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ABSTRACT

A common task in fair machine learning is training ML models that preserve
certain summary statistics across subpopulations defined by sensitive attributes.
However, access to such sensitive attributes in training data is restricted and the
learner must rely on noisy proxies for the sensitive attributes. In this paper, we
study the effect of a privacy mechanism that obfuscates the sensitive attributes
from the learner on the fairness of the resulting classifier. We show that the cost
of privacy in fair ML is a decline in the generalizability of fairness constraints.

1 INTRODUCTION

The fairness of machine learning systems is gaining increasing attention in recent years. Among the
numerous fairness objectives is ensuring that a machine learning model does not discriminate against
subpopulations that are typically identified by sensitive attributes (e.g., race, gender). When training
a fair model and evaluating model bias, it is necessary to possess sensitive attributes; however,
access to and use of such sensitive data is frequently prohibited by laws and regulations. Credit
card companies, for instance, are not permitted to inquire about a person’s race when they apply for
credit, yet they must demonstrate that their decisions are not discriminatory (Chen et al., 2019).

Ideally, sensitive personal information should not be disclosed during the training of ML models.
However, it is impossible to ensure exact notions of fairness (such as demographic parity or equality
of opportunity) without any knowledge of the sensitive data. Fortunately, differential privacy (Dwork
et al., 2006) is a promising workaround, which can offer a graceful compromise between privacy
and utility. Mozannar et al. (2020) propose to release sensitive attributes in a locally differentially
private way: adding noise to the sensitive data so that adversaries cannot infer any information with
high confidence about a single record.

The advantage of the privacy mechanism proposed by Mozannar et al. (2020) is an invariance prop-
erty: exact notions of fairness with regard to true sensitive attributes and noisy sensitive attributes
are equivalent. An implication of the invariance property is that the optimal model of fairness can be
learned at the population level. Nonetheless, it remains unclear what the precise statistical impact of
privacy on fairness is.

In this work, we study the statistical cost of privacy on fairness in the task of learning fair ML models
with differentially private sensitive attributes. The main benefits of the developed theory are

1. statistically principled: We propose a statistically principled metric to characterize the cost of
privacy on fairness. A restricted notion of statistical efficiency precisely quantifies the privacy
cost asymptotically.

2. interpretable: Privacy leads to a decline in the statistical efficiency. Such efficiency loss is
interpretable: it explicitly depends on the privacy budget, the subpopulation imbalance level, and
few other problem-specific parameters.

The rest of this paper is organized as follows. In Section 2, we formalize the problem setup, which
consists of the constrained stochastic optimization problem for fair machine learning, the local dif-
ferential privacy mechanism for releasing sensitive attributes, the learning procedure of fair model
using private sensitive attributes, and the definition of asymptotic relative efficiency in terms of fair-
ness violations. In Section 3, we develop theory for the privacy cost under a single exact fairness
constraint and then generalize this theory to some extent. By simulating a risk-parity linear regres-
sion problem in Section 4, we validate our theory and illustrate the utility of our tools. Finally, we
summarize our work in Section 5 and point out an interesting avenue of future work.
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1.1 RELATED WORK

The interaction between fairness and privacy has been investigated from three perspectives: learn-
ing approximately fair models without sensitive attributes (Hashimoto et al., 2018; Lahoti et al.,
2020), learning approximately fair models with wildly noisy sensitive attributes (Kallus et al., 2019;
Awasthi et al., 2020; Wang et al., 2020), and learning exactly fair models with structured noisy sen-
sitive attributes (Lamy et al., 2020; Mozannar et al., 2020). This paper focuses on the third aspect.

The works that are most pertinent to ours are Lamy et al. (2020) and Mozannar et al. (2020). Lamy
et al. (2020) assume that the sensitive attributes are subject to noise from the mutually contami-
nated learning model. Under such a structured noise mechanism, the noise rates can be consistently
estimated, and when enforcing fairness with regard to noisy groups, scaling the fairness tolerance
parameter more tightly is all that is required. Mozannar et al. (2020) suggest a differentially pri-
vate model to release the sensitive attributes, which is a special type of the mutually contaminated
learning model. Under such a designed noise mechanism, Mozannar et al. (2020) show that if the
classifier is independent of the sensitive attributes, then exact fairness with regard to noisy sensitive
attributes is equivalent to that with regard to true sensitive attributes. The idea of the equivalence
can be found in Lamy et al. (2020) while Mozannar et al. (2020) put it into a formal statement.

We basically study the statistical cost of privacy on the generalizability of fairness when using Lamy
et al. (2020)’s method under Mozannar et al. (2020)’s privacy mechanism.

2 PROBLEM SETUP

2.1 FAIR MACHINE LEARNING AS CONSTRAINED STOCHASTIC OPTIMIZATION

In-processing fair machine learning is typically a supervised learning problem with fairness con-
straints (Zafar et al., 2017; Agarwal et al., 2018). Such a problem can most often be formulated as
a constrained stochastic optimization problem: (empirical) risk minimization subject to (empirical)
fairness constraints.

Consider a fair binary classification problem. Let X ⊂ Rd be the input space, Y = {0, 1} be the
set of possible labels, and A be the set of possible values of the protected/sensitive attribute. In this
setup, training and test examples are tuples of the form (X,A, Y ) ∈ X ×A× Y , and a classifier is
a map f : X → {0, 1}. Two popular definitions of algorithmic fairness for binary classification are
demographic parity (Dwork et al., 2011) and equality of opportunity (Hardt et al., 2016).

Definition 2.1 (Demographic parity). Let Ŷ = f(X) be the output of the classifier. Demographic
parity entails P{Ŷ = 1 | A = a} = P{Ŷ = 1 | A = a′} for all a, a′ ∈ A.

Demographic parity, also known as statistical parity, means that the prediction Ŷ = f(X) is statis-
tically independent of the protected attribute A.
Definition 2.2 (Equality of opportunity). Let Y = 1 be the advantaged label that is associated with
a positive outcome and Ŷ = f(X) be the output of the classifier. Equality of opportunity entails
P{Ŷ = 1 | A = a, Y = 1} = P{Ŷ = 1 | A = a′, Y = 1} for all a, a′ ∈ A.

Equality of opportunity, also known as true positive rate parity, means that the prediction Ŷ = f(X)
conditioned on the advantaged label Y = 1 is statistically independent of the protected attribute A.

Given a parametric model space H = {fθ(·) : θ ∈ Θ} and loss function ℓ : Θ × X × Y → R+

(where Θ ⊂ Rd is a finite-dimensional parameter space), an in-processing fair ML routine is to
minimize the (empirical) risk E

[
ℓ(θ;X,Y )

]
while satisfying some fairness constraints. To keep

things simple, we assume there are only two demographic groups; i.e. |A| = 2. Without loss of
generality, we refer to one group as advantaged (A = 1) and the other as disadvantaged (A = 0).

Consider fair learning with demographic parity as an example. At the population level, the goal is
to solve the problem:

θ⋆ ∈

{
argminθ∈Θ E

[
ℓ(θ;X,Y )

]
subject to E

[
1{fθ(X) = 1}|A = 1

]
− E

[
1{fθ(X) = 1}|A = 0

]
= 0

}
, (2.1)
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where the expectation is with respect to the distribution of tuple (X,A, Y ). The true underlying
distribution is unknown, so we cannot solve (2.1) directly. Instead, we observe IID training samples
{(Xi, Ai, Yi)}ni=1 from the true distribution and solve the empirical version of (2.1):

θ̂n ∈

argminθ∈Θ
1
n

∑n
i=1 ℓ(θ;Xi, Yi)

subject to
∣∣∣∑n

i=1 1{fθ(Xi)=1,Ai=1}∑n
i=1 1{Ai=1} −

∑n
i=1 1{fθ(Xi)=1,Ai=0}∑n

i=1 1{Ai=0}

∣∣∣ ≤ αn

 , (2.2)

where 0 < αn = o( 1√
n
) is a slackness term shrinking to zero at a rate faster than 1√

n
. Through the

rest of the work, we always let αn be a positive number of order o( 1√
n
).

2.2 LOCAL DIFFERENTIAL PRIVACY MECHANISM FOR RELEASING SENSITIVE ATTRIBUTES

Consider the randomized response mechanism (Warner, 1965; Kairouz et al., 2014) for releasing
privatized sensitive attribute:

Q(Z = z | A = a) =

{
eε

|A|−1+eε if z = a
1

|A|−1+eε if z ̸= a
(2.3)

for all a, z ∈ A, where ε > 0 controls the privacy level. The privatized sensitive attribute Z of
the true sensitive attribute A is defined as Z = Q(· | A). In addition, the sampling mechanism Q
requires Z ⊥⊥ X,Y | A. Then the private dataset {(Xi, Zi, Yi)}ni=1 is generated from the original
dataset {(Xi, Ai, Yi)}ni=1 via the transition kernel Q.

The randomized response mechanism (2.3) is a locally ε-differentially private mechanism (Duchi
et al., 2013), that is

max
z,a,a′∈A

Q(Z = z | A = a)

Q(Z = z | A = a′)
≤ eε.

Here a smaller parameter ε indicates a stronger privacy guarantee. Moreover, the mechanism Q is
considered optimal for distribution estimation under local differential privacy constraints (Kairouz
et al., 2014; 2016).

From this point forward (with the exception of the general theory presented in Section 3.1), we
assume that there are only two demographic groups, i.e. |A| = 2. The mechanism (2.3) becomes

Q(Z = z | A = a) =

{
eε

1+eε ≜ 1− γ if z = a
1

1+eε ≜ γ if z ̸= a
(2.4)

for a ∈ {0, 1}, where γ ∈ [0, 0.5). The parameter γ = 0 (or equivalently ε = ∞) signifies complete
lack of privacy, whereas γ → 0.5 (or equivalently ε→ 0) corresponds to perfect privacy.

2.3 FAIR MACHINE LEARNING WITH PRIVATE SENSITIVE ATTRIBUTES

The privatized sensitive attribute Z can be served as a noisy proxy for the true sensitive attribute A.
One may wish to learn a fair classifier by directly enforcing fairness notion on Zi’s, the proxies for
Ai’s. This approach is feasible and justifiable (at the population level) due to the invariance of exact
fairness under local differential privacy.
Proposition 2.3 (Proposition 1 in Mozannar et al. (2020)). Consider any exact fairness notion
among demographic parity and equality of opportunity. Let Ŷ = f(X) be a binary classifier.
Then Ŷ is fair with respect to A if and only if Ŷ is fair with respect to Z.

Proposition 2.3 requires Ŷ is only a function of X . Mozannar et al. (2020) shows by construction
the existence of a classifier Ŷ = f̃(X,Z) which is fair with respect to Z but unfair to A.

Now we consider fair ML with private sensitive attributes by (empirical) risk minimization subject
to fairness constraints with respect to Z. Take fair learning with demographic parity as an example.
At the population level, the goal is to solve the problem

θ⋆ ∈

{
argminθ∈Θ E

[
ℓ(θ;X,Y )

]
subject to E

[
1{fθ(X) = 1}|Z = 1

]
− E

[
1{fθ(X) = 1}|Z = 0

]
= 0

}
, (2.5)
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where the expectation is with respect to the distribution of tuple (X,Z, Y ). Here Z is the proxy
sensitive attribute but the true sensitive attribute A is unobservable. The true underlying distribution
is unknown, so we cannot solve (2.5) directly. Instead, we observe IID (private) training samples
{(Xi, Zi, Yi)}ni=1 from the true distribution and solve the empirical version of (2.5):

θ̃n ∈

argminθ∈Θ
1
n

∑n
i=1 ℓ(θ;Xi, Yi)

subject to
∣∣∣∑n

i=1 1{fθ(Xi)=1,Zi=1}∑n
i=1 1{Zi=1} −

∑n
i=1 1{fθ(Xi)=1,Zi=0}∑n

i=1 1{Zi=0}

∣∣∣ ≤ αn

 . (2.6)

A direct corollary of Proposition 2.3 is that (2.1) and (2.5) have exactly the same solution θ⋆ (as-
suming uniqueness of the solution). One can also show that under regularity conditions both θ̂n and
θ̃n, the solution to (2.2) and to (2.6), are

√
n-consistent for θ⋆. We wish to compare the estimating

quality of θ̂n and θ̃n, and quantify the quality difference in terms of the privacy level parameter γ
(or ε) and few other problem-specific parameters.

2.4 ASYMPTOTIC RELATIVE EFFICIENCY

In statistics, consistency and efficiency are popular notions to evaluate the performance of estimators.

Definition 2.4 (Consistency). An estimator θ̂n is consistent for θ⋆ if θ̂n
p→ θ⋆ as n→ ∞.

Suppose that we have two consistent estimators θ̂n and θ̃n. Both of them are reasonable, but which
one should be preferred? To answer this question, we can employ the notion of efficiency, i.e.
measuring how spread out about θ̂n (or θ̃n) is the sampling distribution of the estimator. In light of
this, we now adapt the concept of statistical efficiency to fair machine learning.

In fair ML, the most important metric to evaluate the performance of a classifier is fairness violation.
Let c : Θ → R be the constraint function. For example, demographic parity constraint corresponds
to c(θ) = E

[
1{fθ(X) = 1}|A = 1

]
− E

[
1{fθ(X) = 1}|A = 0

]
. Since the exact fairness notion

entails a classifier fθ is fair if c(θ) = 0, we define the (signed) fairness violation of θ as c(θ) itself.
Definition 2.5 (Efficiency in terms of constraint violations). Suppose that we have two consistent
estimators θ̂n and θ̃n satisfying

√
n{c(θ̂n)−�

��c(θ⋆)} d→ N (0, σ2) and
√
n{c(θ̃n)−�

��c(θ⋆)} d→ N (0, σ̃2)

as n→ ∞. We say that the estimator θ̂n is more efficient (in terms of constraint violations) than θ̃n
if σ2 ≤ σ̃2. The asymptotic relative efficiency (ARE) of θ̃n to θ̂n is

ARE(θ̃n, θ̂n) ≜
σ2

σ̃2
.

In other words, the estimator θ̂n is more efficient than θ̃n if ARE(θ̃n, θ̂n) ≤ 1.

Another way to examine the efficiency loss is to look at the asymptotic joint distribution of c(θ̂n)
and c(θ̃n). Let ρ be the asymptotic correlation between c(θ̂n) and c(θ̃n). The fairness violations of
the two estimators can be compared using the ratio of c(θ̂n) to c(θ̃n), which converges in distribution
to a Cauchy random variable U :

c(θ̂n)

c(θ̃n)

d→ U ∼ pU (u) =
1

π

β

(u− α)2 + β2
with α =

ρσ

σ̃
, β =

σ

σ̃

√
1− ρ2.

Constraint violation inflates if we observe a value of the ratio |c(θ̂n)/c(θ̃n)| less than one. Assume
θ̃n is more efficient than θ̂n, i.e. σ2 < σ̃2. Since |ρ| ≤ 1, the median and mode of U , α, satisfies
|α| < 1, which indicates a high likelihood of constraint violation inflation. Precisely, the asymptotic
probability of constraint violation inflation is

lim
n→∞

P

(∣∣∣∣∣c(θ̂n)c(θ̃n)

∣∣∣∣∣ < 1

)
=

1

π

{
tan−1

(
σ̃ − ρσ

σ
√
1− ρ2

)
+ tan−1

(
σ̃ + ρσ

σ
√

1− ρ2

)}
>

1

2
.

In the rest of the paper, the asymptotic relative efficiency (ARE) is the key quantity of interest, which
compares the asymptotic variances of two estimators by ARE = limn→∞ Var[c(θ̂n)]/Var[c(θ̃n)].
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3 PRIVACY COST IN FAIR MACHINE LEARNING

In this section, we wish to study ARE(θ̃n, θ̂n), the asymptotic relative efficiency (ARE) of θ̃n to
θ̂n given by solving (2.6) and (2.2). To this end, we extend the notion of demographic parity and
equality of opportunity to a more general form: we say that θ is fair (with respect to A) if

c(θ) ≜
E
[
g(θ;X,Y )|A = 1

]
E
[
h(X,Y )|A = 1

] −
E
[
g(θ;X,Y )|A = 0

]
E
[
h(X,Y )|A = 0

] = 0. (3.1)

The fairness notion (3.1) is known as linear-fractional fairness constraint (Celis et al., 2021). Note
that demographic parity is a special case of (3.1) if we take g(θ;X,Y ) = 1{fθ(X) = 1} and h ≡ 1.
Besides, (3.1) becomes equality of opportunity if we take g(θ;X,Y ) = 1{fθ(X) = 1, Y = 1} and
h(X,Y ) = 1{Y = 1}. When h ≡ 1, (3.1) degenerates to linear fairness (see Appendix A).

Let the marginal distribution of A and conditional distribution of (X,Y ) given A be{
P(A = 0) = π0, P(A = 1) = π1
(X,Y )|A = 0 ∼ Q0, (X,Y )|A = 1 ∼ Q1

. (3.2)

Then the distribution of (X,A, Y ) is uniquely identified by (3.2). Moreover, (X,Y ) ∼ π0Q0+π1Q1

is a mixture of Q0 and Q1 weighted by π0 and π1. Denote the marginal distribution of Z and
conditional distribution of (X,Y ) given Z by P(Z = k) = π̃k, (X,Y )|Z = k ∼ Q̃k for k ∈ {0, 1}.
Enforcing fairness notion (3.1) with respect to Z is

c̃(θ) ≜
E
[
g(θ;X,Y )|Z = 1

]
E
[
h(X,Y )|Z = 1

] −
E
[
g(θ;X,Y )|Z = 0

]
E
[
h(X,Y )|Z = 0

] = 0.

By some algebra, we find that the proxy constraint function c̃(θ) is equal to the true constraint
function c(θ) up to a scaling factor: c̃(θ) = ψfrac(γ, π0, π1,m0,m1)× c(θ), where

ψfrac(γ, π0, π1,m0,m1) ≜
(1− 2γ)π0π1m0m1

{γπ0m0 + (1− γ)π1m1} {(1− γ)π0m0 + γπ1m1}
,

as well m0 ≜ EQ0

[
h(X,Y )

]
and m1 ≜ EQ1

[
h(X,Y )

]
. This also implies c(θ) = 0 if and only if

c̃(θ) = 0, offering an alternative proof for Proposition 2.3 and extending Proposition 2.3 to linear-
fractional fairness notions (3.1).

Now we are ready to show the privacy cost in linear-fractional fairness (3.1)-aware learning. First,
let the true parameter θ⋆, i.e. the solution to the population problem, be

θ⋆ ∈


argminθ∈Θ E

[
ℓ(θ;X,Y )

]
subject to

E
[
g(θ;X,Y )|A = 1

]
E
[
h(X,Y )|A = 1

] −
E
[
g(θ;X,Y )|A = 0

]
E
[
h(X,Y )|A = 0

] = 0

 , (3.3)

where the expectation is with respect to the underlying distribution of tuple (X,A, Y ).

Then, let the estimator θ̂n be the solution to the empirical problem given the true sensitive attribute,

θ̂n ∈

argminθ∈Θ
1
n

∑n
i=1 ℓ(θ;Xi, Yi)

subject to
∣∣∣∑n

i=1 g(θ;Xi,Yi)1{Ai=1}∑n
i=1 h(Xi,Yi)1{Ai=1} −

∑n
i=1 g(θ;Xi,Yi)1{Ai=0}∑n
i=1 h(Xi,Yi)1{Ai=0}

∣∣∣ ≤ αn

 .

Finally, let θ̃n be the solution to the empirical problem given the proxy sensitive attribute,

θ̃n ∈

argminθ∈Θ
1
n

∑n
i=1 ℓ(θ;Xi, Yi)

subject to
∣∣∣∑n

i=1 g(θ;Xi,Yi)1{Zi=1}∑n
i=1 h(Xi,Yi)1{Zi=1} −

∑n
i=1 g(θ;Xi,Yi)1{Zi=0}∑n
i=1 h(Xi,Yi)1{Zi=0}

∣∣∣ ≤ αn

 .

We made the following technical assumptions on the population problem (3.3).
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1. smoothness and concentration: ℓ and g are twice continuously differentiable with respect to θ,
and ℓ(θ⋆;X,Y ), ∇ℓ(θ⋆;X,Y ), g(θ⋆;X,Y ), ∇g(θ⋆;X,Y ), h(X,Y ) are sub-Gaussian.

2. uniqueness: the stochastic optimization problem with a single expected value constraint (3.3)
has unique optimal primal-dual pair (θ⋆, λ⋆), and θ⋆ belongs to the interior of the compact set Θ.

3. positive definiteness: The Hessian of the Lagrangian evaluated at (θ⋆, λ⋆) is positive definite.

The preceding assumptions are not the most general, but they are easy to interpret. The smoothness
conditions on ℓ and g with respect to θ, the concentration conditions of ℓ(θ⋆), g(θ⋆) and h, and
the uniqueness condition facilitate the use of standard tools from asymptotic statistics to study the
large sample properties of the constraint value. The positive definiteness condition postulates the
Lagrangian of the equality constrained optimization problem is locally strongly convex at (θ⋆, λ⋆).

The main technical result characterizes the efficiency of θ̂n and θ̃n (see proof in Appendix C).
Theorem 3.1 (Privacy cost in linear-fractional fairness (3.1)-aware learning). Under the standing
assumptions, let estimators θ̂n and θ̃n be consistent for θ⋆, then

√
n{c(θ̂n)−���c(θ⋆)} d→ N (0, σ2) and

√
n{c(θ̃n)−���c(θ⋆)} d→ N (0, σ̃2),

where

σ2 =
VarQ0 [g(θ

⋆;X,Y )− κh(X,Y )]

π0(EQ0
[h(X,Y )])2

+
VarQ1 [g(θ

⋆;X,Y )− κh(X,Y )]

π1(EQ1
[h(X,Y )])2

,

σ̃2 = ψ−2
frac ×

{
VarQ̃0

[g(θ⋆;X,Y )− κh(X,Y )]

π̃0(EQ̃0
[h(X,Y )])2

+
VarQ̃1

[g(θ⋆;X,Y )− κh(X,Y )]

π̃1(EQ̃1
[h(X,Y )])2

}
,

and

κ ≜
EQ0

[g(θ⋆;X,Y )]

EQ0
[h(X,Y )]

=
EQ1

[g(θ⋆;X,Y )]

EQ1
[h(X,Y )]

.

The asymptotic relative efficiency (ARE) of θ̃n to θ̂n is

ARE(θ̃n, θ̂n) = φ

(
γ,
π0m0

π1m1
,
Var[g(θ⋆;X,Y )− κh(X,Y )|A = 0]/m0

Var[g(θ⋆;X,Y )− κh(X,Y )|A = 1]/m1

)
, (3.4)

where

φ(γ, r1, r2) ≜
(1− 2γ)2r1(r1 + r2)

{γr1 + (1− γ)}2{(1− γ)r1r2 + γ}+ {(1− γ)r1 + γ}2{γr1r2 + (1− γ)}
.

Recall that demographic parity corresponds to h ≡ 1 and equality of opportunity corresponds to
h(X,Y ) = 1{Y = 1}. In order to interpret (3.4), we therefore take h(X,Y ) = 1{E(X,Y )},
where E(X,Y ) is an event of X and Y . Then the ARE (3.4) becomes

ARE(θ̃n, θ̂n) = φ

(
γ,

P(E(X,Y ), A = 0)

P(E(X,Y ), A = 1)
,
Var[g(θ⋆;X,Y )|E(X,Y ), A = 0]

Var[g(θ⋆;X,Y )|E(X,Y ), A = 1]

)
.

Note that the ARE is jointly determined by the level of
privacy, a ratio of marginal probabilities of the minor-
ity and majority groups, and a ratio of their conditional
variances. Theorem 3.1 demonstrates that the cost of
privacy is the efficiency loss in terms of fairness viola-
tions. For fixed ratios

r1 ≜
P(E(X,Y ), A = 0)

P(E(X,Y ), A = 1)
> 0,

and

r2 ≜
Var[g(θ⋆;X,Y )|E(X,Y ), A = 0]

Var[g(θ⋆;X,Y )|E(X,Y ), A = 1]
> 0,

function φ(γ, r1, r2) is decreasing in γ. In the absence
of privacy, φ(0, r1, r2) = 1 means no efficiency loss.
Under perfect privacy, φ(0.5, r1, r2) = 0 indicates total
loss of efficiency. Moreover, θ̂n is always more efficient
than θ̃n because ARE(θ̃n, θ̂n) ≤ 1.
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Figure 1: Asymptotic relative efficiency
curve of γ for varying r1 and r2.
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Figure 1 demonstrates the asymptotic relative efficiency (ARE) curve of privacy level γ for varying
ratios r1 and r2. The ARE is always upper bounded by (1− 2γ)2, which is achieved only if r1 = 1.
Therefore for any fixed γ and r2, the ARE achieves its maximum only if the dataset is balanced
in the sense that P(E(X,Y ), A = 0) = P(E(X,Y ), A = 1). Moreover, for any fixed γ and r2,
the ARE is strictly increasing in r1 (assuming r1 ≤ 1). This implies the effect of subpopulation
size imbalance: demographic group imbalance degrades the efficiency loss in privately fair learning.
In the literature, the effect of group size imbalance on the difficulty of learning fair classifier from
contaminated data (note that private sensitive attribute is a particular type of data contamination)
was also reported in Konstantinov & Lampert (2022) and the references therein. Lastly, the ARE is
strictly increasing in the problem-specific parameter r2, given fixed γ and r1 < 1.

3.1 GENERAL THEORY

In this subsection, we discuss some extensions to the established theory.

Multiple demographic groups. It is natural to extend our theory of two demographic groups to
general number of groups. Suppose we have K + 1(K ≥ 2) groups indexed by 0, 1, . . . ,K. The
notion of linear-fractional fairness (3.1) can be adapted to more than two groups: we say θ is fair if

E
[
g(θ;X,Y )|A = k

]
E
[
h(X,Y )|A = k

] −
E
[
g(θ;X,Y )|A = 0

]
E
[
h(X,Y )|A = 0

] = 0 for k ∈ [K], (3.5)

where group 0 is referred to as a reference group. Let the marginal distribution of A and conditional
distribution of (X,Y ) given A be

P(A = k) = πk, (X,Y )|A = k ∼ Qk for k ∈ {0} ∪ [K]. (3.6)

Then the distribution of (X,A, Y ) is uniquely identified by (3.6). Moreover, the distribution of
(X,Y ) ∼

∑K
k=0 πkQk

d
= Q⋆ is a mixture of Qk’s weighted by πk’s.

Let the private mechanism Q be

Q(Z = z | A = a) =

{
eε

K+eε ≜ 1−Kγ if z = a
1

K+eε ≜ γ if z ̸= a

where γ ∈
[
0, 1

K+1

)
. The mechanism Q perturbs the membership of a group to a different group

that is evenly picked at random from the other groups. The parameter γ = 0 (or equivalently ε = ∞)
signifies complete lack of privacy, whereas γ → 1

K+1 (or equivalently ε→ 0) means perfect privacy.

The joint distribution of (X,Z, Y ) is uniquely identified by the marginal distribution and conditional
distribution as follows:{

P(Z = k) = γ + (1− |A|γ)πk ≜ π̃k

(X,Y )|Z = k ∼ γ
γ+(1−|A|γ)πk

Q⋆ +
1−|A|γ

γ+(1−|A|γ)πk
Qk ≜ Q̃k

for k ∈ {0} ∪ [K]. (3.7)

Let the true parameter θ⋆, i.e. the solution to the population problem, be

θ⋆ ∈


argminθ∈Θ E

[
ℓ(θ;X,Y )

]
subject to

{
E
[
g(θ;X,Y )|A = k

]
E
[
h(X,Y )|A = k

] −
E
[
g(θ;X,Y )|A = 0

]
E
[
h(X,Y )|A = 0

] = 0

}K

k=1

 ,

where the expectation is with respect to the underlying distribution of tuple (X,A, Y ).

Then, let the estimator θ̂n be the solution to the empirical problem given the true sensitive attribute,

θ̂n ∈


argminθ∈Θ

1
n

∑n
i=1 ℓ(θ;Xi, Yi)

subject to
{∣∣∣∑n

i=1 g(θ;Xi,Yi)1{Ai=k}∑n
i=1 h(Xi,Yi)1{Ai=k} −

∑n
i=1 g(θ;Xi,Yi)1{Ai=0}∑n
i=1 h(Xi,Yi)1{Ai=0}

∣∣∣ ≤ αn

}K

k=1

 .
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Finally, let θ̃n be the solution to the empirical problem given the proxy sensitive attribute,

θ̃n ∈


argminθ∈Θ

1
n

∑n
i=1 ℓ(θ;Xi, Yi)

subject to
{∣∣∣∑n

i=1 g(θ;Xi,Yi)1{Zi=k}∑n
i=1 h(Xi,Yi)1{Zi=k} −

∑n
i=1 g(θ;Xi,Yi)1{Zi=0}∑n
i=1 h(Xi,Yi)1{Zi=0}

∣∣∣ ≤ αn

}K

k=1

 .

The true fairness constraint function c(θ) : Rd → RK is defined as

c(θ) ≜ (c1(θ), . . . , cK(θ))⊤ with ck(θ) =
E
[
g(θ;X,Y )|A = k

]
E
[
h(X,Y )|A = k

] −
E
[
g(θ;X,Y )|A = 0

]
E
[
h(X,Y )|A = 0

] , k ∈ [K].

Under the same assumptions as the two-group problem, we have the main technical result as follows
(see Appendix D for a complete treatment to the general-number-of-groups problem).
Theorem 3.2 (Privacy cost in linear-fractional fairness (3.5)-aware learning). Under the standing
assumptions, let estimators θ̂n and θ̃n be consistent for θ⋆, then

√
n{c(θ̂n)−���c(θ⋆)} d→ N (0,Σ) and

√
n{c(θ̃n)−���c(θ⋆)} d→ N (0,Ψ−1

fracΣ̃Ψ
−⊤
frac),

where

Σkl =
VarQ0 [g(θ

⋆;X,Y )− κh(X,Y )]

π0(EQ0
[h(X,Y )])2

+

(
VarQk

[g(θ⋆;X,Y )− κh(X,Y )]

πk(EQk
[h(X,Y )])2

)
1 {k = l}

Σ̃kl =
VarQ̃0

[g(θ⋆;X,Y )− κh(X,Y )]

π̃0(EQ̃0
[h(X,Y )])2

+

(
VarQ̃k

[g(θ⋆;X,Y )− κh(X,Y )]

π̃k(EQ̃k
[h(X,Y )])2

)
1 {k = l}

for k, l ∈ [K], and

κ ≜
EQ0

[g(θ⋆;X,Y )]

EQ0
[h(X,Y )]

=
EQ1

[g(θ⋆;X,Y )]

EQ1
[h(X,Y )]

= . . . =
EQK

[g(θ⋆;X,Y )]

EQK
[h(X,Y )]

.

Missing sensitive attributes. Some users may choose not to disclose their demographic identities
during data collection due to privacy concerns. We investigate how the absence of sensitive attributes
impacts the generalizability of fairness constraints. Consider the following missing data mechanism
for sensitive attributes :

P(R = 1 | X,A, Y ) = P(R = 1 | A) ≜ ωA. (3.8)

where R = 1 corresponds to response (i.e., A is observed) and otherwise R = 0 corresponds to
non-response (i.e., A is missing). The missingness mechanism (3.8) is a particular type of missing
at random (MAR) at the population level and missing completely at random (MCAR) within each
subpopulation. One common approach for analyzing data with missing values is to just use the
completely observed samples (i.e., samples with all features observed) and discard the samples with
some missing features. We employ this strategy by solving the following empirical problem:

θ̃n ∈

argminθ∈Θ
1
n

∑n
i=1 ℓ(θ;Xi, Yi)

subject to
∣∣∣∑n

i=1 g(θ;Xi,Yi)1{Ai=1,Ri=1}∑n
i=1 h(Xi,Yi)1{Ai=1,Ri=1} −

∑n
i=1 g(θ;Xi,Yi)1{Ai=0,Ri=1}∑n
i=1 h(Xi,Yi)1{Ai=0,Ri=1}

∣∣∣ ≤ αn

 ,

of which the empirical risk function is computed with all samples while the fairness constraint
function is calculated with samples that include the sensitive attribute. With the same assumptions
as the two-group problem and further assuming that the response probability is non-vanishing, i.e.,
ωa > 0 for a ∈ {0, 1}, we have the asymptotic relative efficiency (ARE) of θ̃n to θ̂n as follows (see
Appendix E for a complete treatment to the missing sensitive attributes problem):

ARE(θ̃n, θ̂n) =
r2 + r1

ω−1
0 r2 + ω−1

1 r1
, r1 =

π0m0

π1m1
, r2 =

Var[g(θ⋆;X,Y )− κh(X,Y )|A = 0]/m0

Var[g(θ⋆;X,Y )− κh(X,Y )|A = 1]/m1
,

This indicates that any probability of missing data degrades the asymptotic efficiency of the estima-
tor inversely proportionally.
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4 SIMULATIONS

We simulate the asymptotic relative efficiency (ARE) for the risk-parity linear regression problem:

minβ∈Θ E
[
(Y − β⊤X)2

]
subject to E[(Y − β⊤X)2|A = 1]− E[(Y − β⊤X)2|A = 0] = 0

(4.1)

where we generate n ∈ {300, 3000} samples by the following data generating process:

A ∼ Bernoulli(1− π0), X|A = a ∼ N (µa,Σa) and Y |X,A = a ∼ N (β⊤
a X,σ

2
a)

for a ∈ {0, 1}. We pick µ0 = (1, 2)⊤, µ1 = (2, 1)⊤,Σ0 = Σ1 = I2, σ
2
0 = σ2

1 = 1 and investigate
two scenarios: imbalanced subgroups with π0 = 0.3 and balanced subgroups with π0 = 0.5. The
goal of the optimization problem (4.1) is to minimize the population risk (in least square) while
satisfying the parity of subpopulation risks (in least square) of group A = 0 and group A = 1.

In Figure 2, we plot relative efficiency curves for π0 = 0.3 and π0 = 0.5, all of which are averaged
over 500 replicates. For large sample size n, the relative efficiency curves are close to the theoretical
line of asymptotic relative efficiency curve, validating our theory in the large sample regime. As a
by-product, our theory can visualize the fairness-privacy trade-off without retraining models with
varying privacy budgets.
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Figure 2: Relative efficiency curves for π0 = 0.3 (left) and π0 = 0.5 (right).

5 SUMMARY AND DISCUSSION

In this work, we study the statistical impact of privacy on fairness under the task of learning fair
machine learning models with private sensitive attributes. We define a restricted notion of asymptotic
statistical efficiency in order to examine such impact. Quantitatively, the cost of privacy on fairness
generalizability is represented by a relative decline in statistical efficiency. The relative efficiency
loss is interpretable: it explicitly depends on the privacy budget, subpopulation imbalance level, and
a number of other problem-specific quantities. We validate and demonstrate the utility of our theory
by a synthetic task of risk-parity linear regression with private group membership.

For the sake of clarity, we consider h ≡ 1. Denote the loss vectors with regard to the true sensitive
attribute A and the noisy sensitive attribute Z, and the Markov transition matrix induced by the
privacy mechanism Q (2.4) by

LA(θ) =

[
E
[
g(θ;X,Y )|A = 1

]
E
[
g(θ;X,Y )|A = 0

]] , LZ(θ) =

[
E
[
g(θ;X,Y )|Z = 1

]
E
[
g(θ;X,Y )|Z = 0

]] and M =

[
1− γ γ
γ 1− γ

]
.

Further, let b = (1,−1)⊤. Noiseless, noisy, and debiased constraints are equivalent to each other at
the population level in the way that b⊤LA(θ) = 0 ⇐⇒ b⊤LZ(θ) = 0 ⇐⇒ b⊤M−1LZ(θ) = 0.
Consider their empirical counterparts, we note that b⊤L̂Z,n(θ) = 0 ⇐⇒ b⊤M−1L̂Z,n(θ) = 0.
Combined with our theory, this empirical level equivalence of two constraints implies that using the
inverse of the empirical transition matrix to match the noisy constraint to the noiseless constraint
cannot improve the efficiency of the in-processing training procedure. Developing a principled in-
processing method to increase the statistical efficiency is an intriguing direction for future research.
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A LINEAR FAIRNESS CONSTRAINT

We extend the notion of demographic parity to a more general form: we say that θ is fair (with
respect to A) if

E
[
g(θ;X,Y )|A = 1

]
− E

[
g(θ;X,Y )|A = 0

]
= 0. (A.1)

The fairness notion (A.1) is known as linear fairness constraint Celis et al. (2021). Note that demo-
graphic parity is a special case of (A.1) if we take g(θ;X,Y ) = 1{fθ(X) = 1}.

On the one hand, enforcing fairness notion (A.1) with respect to A is

E(X,Y )|A=1

[
g(θ;X,Y )

]
− E(X,Y )|A=0

[
g(θ;X,Y )

]
= 0

or equivalently
EQ1

[
g(θ;X,Y )

]
− EQ0

[
g(θ;X,Y )

]
= 0.

On the other hand, enforcing fairness notion (A.1) with respect to Z is

E(X,Y )|Z=1

[
g(θ;X,Y )

]
− E(X,Y )|Z=0

[
g(θ;X,Y )

]
= 0

or equivalently

E γπ0
γπ0+(1−γ)π1

Q0+
(1−γ)π1

γπ0+(1−γ)π1
Q1

[
g(θ;X,Y )

]
− E (1−γ)π0

(1−γ)π0+γπ1
Q0+

γπ1
(1−γ)π0+γπ1

Q1

[
g(θ;X,Y )

]
= 0.

Therefore, the true fairness constraint function is

c(θ) =

∫
X×Y

g(θ;x, y)d(Q1 −Q0)(x, y),

while the proxy fairness constraint function is

c̃(θ) =

(
− γπ0
γπ0 + (1− γ)π1

+
(1− γ)π0

(1− γ)π0 + γπ1

)∫
X×Y

g(θ;x, y)d(Q1 −Q0)(x, y)

=

(
(1− γ)π1

γπ0 + (1− γ)π1
− γπ1

(1− γ)π0 + γπ1

)∫
X×Y

g(θ;x, y)d(Q1 −Q0)(x, y)

≜ ψlin(γ, π0, π1)× c(θ).

(A.2)

By (A.2), the proxy constraint function c̃(θ) is equal to the true c(θ) up to a scaling factor

ψlin(γ, π0, π1) ≜ − γπ0
γπ0 + (1− γ)π1

+
(1− γ)π0

(1− γ)π0 + γπ1

=
(1− γ)π1

γπ0 + (1− γ)π1
− γπ1

(1− γ)π0 + γπ1

=
(1− 2γ)π0π1

{γπ0 + (1− γ)π1} {(1− γ)π0 + γπ1}
.

(A.3)

This also implies c(θ) = 0 if and only if c̃(θ) = 0, providing an alternative proof for Proposition
2.3.

Now we are ready to show the privacy cost in linear fairness (A.1)-aware learning. First, let the true
parameter θ⋆, i.e. the solution to the population problem, be

θ⋆ ∈

{
argminθ∈Θ E

[
ℓ(θ;X,Y )

]
subject to E

[
g(θ;X,Y )|A = 1

]
− E

[
g(θ;X,Y )|A = 0

]
= 0

}
, (A.4)

where the expectation is with respect to the underlying distribution of tuple (X,A, Y ).
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Then, let the estimator θ̂n be the solution to the empirical problem given the true sensitive attribute,

θ̂n ∈

argminθ∈Θ
1
n

∑n
i=1 ℓ(θ;Xi, Yi)

subject to
∣∣∣∑n

i=1 g(θ;Xi,Yi)1{Ai=1}∑n
i=1 1{Ai=1} −

∑n
i=1 g(θ;Xi,Yi)1{Ai=0}∑n

i=1 1{Ai=0}

∣∣∣ ≤ αn

 .

Finally, let the estimator θ̃n be the solution to the empirical problem given the proxy sensitive at-
tribute,

θ̃n ∈

argminθ∈Θ
1
n

∑n
i=1 ℓ(θ;Xi, Yi)

subject to
∣∣∣∑n

i=1 g(θ;Xi,Yi)1{Zi=1}∑n
i=1 1{Zi=1} −

∑n
i=1 g(θ;Xi,Yi)1{Zi=0}∑n

i=1 1{Zi=0}

∣∣∣ ≤ αn

 .

We made the following technical assumptions on the problem (A.4).

1. smoothness and concentration: ℓ and g are twice continuously differentiable with respect to θ,
and ℓ(θ⋆;X,Y ), ∇ℓ(θ⋆;X,Y ), g(θ⋆;X,Y ), ∇g(θ⋆;X,Y ) are sub-Gaussian random variables.

2. uniqueness: the stochastic optimization problem with a single expected value constraint (A.4)
has a unique optimal primal-dual pair (θ⋆, λ⋆), and θ⋆ belongs to the interior of the compact set
Θ.

3. positive definiteness: The Hessian of the Lagrangian evaluated at (θ⋆, λ⋆) is positive definite.

We have the main technical result as follows.
Theorem A.1 (Privacy cost in linear fairness (A.1)-aware learning). Under the standing assump-
tions, let estimators θ̂n and θ̃n be consistent for θ⋆, then

√
n{c(θ̂n)−���c(θ⋆)} d→ N (0, σ2) and

√
n{c(θ̃n)−���c(θ⋆)} d→ N (0, σ̃2),

where

σ2 =
VarQ0

[g(θ⋆;X,Y )]

π0
+

VarQ1
[g(θ⋆;X,Y )]

π1
and

σ̃2 = ψ−2
lin ×

{
VarQ̃0

[g(θ⋆;X,Y )]

π̃0
+

VarQ̃1
[g(θ⋆;X,Y )]

π̃1

}
.

The asymptotic relative efficiency (ARE) of θ̃n to θ̂n is

ARE(θ̃n, θ̂n) = φ

(
γ,
π0
π1
,
Var[g(θ⋆;X,Y )|A = 0]

Var[g(θ⋆;X,Y )|A = 1]

)
,

where

φ(γ, r1, r2) ≜
(1− 2γ)2r1(r1 + r2)

{γr1 + (1− γ)}2{(1− γ)r1r2 + γ}+ {(1− γ)r1 + γ}2{γr1r2 + (1− γ)}
.

Proof of Theorem A.1. Note that Theorem 3.1 implies Theorem A.1 by letting h(X,Y ) ≡ 1. There-
fore, it is sufficient to prove Theorem 3.1, whose proof can be found in Appendix C. □

Theorem A.1 demonstrates that the cost of privacy is the efficiency loss in terms of fairness viola-
tions. For fixed ratios r1 ≜ π0/π1 > 0 and r2 ≜ Var[g(θ⋆;X,Y )|A = 0]/Var[g(θ⋆;X,Y )|A =
1] > 0, φlin(γ, r1, r2) is a decreasing function in γ. In the absence of privacy, φlin(0, r1, r2) = 1
means no efficiency loss. Under perfect privacy, φlin(0.5, r1, r2) = 0 indicates total loss of effi-
ciency. Moreover, θ̂n is always more efficient than θ̃n because ARE(θ̃n, θ̂n) ≤ 1.

Figure 3 demonstrates the asymptotic relative efficiency (ARE) curve of privacy level γ for varying
ratios r1 and r2. The ARE is always upper bounded by (1 − 2γ)2, which is achieved only if π0 =
π1 = 0.5. Recall that π0 = P(A = 0) and π1 = P(A = 1). Therefore for any fixed γ and r2, the
ARE achieves its maximum only if the dataset is balanced in the sensitive attributeA. Moreover, for
any fixed γ and r2, the ARE is strictly increasing in π0 (assuming π0 < 0.5). This implies the effect
of subgroup size imbalance: demographic group imbalance degrades the efficiency loss in privately
fair learning. Lastly, the ARE is strictly increasing in the problem-specific parameter r2, given fixed
γ and r1 < 1.
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Figure 3: Asymptotic relative efficiency curve of γ for varying ratios of π0 to π1 and
Var[g(θ⋆;X,Y )|A = 0] to Var[g(θ⋆;X,Y )|A = 1].

B LINEAR-FRACTIONAL FAIRNESS CONSTRAINT

We provide further discussion to supplement Section 3. Recall the marginal distributions and con-
ditional distributions in (3.2) and{

P(Z = 0) = π̃0, P(Z = 1) = π̃1
(X,Y )|Z = 0 ∼ Q̃0, (X,Y )|Z = 1 ∼ Q̃1

.

Under the private mechanism Q in (2.4), we have
π̃0 = (1− γ)π0 + γπ1, π̃1 = γπ0 + (1− γ)π1

Q̃0
d
= (1−γ)π0

(1−γ)π0+γπ1
Q0 +

γπ1

(1−γ)π0+γπ1
Q1

Q̃1
d
= γπ0

γπ0+(1−γ)π1
Q0 +

(1−γ)π1

γπ0+(1−γ)π1
Q1

. (B.1)

The marginal distribution and conditional distribution in (B.1) uniquely identify the joint distribution
of (X,Z, Y ).

On the one hand, enforcing fairness notion (3.1) with respect to A is
E(X,Y )|A=1

[
g(θ;X,Y )

]
E(X,Y )|A=1

[
h(X,Y )

] −
E(X,Y )|A=0

[
g(θ;X,Y )

]
E(X,Y )|A=0

[
h(X,Y )

] = 0

or equivalently

c(θ) ≜
EQ1

[
g(θ;X,Y )

]
EQ1

[
h(X,Y )

] −
EQ0

[
g(θ;X,Y )

]
EQ0

[
h(X,Y )

] = 0.

On the other hand, enforcing fairness notion (3.1) with respect to Z is
E(X,Y )|Z=1

[
g(θ;X,Y )

]
E(X,Y )|Z=1

[
h(X,Y )

] −
E(X,Y )|Z=0

[
g(θ;X,Y )

]
E(X,Y )|Z=0

[
h(X,Y )

] = 0

or equivalently

c̃(θ) ≜


γπ0EQ0

[
g(θ;X,Y )

]
+ (1− γ)π1EQ1

[
g(θ;X,Y )

]
γπ0EQ0

[
h(X,Y )

]
+ (1− γ)π1EQ1

[
h(X,Y )

]
−
(1− γ)π0EQ0

[
g(θ;X,Y )

]
+ γπ1EQ1

[
g(θ;X,Y )

]
(1− γ)π0EQ0

[
h(X,Y )

]
+ γπ1EQ1

[
h(X,Y )

]
 = 0.

13
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By some algebra, we find that the proxy constraint function c̃(θ) is equal to the true constraint
function c(θ) up to a scaling factor: c̃(θ) = ψfrac(γ, π0, π1,m0,m1)× c(θ), where

ψfrac(γ, π0, π1,m0,m1) ≜
(1− 2γ)π0π1m0m1

{γπ0m0 + (1− γ)π1m1} {(1− γ)π0m0 + γπ1m1}
, (B.2)

as well m0 ≜ EQ0

[
h(X,Y )

]
and m1 ≜ EQ1

[
h(X,Y )

]
.

By comparing the scaling factor (B.2) with the functional form of (A.3), we can rewrite ψfrac(·) by

ψfrac(γ, π0, π1,m0,m1) = ψlin(γ, π0m0, π1m1).

Therefore, we can interpret the scaling factor ψfrac(·) by treating π0m0 and π1m1 as a whole,
allowing us to understand the privacy cost from a different perspective. Note that for equality of
opportunity, we have πama = P(A = a)P(Y = 1|A = a) = P(Y = 1, A = a) for a ∈ {0, 1}.

For equality of opportunity, Mozannar et al. (2020) show a sample complexity bound for the fairness
violation of the estimator θ̃n:

c(θ̃n)−���c(θ⋆) ≤ C1(1− γ)

(1− 2γ)p2

(
C2 + C3Rnp

4
(F) +

C4√
nδp

)
(B.3)

with probability at least 1 − δ, where p = min{P(Y = 1, A = 0),P(Y = 1, A = 1)}, R·(·) is
the Rademacher complexity, and Ci’s (1 ≤ i ≤ 4) are some universal constants. Not precisely,
the upper bound (B.3) reflects the effect of privacy level via γ and the effect of dataset imbalance
through p. Comparing to this, our theory states that

lim
n→∞

Var[c(θ̂n)−�
��c(θ⋆)]

Var[c(θ̃n)−�
��c(θ⋆)]

= φ

(
γ,

P(Y = 1, A = 0)

P(Y = 1, A = 1)
, 1

)
,

which is depicted by Figure 4.
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Figure 4: Asymptotic relative efficiency curve of γ for varying ratio of P(Y = 1, A = 0) to
P(Y = 1, A = 1).

C PROOF OF THEOREM 3.1

First, we prove the case when αn = 0 for all n. For this case both the population problem and the
empirical problem are subject to equality constraints.

14
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Consider a stochastic optimization problem with linear-fractional constraint

(P0) : θ⋆ ∈


argminθ∈Θ E

[
ℓ(θ;X,Y )

]
subject to

E
[
g(θ;X,Y )|A = 1

]
E
[
h(X,Y )|A = 1

] −
E
[
g(θ;X,Y )|A = 0

]
E
[
h(X,Y )|A = 0

] = 0

 ,

where the expectation is with respect to the underlying distribution of tuple (X,A, Y ).

The corresponding empirical problem given the true sensitive attribute is

(Pn) : θ̂n ∈


argminθ∈Θ

1

n

n∑
i=1

ℓ(θ;Xi, Yi)

subject to
∑n

i=1 g(θ;Xi, Yi)1{Ai = 1}∑n
i=1 h(Xi, Yi)1{Ai = 1}

−
∑n

i=1 g(θ;Xi, Yi)1{Ai = 0}∑n
i=1 h(Xi, Yi)1{Ai = 0}

= 0

 .

The corresponding empirical problem given the proxy sensitive attribute is

(P̃n) : θ̃n ∈


argminθ∈Θ

1

n

n∑
i=1

ℓ(θ;Xi, Yi)

subject to
∑n

i=1 g(θ;Xi, Yi)1{Zi = 1}∑n
i=1 h(Xi, Yi)1{Zi = 1}

−
∑n

i=1 g(θ;Xi, Yi)1{Zi = 0}∑n
i=1 h(Xi, Yi)1{Zi = 0}

= 0

 .

We denote

F (θ) = E
[
ℓ(θ;X,Y )

]
, F̂n(θ) =

1

n

n∑
i=1

ℓ(θ;Xi, Yi), G(θ) =
E
[
g(θ;X,Y )|A = 1

]
E
[
h(X,Y )|A = 1

] −
E
[
g(θ;X,Y )|A = 0

]
E
[
h(X,Y )|A = 0

]
and

Ĝn(θ) =

∑n
i=1 g(θ;Xi, Yi)1{Ai = 1}∑n
i=1 h(Xi, Yi)1{Ai = 1}

−
∑n

i=1 g(θ;Xi, Yi)1{Ai = 0}∑n
i=1 h(Xi, Yi)1{Ai = 0}

.

Note that F̂n(·) and Ĝn(·)’s are random functions serving as approximations to F (·) and G(·)’s.
Consider the Lagrangian functions

L(θ, λ) = F (θ) + λG(θ) and L̂n(θ, λ) = F̂n(θ) + λĜn(θ)

of the programs (P0) and (Pn) respectively.

Lemma C.1 (A version of Theorem 6.6.2 in Rubinstein & Shapiro (1993)). Suppose that:

(i) The functions F (θ) and G(θ) are twice continuously differentiable.
(ii) The true program (P0) has a unique optimal solution θ⋆ and a unique Lagrange multiplier λ⋆

with θ⋆ being an interior point of Θ.
(iii) The Hessian matrix ∇2L(θ⋆, λ⋆) is positive definite.
(iv) The random functions Ĝn(θ),k ∈ [K], are Lipschitz continuous in a neighborhood of θ⋆ and

differentiable at θ⋆ with probability 1.
(v)

∥∆in(θ
⋆)∥2 = Op(n

−1/2), i = 1, 2, 3

and there is a neighborhood U of θ⋆ such that

sup
θ∈U

∥∆in(θ)−∆in(θ
⋆)∥2

n−1/2 + ∥θ − θ⋆∥2
= op(1), i = 1, 2, 3.

Here we define random mappings ∆1n(θ) = ∇F̂n(θ) − ∇F (θ), ∆2n(θ) = Ĝn(θ) − G(θ),
and ∆3n(θ) = ∇Ĝn(θ)−∇G(θ).

(vi) Random vectors
√
n(∇L̂n(θ

⋆, λ⋆), Ĝn(θ
⋆)) converge in distribution to Y = (Y1, Y2) as n→

∞, where Y1 is a random vector and Y2 is a random variable.
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Let θ̂n be an optimal solution of (Pn) converging in probability as n→ ∞ to θ⋆. Then
√
n(θ̂n − θ⋆)

d−→ x̄(Y )

where x̄ = x̄(Y ) is the optimal solution to the quadratic programming problem

minimize
x

x⊤Y1 +
1
2x

⊤∇2L(θ⋆, λ⋆)x

subject to ∇G(θ⋆)⊤x+ Y2 = 0
.

Recall the standing assumptions, (i), (iv), (v) are guaranteed by the smoothness and concentration
assumption, (ii) is postulated by the uniqueness assumption, and (iii) is made by our assumption.
Now we derive the limiting distribution of random vectors

√
n(∇L̂n(θ

⋆, λ⋆), Ĝn(θ
⋆)) required in

(vi).

For a ∈ {0, 1}, we have

E
[
g(θ⋆;X,Y )1{A = a}

]
= P(A = a)E

[
g(θ⋆;X,Y )|A = a

]
= πaEQa

[g],

and

Var[g(θ⋆;X,Y )1{A = a}] = E
[
g2(θ⋆;X,Y )1{A = a}

]
−
{
E
[
g(θ⋆;X,Y )1{A = a}

]}2
= πaEQa [g

2]− π2
a(EQa [g])

2

= πa(EQa
[g2]− (EQa

[g])2) + (πa − π2
a)(EQa

[g])2

= πa VarQa [g] + π0π1(EQa [g])
2.

Similarly, for a ∈ {0, 1}, we have

E
[
h(X,Y )1{A = a}

]
= πaEQa

[h] and Var[h(X,Y )1{A = a}] = πa VarQa
[h]+π0π1(EQa

[h])2.

Moreover, we have

Cov(g(θ⋆;X,Y )1{A = 1}, g(θ⋆;X,Y )1{A = 0})
=E
[
g2(θ⋆;X,Y )1{A = 0}1{A = 1}

]
− E

[
g(θ⋆;X,Y )1{A = 0}

]
× E

[
g(θ⋆;X,Y )1{A = 1}

]
=− π0π1EQ0

[g]EQ1
[g]

and similarly we can derive

Cov(h(X,Y )1{A = 1}, h(X,Y )1{A = 0}) = −π0π1EQ0
[h]EQ1

[h],

Cov(g(θ⋆;X,Y )1{A = a}, h(X,Y )1{A = a}) = πa CovQa
[g, h] + π0π1EQa

[g]EQa
[h]

and
Cov(g(θ⋆;X,Y )1{A = a}, h(X,Y )1{A = 1− a}) = −π0π1EQa

[g]EQ1−a
[h]

for a ∈ {0, 1}.

Let η1 = E
[
∇ℓ(θ⋆;X,Y )

]
, η2 = π1EQ1

[
∇g(θ⋆;X,Y )

]
and η3 = π0EQ0

[
∇g(θ⋆;X,Y )

]
. By

central limit theorem,

√
n





n−1
∑n

i=1 ∇ℓ(θ⋆;Xi, Yi)
n−1

∑n
i=1 ∇g(θ⋆;Xi, Yi)1{Ai = 1}

n−1
∑n

i=1 ∇g(θ⋆;Xi, Yi)1{Ai = 0}
n−1

∑n
i=1 g(θ

⋆;Xi, Yi)1{Ai = 1}
n−1

∑n
i=1 g(θ

⋆;Xi, Yi)1{Ai = 0}
n−1

∑n
i=1 h(Xi, Yi)1{Ai = 1}

n−1
∑n

i=1 h(Xi, Yi)1{Ai = 0}


−



η1

η2

η3

π1EQ1
[g]

π0EQ0
[g]

π1EQ1
[h]

π0EQ0
[h]




d−→ N

(
0,

[
Ω11 Ω12

Ω21 Ω22

])
,

(C.1)
where Ω11 ∈ R3d×3d,Ω21 ∈ R4×3d,Ω12 = Ω⊤

21, Ω22 is given by π1Q
2
1[g] + π0π1(Q1g)

2 −π0π1Q0gQ1g π1Q
2
1[g, h] + π0π1Q1gQ1h −π0π1Q0hQ1g

−π0π1Q0gQ1g π0Q
2
0[g] + π0π1(Q0g)

2 −π0π1Q0gQ1h π0Q
2
0[g, h] + π0π1Q0gQ0h

π1Q
2
1[g, h] + π0π1Q1gQ1h −π0π1Q0gQ1h π1Q

2
1[h] + π0π1(Q1h)

2 −π0π1Q0hQ1h
−π0π1Q0hQ1g π0Q

2
0[g, h] + π0π1Q0gQ0h −π0π1Q0hQ1h π0Q

2
0[h] + π0π1(Q0h)

2

 .
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Let function w : Rd × Rd × Rd × R× R× R× R → Rd+1 be

w(v1,v2,v3, s1, s2, s3, s4) =

(
v1 + λ⋆

{
v2

s3
− v3

s4

}
,
s1
s3

− s2
s4

)⊤

.

The gradient of function w evaluated at

(v1,v2,v3) = (η1,η2,η3) and (s1, s2, s3, s4) = (π1EQ1 [g], π0EQ0 [g], π1EQ1 [h], π0EQ0 [h])

is given by

∇w =

[
∗3d×d 03d×1

∗4×d ξ4×1

]
∈ R(3d+4)×(d+1)

where

ξ =

(
1

π1Q1h
,− 1

π0Q0h
,− Q1g

π1(Q1h)2
,

Q0g

π0(Q0h)2

)⊤

.

Applying delta method to (C.1) with w(·), we have

√
n

[
∇L̂n(θ

⋆, λ⋆)

Ĝn(θ
⋆)

]
d→ N

(
0,∇w⊤

[
Ω11 Ω12

Ω21 Ω22

]
∇w
)

d
== N

(
0,

[
Σ11 Σ12

Σ21 σ2

])
,

where

σ2 = ξ⊤Ω22ξ =
Q2

0[g]

π0(Q0h)3
+
Q2

0[h](Q0g)
2

π0(Q0h)4
− 2Q2

0[g, h]Q0g

π0(Q0h)3
+

Q2
1[g]

π1(Q1h)3
+
Q2

1[h](Q1g)
2

π1(Q1h)4
− 2Q2

1[g, h]Q1g

π1(Q1h)3

(C.2)

Note that KKT condition implies

η1 + λ⋆
{

η2

π1Q1g
− η3

π0Q0g

}
= 0 and

Q1g

Q1h
=
Q0g

Q0h
≜ κ. (C.3)

Combining (C.2) and (C.3), we have

σ2

=
VarQ0 [g] + VarQ0 [κh]− 2CovQ0 [g, κh]

π0(EQ0
[h])2

+
VarQ1 [g] + VarQ1 [κh]− 2CovQ1 [g, κh]

π1(EQ1
[h])2

=
VarQ0

[g − κh]

π0(EQ0 [h])
2

+
VarQ1

[g − κh]

π1(EQ1 [h])
2
.

(C.4)

Therefore, we conclude that the limiting distribution of
√
n(∇L̂n(θ

⋆, λ⋆), Gn(θ
⋆)) is

(Y1, Y2) ∼ N
(
0,

[
Σ11 Σ12

Σ21 σ2

])
.

By Lemma (C.1), we have
√
n(θ̂n − θ⋆)

d−→ x̄,

where x̄ is given by the linear system[
∇2L(θ⋆, λ⋆) ∇G(θ⋆)
∇G(θ⋆)⊤ 0

]
︸ ︷︷ ︸

≜B

[
x̄
λ̄

]
= −

[
Y1

Y2

]
∼ N

(
0,

[
Σ11 Σ12

Σ21 σ2

])
,

or [
x̄
λ̄

]
∼ N

(
0, B−1

[
Σ11 Σ12

Σ21 σ2

]
B−1

)
, (C.5)

which implies
√
n(θ̂n − θ⋆)

d−→ x̄ ∼ N (0, Σ̄) for some µ̄ and Σ̄ determined by (C.5).
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By delta method, we have
√
nG(θ̂n) =

√
n{G(θ̂n)−G(θ⋆)︸ ︷︷ ︸

=0

} d−→ N (0,∇G(θ⋆)⊤Σ̄∇G(θ⋆)).

Now we calculate ∇G(θ⋆)⊤Σ̄∇G(θ⋆).
For notation simplicity, we denote ∇2L = ∇2L(θ⋆, λ⋆),∇G = ∇G(θ⋆) and H =
(∇2L)−1∇G[∇G⊤(∇2L)−1∇G]−1. By block matrix inversion, we have

B−1 =

[
(∇2L)−1 −H∇G⊤(∇2L)−1 H

H⊤ −[∇G⊤(∇2L)−1∇G]−1.

]
Note that ∇G⊤H = 1 and ∇G⊤ {(∇2L)−1 −H∇G⊤(∇2L)−1

}
= 0. We have

∇G(θ⋆)⊤Σ̄∇G(θ⋆)
=∇G⊤ [{(∇2L)−1 −H∇G⊤(∇2L)−1

}
Σ11 +HΣ21

] {
(∇2L)−1 − (∇2L)−1∇GH⊤}∇G︸ ︷︷ ︸

=0

+∇G⊤ {(∇2L)−1 −H∇G⊤(∇2L)−1
}︸ ︷︷ ︸

=0

Σ12H
⊤∇G+∇G⊤Hσ2H⊤∇G

=σ2.

Therefore, we conclude that
√
n{c(θ̂n)−�

��c(θ⋆)} =
√
nG(θ̂n)

d→ N (0, σ2)
d
== N

(
0,

VarQ0
[g − κh]

π0(EQ0 [h])
2

+
VarQ1

[g − κh]

π1(EQ1 [h])
2

)
.

By a similar argument, we have

√
n{ψfrac × c(θ̃n)−((((((ψfrac × c(θ⋆)} d→ N

(
0,

VarQ̃0
[g − κh]

π̃0(EQ̃0
[h])2

+
VarQ̃1

[g − κh]

π̃1(EQ̃1
[h])2

)
,

which implies

√
n× c(θ̃n)

d→ N (0, σ̃2)
d
== N

(
0, ψ−2

frac ×

{
VarQ̃0

[g − κh]

π̃0(EQ̃0
[h])2

+
VarQ̃1

[g − κh]

π̃1(EQ̃1
[h])2

})
.

Now, we prove the case when αn = o( 1√
n
). For this case note that the equality constraint for the

population problem can be rewritten as two inequality constraints:

(P0) : θ⋆ ∈



argminθ∈Θ E
[
ℓ(θ;X,Y )

]
subject to

E
[
g(θ;X,Y )|A = 1

]
E
[
h(X,Y )|A = 1

] −
E
[
g(θ;X,Y )|A = 0

]
E
[
h(X,Y )|A = 0

] ≤ 0

E
[
g(θ;X,Y )|A = 0

]
E
[
h(X,Y )|A = 0

] −
E
[
g(θ;X,Y )|A = 1

]
E
[
h(X,Y )|A = 1

] ≤ 0


,

where the expectation is with respect to the underlying distribution of tuple (X,A, Y ).

The corresponding empirical problem given the true sensitive attribute is

(Pn) : θ̂n ∈



argminθ∈Θ

1

n

n∑
i=1

ℓ(θ;Xi, Yi)

subject to
∑n

i=1 g(θ;Xi, Yi)1{Ai = 1}∑n
i=1 h(Xi, Yi)1{Ai = 1}

−
∑n

i=1 g(θ;Xi, Yi)1{Ai = 0}∑n
i=1 h(Xi, Yi)1{Ai = 0}

− αn ≤ 0∑n
i=1 g(θ;Xi, Yi)1{Ai = 0}∑n
i=1 h(Xi, Yi)1{Ai = 0}

−
∑n

i=1 g(θ;Xi, Yi)1{Ai = 1}∑n
i=1 h(Xi, Yi)1{Ai = 1}

− αn ≤ 0


.
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The corresponding empirical problem given the proxy sensitive attribute is

(P̃n) : θ̃n ∈



argminθ∈Θ

1

n

n∑
i=1

ℓ(θ;Xi, Yi)

subject to
∑n

i=1 g(θ;Xi, Yi)1{Zi = 1}∑n
i=1 h(Xi, Yi)1{Zi = 1}

−
∑n

i=1 g(θ;Xi, Yi)1{Zi = 0}∑n
i=1 h(Xi, Yi)1{Zi = 0}

− αn ≤ 0∑n
i=1 g(θ;Xi, Yi)1{Zi = 0}∑n
i=1 h(Xi, Yi)1{Zi = 0}

−
∑n

i=1 g(θ;Xi, Yi)1{Zi = 1}∑n
i=1 h(Xi, Yi)1{Zi = 1}

− αn ≤ 0


.

We denote

F (θ) = E
[
ℓ(θ;X,Y )

]
, F̂n(θ) =

1

n

n∑
i=1

ℓ(θ;Xi, Yi),

G1(θ) =
E
[
g(θ;X,Y )|A = 1

]
E
[
h(X,Y )|A = 1

] −
E
[
g(θ;X,Y )|A = 0

]
E
[
h(X,Y )|A = 0

] ,
G2(θ) =

E
[
g(θ;X,Y )|A = 0

]
E
[
h(X,Y )|A = 0

] −
E
[
g(θ;X,Y )|A = 1

]
E
[
h(X,Y )|A = 1

] ,
Ĝ1n(θ) =

∑n
i=1 g(θ;Xi, Yi)1{Ai = 1}∑n
i=1 h(Xi, Yi)1{Ai = 1}

−
∑n

i=1 g(θ;Xi, Yi)1{Ai = 0}∑n
i=1 h(Xi, Yi)1{Ai = 0}

− αn,

and

Ĝ2n(θ) =

∑n
i=1 g(θ;Xi, Yi)1{Ai = 0}∑n
i=1 h(Xi, Yi)1{Ai = 0}

−
∑n

i=1 g(θ;Xi, Yi)1{Ai = 1}∑n
i=1 h(Xi, Yi)1{Ai = 1}

− αn.

Consider the Lagrangian functions

L(θ,λ) = F (θ) + λ1G1(θ) + λ2G2(θ) and L̂n(θ,λ) = F̂n(θ) + λ1Ĝ1n(θ) + λ2Ĝ2n(θ).

of the programs (P0) and (Pn) respectively.
Lemma C.2 (A version of Theorem 6.6.2 in Rubinstein & Shapiro (1993)). Suppose that:

(i) The functions F (θ), G1(θ) and G2(θ) are twice continuously differentiable.
(ii) The true program (P0) has a unique optimal solution θ⋆ and a unique Lagrange multiplier λ⋆

with θ⋆ being an interior point of Θ.
(iii) The Hessian matrix ∇2L(θ⋆,λ⋆) is positive definite.
(iv) The random functions Ĝ1n(θ) and Ĝ2n(θ),k ∈ [K], are Lipschitz continuous in a neighbor-

hood of θ⋆ and differentiable at θ⋆ with probability 1.
(v)

∥∆in(θ
⋆)∥2 = Op(n

−1/2), i = 1, 2, 3

and there is a neighborhood U of θ⋆ such that

sup
θ∈U

∥∆in(θ)−∆in(θ
⋆)∥2

n−1/2 + ∥θ − θ⋆∥2
= op(1), i = 1, 2, 3.

Here we define random mappings ∆1n(θ) = ∇F̂n(θ) − ∇F (θ), ∆2n(θ) = Ĝn(θ) − G(θ),
and ∆3n(θ) = ∇Ĝn(θ)−∇G(θ).

(vi) Random vectors
√
n(∇L̂n(θ

⋆,λ⋆), Ĝ1n(θ
⋆)), Ĝ2n(θ

⋆)) converge in distribution to Y =
(Y1, Y2, Y3) as n→ ∞, where Y1 is a random vector and Y2 and Y3 are random variables.

Let θ̂n be an optimal solution of (Pn) converging in probability as n→ ∞ to θ⋆. Then
√
n(θ̂n − θ⋆)

d−→ x̄(Y )

where x̄ = x̄(Y ) is the optimal solution to the quadratic programming problem

minimize
x

x⊤Y1 +
1
2x

⊤∇2L(θ⋆,λ⋆)x

subject to ∇G1(θ
⋆)⊤x+ Y2 ≤ 0

∇G2(θ
⋆)⊤x+ Y3 ≤ 0

.
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Note that
∇G1(θ

⋆)⊤x+ Y2 ≤ 0 ⇐⇒ ∇G(θ⋆)⊤x+ Y ≤ 0

and
∇G1(θ

⋆)⊤x+ Y2 ≤ 0 ⇐⇒ −∇G(θ⋆)⊤x+ (−Y ) ≤ 0.

Therefore the last quadratic programming problem with two inequality constraints reduces to the
quadratic programming problem with single equality constraint when αn ≡ 0. The limiting distri-
butional results thus persist as we proved for the αn ≡ 0 case.

Lastly, we calculate the asymptotic relative efficiency (ARE) of θ̃n to θ̂n.

Recall that

σ2 =
VarQ0

[g − κh]

π0(EQ0
[h])2

+
VarQ1

[g − κh]

π1(EQ1
[h])2

,

σ̃2 = ψ−2
frac ×

{
VarQ̃0

[g − κh]

π̃0(EQ̃0
[h])2

+
VarQ̃1

[g − κh]

π̃1(EQ̃1
[h])2

}

= ψ−2
frac ×

{
(1− γ)π0 VarQ0

[g − κh] + γπ1 VarQ1
[g − κh]

{(1− γ)π0EQ0 [h] + γπ1EQ1 [h]}2

+
γπ0 VarQ0

[g − κh] + (1− γ)π1 VarQ1
[g − κh]

{γπ0EQ0
[h] + (1− γ)π1EQ1

[h]}2

}
,

and

ψfrac =
(1− 2γ)π0π1EQ0

[h]EQ1
[h]

{γπ0EQ0
[h] + (1− γ)π1EQ1

[h]} {(1− γ)π0EQ0
[h] + γπ1EQ1

[h]}
.

Therefore, we have

ARE(θ̃n, θ̂n) =
σ2

σ̃2
= φ

(
γ,
π0EQ0

[h]

π1EQ1 [h]
,
VarQ0

[g(θ⋆;X,Y )− κh(X,Y )]/EQ0
[h]

VarQ1 [g(θ
⋆;X,Y )− κh(X,Y )]/EQ1 [h]

)
= φ

(
γ,
π0m0

π1m1
,
Var[g(θ⋆;X,Y )− κh(X,Y )|A = 0]/m0

Var[g(θ⋆;X,Y )− κh(X,Y )|A = 1]/m1

)
,

where

φ(γ, r1, r2) ≜
(1− 2γ)2r1(r1 + r2)

{γr1 + (1− γ)}2{(1− γ)r1r2 + γ}+ {(1− γ)r1 + γ}2{γr1r2 + (1− γ)}
.

Hence we complete the proof of Theorem 3.1. □

D MULTIPLE DEMOGRAPHIC GROUPS

We provide further discussion to supplement Section 3.1.

Note that the fairness notion (3.5) uses group 0 as a reference group. One can also define a fairness
notion by

E
[
g(θ;X,Y )|A = k

]
E
[
h(X,Y )|A = k

] −
E
[
g(θ;X,Y )

]
E
[
h(X,Y )

] = 0 for k ∈ {0} ∪ [K] (D.1)

which is symmetric in group indices. Due to the equivalence of (D.1) and (3.5), we opt to use (3.5)
for a comparison with two-group theory.

Theorem 3.2 is a direct extension of Theorem 3.1 and follows the same proof procedure as of Theo-
rem 3.1. Moreover, let h ≡ 1, the linear-fractional fairness (3.5) degenerates into linear fairness:

E
[
g(θ;X,Y )|A = k

]
− E

[
g(θ;X,Y )|A = 0

]
= 0 for k ∈ [K]. (D.2)

By Theorem 3.2, we immediately have the following corollary.
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Theorem D.1 (Privacy cost in linear fairness (D.2)-aware learning). Under the standing assump-
tions, let estimators θ̂n and θ̃n be consistent for θ⋆, then

√
n{c(θ̂n)−���c(θ⋆)} d→ N (0,Σ) and

√
n{c(θ̃n)−���c(θ⋆)} d→ N (0,Ψ−1

lin Σ̃Ψ
−⊤
lin ),

where

Σkl =
VarQ0

[g(θ⋆;X,Y )]

π0
+

(
VarQk

[g(θ⋆;X,Y )]

πk

)
1 {k = l}

Σ̃kl =
VarQ̃0

[g(θ⋆;X,Y )]

π̃0
+

(
VarQ̃k

[g(θ⋆;X,Y )]

π̃k

)
1 {k = l}

Ψlin =


(

1−Kγ
π̃k

− γ
π̃0

)
πk if k = l(

1
π̃k

− 1
π̃0

)
γπl if k ̸= l

for k, l ∈ [K].

E MISSING SENSITIVE ATTRIBUTES

Under the missingness mechanism (3.8), the probability of observing a complete sample from group
a is

P(A = a,R = 1) = ωaπa

for a ∈ {0, 1}. By the intermediate conclusion of Theorem 3.1, we have

√
n{c(θ̂n)−���c(θ⋆)} d→ N

(
0,

VarQ0
[g(θ⋆;X,Y )− κh(X,Y )]

π0(EQ0
[h(X,Y )])2

+
VarQ1

[g(θ⋆;X,Y )− κh(X,Y )]

π1(EQ1
[h(X,Y )])2

)
,

and
√
n{c(θ̃n)−���c(θ⋆)} d→ N

(
0,

VarQ0 [g(θ
⋆;X,Y )− κh(X,Y )]

ω0π0(EQ0
[h(X,Y )])2

+
VarQ1 [g(θ

⋆;X,Y )− κh(X,Y )]

ω1π1(EQ1
[h(X,Y )])2

)
.

Comparing the two asymptotic variances, we conclude that

ARE(θ̃n, θ̂n) =
r2 + r1

ω−1
0 r2 + ω−1

1 r1
,

where

r1 =
π0m0

π1m1
and r2 =

Var[g(θ⋆;X,Y )− κh(X,Y )|A = 0]/m0

Var[g(θ⋆;X,Y )− κh(X,Y )|A = 1]/m1
.
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