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ABSTRACT
Many hashing algorithms including minwise hashing (MinHash),

one permutation hashing (OPH), and consistent weighted sampling

(CWS) generate integers of 𝐵 bits. With 𝑘 hashes for each data

vector, the storage would be 𝐵×𝑘 bits; and when used for large-scale
learning, the model size would be 2

𝐵 × 𝑘 , which can be expensive.

A standard strategy is to use only the lowest 𝑏 bits out of the 𝐵

bits and somewhat increase 𝑘 , the number of hashes. In this study,

we propose to re-use the hashes by partitioning the 𝐵 bits into𝑚

chunks, e.g., 𝑏 ×𝑚 = 𝐵. Correspondingly, the model size becomes

𝑚 × 2
𝑏 × 𝑘 , which can be substantially smaller than 2

𝐵 × 𝑘 .

There are multiple reasons why the proposed “partitioned b-bit

hashing” (Pb-Hash) can be desirable: (1) Generating hashes can be

expensive for industrial-scale systems especially for many user-

facing applications. Thus, engineers may hope to make use of each

hash as much as possible, instead of generating more hashes (i.e., by

increasing the 𝑘). (2) To protect user privacy, the hashes might be

artificially “polluted” and the differential privacy (DP) budget is pro-

portional to𝑘 . (3) After hashing, the original data are not necessarily

stored and hence it might not be even possible to generate more

hashes. (4) One special scenario is that we can also apply Pb-Hash

to the original categorical (ID) features, not just hashed data.

Our theoretical analysis reveals that by partitioning the hash values

into𝑚 chunks, the accuracy would drop. In other words, using𝑚

chunks of 𝐵/𝑚 bits would not be as accurate as directly using 𝐵 bits.

This is due to the correlation from re-using the same hash. On the

other hand, our analysis also shows that the accuracy would not

dropmuch for (e.g.,)𝑚 = 2 ∼ 4. In some regions, Pb-Hash still works

well even for𝑚 much larger than 4. We expect Pb-Hash would be a

good addition to the family of hashing methods/applications and

benefit industrial practitioners.

We verify the effectiveness of Pb-Hash in machine learning tasks,

for linear SVM models as well as deep learning models. Since the

hashed data are essentially categorical (ID) features, we follow the

standard practice of using embedding tables for each hash. With

Pb-Hash, we need to design an effective strategy to combine 𝑚

embeddings. Our study provides an empirical evaluation on four

pooling schemes: concatenation, max pooling, mean pooling, and

product pooling. There is no definite answer which pooling would

be always better and we leave that for future study.
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1 INTRODUCTION
In this paper, we focus on effectively re-using hashes and developing

the theory to explain some of the interesting empirical observations.

Typically, for each data vector, applying some hashing method 𝑘

times generates 𝑘 integers of 𝐵 bits, where 𝐵 can be (very) large.

For example, with the celebrated minwise hashing [4–6, 33, 34], we

generate a permutation of length 𝐷 , where 𝐷 is the data dimension,

and apply the same permutation to all data vectors (which are

assumed to be binary). For each data vector, the location of the first

non-zero entry after the permutation is the hashed value. Then we

repeat the permutation process 𝑘 times to generate 𝑘 hash values

for each data vector. For vector 𝑢, we denote its 𝑘 hashes as ℎ 𝑗 (𝑢),
𝑗 = 1, 2, ..., 𝑘 . For vector 𝑣 , we similarly have ℎ 𝑗 (𝑣). It is known
that the collision probability is 𝑃𝑟 (ℎ 𝑗 (𝑢) = ℎ 𝑗 (𝑣)) = 𝐽 , where for

minwise hashing 𝐽 is the Jaccard similarity between two binary

vectors 𝑢 and 𝑣 , i.e., 𝐽 =

∑𝐷
𝑖=1 1{𝑢𝑖≠0 and 𝑣𝑖≠0}∑𝐷
𝑖=1 1{𝑢𝑖≠0 or 𝑣𝑖≠0}

.

When we use (e.g.,) minwise hashes for building machine learn-

ing models, we need to treat the hash values as categorical features

and expand them as one-hot representations. For example, if 𝐷 = 4,

then the minwise hash values are between 0 and 3. Supposed 𝑘 = 3

hashes are {3, 1, 2}, we will encode them as a 2
2×3 = 12-dimensional

binary vector: [1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0] as the feature vector fed
to themodel. Let𝐷 = 2

𝐵
. This scheme can easily generate extremely

high-dimensional data vectors and excessively large model sizes. A

common strategy is to only use the lowest 𝑏 bits for each hash value,

a method called “b-bit minwise hashing” [34]. It can be a drastic

reduction from 2
𝐵
is 2

𝑏
, for example, 𝐵 = 32 and 𝑏 = 10. Typically,

we will have to increase 𝑘 the number of hashes to compensate the

loss of accuracy due to the use of only 𝑏 bits.

1.1 Collision Probability of 𝑏-bit Hashing and
the Basic Assumption

Denote ℎ
(𝑏 )
𝑗

(𝑢) and ℎ (𝑏 )
𝑗

(𝑣) as the lowest 𝑏 bits of ℎ 𝑗 (𝑢) and ℎ 𝑗 (𝑣),
respectively. Theorem 1.1 describes the collision probability of min-

wise hashing 𝑃𝑟

(
ℎ
(𝑏 )
𝑗

(𝑢) = ℎ (𝑏 )
𝑗

(𝑣)
)
by assuming 𝐷 = 2

𝐵
is large.

Theorem 1.1. [34] 𝑃𝑟
(
ℎ 𝑗 (𝑢) = ℎ 𝑗 (𝑣)

)
= 𝐽 is the collision proba-

bility ofminwise hashing. Assume𝐷 is large. Denote 𝑓1 =
∑𝐷
𝑖=1 1{𝑢𝑖 ≠

0}, 𝑓2 =
∑𝐷
𝑖=1 1{𝑣𝑖 ≠ 0}. Then

𝑃𝑏 = 𝑃𝑟

(
ℎ
(𝑏 )
𝑗

(𝑢) = ℎ (𝑏 )
𝑗

(𝑣)
)
= 𝐶

1,𝑏 + (1 −𝐶
2,𝑏 ) 𝐽 (1)
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where

𝐶
1,𝑏 = 𝐴

1,𝑏

𝑟2

𝑟1 + 𝑟2
+𝐴

2,𝑏

𝑟1

𝑟1 + 𝑟2
, 𝐶

2,𝑏 = 𝐴
1,𝑏

𝑟1

𝑟1 + 𝑟2
+𝐴

2,𝑏

𝑟2

𝑟1 + 𝑟2
,

𝐴
1,𝑏 =

𝑟1 [1 − 𝑟1]2
𝑏−1

1 − [1 − 𝑟1]2𝑏
, 𝐴

2,𝑏 =
𝑟2 [1 − 𝑟2]2

𝑏−1

1 − [1 − 𝑟2]2𝑏
,

𝑟1 =
𝑓1

𝐷
, 𝑟2 =

𝑓2

𝐷

The result in Theorem 1.1 was obtained via conducting careful

and tedious summations of the individual probability terms. Inter-

estingly, if 𝑟1, 𝑟2 → 0, then 𝐴
1,𝑏 = 𝐴

2,𝑏 = lim𝑟→0

𝑟 [1−𝑟 ]2𝑏 −1

1−[1−𝑟2𝑏 ] = 1

2
𝑏 ,

𝐶
1,𝑏 = 𝐶

2,𝑏 = 1

2
𝑏 and 𝑃𝑏 = 1

2
𝑏 +

(
1 − 1

2
𝑏

)
𝐽 = 𝐽 + (1 − 𝐽 ) 1

2
𝑏 . This

(much) simplified probability has an intuitive interpretation using

(approximate) conditional probabilities: ℎ 𝑗 (𝑢) = ℎ 𝑗 (𝑣) with prob-

ability 𝐽 . If ℎ 𝑗 (𝑢) ≠ ℎ 𝑗 (𝑣) (which occurs with probability (1 − 𝐽 ),
there is still a roughly

1

2
𝑏 probability to have ℎ

(𝑏 )
𝑗

(𝑢) = ℎ
(𝑏 )
𝑗

(𝑣),
because the space is of size 2

𝑏
. In fact, one can also resort to the

commonly used “re-hash” idea to explicitly map ℎ 𝑗 (𝑢) uniformly

into [0, 1, 2, ..., 2𝑏 − 1].
Therefore, in this paper, wemake the following basic assumption:

Basic Assumption: Apply the hash function ℎ to two data vec-

tors 𝑢 and 𝑣 to obtain ℎ(𝑢) and ℎ(𝑣), respectively, where ℎ(.) ∈
[0, 1, 2, ..., 2𝐵 − 1]. The collision probability is 𝑃𝑟 (ℎ(𝑢) = ℎ(𝑣)) = 𝐽 .
ℎ (𝑏 ) (𝑢) and ℎ (𝑏 ) (𝑣) denote the values by taking 𝑏 bits of ℎ(𝑢) and
ℎ(𝑣), respectively, with

𝑃𝑏 = 𝑃𝑟

(
ℎ (𝑏 ) (𝑢) = ℎ (𝑏 ) (𝑣)

)
= 𝑐𝑏 + (1 − 𝑐𝑏 ) 𝐽 , 𝑐𝑏 =

1

2
𝑏

(2)

We call it an “assumption” because, when the original space is

large, the “re-hash” trick typically can only be done approximately,

for example, through universal hashing [8]. There is also an obvious

“descrepancy” that, in (2), we actually need 𝑏 → ∞ in order to

have 𝑃𝑟

(
ℎ (𝑏 ) (𝑢) = ℎ (𝑏 ) (𝑣)

)
= 𝐽 . But here for simplicity we just

assume that, when 𝑏 = 𝐵, we have 𝑃𝑟

(
ℎ (𝐵) (𝑢) = ℎ (𝐵) (𝑣)

)
= 𝐽 .

Because 𝐵 is typically large, we do not worry much about the

discrepancy. Otherwise the analysis would be too complicated, just

like Theorem 1.1.

The basic assumption (2) allows us to derive a simple unbiased

estimator of the basic similarity 𝐽 :

𝐽𝑏 =
𝑃𝑏 − 𝑐𝑏
1 − 𝑐𝑏

, 𝑉𝑎𝑟

(
𝐽𝑏

)
=
𝑉𝑎𝑟 (𝑃𝑏 )
(1 − 𝑐𝑏 )2

=
𝑃𝑏 (1 − 𝑃𝑏 )
(1 − 𝑐𝑏 )2

. (3)

where the variance𝑉𝑎𝑟

(
𝐽𝑏

)
assumes only one sample, because the

sample size 𝑘 will usually be canceled out in the comparison. When

𝑏 = 𝐵, the variance of 𝐽 would be simply 𝐽 (1 − 𝐽 ), i.e., the variance
of the Bernoulli trial. We can compute the ratio of the variances to

assess the loss of accuracy due to taking only 𝑏 bits:

𝑅𝑏 =
𝑉𝑎𝑟 (𝐽𝑏 )
𝑉𝑎𝑟 (𝐽 )

=
𝑃𝑏 (1 − 𝑃𝑏 )
(1 − 𝑐𝑏 )2

1

𝐽 (1 − 𝐽 ) (4)

= 1 + 𝑐𝑏

1 − 𝑐𝑏
1

𝐽
= 1 + 1

(2𝑏 − 1) 𝐽

Here 𝑅𝑏 (where 𝑅𝑏 → ∞ as 𝐽 → 0) can be viewed as the multiplier

needed for increasing the sample size by using only 𝑏 bits. In real-

world applications, typically only a tiny fraction of data vector pairs

have relatively large similarity (𝐽 ) values. For the majority of the

pairs, the 𝐽 values are very small. For example, when 𝐽 = 0.1 and

𝑏 = 1, we have 𝑅𝑏 = 11. In other words, if we keep only 1 bit per

hash and increase the number of hashes by a factor of 11, then the

variance would remain the same.

1.2 Motivations for Re-using Hashes and
Pb-Hash: Partitioned b-bit Hashing

Instead of using fewer bits and generatingmore hashes, in this paper,

we study the strategy of re-using the hashes. The idea is simple. For

a 𝐵-bit hash value, we break the bits into𝑚 chunks: 𝑏1, 𝑏2, ..., 𝑏𝑚
with

∑𝑚
𝑖=1 𝑏𝑖 = 𝐵. It is often convenient to simply let 𝑏1 = 𝑏2 = ... =

𝑏𝑚 = 𝑏 and𝑚×𝑏 = 𝐵. The dimensionality is (substantially) reduced

from 2
𝐵
to𝑚× 2

𝑏
. In many scenarios, this strategy can be desirable.

In industrial large-scale systems, the cost for generating hashes

can often be considerable especially for serving (for example, in

many user-facing applications). Thus, it is always desired if we can

generate fewer hashes for better efficiency. From the perspective

of privacy protection, it is also crucial to reduce 𝑘 the number

of hashes, because typically the needed privacy budget “𝜖” (in the

(𝜖, 𝛿)-DP language [15]) is proportional to𝑘 . There is another strong
motivation in that we may not be able to generate more hashes

in some situations. For example, in some applications, the original

data are not necessarily stored after hashing.

Interestingly, we can also directly apply the Pb-Hash idea to

the original categorical (ID) features. In large-scale recommender

systems [17, 51, 60], the use of ID features is dominating. For com-

panies which do not have infrastructure to handle ID features of

billion or even just million categories, they can apply Ph-Hash to

reduce the model dimensions.

Figure 1 is an illustration of the idea of Pb-Hash with training for

large ID data. Basically, we can first apply a random permutation

on the IDs, then break the bits into𝑚 chunks so that one can sub-

stantially reduce the embedding size, for example, from the original

size of 2
𝐵
to𝑚 × 2

𝑏
with 𝐵 = 𝑚 × 𝑏. The number of parameters

will be substantially reduced. We will need a strategy to merge

these𝑚 embedding tables. The obvious choices are concatenation,

mean, max, and product. Note that for this application, our Pb-Hash

includes the so-called “QR-hash” [51] as a special case (which uses

𝑚 = 2).

2 THEORETICAL ANALYSIS OF PB-HASH
Recall the Basic Assumption: 𝑃𝑏 = 𝑃𝑟

(
ℎ (𝑏 ) (𝑢) = ℎ (𝑏 ) (𝑣)

)
= 𝑐𝑏 +

(1−𝑐𝑏 ) 𝐽 , 𝑐𝑏 = 1

2
𝑏 . With Pb-Hash, the basic idea is to break the total

𝐵 bits into 𝑚 chunks. Let

∑𝑚
𝑖=1 𝑏𝑖 = 𝐵, and later we can assume

𝑏1 = 𝑏2 = ... = 𝑏𝑚 to simplify the expressions. Then, we have the

following expectations:

𝐸

(
𝑃𝑏𝑖

)
= 𝑐𝑏𝑖 + (1 − 𝑐𝑏𝑖 ) 𝐽 (5)

𝐸

(
𝑚∑︁
𝑖=1

𝑃𝑏𝑖

)
=

𝑚∑︁
𝑖=1

𝑐𝑏𝑖 + 𝐽
𝑚∑︁
𝑖=1

(1 − 𝑐𝑏𝑖 ). (6)
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#Categories

Embedding size

... #Classes

Hidden Layers

Embedding table lookup

⌈log(#Categories)/M⌉
2

... #Classes

Hidden Layers

Merge (mean, max, prod, cat)

M
Categorical feature x

Pb-Hash lookup

Figure 1: An visual illustration for the embedding table lookup and Pb-Hash lookup.

which allows us to write down an unbiased estimator of 𝐽 :

𝐽𝑚 =

∑𝑚
𝑖=1 𝑃𝑏𝑖∑𝑚

𝑖=1 (1 − 𝑐𝑏𝑖 )
−

∑𝑚
𝑖=1 𝑐𝑏𝑖∑𝑚

𝑖=1 (1 − 𝑐𝑏𝑖 )
. (7)

Theorem 2.1.

𝐸

(
𝐽𝑚

)
= 𝐽 , (8)

𝑉𝑎𝑟

(
𝐽𝑚

)
=

∑𝑚
𝑖=1 𝑃𝑏𝑖 (1 − 𝑃𝑏𝑖 ) +

∑
𝑖≠𝑖′

(
𝑃𝑏𝑖+𝑏𝑖′ − 𝑃𝑏𝑖𝑃𝑏𝑖′

)
(∑𝑚

𝑖=1 (1 − 𝑐𝑏𝑖 )
)
2

.

(9)

where 𝑐𝑏𝑖 =
1

2
𝑏𝑖
, 𝑃𝑏𝑖 = 𝑐𝑏𝑖 + (1 − 𝑐𝑏𝑖 ) 𝐽 , (10)

𝑃𝑏𝑖+𝑏𝑖′ = 𝑐𝑏𝑖+𝑏𝑖′ + (1 − 𝑐𝑏𝑖+𝑏𝑖′ ) 𝐽 (11)

Proof of Theorem 2.1. Firstly, it is easy to show that

𝐸

(
𝐽𝑚

)
= 𝐽 , 𝑉𝑎𝑟

(
𝐽𝑚

)
= 𝑉𝑎𝑟

(
𝑚∑︁
𝑖=1

𝑃𝑏𝑖

)
/
(
𝑚∑︁
𝑖=1

(1 − 𝑐𝑏𝑖 )
)
2

.

Then we expand the variance of the sum:

𝑉𝑎𝑟

(
𝑚∑︁
𝑖=1

𝑃𝑏𝑖

)
=

𝑚∑︁
𝑖=1

𝑉𝑎𝑟

(
𝑃𝑏𝑖

)
+

∑︁
𝑖≠𝑖′

𝐶𝑜𝑣

(
𝑃𝑏𝑖 , 𝑃𝑏𝑖′

)
=

𝑚∑︁
𝑖=1

𝑃𝑏𝑖 (1 − 𝑃𝑏𝑖 ) +
∑︁
𝑖≠𝑖′

(
𝑃𝑏𝑖+𝑏𝑖′ − 𝑃𝑏𝑖𝑃𝑏𝑖′

)
.

Here we have used the Basic Assumption. □

The key in the analysis is the covariance term 𝐶𝑜𝑣

(
𝑃𝑏𝑖 , 𝑃𝑏𝑖′

)
,

which in the independence case would be just zero. With Pb-Hash,

however, the covariance is always non-negative. This is the reason

why the accuracy of using𝑚 chunks of 𝑏-bits from the same hash

value would not be as good as using𝑚 independent 𝑏-bits (i.e.,𝑚

independent hashes).

Lemma 2.2.

𝑃𝑏1+𝑏2 − 𝑃𝑏1𝑃𝑏2 ≥ 0 (12)

is a concave function in 𝐽 ∈ [0, 1]. Its maximum is 1

4

(
1 − 1

2
𝑏
1

) (
1 − 1

2
𝑏
2

)
,

attained at 𝐽 = 1/2.

Proof of Lemma 2.2

𝑓 (𝐽 ) = 𝑃𝑏1+𝑏2 − 𝑃𝑏1𝑃𝑏2

= 𝐽 + (1 − 𝐽 ) 1

2
𝑏1+𝑏2

−
(
𝐽 + (1 − 𝐽 ) 1

2
𝑏1

) (
𝐽 + (1 − 𝐽 ) 1

2
𝑏2

)
𝑓 ′′ (𝐽 ) = −

(
1 − 1

2
𝑏1

) (
1 − 1

2
𝑏2

)
≤ 0

This means that 𝑓 (𝐽 ) is a concave function in 𝐽 ∈ [0, 1]. Also, we
have

𝑓 (0) = 1

2
𝑏1+𝑏2

− 1

2
𝑏1

1

2
𝑏2

= 0, 𝑓 (1) = 1 − 1 = 0

Therefore, we must have 𝑓 (𝐽 ) ≥ 0. Furthermore, by setting 𝑓 ′ (𝐽 ) =
0, we can see that the maximum value of 𝑓 (𝐽 ) is attained at 𝐽 = 1/2.
□
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Figure 2 verifies the results in Lemma 2.2, with 𝑃
2𝑏 − 𝑃2

𝑏
(left

panel) and 𝑃
2𝑏 − 𝑃1𝑃2𝑏−1 (right panel). It is interesting that in both

cases, the maximums are attained at 𝐽 = 1/2, as predicted.

To simplify the expression and better visualize the results, we

consider 𝑏1 = 𝑏2 = ... = 𝑏𝑚 = 𝑏 and 𝑏 ×𝑚 = 𝐵. Then we have

𝐽𝑚 =

∑𝑚
𝑖=1 𝑃𝑏𝑖

𝑚(1 − 𝑐𝑏 )
− 𝑐𝑏

1 − 𝑐𝑏
, (13)

and

𝑉𝑎𝑟

(
𝐽𝑚

)
=

𝑃𝑏 (1 − 𝑃𝑏 ) + (𝑚 − 1)
(
𝑃
2𝑏 − 𝑃2

𝑏

)
𝑚(1 − 𝑐𝑏 )2

(14)

=
1

𝑚

𝑃𝑏 (1 − 𝑃𝑏 )
(1 − 𝑐𝑏 )2

+ 𝑚 − 1

𝑚

𝑃
2𝑏 − 𝑃2

𝑏

(1 − 𝑐𝑏 )2
.

We can again compare the variance of 𝑉𝑎𝑟

(
𝐽𝑚

)
with, 𝐽 (1 − 𝐽 ),

which is the variance of 𝐽 using all the bits:

𝑅𝑚,𝑏 =

𝑉𝑎𝑟

(
𝐽𝑚

)
𝐽 (1 − 𝐽 ) =

𝑃𝑏 (1 − 𝑃𝑏 ) + (𝑚 − 1)
(
𝑃
2𝑏 − 𝑃2

𝑏

)
𝑚(1 − 𝑐𝑏 )2 𝐽 (1 − 𝐽 )

, 𝑚 × 𝑏 = 𝐵.

(15)

When 𝑅𝑚,𝑏 is close to 1, it means that Pb-Hash does not lose ac-

curacy as much. Recall that, if we have hashed values for building

learning models, the model size is 2
𝐵 × 𝑘 , where 𝑘 is the number

of hashes. By Pb-Hash, we can (substantially) reduce the model

size to be 𝑚 × 2
𝑏 × 𝑘 . In practice, the ID features can have very

high cardinality, for example, a million (i.e., 𝐵 = 20) or billion (i.e.,

𝐵 = 30). Figure 3 implies that, as long as 𝐵 is not too small, we do

not expect a significant loss of accuracy if𝑚 = 2 ∼ 4.

3 APPLICATIONS AND EXPERIMENTS
Recall that in our Basic Assumption, we have not specified which
particular hashing method is used. For the applications and ex-

periments, we focus on minwise hashing (MinHash) for binary

(0/1) data, and consistent weighted sampling (CWS) for general

non-negative data.

3.1 Minwise Hashing (MinHash) on Binary Data
The binary Jaccard similarity, also known as the “resemblance”,

is a similarity metric widely used in machine learning and web

applications. It is defined for two binary (0/1) data vectors, denoted

as𝑢 and 𝑣 , where each vector belongs to the set {0, 1}𝐷 . The Jaccard
similarity is calculated as:

𝐽 (𝑢, 𝑣) =
∑𝐷
𝑖=1 1{𝑢𝑖 = 𝑣𝑖 = 1}∑𝐷
𝑖=1 1{𝑢𝑖 + 𝑣𝑖 ≥ 1}

. (16)

In this context, the vectors 𝑢 and 𝑣 can be interpreted as sets of

items, represented by the positions of non-zero entries. However,

computing pairwise Jaccard similarity becomes computationally

expensive as the data size increases in industrial applications with

massive datasets. To address this challenge and enable large-scale

search and learning, the “minwise hashing” (MinHash) algorithm

is introduced [4–6, 33, 34] as a standard hashing technique for

approximating the Jaccard similarity in massive binary datasets.

MinHash has found applications in various domains, including near

neighbor search, duplicate detection, malware detection, clustering,

large-scale learning, social networks, and computer vision [2, 7, 9–

12, 14, 18, 19, 24, 26, 28, 30, 44, 45, 53, 54, 57, 62].

MinHash produces integer outputs. For efficient storage and uti-

lization of the hash values in large-scale applications, Li and König

[34] proposed a variant called “𝑏-bit MinHash”. This method only

retains the lowest𝑏 bits of the hashed integers, providing a memory-

efficient and convenient approach for similarity search andmachine

learning tasks. Over the years, 𝑏-bit MinHash has become the stan-

dard implementation of MinHash [31, 35, 50, 59]. Additionally, we

should mention “circulant MinHash” (C-MinHash) [40]. C-MinHash

employs a single circular permutation, which enhances hashing

efficiency and perhaps surprisingly improves estimation accuracy.

Figure 4 depicts the use case of Pb-Hash on minwise hashing, for

verifying the theoretical results in Theorem 2.1.

3.2 Consistent Weighted Sampling (CWS) and
Linear SVM

MinHash and OPH are techniques designed to process binary data,

representing unweighted sets. In the literature, to tackle the real-

valued data, the weighted Jaccard similarity is defined as follows:

𝐽 (𝑢, 𝑣) =
∑𝐷
𝑖=1min{𝑢𝑖 , 𝑣𝑖 }∑𝐷
𝑖=1max{𝑢𝑖 , 𝑣𝑖 }

,

where 𝑢, 𝑣 ∈ R𝐷+ are two non-negative data vectors. In contrast

to binary data, weighted data often carries more detailed informa-

tion. Consequently, the weighted Jaccard similarity measure has

garnered significant attention and has been extensively studied and

applied across various domains, such as theory, databases, machine

learning, and information retrieval [1, 3, 9, 13, 19–21, 23, 27, 29,

38, 43, 46–49, 55, 56, 58, 61, 63]. This extended similarity metric

enables the analysis and comparison of weighted sets, facilitat-

ing a deeper understanding of the underlying data. ChatGPT The

weighted Jaccard similarity has emerged as a potential non-linear

kernel, especially in the realm of large-scale classification and re-

gression tasks [32]. It has been demonstrated to surpass the widely

used RBF (Radial Basis Function) kernel in terms of performance

across numerous tasks and datasets. The weighted Jaccard similar-

ity’s ability to capture intricate relationships within the datasets

it is applied to makes it a promising choice for achieving superior

results in various machine learning applications.

In line with this, several large-scale hashing algorithms have

been developed to efficiently estimate or approximate the weighted

Jaccard similarity. A series of studies [9, 16, 27, 39, 52] have proposed

and refined hashing algorithms based on the rejection sampling

technique, which proves to be efficient for dense data vectors. Fur-

thermore, researchers such as Gollapudi and Panigrahy [22], Ioffe

[25], Manasse et al. [42] have introduced consistent weighted sam-

pling (CWS), offering a complexity of 𝑂 (𝐾𝑓 ) similar to that of

MinHash. CWS operates effectively on relatively sparse data. To

improve upon these methods, Li et al. [37] presented Extremal Sam-

pling (ES) based on the extremal stochastic process. Moreover, Li

et al. [36] extended the concept of “binning + densification” from

OPH to CWS and proposed Bin-wise ConsistentWeighted Sampling

(BCWS) with a complexity of 𝑂 (𝑓 ). BCWS provides a significant
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Figure 2: Plots to verify Lemma 2.2 that 𝑃𝑏1+𝑏2 − 𝑃𝑏1𝑃𝑏2 ≥ 0. Left panel: 𝑃
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2𝑏 − 𝑃1𝑃2𝑏−1. It is interesting that
in both cases, the maximums are attained at 𝐽 = 1/2.
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Figure 3: Plots for 𝐵 ∈ {30, 24, 18, 12} to illustrate the variance ratio 𝑅𝑚,𝑏 in (15).
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Figure 4: We use the “Words” dataset [33]. The vector, denoted by “UNITED”, stores whether each of 𝐷 = 2
16 documents contains

the word “UNITED”. We use minwise hashing to estimate the Jaccard similarity between the word-pair, e.g., “UNITED–STATES”,
with 𝑘 = 1 to 1000 hashes. For each hash, we apply Pb-Hash with𝑚 ∈ {1, 2, 4, 8, 16}. We simulate each case 104 times in order to
reliably estimate the biases and variances. The left upper panel plots the biases for each𝑚 and 𝑘 . The biases are very small (and
the bias2, which will be on the scale as the variance, will be much smaller.). For “UNITED–STATES”, the variance curves all
overlap in the right upper panel. Thus, we zoom in the plot and present the much magnified portion in the right bottom panel.
We can see that, even at such as fine scale, the theoretical variances match the empirical simulations very well. In the left
bottom panel, we provide the variance curves on another word-pair “LOW–PAY”. Again, the empirical and theoretical curves
match quite well. These experiments verify the accuracy of Theorem 2.1, even though it was based on the “Basic Assumption”.

speedup of approximately𝐾-fold compared to standard CWS. These

advancements in large-scale hashing algorithms facilitate efficient

computations and estimations of the weighted Jaccard similarity

for diverse datasets. We report the results of Pb-Hash on CWS in

Figure 5 and Figure 6.

3.3 CWS and Neural Nets
Next we conduct experiments with using CWS hashes for training

neural nets. We first break the hash bits into𝑚 chunks (for𝑚 =

1, 2, 4, 8). For each chunk, we connect it with an embedding of size

16. We can simply concatenate all𝑚 embeddings, but to reduce the

number of parameters and speed up training, we experiment 3 other

pooling options: product (“Prod”), mean (”Mean”), and maximum

(“Max”). Figure 7 presents the experimental results.

4 CONCLUSION
The idea of Pb-Hash, i.e., breaking the bits of one hash value into

𝑚 chunks, is a very natural one after the work on 𝑏-bit minwise

hashing [34]. At that time, Pb-Hash did not seem to have obvious

advantages compared to 𝑏-bit hashing, because re-generating in-

dependent hashes would be always more accurate than re-using

the hashes. In recent years, because of the privacy constraint [41],

we have started to realize the importance of re-using the hashes.

Furthermore, with hashing algorithms used in deep neural nets,

the hashed value (i.e., new ID features) is typically connected to an

embedding layer and hence there is a strong motivation to break

the hash bits into chunks to reduce the embedding size. Also, it is

natural to apply Pb-Hash to the original ID features (not the new

features obtained via hashing).
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Figure 5: For the “WebspamN1” dataset (a character 1-gram dataset), we apply CWS and keep 𝐵 = 8 bits for each hash value. We
choose 𝑏 ∈ {1, 2, 4, 8} to run the linear SVM classifier. The left panel shows that when 𝑏 = 1 and 𝑏 = 2, we observe a substantial
loss of accuracy. In the right panel, we zoom in to show the Pb-Hash results (i.e., dashed curves). We can see that𝑚 = 2 and
𝑚 = 4 barely lose any accuracy (𝑚 = 2 is slightly better than𝑚 = 4).

Figure 6: For the “Dailysports” dataset, we apply CWS and keep 𝐵 = 12 bits for each hash value. We choose 𝑏 ∈ {1, 2, 3, 4, 6, 12} to
run the linear SVM classifier. The left panel shows that when 𝑏 = 1 and 𝑏 = 2, we observe a substantial loss of accuracy. In the
right panel, we zoom in to show the Pb-Hash results (i.e., dashed curves). We can see with𝑚 = 2 ∼ 4 the loss of accuracy is small.
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