
Pb-Hash: Partitioned b-bit Hashing
Anonymous Author(s)

ABSTRACT
Many hashing algorithms including minwise hashing (MinHash),

one permutation hashing (OPH), and consistent weighted sampling

(CWS) generate integers of 𝐵 bits. With 𝑘 hashes for each data

vector, the storage would be 𝐵×𝑘 bits; and when used for large-scale
learning, the model size would be 2

𝐵 × 𝑘 , which can be expensive.

A standard strategy is to use only the lowest 𝑏 bits out of the 𝐵

bits and somewhat increase 𝑘 , the number of hashes. In this study,

we propose to re-use the hashes by partitioning the 𝐵 bits into𝑚

chunks, e.g., 𝑏 ×𝑚 = 𝐵. Correspondingly, the model size becomes

𝑚 × 2
𝑏 × 𝑘 , which can be substantially smaller than 2

𝐵 × 𝑘 .

There are multiple reasons why the proposed “partitioned b-bit

hashing” (Pb-Hash) can be desirable: (1) Generating hashes can be

expensive for industrial-scale systems especially for many user-

facing applications. Thus, engineers may hope to make use of each

hash as much as possible, instead of generating more hashes (i.e., by

increasing the 𝑘). (2) To protect user privacy, the hashes might be

artificially “polluted” and the differential privacy (DP) budget is pro-

portional to𝑘 . (3) After hashing, the original data are not necessarily

stored and hence it might not be even possible to generate more

hashes. (4) One special scenario is that we can also apply Pb-Hash

to the original categorical (ID) features, not just hashed data.

Our theoretical analysis reveals that by partitioning the hash values

into𝑚 chunks, the accuracy would drop. In other words, using𝑚

chunks of 𝐵/𝑚 bits would not be as accurate as directly using 𝐵 bits.

This is due to the correlation from re-using the same hash. On the

other hand, our analysis also shows that the accuracy would not

dropmuch for (e.g.,)𝑚 = 2 ∼ 4. In some regions, Pb-Hash still works

well even for𝑚 much larger than 4. We expect Pb-Hash would be a

good addition to the family of hashing methods/applications and

benefit industrial practitioners.

We verify the effectiveness of Pb-Hash in machine learning tasks,

for linear SVM models as well as deep learning models. Since the

hashed data are essentially categorical (ID) features, we follow the

standard practice of using embedding tables for each hash. With

Pb-Hash, we need to design an effective strategy to combine 𝑚

embeddings. Our study provides an empirical evaluation on four

pooling schemes: concatenation, max pooling, mean pooling, and

product pooling. There is no definite answer which pooling would

be always better and we leave that for future study.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ICTIR ’24, Washington D.C.,
© 2018 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/XXXXXXX.XXXXXXX

ACM Reference Format:
Anonymous Author(s). 2018. Pb-Hash: Partitioned b-bit Hashing. In Pro-
ceedings of July 14–18 (ICTIR ’24). ACM, New York, NY, USA, 9 pages.

https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
In this paper, we focus on effectively re-using hashes and developing

the theory to explain some of the interesting empirical observations.

Typically, for each data vector, applying some hashing method 𝑘

times generates 𝑘 integers of 𝐵 bits, where 𝐵 can be (very) large.

For example, with the celebrated minwise hashing [4–6, 33, 34], we

generate a permutation of length 𝐷 , where 𝐷 is the data dimension,

and apply the same permutation to all data vectors (which are

assumed to be binary). For each data vector, the location of the first

non-zero entry after the permutation is the hashed value. Then we

repeat the permutation process 𝑘 times to generate 𝑘 hash values

for each data vector. For vector 𝑢, we denote its 𝑘 hashes as ℎ 𝑗 (𝑢),
𝑗 = 1, 2, ..., 𝑘 . For vector 𝑣 , we similarly have ℎ 𝑗 (𝑣). It is known
that the collision probability is 𝑃𝑟 (ℎ 𝑗 (𝑢) = ℎ 𝑗 (𝑣)) = 𝐽 , where for

minwise hashing 𝐽 is the Jaccard similarity between two binary

vectors 𝑢 and 𝑣 , i.e., 𝐽 =

∑𝐷
𝑖=1 1{𝑢𝑖≠0 and 𝑣𝑖≠0}∑𝐷
𝑖=1 1{𝑢𝑖≠0 or 𝑣𝑖≠0}

.

When we use (e.g.,) minwise hashes for building machine learn-

ing models, we need to treat the hash values as categorical features

and expand them as one-hot representations. For example, if 𝐷 = 4,

then the minwise hash values are between 0 and 3. Supposed 𝑘 = 3

hashes are {3, 1, 2}, we will encode them as a 2
2×3 = 12-dimensional

binary vector: [1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0] as the feature vector fed
to themodel. Let𝐷 = 2

𝐵
. This scheme can easily generate extremely

high-dimensional data vectors and excessively large model sizes. A

common strategy is to only use the lowest 𝑏 bits for each hash value,

a method called “b-bit minwise hashing” [34]. It can be a drastic

reduction from 2
𝐵
is 2

𝑏
, for example, 𝐵 = 32 and 𝑏 = 10. Typically,

we will have to increase 𝑘 the number of hashes to compensate the

loss of accuracy due to the use of only 𝑏 bits.

1.1 Collision Probability of 𝑏-bit Hashing and
the Basic Assumption

Denote ℎ
(𝑏)
𝑗

(𝑢) and ℎ (𝑏)
𝑗

(𝑣) as the lowest 𝑏 bits of ℎ 𝑗 (𝑢) and ℎ 𝑗 (𝑣),
respectively. Theorem 1.1 describes the collision probability of min-

wise hashing 𝑃𝑟

(
ℎ
(𝑏)
𝑗

(𝑢) = ℎ (𝑏)
𝑗

(𝑣)
)
by assuming 𝐷 = 2

𝐵
is large.

Theorem 1.1. [34] 𝑃𝑟
(
ℎ 𝑗 (𝑢) = ℎ 𝑗 (𝑣)

)
= 𝐽 is the collision proba-

bility ofminwise hashing. Assume𝐷 is large. Denote 𝑓1 =
∑𝐷
𝑖=1 1{𝑢𝑖 ≠

0}, 𝑓2 =
∑𝐷
𝑖=1 1{𝑣𝑖 ≠ 0}. Then

𝑃𝑏 = 𝑃𝑟

(
ℎ
(𝑏)
𝑗

(𝑢) = ℎ (𝑏)
𝑗

(𝑣)
)
= 𝐶

1,𝑏 + (1 −𝐶
2,𝑏) 𝐽 (1)

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

ICTIR ’24, Washington D.C.,
Anon.

where

𝐶
1,𝑏 = 𝐴

1,𝑏

𝑟2

𝑟1 + 𝑟2
+𝐴

2,𝑏

𝑟1

𝑟1 + 𝑟2
, 𝐶

2,𝑏 = 𝐴
1,𝑏

𝑟1

𝑟1 + 𝑟2
+𝐴

2,𝑏

𝑟2

𝑟1 + 𝑟2
,

𝐴
1,𝑏 =

𝑟1 [1 − 𝑟1]2
𝑏−1

1 − [1 − 𝑟1]2𝑏
, 𝐴

2,𝑏 =
𝑟2 [1 − 𝑟2]2

𝑏−1

1 − [1 − 𝑟2]2𝑏
,

𝑟1 =
𝑓1

𝐷
, 𝑟2 =

𝑓2

𝐷

The result in Theorem 1.1 was obtained via conducting careful

and tedious summations of the individual probability terms. Inter-

estingly, if 𝑟1, 𝑟2 → 0, then 𝐴
1,𝑏 = 𝐴

2,𝑏 = lim𝑟→0

𝑟 [1−𝑟]2𝑏 −1

1−[1−𝑟2𝑏] = 1

2
𝑏 ,

𝐶
1,𝑏 = 𝐶

2,𝑏 = 1

2
𝑏 and 𝑃𝑏 = 1

2
𝑏 +

(
1 − 1

2
𝑏

)
𝐽 = 𝐽 + (1 − 𝐽) 1

2
𝑏 . This

(much) simplified probability has an intuitive interpretation using

(approximate) conditional probabilities: ℎ 𝑗 (𝑢) = ℎ 𝑗 (𝑣) with prob-

ability 𝐽 . If ℎ 𝑗 (𝑢) ≠ ℎ 𝑗 (𝑣) (which occurs with probability (1 − 𝐽),
there is still a roughly

1

2
𝑏 probability to have ℎ

(𝑏)
𝑗

(𝑢) = ℎ
(𝑏)
𝑗

(𝑣),
because the space is of size 2

𝑏
. In fact, one can also resort to the

commonly used “re-hash” idea to explicitly map ℎ 𝑗 (𝑢) uniformly

into [0, 1, 2, ..., 2𝑏 − 1].
Therefore, in this paper, wemake the following basic assumption:

Basic Assumption: Apply the hash function ℎ to two data vec-

tors 𝑢 and 𝑣 to obtain ℎ(𝑢) and ℎ(𝑣), respectively, where ℎ(.) ∈
[0, 1, 2, ..., 2𝐵 − 1]. The collision probability is 𝑃𝑟 (ℎ(𝑢) = ℎ(𝑣)) = 𝐽 .
ℎ (𝑏) (𝑢) and ℎ (𝑏) (𝑣) denote the values by taking 𝑏 bits of ℎ(𝑢) and
ℎ(𝑣), respectively, with

𝑃𝑏 = 𝑃𝑟

(
ℎ (𝑏) (𝑢) = ℎ (𝑏) (𝑣)

)
= 𝑐𝑏 + (1 − 𝑐𝑏) 𝐽 , 𝑐𝑏 =

1

2
𝑏

(2)

We call it an “assumption” because, when the original space is

large, the “re-hash” trick typically can only be done approximately,

for example, through universal hashing [8]. There is also an obvious

“descrepancy” that, in (2), we actually need 𝑏 → ∞ in order to

have 𝑃𝑟

(
ℎ (𝑏) (𝑢) = ℎ (𝑏) (𝑣)

)
= 𝐽 . But here for simplicity we just

assume that, when 𝑏 = 𝐵, we have 𝑃𝑟

(
ℎ (𝐵) (𝑢) = ℎ (𝐵) (𝑣)

)
= 𝐽 .

Because 𝐵 is typically large, we do not worry much about the

discrepancy. Otherwise the analysis would be too complicated, just

like Theorem 1.1.

The basic assumption (2) allows us to derive a simple unbiased

estimator of the basic similarity 𝐽 :

𝐽𝑏 =
𝑃𝑏 − 𝑐𝑏
1 − 𝑐𝑏

, 𝑉𝑎𝑟

(
𝐽𝑏

)
=
𝑉𝑎𝑟 (𝑃𝑏)
(1 − 𝑐𝑏)2

=
𝑃𝑏 (1 − 𝑃𝑏)
(1 − 𝑐𝑏)2

. (3)

where the variance𝑉𝑎𝑟

(
𝐽𝑏

)
assumes only one sample, because the

sample size 𝑘 will usually be canceled out in the comparison. When

𝑏 = 𝐵, the variance of 𝐽 would be simply 𝐽 (1 − 𝐽), i.e., the variance
of the Bernoulli trial. We can compute the ratio of the variances to

assess the loss of accuracy due to taking only 𝑏 bits:

𝑅𝑏 =
𝑉𝑎𝑟 (𝐽𝑏)
𝑉𝑎𝑟 (𝐽)

=
𝑃𝑏 (1 − 𝑃𝑏)
(1 − 𝑐𝑏)2

1

𝐽 (1 − 𝐽) (4)

= 1 + 𝑐𝑏

1 − 𝑐𝑏
1

𝐽
= 1 + 1

(2𝑏 − 1) 𝐽

Here 𝑅𝑏 (where 𝑅𝑏 → ∞ as 𝐽 → 0) can be viewed as the multiplier

needed for increasing the sample size by using only 𝑏 bits. In real-

world applications, typically only a tiny fraction of data vector pairs

have relatively large similarity (𝐽) values. For the majority of the

pairs, the 𝐽 values are very small. For example, when 𝐽 = 0.1 and

𝑏 = 1, we have 𝑅𝑏 = 11. In other words, if we keep only 1 bit per

hash and increase the number of hashes by a factor of 11, then the

variance would remain the same.

1.2 Motivations for Re-using Hashes and
Pb-Hash: Partitioned b-bit Hashing

Instead of using fewer bits and generatingmore hashes, in this paper,

we study the strategy of re-using the hashes. The idea is simple. For

a 𝐵-bit hash value, we break the bits into𝑚 chunks: 𝑏1, 𝑏2, ..., 𝑏𝑚
with

∑𝑚
𝑖=1 𝑏𝑖 = 𝐵. It is often convenient to simply let 𝑏1 = 𝑏2 = ... =

𝑏𝑚 = 𝑏 and𝑚×𝑏 = 𝐵. The dimensionality is (substantially) reduced

from 2
𝐵
to𝑚× 2

𝑏
. In many scenarios, this strategy can be desirable.

In industrial large-scale systems, the cost for generating hashes

can often be considerable especially for serving (for example, in

many user-facing applications). Thus, it is always desired if we can

generate fewer hashes for better efficiency. From the perspective

of privacy protection, it is also crucial to reduce 𝑘 the number

of hashes, because typically the needed privacy budget “𝜖” (in the

(𝜖, 𝛿)-DP language [15]) is proportional to𝑘 . There is another strong
motivation in that we may not be able to generate more hashes

in some situations. For example, in some applications, the original

data are not necessarily stored after hashing.

Interestingly, we can also directly apply the Pb-Hash idea to

the original categorical (ID) features. In large-scale recommender

systems [17, 51, 60], the use of ID features is dominating. For com-

panies which do not have infrastructure to handle ID features of

billion or even just million categories, they can apply Ph-Hash to

reduce the model dimensions.

Figure 1 is an illustration of the idea of Pb-Hash with training for

large ID data. Basically, we can first apply a random permutation

on the IDs, then break the bits into𝑚 chunks so that one can sub-

stantially reduce the embedding size, for example, from the original

size of 2
𝐵
to𝑚 × 2

𝑏
with 𝐵 = 𝑚 × 𝑏. The number of parameters

will be substantially reduced. We will need a strategy to merge

these𝑚 embedding tables. The obvious choices are concatenation,

mean, max, and product. Note that for this application, our Pb-Hash

includes the so-called “QR-hash” [51] as a special case (which uses

𝑚 = 2).

2 THEORETICAL ANALYSIS OF PB-HASH
Recall the Basic Assumption: 𝑃𝑏 = 𝑃𝑟

(
ℎ (𝑏) (𝑢) = ℎ (𝑏) (𝑣)

)
= 𝑐𝑏 +

(1−𝑐𝑏) 𝐽 , 𝑐𝑏 = 1

2
𝑏 . With Pb-Hash, the basic idea is to break the total

𝐵 bits into 𝑚 chunks. Let

∑𝑚
𝑖=1 𝑏𝑖 = 𝐵, and later we can assume

𝑏1 = 𝑏2 = ... = 𝑏𝑚 to simplify the expressions. Then, we have the

following expectations:

𝐸

(
𝑃𝑏𝑖

)
= 𝑐𝑏𝑖 + (1 − 𝑐𝑏𝑖) 𝐽 (5)

𝐸

(
𝑚∑︁
𝑖=1

𝑃𝑏𝑖

)
=

𝑚∑︁
𝑖=1

𝑐𝑏𝑖 + 𝐽
𝑚∑︁
𝑖=1

(1 − 𝑐𝑏𝑖). (6)

Pb-Hash: Partitioned b-bit Hashing
ICTIR ’24, Washington D.C.,

Categorical feature x

#Categories

Embedding size

... #Classes

Hidden Layers

Embedding table lookup

⌈log(#Categories)/M⌉
2

... #Classes

Hidden Layers

Merge (mean, max, prod, cat)

M
Categorical feature x

Pb-Hash lookup

Figure 1: An visual illustration for the embedding table lookup and Pb-Hash lookup.

which allows us to write down an unbiased estimator of 𝐽 :

𝐽𝑚 =

∑𝑚
𝑖=1 𝑃𝑏𝑖∑𝑚

𝑖=1 (1 − 𝑐𝑏𝑖)
−

∑𝑚
𝑖=1 𝑐𝑏𝑖∑𝑚

𝑖=1 (1 − 𝑐𝑏𝑖)
. (7)

Theorem 2.1.

𝐸

(
𝐽𝑚

)
= 𝐽 , (8)

𝑉𝑎𝑟

(
𝐽𝑚

)
=

∑𝑚
𝑖=1 𝑃𝑏𝑖 (1 − 𝑃𝑏𝑖) +

∑
𝑖≠𝑖′

(
𝑃𝑏𝑖+𝑏𝑖′ − 𝑃𝑏𝑖𝑃𝑏𝑖′

)
(∑𝑚

𝑖=1 (1 − 𝑐𝑏𝑖)
)
2

.

(9)

where 𝑐𝑏𝑖 =
1

2
𝑏𝑖
, 𝑃𝑏𝑖 = 𝑐𝑏𝑖 + (1 − 𝑐𝑏𝑖) 𝐽 , (10)

𝑃𝑏𝑖+𝑏𝑖′ = 𝑐𝑏𝑖+𝑏𝑖′ + (1 − 𝑐𝑏𝑖+𝑏𝑖′) 𝐽 (11)

Proof of Theorem 2.1. Firstly, it is easy to show that

𝐸

(
𝐽𝑚

)
= 𝐽 , 𝑉𝑎𝑟

(
𝐽𝑚

)
= 𝑉𝑎𝑟

(
𝑚∑︁
𝑖=1

𝑃𝑏𝑖

)
/
(
𝑚∑︁
𝑖=1

(1 − 𝑐𝑏𝑖)
)
2

.

Then we expand the variance of the sum:

𝑉𝑎𝑟

(
𝑚∑︁
𝑖=1

𝑃𝑏𝑖

)
=

𝑚∑︁
𝑖=1

𝑉𝑎𝑟

(
𝑃𝑏𝑖

)
+

∑︁
𝑖≠𝑖′

𝐶𝑜𝑣

(
𝑃𝑏𝑖 , 𝑃𝑏𝑖′

)
=

𝑚∑︁
𝑖=1

𝑃𝑏𝑖 (1 − 𝑃𝑏𝑖) +
∑︁
𝑖≠𝑖′

(
𝑃𝑏𝑖+𝑏𝑖′ − 𝑃𝑏𝑖𝑃𝑏𝑖′

)
.

Here we have used the Basic Assumption. □

The key in the analysis is the covariance term 𝐶𝑜𝑣

(
𝑃𝑏𝑖 , 𝑃𝑏𝑖′

)
,

which in the independence case would be just zero. With Pb-Hash,

however, the covariance is always non-negative. This is the reason

why the accuracy of using𝑚 chunks of 𝑏-bits from the same hash

value would not be as good as using𝑚 independent 𝑏-bits (i.e.,𝑚

independent hashes).

Lemma 2.2.

𝑃𝑏1+𝑏2 − 𝑃𝑏1𝑃𝑏2 ≥ 0 (12)

is a concave function in 𝐽 ∈ [0, 1]. Its maximum is 1

4

(
1 − 1

2
𝑏
1

) (
1 − 1

2
𝑏
2

)
,

attained at 𝐽 = 1/2.

Proof of Lemma 2.2

𝑓 (𝐽) = 𝑃𝑏1+𝑏2 − 𝑃𝑏1𝑃𝑏2

= 𝐽 + (1 − 𝐽) 1

2
𝑏1+𝑏2

−
(
𝐽 + (1 − 𝐽) 1

2
𝑏1

) (
𝐽 + (1 − 𝐽) 1

2
𝑏2

)
𝑓 ′′ (𝐽) = −

(
1 − 1

2
𝑏1

) (
1 − 1

2
𝑏2

)
≤ 0

This means that 𝑓 (𝐽) is a concave function in 𝐽 ∈ [0, 1]. Also, we
have

𝑓 (0) = 1

2
𝑏1+𝑏2

− 1

2
𝑏1

1

2
𝑏2

= 0, 𝑓 (1) = 1 − 1 = 0

Therefore, we must have 𝑓 (𝐽) ≥ 0. Furthermore, by setting 𝑓 ′ (𝐽) =
0, we can see that the maximum value of 𝑓 (𝐽) is attained at 𝐽 = 1/2.
□

ICTIR ’24, Washington D.C.,
Anon.

Figure 2 verifies the results in Lemma 2.2, with 𝑃
2𝑏 − 𝑃2

𝑏
(left

panel) and 𝑃
2𝑏 − 𝑃1𝑃2𝑏−1 (right panel). It is interesting that in both

cases, the maximums are attained at 𝐽 = 1/2, as predicted.

To simplify the expression and better visualize the results, we

consider 𝑏1 = 𝑏2 = ... = 𝑏𝑚 = 𝑏 and 𝑏 ×𝑚 = 𝐵. Then we have

𝐽𝑚 =

∑𝑚
𝑖=1 𝑃𝑏𝑖

𝑚(1 − 𝑐𝑏)
− 𝑐𝑏

1 − 𝑐𝑏
, (13)

and

𝑉𝑎𝑟

(
𝐽𝑚

)
=

𝑃𝑏 (1 − 𝑃𝑏) + (𝑚 − 1)
(
𝑃
2𝑏 − 𝑃2

𝑏

)
𝑚(1 − 𝑐𝑏)2

(14)

=
1

𝑚

𝑃𝑏 (1 − 𝑃𝑏)
(1 − 𝑐𝑏)2

+ 𝑚 − 1

𝑚

𝑃
2𝑏 − 𝑃2

𝑏

(1 − 𝑐𝑏)2
.

We can again compare the variance of 𝑉𝑎𝑟

(
𝐽𝑚

)
with, 𝐽 (1 − 𝐽),

which is the variance of 𝐽 using all the bits:

𝑅𝑚,𝑏 =

𝑉𝑎𝑟

(
𝐽𝑚

)
𝐽 (1 − 𝐽) =

𝑃𝑏 (1 − 𝑃𝑏) + (𝑚 − 1)
(
𝑃
2𝑏 − 𝑃2

𝑏

)
𝑚(1 − 𝑐𝑏)2 𝐽 (1 − 𝐽)

, 𝑚 × 𝑏 = 𝐵.

(15)

When 𝑅𝑚,𝑏 is close to 1, it means that Pb-Hash does not lose ac-

curacy as much. Recall that, if we have hashed values for building

learning models, the model size is 2
𝐵 × 𝑘 , where 𝑘 is the number

of hashes. By Pb-Hash, we can (substantially) reduce the model

size to be 𝑚 × 2
𝑏 × 𝑘 . In practice, the ID features can have very

high cardinality, for example, a million (i.e., 𝐵 = 20) or billion (i.e.,

𝐵 = 30). Figure 3 implies that, as long as 𝐵 is not too small, we do

not expect a significant loss of accuracy if𝑚 = 2 ∼ 4.

3 APPLICATIONS AND EXPERIMENTS
Recall that in our Basic Assumption, we have not specified which
particular hashing method is used. For the applications and ex-

periments, we focus on minwise hashing (MinHash) for binary

(0/1) data, and consistent weighted sampling (CWS) for general

non-negative data.

3.1 Minwise Hashing (MinHash) on Binary Data
The binary Jaccard similarity, also known as the “resemblance”,

is a similarity metric widely used in machine learning and web

applications. It is defined for two binary (0/1) data vectors, denoted

as𝑢 and 𝑣 , where each vector belongs to the set {0, 1}𝐷 . The Jaccard
similarity is calculated as:

𝐽 (𝑢, 𝑣) =
∑𝐷
𝑖=1 1{𝑢𝑖 = 𝑣𝑖 = 1}∑𝐷
𝑖=1 1{𝑢𝑖 + 𝑣𝑖 ≥ 1}

. (16)

In this context, the vectors 𝑢 and 𝑣 can be interpreted as sets of

items, represented by the positions of non-zero entries. However,

computing pairwise Jaccard similarity becomes computationally

expensive as the data size increases in industrial applications with

massive datasets. To address this challenge and enable large-scale

search and learning, the “minwise hashing” (MinHash) algorithm

is introduced [4–6, 33, 34] as a standard hashing technique for

approximating the Jaccard similarity in massive binary datasets.

MinHash has found applications in various domains, including near

neighbor search, duplicate detection, malware detection, clustering,

large-scale learning, social networks, and computer vision [2, 7, 9–

12, 14, 18, 19, 24, 26, 28, 30, 44, 45, 53, 54, 57, 62].

MinHash produces integer outputs. For efficient storage and uti-

lization of the hash values in large-scale applications, Li and König

[34] proposed a variant called “𝑏-bit MinHash”. This method only

retains the lowest𝑏 bits of the hashed integers, providing a memory-

efficient and convenient approach for similarity search andmachine

learning tasks. Over the years, 𝑏-bit MinHash has become the stan-

dard implementation of MinHash [31, 35, 50, 59]. Additionally, we

should mention “circulant MinHash” (C-MinHash) [40]. C-MinHash

employs a single circular permutation, which enhances hashing

efficiency and perhaps surprisingly improves estimation accuracy.

Figure 4 depicts the use case of Pb-Hash on minwise hashing, for

verifying the theoretical results in Theorem 2.1.

3.2 Consistent Weighted Sampling (CWS) and
Linear SVM

MinHash and OPH are techniques designed to process binary data,

representing unweighted sets. In the literature, to tackle the real-

valued data, the weighted Jaccard similarity is defined as follows:

𝐽 (𝑢, 𝑣) =
∑𝐷
𝑖=1min{𝑢𝑖 , 𝑣𝑖 }∑𝐷
𝑖=1max{𝑢𝑖 , 𝑣𝑖 }

,

where 𝑢, 𝑣 ∈ R𝐷+ are two non-negative data vectors. In contrast

to binary data, weighted data often carries more detailed informa-

tion. Consequently, the weighted Jaccard similarity measure has

garnered significant attention and has been extensively studied and

applied across various domains, such as theory, databases, machine

learning, and information retrieval [1, 3, 9, 13, 19–21, 23, 27, 29,

38, 43, 46–49, 55, 56, 58, 61, 63]. This extended similarity metric

enables the analysis and comparison of weighted sets, facilitat-

ing a deeper understanding of the underlying data. ChatGPT The

weighted Jaccard similarity has emerged as a potential non-linear

kernel, especially in the realm of large-scale classification and re-

gression tasks [32]. It has been demonstrated to surpass the widely

used RBF (Radial Basis Function) kernel in terms of performance

across numerous tasks and datasets. The weighted Jaccard similar-

ity’s ability to capture intricate relationships within the datasets

it is applied to makes it a promising choice for achieving superior

results in various machine learning applications.

In line with this, several large-scale hashing algorithms have

been developed to efficiently estimate or approximate the weighted

Jaccard similarity. A series of studies [9, 16, 27, 39, 52] have proposed

and refined hashing algorithms based on the rejection sampling

technique, which proves to be efficient for dense data vectors. Fur-

thermore, researchers such as Gollapudi and Panigrahy [22], Ioffe

[25], Manasse et al. [42] have introduced consistent weighted sam-

pling (CWS), offering a complexity of 𝑂 (𝐾𝑓) similar to that of

MinHash. CWS operates effectively on relatively sparse data. To

improve upon these methods, Li et al. [37] presented Extremal Sam-

pling (ES) based on the extremal stochastic process. Moreover, Li

et al. [36] extended the concept of “binning + densification” from

OPH to CWS and proposed Bin-wise ConsistentWeighted Sampling

(BCWS) with a complexity of 𝑂 (𝑓). BCWS provides a significant

Pb-Hash: Partitioned b-bit Hashing
ICTIR ’24, Washington D.C.,

0 0.2 0.4 0.6 0.8 1

J

0

0.05

0.1

0.15

0.2

0.25

P
2

b
 -

 P
b2

b = 1

b = 2

b = 3

b = 4

b = 5 b = 16

0 0.2 0.4 0.6 0.8 1

J

0

0.05

0.1

0.15

0.2

0.25

P
2

b
 -

 P
1
P

2
b

-1

b = 1

b = 2

b = 16

J - J
2

Figure 2: Plots to verify Lemma 2.2 that 𝑃𝑏1+𝑏2 − 𝑃𝑏1𝑃𝑏2 ≥ 0. Left panel: 𝑃
2𝑏 − 𝑃2

𝑏
. Right panel: 𝑃

2𝑏 − 𝑃1𝑃2𝑏−1. It is interesting that
in both cases, the maximums are attained at 𝐽 = 1/2.

0 0.2 0.4 0.6 0.8 1

J

0

0.2

0.4

0.6

0.8

1

(I
n

v
e

rs
e

)
V

a
r

R
a

ti
o

B = 30

2

3 5
610

15

m = 30

0 0.2 0.4 0.6 0.8 1

J

0

0.2

0.4

0.6

0.8

1
(I

n
v
e

rs
e

)
V

a
r

R
a

ti
o

B = 24

2

3 4
6 8

12
m = 24

0 0.2 0.4 0.6 0.8 1

J

0

0.2

0.4

0.6

0.8

1

(I
n

v
e

rs
e

)
V

a
r

R
a

ti
o

B = 18

2
3

6
9

m = 18

0 0.2 0.4 0.6 0.8 1

J

0

0.2

0.4

0.6

0.8

1

(I
n

v
e

rs
e

)
V

a
r

R
a

ti
o

B = 12

2

3
4

6

m = 12

Figure 3: Plots for 𝐵 ∈ {30, 24, 18, 12} to illustrate the variance ratio 𝑅𝑚,𝑏 in (15).

ICTIR ’24, Washington D.C.,
Anon.

10
0

10
1

10
2

10
3

k

-4

-2

0

2

4

B
ia

s
10

-3

m = 1
m = 2

m = 4

m = 8

m = 16

UNITED - STATES

10
0

10
1

10
2

10
3

k

10
-3

10
-2

10
-1

10
0

V
a

r

m = 1, 2, 4, 8, 16

UNITED - STATES

Empirical

Theoretical

40 60 80 100 140 200

k

0.0005

0.001

0.002

0.003

0.004
0.005

V
a

r

m = 1, 2

4
8

m = 16

LOW - PAY

LOW - PAY

Empirical

Theoretical

120 140 160 180 200

k

V
a

r

m = 1, 2

4 8

m = 16

UNITED - STATES

Empirical

Theoretical

Figure 4: We use the “Words” dataset [33]. The vector, denoted by “UNITED”, stores whether each of 𝐷 = 2
16 documents contains

the word “UNITED”. We use minwise hashing to estimate the Jaccard similarity between the word-pair, e.g., “UNITED–STATES”,
with 𝑘 = 1 to 1000 hashes. For each hash, we apply Pb-Hash with𝑚 ∈ {1, 2, 4, 8, 16}. We simulate each case 104 times in order to
reliably estimate the biases and variances. The left upper panel plots the biases for each𝑚 and 𝑘 . The biases are very small (and
the bias2, which will be on the scale as the variance, will be much smaller.). For “UNITED–STATES”, the variance curves all
overlap in the right upper panel. Thus, we zoom in the plot and present the much magnified portion in the right bottom panel.
We can see that, even at such as fine scale, the theoretical variances match the empirical simulations very well. In the left
bottom panel, we provide the variance curves on another word-pair “LOW–PAY”. Again, the empirical and theoretical curves
match quite well. These experiments verify the accuracy of Theorem 2.1, even though it was based on the “Basic Assumption”.

speedup of approximately𝐾-fold compared to standard CWS. These

advancements in large-scale hashing algorithms facilitate efficient

computations and estimations of the weighted Jaccard similarity

for diverse datasets. We report the results of Pb-Hash on CWS in

Figure 5 and Figure 6.

3.3 CWS and Neural Nets
Next we conduct experiments with using CWS hashes for training

neural nets. We first break the hash bits into𝑚 chunks (for𝑚 =

1, 2, 4, 8). For each chunk, we connect it with an embedding of size

16. We can simply concatenate all𝑚 embeddings, but to reduce the

number of parameters and speed up training, we experiment 3 other

pooling options: product (“Prod”), mean (”Mean”), and maximum

(“Max”). Figure 7 presents the experimental results.

4 CONCLUSION
The idea of Pb-Hash, i.e., breaking the bits of one hash value into

𝑚 chunks, is a very natural one after the work on 𝑏-bit minwise

hashing [34]. At that time, Pb-Hash did not seem to have obvious

advantages compared to 𝑏-bit hashing, because re-generating in-

dependent hashes would be always more accurate than re-using

the hashes. In recent years, because of the privacy constraint [41],

we have started to realize the importance of re-using the hashes.

Furthermore, with hashing algorithms used in deep neural nets,

the hashed value (i.e., new ID features) is typically connected to an

embedding layer and hence there is a strong motivation to break

the hash bits into chunks to reduce the embedding size. Also, it is

natural to apply Pb-Hash to the original ID features (not the new

features obtained via hashing).

Pb-Hash: Partitioned b-bit Hashing
ICTIR ’24, Washington D.C.,

50 100 150 200 250

k

86

88

90

92

94

96

98

T
e

s
t

C
la

s
s
.

A
c
c
 (

%
) WebspamN1, B = 8

b = 1

b = 2

b = 4

b = 8

linear

100 150 200 250

k

94.5

95

95.5

96

96.5

T
e

s
t

C
la

s
s
.

A
c
c
 (

%
)

WebspamN1, B = 8

b = 2

b = 4

b = 8

m = 2

m = 4

m = 8

Figure 5: For the “WebspamN1” dataset (a character 1-gram dataset), we apply CWS and keep 𝐵 = 8 bits for each hash value. We
choose 𝑏 ∈ {1, 2, 4, 8} to run the linear SVM classifier. The left panel shows that when 𝑏 = 1 and 𝑏 = 2, we observe a substantial
loss of accuracy. In the right panel, we zoom in to show the Pb-Hash results (i.e., dashed curves). We can see that𝑚 = 2 and
𝑚 = 4 barely lose any accuracy (𝑚 = 2 is slightly better than𝑚 = 4).

Figure 6: For the “Dailysports” dataset, we apply CWS and keep 𝐵 = 12 bits for each hash value. We choose 𝑏 ∈ {1, 2, 3, 4, 6, 12} to
run the linear SVM classifier. The left panel shows that when 𝑏 = 1 and 𝑏 = 2, we observe a substantial loss of accuracy. In the
right panel, we zoom in to show the Pb-Hash results (i.e., dashed curves). We can see with𝑚 = 2 ∼ 4 the loss of accuracy is small.

REFERENCES
[1] Sujoy Bag, Sri Krishna Kumar, and Manoj Kumar Tiwari. An efficient recommen-

dation generation using relevant Jaccard similarity. Information Sciences, 483:
53–64, 2019.

[2] Michael Bendersky and W. Bruce Croft. Finding text reuse on the web. In

Proceedings of the Second International Conference on Web Search and Web Data
Mining (WSDM), pages 262–271, Barcelona, Spain, 2009.

[3] Danushka Bollegala, Yutaka Matsuo, and Mitsuru Ishizuka. A web search engine-

based approach to measure semantic similarity between words. IEEE Trans.
Knowl. Data Eng., 23(7):977–990, 2011.

[4] Andrei Z Broder. On the resemblance and containment of documents. In Pro-
ceedings of the Compression and Complexity of Sequences (SEQUENCES), pages
21–29, Salerno, Italy, 1997.

[5] Andrei Z. Broder, Steven C. Glassman, Mark S. Manasse, and Geoffrey Zweig.

Syntactic clustering of the web. Comput. Networks, 29(8-13):1157–1166, 1997.
[6] Andrei Z. Broder, Moses Charikar, Alan M. Frieze, and Michael Mitzenmacher.

Min-wise independent permutations. In Proceedings of the Thirtieth Annual ACM
Symposium on the Theory of Computing (STOC), pages 327–336, Dallas, TX, 1998.

[7] Gregory Buehrer and Kumar Chellapilla. A scalable pattern mining approach to

web graph compression with communities. In Proceedings of the International

Conference on Web Search and Web Data Mining (WSDM), pages 95–106, Stanford,
CA, 2008.

[8] Larry Carter and Mark N. Wegman. Universal classes of hash functions (ex-

tended abstract). In Proceedings of the 9th Annual ACM Symposium on Theory of
Computing (STOC), pages 106–112, Boulder, CO, 1977.

[9] Moses S Charikar. Similarity estimation techniques from rounding algorithms. In

Proceedings of the Thiry-Fourth Annual ACM Symposium on Theory of Computing
(STOC), pages 380–388, Montreal, Canada, 2002.

[10] Flavio Chierichetti, Ravi Kumar, Silvio Lattanzi, Michael Mitzenmacher, Alessan-

dro Panconesi, and Prabhakar Raghavan. On compressing social networks. In

Proceedings of the 15th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD), pages 219–228, Paris, France, 2009.

[11] Ondrej Chum and Jiri Matas. Fast computation of min-hash signatures for image

collections. In Proceedings of the 2012 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 3077–3084, Providence, RI, 2012.

[12] Abhinandan Das, Mayur Datar, Ashutosh Garg, and Shyamsundar Rajaram.

Google news personalization: scalable online collaborative filtering. In Pro-
ceedings of the 16th International Conference on World Wide Web (WWW), pages
271–280, Banff, Alberta, Canada, 2007.

ICTIR ’24, Washington D.C.,
Anon.

0 1 2 3 4 5 6 7 8

m

97

97.5

98

98.5

99

T
e

s
t

C
la

s
s
.

A
c
c
 (

%
) Webspam, k = 256

Concat

Mean

Prod

Max

Figure 7: For the “Webspam” (3-gram) dataset, we apply CWS
and keep 𝐵 = 16 bits for each hash value. For every hash, we
apply Pb-Hash with𝑚 ∈ {1, 2, 4, 8}. We connect every (sub)-
hash to an embedding of size 16. Next we aggregate𝑚 em-
beddings via four different pooling strategies: concatenate,
mean, product, and max. Then we connect the pooled em-
beddings with one hidden layer of size 256.

[13] Agustín D. Delgado, Raquel Martínez-Unanue, Víctor Fresno-Fernández, and

Soto Montalvo. A data driven approach for person name disambiguation in web

search results. In Proceedings of the 25th International Conference on Computational
Linguistics (COLING), pages 301–310, Dublin, Ireland, 2014.

[14] Fan Deng, Stefan Siersdorfer, and Sergej Zerr. Efficient jaccard-based diversity

analysis of large document collections. In Proceedings of the 21st ACM Inter-
national Conference on Information and Knowledge Management (CIKM), pages
1402–1411, Maui, HI, 2012.

[15] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam D. Smith. Calibrating

noise to sensitivity in private data analysis. In Proceedings of the Third Theory of
Cryptography Conference (TCC), pages 265–284, New York, NY, 2006.

[16] Otmar Ertl. BagMinHash - minwise hashing algorithm for weighted sets. In

Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining (KDD), pages 1368–1377, London, UK, 2018.

[17] Miao Fan, Jiacheng Guo, Shuai Zhu, Shuo Miao, Mingming Sun, and Ping Li.

MOBIUS: towards the next generation of query-ad matching in baidu’s sponsored

search. In Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining (KDD), pages 2509–2517, Anchorage, AK,
2019.

[18] Weiqi Feng and Dong Deng. Allign: Aligning all-pair near-duplicate passages in

long texts. In Proceedings of the International Conference on Management of Data
(SIGMOD), pages 541–553, Virtual Event, China, 2021.

[19] Dennis Fetterly, Mark Manasse, Marc Najork, and Janet L. Wiener. A large-scale

study of the evolution of web pages. In Proceedings of the Twelfth International
World Wide Web Conference (WWW), pages 669–678, Budapest, Hungary, 2003.

[20] Min Fu, Dan Feng, Yu Hua, Xubin He, Zuoning Chen, Wen Xia, Yucheng Zhang,

and Yujuan Tan. Design tradeoffs for data deduplication performance in backup

workloads. In Proceedings of the 13th USENIX Conference on File and Storage
Technologies (FAST), pages 331–344, Santa Clara, CA, 2015.

[21] Gilad Fuchs, Yoni Acriche, Idan Hasson, and Pavel Petrov. Intent-driven similarity

in e-commerce listings. In Proceedings of the 29th ACM International Conference
on Information and Knowledge Management (CIKM), pages 2437–2444, Virtual
Event, Ireland, 2020.

[22] Sreenivas Gollapudi and Rina Panigrahy. Exploiting asymmetry in hierarchical

topic extraction. In Proceedings of the 2006 ACM CIKM International Conference
on Information and Knowledge Management (CIKM), pages 475–482, Arlington,
VA, 2006.

[23] Sreenivas Gollapudi and Aneesh Sharma. An axiomatic approach for result

diversification. In Proceedings of the 18th International Conference on World Wide
Web (WWW), pages 381–390, Madrid, Spain, 2009.

[24] Kaiming He, Fang Wen, and Jian Sun. K-means hashing: An affinity-preserving

quantization method for learning binary compact codes. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 2938–2945, 2013.

[25] Sergey Ioffe. Improved consistent sampling, weighted minhash and L1 sketching.

In Proceedings of the 10th IEEE International Conference on Data Mining (ICDM),
pages 246–255, Sydney, Australia, 2010.

[26] Peng Jia, Pinghui Wang, Junzhou Zhao, Shuo Zhang, Yiyan Qi, Min Hu, Chao

Deng, and Xiaohong Guan. Bidirectionally densifying LSH sketches with empty

bins. In Proceedings of the International Conference on Management of Data
(SIGMOD), pages 830–842, Virtual Event, China, 2021.

[27] Jon Kleinberg and Eva Tardos. Approximation algorithms for classification

problems with pairwise relationships: Metric labeling and Markov random fields.

In Proceedings of the 40th Annual Symposium on Foundations of Computer Science
(FOCS), pages 14–23, New York, NY, 1999.

[28] David C. Lee, Qifa Ke, and Michael Isard. Partition min-hash for partial duplicate

image discovery. In Proceedings of the 11th European Conference on Computer
Vision (ECCV), Part I, pages 648–662, Heraklion, Crete, Greece, 2010.

[29] Yifan Lei, Qiang Huang, Mohan S. Kankanhalli, and Anthony K. H. Tung. Locality-

sensitive hashing scheme based on longest circular co-substring. In Proceedings
of the 2020 International Conference on Management of Data (SIGMOD), pages
2589–2599, Online conference [Portland, OR, USA], 2020.

[30] Jakub Lemiesz. On the algebra of data sketches. Proc. VLDB Endow., 14(9):
1655–1667, 2021.

[31] Jin Li, Sudipta Sengupta, Ran Kalach, Ronakkumar N Desai, Paul Adrian Oltean,

and James Robert Benton. Using index partitioning and reconciliation for data

deduplication, August 18 2015. US Patent 9,110,936.

[32] Ping Li. Linearized GMM kernels and normalized random Fourier features. In

Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD), pages 315–324, Halifax, Canada, 2017.

[33] Ping Li and Kenneth Ward Church. Using sketches to estimate associations. In

Proceedings of the Human Language Technology Conference and the Conference on
Empirical Methods in Natural Language Processing (HLT/EMNLP), pages 708–715,
Vancouver, Canada, https://github.com/pltrees/Smallest-K-Sketch, 2005.

[34] Ping Li and Arnd Christian König. b-bit minwise hashing. In Proceedings of
the 19th International Conference on World Wide Web (WWW), pages 671–680,
Raleigh, NC, 2010.

[35] Ping Li, Anshumali Shrivastava, Joshua L. Moore, and Arnd Christian König.

Hashing algorithms for large-scale learning. In Advances in Neural Information
Processing Systems (NIPS), pages 2672–2680, Granada, Spain, 2011.

[36] Ping Li, Xiaoyun Li, and Cun-Hui Zhang. Re-randomized densification for one

permutation hashing and bin-wise consistent weighted sampling. In Advances in
Neural Information Processing Systems (NeurIPS), pages 15900–15910, Vancouver,
Canada, 2019.

[37] Ping Li, Xiaoyun Li, Gennady Samorodnitsky, and Weijie Zhao. Consistent

sampling through extremal process. In Proceedings of theWeb Conference (WWW),
pages 1317–1327, Virtual Event / Ljubljana, Slovenia, April 19-23, 2021, 2021.

[38] Ping Li, Xiaoyun Li, and Gennady. P-MinHash algorithm for continuous probabil-

ity measures: Theory and application to machine learning. In Proceedings of the
31st ACM International Conference on Information and Knowledge Management
(CIKM), Atlanta, GA, 2022.

[39] Xiaoyun Li and Ping Li. Rejection sampling for weighted jaccard similarity revis-

ited. In Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence
(AAAI), Virtual Event, 2021.

[40] Xiaoyun Li and Ping Li. C-MinHash: Improving minwise hashing with circulant

permutation. In Proceedings of the International Conference on Machine Learning
(ICML), pages 12857–12887, Baltimore, MD, 2022.

[41] Xiaoyun Li and Ping Li. Differentially private one permutation hashing and

bin-wise consistent weighted sampling. arXiv preprint, 2023.
[42] Mark Manasse, Frank McSherry, and Kunal Talwar. Consistent weighted sam-

pling. Technical Report MSR-TR-2010-73, Microsoft Research, 2010.

[43] Emaad A. Manzoor, Sadegh M. Milajerdi, and Leman Akoglu. Fast memory-

efficient anomaly detection in streaming heterogeneous graphs. In Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (KDD), pages 1035–1044, San Francisco, CA, 2016.

[44] Fatemeh Nargesian, Erkang Zhu, Ken Q. Pu, and Renée J. Miller. Table union

search on open data. Proc. VLDB Endow., 11(7):813–825, 2018.
[45] Sandeep Pandey, Andrei Broder, Flavio Chierichetti, Vanja Josifovski, Ravi Kumar,

and Sergei Vassilvitskii. Nearest-neighbor caching for content-match applications.

In Proceedings of the 18th International Conference on World Wide Web (WWW),
pages 441–450, Madrid, Spain, 2009.

[46] Jannik Pewny, Behrad Garmany, Robert Gawlik, Christian Rossow, and Thorsten

Holz. Cross-architecture bug search in binary executables. In Proceedings of the
2015 IEEE Symposium on Security and Privacy (SP), pages 709–724, San Jose, CA,

2015.

[47] Jean Pouget-Abadie, Kevin Aydin, Warren Schudy, Kay Brodersen, and Vahab S.

Mirrokni. Variance reduction in bipartite experiments through correlation clus-

tering. In Advances in Neural Information Processing Systems (NeurIPS), pages
13288–13298, Vancouver, Canada, 2019.

[48] Edward Raff and Charles K. Nicholas. An alternative to NCD for large sequences,

lempel-ziv jaccard distance. In Proceedings of the 23rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD), pages 1007–1015,

https://github.com/pltrees/Smallest-K-Sketch

Pb-Hash: Partitioned b-bit Hashing
ICTIR ’24, Washington D.C.,

Halifax, Canada, 2017.

[49] Erich Schubert, Michael Weiler, and Hans-Peter Kriegel. SigniTrend: scalable

detection of emerging topics in textual streams by hashed significance thresholds.

In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD), pages 871–880, New York, NY, 2014.

[50] Rajen Dinesh Shah and Nicolai Meinshausen. On b-bit min-wise hashing for

large-scale regression and classification with sparse data. J. Mach. Learn. Res., 18:
178:1–178:42, 2017.

[51] Hao-Jun Michael Shi, Dheevatsa Mudigere, Maxim Naumov, and Jiyan Yang.

Compositional embeddings using complementary partitions for memory-efficient

recommendation systems. In Proceedings of the 26th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining (KDD), pages 165–175, Virtual Event, CA,
2020.

[52] Anshumali Shrivastava. Simple and efficient weighted minwise hashing. In

Neural Information Processing Systems (NIPS), pages 1498–1506, Barcelona, Spain,
2016.

[53] Anshumali Shrivastava and Ping Li. In defense of minhash over simhash. In

Proceedings of the Seventeenth International Conference on Artificial Intelligence
and Statistics (AISTATS), pages 886–894, Reykjavik, Iceland, 2014.

[54] Acar Tamersoy, Kevin A. Roundy, and Duen Horng Chau. Guilt by association:

large scale malware detection by mining file-relation graphs. In Proceedings of
the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD), pages 1524–1533, New York, NY, 2014.

[55] Kateryna Tymoshenko and Alessandro Moschitti. Cross-pair text representations

for answer sentence selection. In Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing (EMNLP), pages 2162–2173, Brussels,
Belgium, 2018.

[56] Jiang Wang, Yang Song, Thomas Leung, Chuck Rosenberg, Jingbin Wang, James

Philbin, Bo Chen, and Ying Wu. Learning fine-grained image similarity with

deep ranking. In Proceedings of the 2014 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 1386–1393, Columbus, OH, 2014.

[57] Pinghui Wang, Yiyan Qi, Yuanming Zhang, Qiaozhu Zhai, Chenxu Wang, John

C. S. Lui, and Xiaohong Guan. A memory-efficient sketch method for estimating

high similarities in streaming sets. In Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining (KDD), pages
25–33, Anchorage, AK, 2019.

[58] Dingqi Yang, Paolo Rosso, Bin Li, and Philippe Cudré-Mauroux. NodeSketch:

Highly-efficient graph embeddings via recursive sketching. In Proceedings of
the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining (KDD), pages 1162–1172, Anchorage, AK, 2019.

[59] Yun William Yu and Griffin M. Weber. Hyperminhash: Minhash in loglog space.

IEEE Trans. Knowl. Data Eng., 34(1):328–339, 2022.
[60] Weijie Zhao, Jingyuan Zhang, Deping Xie, Yulei Qian, Ronglai Jia, and Ping Li.

AIBox: CTR prediction model training on a single node. In Proceedings of the
28th ACM International Conference on Information and Knowledge Management
(CIKM), pages 319–328, Beijing, China, 2019.

[61] Xinyi Zheng, Weijie Zhao, Xiaoyun Li, and Ping Li. Building k-anonymous user

cohorts with consecutive consistent weighted sampling (ccws). In Proceedings
of the 46th International ACM SIGIR Conference on Research and Development in
Information Retrieval (SIGIR), Taipei, 2023.

[62] Erkang Zhu, Ken Q. Pu, Fatemeh Nargesian, and Renée J. Miller. Interactive

navigation of open data linkages. Proc. VLDB Endow., 10(12):1837–1840, 2017.
[63] Erkang Zhu, Dong Deng, Fatemeh Nargesian, and Renée J. Miller. JOSIE: overlap

set similarity search for finding joinable tables in data lakes. In Proceedings of the
2019 International Conference on Management of Data (SIGMOD), pages 847–864,
Amsterdam, The Netherlands, 2019.

	Abstract
	1 Introduction
	1.1 Collision Probability of b-bit Hashing and the Basic Assumption
	1.2 Motivations for Re-using Hashes and Pb-Hash: Partitioned b-bit Hashing

	2 Theoretical Analysis of Pb-Hash
	3 Applications and Experiments
	3.1 Minwise Hashing (MinHash) on Binary Data
	3.2 Consistent Weighted Sampling (CWS) and Linear SVM
	3.3 CWS and Neural Nets

	4 Conclusion
	References

