influence in the first stage.

We utilize CLIP[29] as text encoder to obtain the text
feature Ftext. At each step in the diffusion process, the
model take the text feature Ftext, point cloud feature Fpc,
and noisy signals xJ

t and xA
t as input and predict clean

xJ
0 and xA

0 . For JointTransformer, the inputs are con-
catenated together and then fed into the multi-head self-



attention blocks followed with position-wise feedforward
layer. For AffordanceTransformer, inspired by [38], the
affordance map is more closely related to the point cloud
geometry. Therefore, we encode the point cloud feature
Fpc along with xA

t , which act as the key and value in at-
tention module. The concatenation of the language feature
and diffusion step embeddings serves as the query. After
passing through the cross-attention mechanism and multi-
ple self-attention blocks, the refined point features are ob-
tained. To enhance the coarse to fine interactions and fur-
ther refine the joint position, we introduce a mutual cross-
attention mechanism. This take the output from Jointtrans-
former as query, output from AffordanceTransformer as key
and value, which updates the hand joint position.

The conditional diffusion model learns the reverse diffu-
sion process to generate clean data from a Gaussian noise
xt over T consecutive denoising steps. Specifically, we use
c to represent the conditions, and the reverse diffusion pro-
cess is modeled as:

pθ
(
xt−1 | xt, c

)
:= N

(
xt−1;µθ

(
xt, t, c

)
, σ2

t I
)
. (2)

Finally, our model directly estimates the input signal. The
training process optimizes from the reconstruction loss:

L = Ex0,t

∥∥x̂θ

(
xt, t, c

)
− x0

∥∥
1
. (3)

3.4. SemGeo-guided Motion Generation
In the second stage, a denoising network architecture is used
to generate full-body motions based on the predicted joint
positions J′

h, affordance map A′, and text descriptions.
SemGeo Condition Module To effectively process and in-
tegrate these diverse features, we design SemGeo Condi-
tion Module to encode the combined features. After obtain-
ing both coarse and fine-grained text descriptions, we use
a text encoder to extract the semantic information. Since
the language generated by the Fine-grained LLM Annotator
contains phase-specific details and longer descriptions, we
adopt LONGCLIP [46], which can better capture and rep-
resent fine-grained attributes without the length limitations
inherent in CLIP. The extracted feature is F ′

text.
To extract features from the affordance map, we first

concatenate the point cloud feature Fpc with the affordance
map A′, and then pass the combined input through a 3-layer
MLP. The temporal transformer is applied to extract latent
features F over time, which helps to capture both spatial
and temporal dependencies. The operation is formalized as:

F = TemporalTransformer(MLP (Fpc ⊕A′), (4)

where ⊕ denotes concatenation.
We apply mutual cross-attention to extract the mutual

features between joint positions and the affordance map.
The joint feature, after being mapped to a higher dimen-
sional space with MLP, serves as the query. The latent fea-
ture from the previous step is used as key and value in the

attention mechanism. This interaction between joint posi-
tions and the affordance map enables the model to capture
the relationship between joint movements and object geom-
etry, improving motion prediction:

Ffuison = CrossAttention(MLP (J′
h)q, Fk, Fv). (5)

The final condition c is the concatenation result of Ftext,
F ′
text, Ffuison.

This comprehensive feature representation ensures that
the model has a rich, multi-dimensional understanding, cap-
turing both coarse-to-fine semantic information from the
text and spatial-temporal geometric information from the
joint positions and affordances.
Motion ControlNet Inspired by [37, 41], we introduce
Motion ControlNet to generate high-fidelity motions con-
ditioned on c. With MDM frozen during training, each
transformer encoder layer in ControlNet [48] is linked to
its MDM counterpart via a zero-initialized linear layer.
Loss Guidance To refine our generated interactions, we
employ joint guidance and foot guidance during sampling
with classifier guidance. The joint-based guidance loss
aligns the generated global joint positions Jpred from the
second stage with the target control joint positions J′

h from
the first stage, ensuring consistency in the generated mo-
tion across both stages. Constraints are applied to the joints
that are in contact with objects when the distance between
the joint and the nearest point on the object is below a pre-
defined threshold τ . Specifically, the mask is defined as
Mask = Dis(Jh, V ) ≤ τ . The joint guidance function is
then defined as:

Ljoint =
1

J

L∑
i=1

|Jpredi − J′
hi |2 · Maski. (6)

The foot-stability loss Lfoot is designed to ensure that the
foot stays near the ground and penalize sudden changes in
velocity to eliminate foot sliding:

Lfoot =
1

L

L∑
i=1

(
(yi − hg)

2 + αMc(v
2
i ) + βMc(a

2
i )
)
,

(7)where yi = min(hl,i, hr,i) is the height of the lower foot for
each frame and hg is the empirical values indicating contact
with the ground. vi = ∥pi+1 − pi∥ is the foot velocity
at frame i, calculated from the foot position p and ai =
∥vi+1−vi∥ is the foot acceleration. Mc represents the mask
for contact with the floor. α and β are hyperparameters.
Inspired by [37], we employ L-BFGS for several iterations
at each denoising step to update the posterior mean.

4. Experiment
4.1. Datasets
FullBodyManipulation [22] takes a total duration of ap-
proximately 10 hours. It provides, paired object and human



Figure 4. Qualitative results on the FullBodyManipulation dataset. We circle areas of low contact performance in pink and instances of
contorted motion in green.

Table 1. Human motion generation result on FullBodyManipulation.

HandJPE↓ MPJPE ↓ Cprec ↑ Crec ↑ Cacc ↑ c%↑ F1 ↑ FID ↓ R-score ↑ Diversity ↑ FS ↓
SceneDiff [14] 95.38 19.84 0.64 0.19 0.45 0.18 0.27 1.64 0.59 9.86 0.38
OMOMO [22] 33.18 18.06 0.77 0.71 0.74 0.61 0.75 1.98 0.38 8.99 0.50w/o text

MDM-PC [32] 51.35 18.25 0.71 0.41 0.62 0.33 0.49 0.65 0.57 9.52 0.51
CHOIS [21] 31.68 17.12 0.76 0.58 0.61 0.52 0.59 2.27 0.49 6.04 0.47
AffordMotion [38] 98.66 25.34 0.45 0.14 0.31 0.13 0.16 4.71 0.45 8.15 0.43w GT text
SemGeoMo 27.84 16.62 0.84 0.74 0.85 0.66 0.77 1.17 0.66 10.15 0.57

w Gen text SemGeoMo 30.35 17.98 0.82 0.74 0.82 0.66 0.74 1.05 0.64 9.78 0.47

motion, including interactions of 17 subjects with 15 dif-
ferent objects with text descriptions. We follow the official
train/test split for evaluation.
BEHAVE [2] consists of the interactions of 8 subjects with
20 different objects. We follow the official train/test split
provided by BEHAVE. [27] provides the text annotations
while we observe that these annotations merely combine ac-
tion labels and categories of motion, offering phase-specific
details. We provide a revised version of the annotations with
phased interactions that more clearly describe the motions.
IMHD2 [51] and HoDome [47] are challenging 3D human-
object interaction datasets for motion capture, covering in-
teractions between 10 objects and 10 subjects, and 23 di-
verse objects with 10 subjects, respectively. We annotate
the text descriptions using our LLM annotation pipeline to
facilitate further text-driven human-object interaction stud-
ies and enable comparisons with other text-guided methods.

4.2. Evaluation Metrics
We mainly follow the metrics in OMOMO [22] and
MDM [32]. HandJPE and MPJPE represent mean hand
joint position errors, and mean per-joint position errors,
computed using the Euclidean distance between the pre-

dicted and ground truth in centimeters (cm). For measuring
the interaction quality, we employ contact metrics including
precision (Cprec), recall (Crecall), accuracy (Cacc) and F1
score following [22]. The contact percentage (c%) is the
proportion of frames where contact is detected. FID mea-
sures the distance of the generated motion distribution to the
ground truth distribution in latent space. R-score measures
the text and motion matching accuracy and Diversity mea-
sures the generation diversity. FS represents foot sliding
metric and is computed following [10].

4.3. Results
Baselines OMOMO [22] is the only work which is aligned
with our setting. In addition, we adapt several related
works, including SceneDiff [14], MDM-PC [32], Afford-
Motion [38], and CHOIS [21], to fit our problem setting.
SceneDiff [14] utilizes a diffusion model conditioned on
static scenes, so we modified the conditional model to ac-
commodate sequential point cloud inputs. We modified the
text-to-motion generation work MDM as MDM-PC, incor-
porating our sequential point cloud representation. CHOIS
and AffordMotion are conditioned on both textual descrip-
tions and scenarios. CHOIS requires a sequence of object



Table 2. Human motion generation result on Behave.

HandJPE↓ MPJPE ↓ Cprec ↑ Crec ↑ Cacc ↑ c%↑ F1 ↑ FID ↓ R-score ↑ Diversity ↑ FS ↓
SceneDiff [14] 51.58 18.25 0.73 0.38 0.40 0.32 0.47 1.69 0.13 5.32 0.33
OMOMO [22] 45.35 21.56 0.71 0.60 0.61 0.60 0.62 1.94 0.14 5.11 0.42w/o text

MDM-PC [32] 35.41 18.61 0.73 0.48 0.51 0.47 0.57 1.52 0.10 5.45 0.32
CHOIS [21] 36.75 18.17 0.72 0.41 0.43 0.41 0.51 2.26 0.13 5.02 0.46
AffordMotion [38] 55.65 19.16 0.72 0.23 0.28 0.25 0.32 1.92 0.13 4.38 0.51w Gen text
SemGeoMo 27.91 16.22 0.84 0.67 0.67 0.66 0.74 1.47 0.15 5.64 0.52

Table 3. Human motion generation result on IMHD2.
HandJPE↓ MPJPE ↓ Cprec ↑ Crec ↑ Cacc ↑ c%↑ F1 ↑ FID ↓ R-score ↑ Diversity ↑ FS ↓

SceneDiff [14] 82.01 25.08 0.45 0.18 0.21 0.16 0.22 1.89 0.15 5.22 0.57
OMOMO [22] 39.40 23.36 0.58 0.39 0.43 0.41 0.42 2.09 0.16 4.56 0.55w/o text

MDM-PC [32] 63.57 23.81 0.48 0.24 0.28 0.30 0.24 1.73 0.14 5.23 0.59
CHOIS [21] 44.92 25.09 0.56 0.31 0.35 0.31 0.32 2.67 0.11 4.45 0.53
AffordMotion [38] 75.32 24.37 0.55 0.16 0.22 0.16 0.21 2.88 0.12 4.48 0.42w Gen text
SemGeoMo 35.43 20.85 0.72 0.49 0.51 0.49 0.52 1.64 0.14 5.35 0.49

Table 4. Human motion generation result on HoDome.

HandJPE↓ MPJPE ↓ Cprec ↑ Crec ↑ Cacc ↑ c%↑ F1 ↑ FID ↓ R-score ↑ Diversity ↑ FS ↓
SceneDiff [14] 107.50 29.53 0.21 0.11 0.16 0.13 0.14 4.88 0.08 4.72 0.60
OMOMO [22] 86.12 27.07 0.42 0.23 0.31 0.22 0.25 5.47 0.10 4.93 0.31w/o text

MDM-PC [32] 95.91 26.29 0.25 0.13 0.18 0.14 0.15 3.64 0.13 4.89 0.67
CHOIS [21] 76.74 24.17 0.55 0.12 0.26 0.11 0.18 6.12 0.11 4.14 0.28
AffordMotion [38] 94.24 29.31 0.49 0.11 0.15 0.10 0.13 5.29 0.11 5.14 0.45w Gen text
SemGeoMo 44.22 24.28 0.78 0.47 0.47 0.45 0.54 4.29 0.13 5.22 0.35

states in 2D waypoints, which we modify this part into 3D
states. AffordMotion predicts the affordance map and sub-
sequently generates motion in scenes, we adopted this ap-
proach for our interactive target setting. Note that for the
aforementioned works, since FullBodyManipulation pro-
vide the textual description, we provided ground-truth (GT)
text as input, and compared the variant of our model under
the same conditions with ground-truth text as well.

Results on the FullBodyManipulation Dataset. The re-
sults on the FullBodyManipulation dataset are illustrated in
Tab. 1, and we provide a visualization comparison in Fig.
4. SceneDiff, MDM-PC, and CHOIS directly use the origi-
nal point cloud as a condition in a single stage, the dynamic
nature of the point cloud makes it challenging to infer low-
level contact information, resulting in a significant drop in
contact metrics. Even though MDM incorporates text guid-
ance and improves performance on FID, the contact accu-
racy remains poor. CHOIS applies a human-object loss to
refine contact, but such improvement in performance is lim-
ited. OMOMO predicts joint positions as the first-stage out-
put, but without textual guidance, it performs poorly on FID
and R-score, struggling to capture realistic interaction mo-
tions. Distortions and abnormal movements may occur, as
shown in Fig. 4 circled in green. AffordMotion uses the af-
fordance map for geometric guidance, while this approach
lacks sufficient detail for fine-grained human-object interac-
tions. In contrast, we leverage both semantic and geomet-
ric information by generating textual descriptions and pre-
dicting coarse-to-fine contact information, resulting in su-

perior performance. Compared to the variant, which utilizes
ground-truth text information as a condition, our model
achieves comparable performance, demonstrating the effi-
ciency and accuracy of the language description generated
by our method.
Results on the Behave and IMHD2 Dataset. We fur-
ther conduct experiments on the BEHAVE and IMHD2

datasets to validate our model’s performance in Tab. 2 and
Tab. 3. Notably, the IMHD2 dataset includes more chal-
lenging interactions, such as sports activities, which make
precise contact and accurate motion generation more diffi-
cult. However, our proposed method still outperforms other
approaches in these scenarios.
Results on the HoDome Dataset. To test our model’s abil-
ity to generate new scenarios, we further conduct the ex-
periment on totally unseen objects with directly sampling
on HoDome [47]. The result is illustrated in Tab. 4, our
proposed method outperforms other methods. The visual-
ization results are illustrated in Fig. 5.

4.4. Ablation Studies

Ablation studies on the impact of semantic and geomet-
ric information. To verify the effectiveness of our multi-
level guidance, we conduct ablation studies to assess the im-
pact of each component in Tab. 5. The multi-level geomet-
ric guidance and semantic information enhance human mo-
tion generation, reflected in the improvement of the contact
and FID&R-score indicators, respectively. We also com-
pare our designed SemGeo conditional module with cross-



Table 5. Ablation studies on the impact of semantic and geometric information with our model design.

HandJPE↓ MPJPE ↓ Cprec ↑ Crec ↑ Cacc ↑ c%↑ F1 ↑ FID ↓ R-score ↑ Diversity ↑ FS ↓
w/o affordanc map 29.89 18.85 0.80 0.71 0.81 0.63 0.73 2.21 0.62 9.84 0.58

w/o joint 31.23 20.60 0.76 0.70 0.78 0.61 0.72 3.52 0.51 8.15 0.74
w/o attention 29.18 19.47 0.81 0.66 0.78 0.59 0.70 9.27 0.44 6.84 0.70

w/o text 30.36 24.44 0.78 0.62 0.72 0.54 0.64 1.78 0.41 9.40 0.61
w/o fine-grained text 27.84 16.62 0.84 0.74 0.85 0.66 0.77 1.17 0.66 10.15 0.57

Full 27.97 17.01 0.84 0.75 0.86 0.67 0.77 1.03 0.68 10.05 0.46
Full-GT 6.44 13.61 0.88 0.82 0.93 0.70 0.84 0.97 0.70 10.48 0.58

Table 6. Ablation study on guidance loss.
LJoint LFS HandJPE↓ MPJPE ↓ Cprec ↑ Crec ↑ Cacc ↑ c%↑ F1 ↑ FID ↓ R-score ↑ Diversity ↑ FS ↓
! 27.84 16.97 0.83 0.75 0.86 0.67 0.75 1.15 0.65 10.13 0.61

! 85.28 29.75 0.62 0.25 0.35 0.24 0.22 0.93 0.66 10.05 0.31
! ! 27.84 16.62 0.84 0.74 0.85 0.66 0.77 1.17 0.66 10.15 0.57

Behave  IMHD2  HoDome

A person standing, the arms 
lift the bat behind the head, 
the right hands gripping the 
bat on the bottom, then… 

A person lift the chair with 
both hand touches the top, 
then the hand keep the same 
position with rotating…

A person grad the keyboard 
with both hand contact on the 
left-bottom and right-top, 
then right hand … 

Figure 5. Visulization on more datasets.

Figure 6. Extension on other scenarios. (a) is the interaction with
humans and (b) is the interaction with objects of varying sizes.

Table 7. Text generation result on FullBodyManipulation.

BLEU-4 ROUGE -1 ROUGE-2 ROUGE-L
87.21 90.91 83.79 89.39

attention. The results show that cross-attention significantly
improves performance by effectively sharing information
between coarse-to-fine features. During implementation,
we predict the hand joint and compare with generation pro-
cess with ground truth position (denoted as Full-GT), it is
worth noting that when the hand is fixed to the exact ground
truth, this may reduce the FS score due to some foot sliding
in the generated motion. Our results are comparable to the
Full-GT setting, indicating that our joint and affordance pre-
dictions are sufficiently accurate to provide effective guid-
ance for generating plausible results.
Analysis on text annotation. To verify the correct-

ness of our generated text, we calculate BLEU [26] and
ROUGE [24] scores, compared with the textual informa-
tion provided by FullBodyManipulation in Tab. 7. These
metrics illustrate the accuracy of our reasoning results. As
shown in Tab. 1, we achieve performance comparable to us-
ing ground truth text, further demonstrating the effective-
ness of our textual descriptions. Additionally, the results on
both coarse and fine-grained text highlight the effectiveness
of incorporating multi-level semantic information.
Ablation studies on loss guidance. We conduct experi-
ments on the loss guidance described in Tab. 6. The joint
loss plays a key role in improving contact performance,
while the foot loss enhances the feasibility of the generated
results. These improvements are reflected in the enhance-
ment of FID and FS metrics.

4.5. Extension
We further evaluate our model on more challenging sce-
narios, including complex human-human interactions and
shape-varying object manipulations, as Fig. 6 shows. The
varying size of objects are simulated to assess how well
our model generates responsive and adaptive interactions.
The results demonstrate the feasibility of our approach, with
generating realistic human responsive motions.

5. Conclusion
In this work, we introduce SemGeoMo, a novel method for
generating responsive human motions and corresponding
textual descriptions based on dynamic interactive targets.
We design an automated text annotator to provide semantic
information. By integrating text-affordance-joint semantic
and geometric guidance, SemGeoMo ensures the semantic
coherence of the generated text and the geometric precision
of the corresponding motion. Our method achieves state-of-
the-art performance on three benchmarks and demonstrates
generalization abilities on an unseen dataset.
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