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Abstract

Tokenization is a crucial step in NLP, especially

with the rise of large language models (LLMs),

impacting downstream performance, computa­

tional cost, and efficiency. Existing LLMs rely

on the classical Byte­pair Encoding (BPE) al­

gorithm for subword tokenization that greedily

merges frequent character bigrams, often leading

to segmentation that does not align with linguis­

tically meaningful units. To address this, we pro­

pose morphology­aware segmentation as a pre­

tokenization step before applying BPE. To facili­

tate morphology­aware segmentation, we create a

novel dataset for Hindi andMarathi, incorporating

sandhi splitting to enhance the subword tokeniza­

tion. Experiments on downstream tasks show that

morphologically grounded tokenization improves

machine translation and language modeling per­

formance. Additionally, to handle the dependent

vowels common in syllable­based writing systems

used by Indic languages, we propose Constrained

BPE (CBPE), an extension to the standard BPE al­

gorithm incorporating script­specific constraints.

In particular, CBPE handles dependent vowels

to form a cohesive unit with other characters in­

stead of occurring as a single unit. Our results

show that CBPE achieves a 1.68% reduction in

fertility scores while maintaining comparable or

improved downstream performance in machine

translation and languagemodeling, offering a com­

putationally efficient alternative to standard BPE.

Moreover, to evaluate segmentation across differ­

ent tokenization algorithms, we introduce a new

human evaluation metric, EvalTok, enabling more

human­grounded assessment.
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Word  BPE Segments  Morphologically Grounded Segments 

 खुलता   खु   लता   खुल   ता 

उपजता  उप  जता  उपज  ता 

कांडला  का  ◌ंड  ला  कांड   ला 

गोलाधर्ध  गोल  ◌ार्  ध   गोल  अधर्ध 

Figure 1. An example of segments generated by Byte Pair Encod­

ing (BPE) compared with morphologically grounded segments. In

this illustration, segments are separated by double space, and bold

segments indicate correct segments from BPE with the ground

truth.

1. Introduction

Tokenization forms the first step in any Natural Language

Processing (NLP) pipeline. It is the process of dividing the

text into smaller units, namely tokens, for further text pro­

cessing. The tokens thus formed may be phrases, words,

sub­words, or even characters, which form the smallest pro­

cessing unit of the text, and hence, the quality of the tokens

plays a crucial role in any NLP task. The most widely ac­

cepted and used tokenization method is Byte Pair Encoding

(BPE) (Gage, 1994; Sennrich et al., 2016). BPE algorithm

works by breaking a given text into individual characters

(Unicode characters) or bytes and then building tokens by

merging the most frequent bigrams iteratively. These merges

are then stored in an ordered sequence. During tokenization,

an input word is first split into individual characters. The

learned merges are then applied sequentially, starting from

the most frequent merges. BPE has been widely adopted in

NLP due to its simplicity, effectiveness in handling OOV

words, and its ability to control vocabulary size.

Despite its effectiveness, BPE operates greedily by pick­

ing frequent adjacent bigrams and merging them without

considering linguistic structure. As a result, learned merges

may violate the morpheme or word boundaries, leading to

undesirable and linguistically incoherent segmentations. Fig­

ure 2 shows comparative examples of tokens generated by

the BPE algorithm and the corresponding morphologically

grounded tokens. For example, the word खुलता (khulatā1,

1We follow the Roman transliteration scheme ISO 15919.
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opens)2 is formed by the verb rootखुल (khula, open) and the

suffix ता (tā), which BPE incorrectly tokenizes toखु (khu, ­)

and लता (latā, climber), where the component tokens do not

preserve the meaning represented by the original word. This

issue can become more pronounced in multilingual settings,

where different languages exhibit distinct morphological

patterns. To address this issue, we extend the concept of pre­

tokenization, responsible for performing a morphologically

grounded split based on a linguistically curated lookup table

(see Section 3.1), as an additional step before tokenization.

To address the linguistic inconsistencies in subword tok­

enization, we introduce a novel approach to pre­tokenization,

discussed in Section 3.1, which aims to align token segmen­

tation with morpheme boundaries. Existing tokenization

algorithms, such as BPE or Byte­based BPE, start with char­

acters or bytes initialization. In the Latin script, letters are

written sequentially from left to right. In contrast, the De­

vanagari script organizes symbols into syllabic units. Each

syllable contains a single vowel at most, and whenever possi­

ble, syllables avoid ending in consonants. Due to character­

level initialization, the dependent vowels are considered as

a separate token. This leads to extra segmentation, not ad­

hering to the written form. Inspired by this, we introduce

a constraint during the initialization of the BPE algorithm.

Ensuring dependent vowels do not form separate tokens,

thus improving compression (see Section 3.2). Our key

contributions are as follows:

• Morphologically grounded pre­tokenization: A lin­

guistically motivated segmentation step that aligns sub­

word units with morpheme boundaries, improving lin­

guistic coherence over standard BPE.

• Constrained BPE (CBPE):A simple extension to BPE

that prevents dependent vowel diacritics from form­

ing separate tokens, reducing token fragmentation in

abugida scripts while maintaining comparable down­

stream performance.

• EvalTok: A human­centric evaluation metric that as­

sesses morphological and semantic quality of tokeniza­

tion. EvalTok complements automated metrics and

enables qualitative comparison across tokenizers.

• Indic segmentation dataset: We release a curated

morphological segmentation dataset for Hindi and

Marathi (54k and 58k entries), supporting research in

morphology­aware tokenization.

• Comprehensive evaluation: We benchmark our ap­

proach on machine translation and language modeling

tasks. Our analysis highlights benefits beyond surface­

level performance metrics, emphasizing linguistic fi­

delity.

2Format followed is word (roman transliteration, gloss)

Figure 2.MorphTok tokenization pipeline. Tokenizer Training

corpus is segmented using either a lookup dictionary or ByT5

model, followed by CBPE which applies script­specific constraints

before generating vocabulary for downstream tasks.

2. Related Work

In the early years of NLP research, the most commonly

used method of tokenization was splitting input text into

space­separated words (white­space tokenizers) or charac­

ters. With the evolution of statistical and ML­based NLP

in the late 1900s and early 2000, systems required a more

evolved method of tokenization as well, such as n­gram­

based, rule­based, and methods using finite­state automata.

The advent of deep learning necessitated further sophisti­

cated methods for tokenization. During this time, the tok­

enization method included statistical and probabilistic ap­

proaches. The most prominent and widely used tokenization

that continues to be in use today, even with LLMs, is co­

occurrence­based subword­level tokenizing methods like

Byte Pair Encoding (Sennrich et al., 2016), Unigram (Kudo,

2018), Sentence Piece (Kudo & Richardson, 2018) and their

variants. Some of the variants include prioritizing the merge

of longest tokens (Lian et al., 2024), or starting the merge

operations by splitting a word into longest subsequences

matching vocabulary entries instead of splitting the word

into single characters (Balde et al., 2024) in the traditional

BPE method.

The unsupervised tokenization methods have obvious down­

sides, as frequency­based tokenization does not necessarily

ensure correct morphological boundaries to form indepen­
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dently meaningful tokens (Banerjee & Bhattacharyya, 2018).

This issue is particularly prominent for Indian languages,

as in many cases, combining tokens in Indian languages

also leads to changes in characters at the word boundaries

(sandhi), which cannot be captured by frequency­based to­

kenization methods. Recent literature includes works that

factor in semi­supervision, as well as information related

to the respective language’s morphology. Bauwens & De­

lobelle (2024) identifies unnecessary BPE merges using a

blame metric and removes the corresponding subwords from

the vocabulary. However, such studies are limited to non­

Indian languages.

3. Methodology

In this section, we describe our methodology. Section 3.1)

outlines the pre­tokenization process, beginning with word

and morphologically grounded segments dictionary and

lookup­based approach in Section 3.1.1. We then present

the model­driven pre­tokenization method in Section 3.1.2.

In Section 3.2, we describe our method to handle dependent

vowels.

3.1. Pre­Tokenization

Most of the popularly used tokenization algorithms follow

greedy merging approaches based on the frequency of bi­

grams. Such methods of tokenization do not guarantee mor­

phologically grounded subword tokens, especially in cases

of morphologically rich languages (Nzeyimana & Rubungo,

2022; Arnett & Bergen, 2025). Most of the Indian languages

face the risk of forming lossy subwords by following such

simple frequency­based methods alone for tokenization. For

example, the word सयू�दय (sūryōdaya,sunrise) is formed

from the 2 components {सूय� (sūrya, sun), उदय (udaya, rise)}

following sandhi rules. The best possible outcome of tok­

enization of this word by BPE would be {सयू�, ◌ोदय} {(sūrya,

sun), (ōdaya,­)} or {सयू�, दय} {(sūryō, sun), (daya, mercy)}.

In both these cases, the component splits do not preserve the

correct meaningfulness of the subwords. Hence, we require

a more linguistically grounded process for tokenization.

Two common types of word segmentation datasets for In­

dian languages are: (a) segmentation based on sandhi, which

yields semantically and linguistically correct sub­word seg­

ments. Such segmentation may involve changes at the sub­

word boundaries, (b) lossless word­segmentation method,

where sub­words do not have any character changes, and

their concatenation yields the original word. In this case, the

sub­words may not always be meaningful by themselves.

3.1.1. Lookup Based

We create a word segmentation dataset for two languages,

Hindi and Marathi, with the aid of language experts. The

Algorithm 1Morphologically Grounded Tokenization

Require: Training Corpus C; No. of Merges K; Pre­tokenization
Type T (T ∈ {Model,Lookup}); Lookup L (Pairs of Word
W and Segments S)

Ensure: Vocabulary V , MergesM
1: C′ ← PreTokenize(C, T )
2: V,M← BPE(C′,K) {Learn merges using BPE}
3: function PreTokenize (C, T )
4: if T = Model then
5: U ← ExtractUniqueWords(C)
6: D ← WordSegmentationModel(U)
7: C′ ← ApplySegments(C,D)
8: else

9: C′ ← ApplyLookup(C,L)
10: end if

11: return C′
12: end function

Table 1. Lookup dataset statistics for Hindi and Marathi

Language Total word­segment pairs

Hindi 54,395

Marathi 58,333

methods used to create the dataset are as follows: (a) auto­

matic generation. With the aid of language experts, we list

common affixes for nouns and verbs separately and auto­

matically generate all possible combinations of stems with

the corresponding affixes. (b) We use an existing word seg­

menter model (Bhatt et al., 2024) to generate the initial word

splits, which are further post­edited by language experts

to obtain morphologically and semantically correct word

segments.

Each entry in the lookup table L maps a word W to its

morphologically grounded segments S. During the pre­

tokenization stage, every occurrence ofW in the tokeniza­

tion training corpus C is replaced with the corresponding
segments S. We then apply standard BPE algorithm to the

resulting pre­tokenized corpus.

3.1.2. Model­driven Word­segmentation

The human­curated dictionary lookups are limited in both

size and coverage. To address this, we explore the poten­

tial usage of model­based segmentation methods to enhance

lookup coverage. To train the model to recognize cases

where no segmentation is required, we treat the first split

from the lookup table as a word. For both Hindi andMarathi,

we lookup table is divided into training, validation, and

test sets. We initially experimented with character­level

Bi­LSTM models. However, these models struggle to cap­

ture sandhi­based patterns effectively. To improve perfor­

mance, we fine­tune the pre­trained mT5 model (Xue et al.,

2021), leveraging its multilingual pretraining capabilities.

However, we hypothesize that the presence of a tokenizer

3
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in pre­trained models may negatively impact segmentation

performance. To mitigate this issue, we further fine­tune

the byte­level tokenization­free ByT5 model (Xue et al.,

2022), which yields improved segmentation performance. A

detailed analysis of model selection and performance com­

parison is provided in Section 5.1.

In model­driven word segmentation, we begin by extracting

the set of unique words U from the tokenization training

corpus C. These words are then passed through a word

segmentation model in our case a fine­tuned ByT5 model,

which produces a segmented dictionary D. The output is
subsequently filtered to obtain a refined dictionary D′ con­

taining high­confidence segmentations. Here, we employ

a rule­based filtering strategy. Finally, we generate the pre­

tokenized corpus by replacing each word in the original

corpus that appears in the refined dictionary with its corre­

sponding segments. The formal algorithm for the morpho­

logical grounded tokenization are presented in Algorithm 1.

3.2. Constraining Dependent Vowels

Linguistic diversity of written scripts across the world poses

significant challenges for the tokenization process, particu­

larly in languages that follow the abugida3 writing system.

Unlike alphabetic scripts, where vowels and consonants

are treated as independent units, abugida scripts follow a

consonant­vowel system. Especially in Indian languages,

the Devanagari script has a set of dependent and independent

vowels. The dependent vowels are represented in the form

of diacritics. Existing statistical tokenization algorithms,

such as BPE, are primarily designed for alphabetic scripts,

operating at the level of Unicode characters or byte­based

methods starting from bytes encoding4 to learn the merges.

Consequently, BPE frequently learns merges that are linguis­

tically obvious. We empirically find that approximately 5%

of merges in a 32k BPE merges are dedicated to combining

characters with dependent vowels. This effect is even more

pronounced with smaller merges sizes such as 8k and 16k,

as shown in Table 2.

Table 2. Obvious merges in the BPE algorithm for 8k, 16k, and

32k merge sizes, calculated as the number of merges where the

second token is a dependent vowel in the Devanagari script.

# of merges (K) # of obvious merges

8k 861 (10.76%)
16k 1203 (7.52%)
32k 1739 (5.43%)

To address this issue, we introduce Constrained BPE

(CBPE), a simple extension to the BPE algorithm that ex­

3https://en.wikipedia.org/wiki/Abugida
4UTF­8 based

plicitly preserves dependent vowels during tokenization. In

standard BPE, the algorithm initializes with individual char­

acters or Unicode. In contrast, CBPE modifies this initializa­

tion step by attaching dependent vowels to their preceding

Unicode characters, as illustrated in Figure 3. This ensures

that the consonant­vowel units remain intact, preserving

linguistic coherence. Once initialized, CBPE follows the

standard BPEmerge learning procedure i.e. selectingmerges

that have high frequency. The merges learned using CBPE

ensure obvious merges are reduced. During tokenization,

CBPE applies similar constraints on dependent vowels and

consecutively applies merges similar to the BPE algorithm.

Hence, CBPE ensures that the dependent vowels do not

form separate tokens or avoid tokens starting with depen­

dent vowels during the tokenization process. A formal de­

scription of the algorithm is presented in Algorithm 2. For

pre­tokenization followed by CBPE, we replace BPE in line

2 of Algorithm 1 with the CBPE algorithm.

Algorithm 2 CBPE (Constrained BPE) Algorithm

Require: Input: Training Corpus C; Number of Merges K
Ensure: Output: Vocabulary V , MergesM
1: V ← ∅,M← ∅
2: Initialize vocabulary with dependent vowels attached

to preceding Unicode characters

3: while |V| < K do

4: (tl, tr)← Select the most frequent bigram pair in C
5: V ← V ∪ {tltr}
6: M←M∪ {(tl, tr)}
7: Replace all occurrences of (tl, tr) with tltr in C
8: end while

The effects of our proposed methods, including lookup­

based pre­tokenization and constrained BPE, are empirically

evaluated in the next Section 4 (Experiments), focusing on

their impact on machine translation and language modeling.

4. Experiments

In this section, we describe our experimental setup to answer

the following set of questions: (a) Does lexically grounded

segmentation combined with a statistical tokenization al­

gorithm improve performance in machine translation and

languagemodeling tasks? (b) Doesmodel­driven lookup cre­

ation have better performance than a human­created lookup?

(c) Does constraining dependent vowels from forming a sep­

arate token have better or equal performance to that of BPE?

4.1. Segmentation Encoding

To distinguish between the segmentations produced by the

lookup and BPE methods, we utilize two distinct segmenta­

tion markers. The ** symbol is employed for both lookup

and model­based segmentations, while the @@ symbol

4
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Word  BPE Initialization  CBPE Initialization 

क़लम  क⎵◌़⎵ल⎵म  क़⎵ल⎵म 

पढ़ाइर्या  प⎵ढ⎵◌़⎵◌ा⎵इर्या  प⎵ढ़ा⎵इर्या 

कायार्यालय  क⎵◌ा⎵र⎵◌्⎵य⎵◌ा⎵ल⎵य  का⎵र ्⎵या⎵ल⎵य 

Figure 3. BPE and CBPE initialization

specifically denotes segmentations generated by the BPE

algorithm across all experiments.

4.2. Tokenizer Evaluation

Intrinsic evaluation of tokenizers remains challenging as

there are no standard intrinsic metrics that correlate well

with downstream performance. The community commonly

relies on the fertility metric (Rust et al., 2021)—the average

number of subwords produced per tokenized word. A lower

fertility score generally indicates more efficient tokeniza­

tion with fewer subword fragments per word. However,

in morphologically rich languages, higher fertility scores

may be necessary to model and capture linguistic structures

appropriately.

To address this, we adopt a multi­faceted evaluation strategy.

First, we use downstream task performance (machine trans­

lation and language modeling) to assess the practical utility

of each tokenization method. Second, we introduce a new

metric, EvalTok: Human Post­hoc Evaluation of Tokeniza­

tion, to capture the semantic and morphological adequacy

of subword segmentations—factors often overlooked by

automatic metrics.

We sample 100 words from a test set and perform a human

evaluation on the segmentation quality of BPE and Lookup­

based pre­tokenization. We define a metric on a scale of

1–4 to rate the quality of segmentation. This two­pronged

evaluation is motivated by the need to balance structural

efficiency (via fertility and downstream performance) with

linguistic coherence (via human evaluation). Automatic

metrics like fertility are informative for measuring fragmen­

tation, while EvalTok provides human­grounded validation

of morphological correctness.

The scoring rubrics followed by the language experts are as

follows:

• 1: None of the tokens are morphologically correct and

neither preserve the semantics of the original word.

Example: If the wordखुलता =खुल + ता (khulatā = khula

+ tā) is tokenized to खु (khu,­) and लता (latā, climber),

both the tokens are incorrect and do not preserve the

correct semantic meaning of the original word.

Note: Here, the word लता is independently a semanti­

cally correct word meaning climber, but in the context

of the original word, it is incorrect.

• 2: > 50% of the tokens do not preserve the morphology

or semantics in the context of the original word.

Example: गोलाध� (gōlārdha, hemisphere) = गोल (gōla,

sphere) @@ ◌ार् (ār, ­) @@ ध (dha, ­)

Here, the first token गोल is correct while the second

and third are incorrect tokens (both morphologically

and semantically)

• 3: >= 50% of the tokens are either morphologically or

semantically correct.

Example: The word �चत्रा (citrā) is ideally not to be

tokenized further. But in case the word is tokenized to

�चत्र (citra) @@ ◌ा (ā), the token �चत्र do preserve the

meaning in the context of the original word and hence

scored positively.

• 4: All the tokens are morphologically and semantically

correct. The words that aren’t tokenized are also given

the high score.

Example: छाया�चत्र (chāyācitra, photograph) = छाया

(chāyā, shadow)@@ �चत्र (citra, picture). Here both the

tokens are morphologically and semantically correct.

Since the fertility metric does not fully reflect the linguistic

validity of token splits, we evaluate the tokenization perfor­

mance of the Lookup + BPE algorithm using both down­

stream task performance and human evaluation via EvalTok.

For CBPE, we report fertility, downstream task performance,

and human evaluation to assess its effectiveness in reducing

undesirable subword boundaries, particularly for dependent

vowels in Indic scripts.

In the next Section 4.3, we present the implementation de­

tails. Subsequently, in Section 5.1, we present a more de­

tailed discussion of CBPE’s impact on fertility reduction

and downstream performance.

4.3. Implementation Details

4.3.1. Model­driven Word segmentation

We performed our experiments using the Huggingface Trans­

formers library5. We evaluate the model performance using

Exact Match (EM), Precision (P), Recall (R), and F1 scores

(Bhatt et al., 2024). We observe that finetuning on large

5https://github.com/huggingface/transformers

5
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models can overfit, so we restrict the experiment to only

small (300M) and base (580M) parameter models for mT5

and the base model for ByT5. The results for mT5 and ByT5

fine­tuning are provided in Appendix C. Hyper­parameters

details are presented in Appendix E.

4.3.2. Downstream Task

Machine Translation: We perform machine translation

experiments for Hindi to Marathi and Marathi to Hindi lan­

guage directions for 16k and 32k merges. We use a standard

transformer model (Vaswani et al., 2017) with 6 encoder and

decoder layers. The model is trained for a maximum of 100k

updates using the Adam (Kingma & Ba, 2014) optimizer

with β1 = 0.9 and β2 = 0.98. We use a dropout of 0.2 and

apply gradient clipping with a norm of 1.0. We set a learn­

ing rate of 5× 10−4. Before training, we preprocessed and

normalized the data using IndicNLP6 library. We perform

our experiments using fairseq7 library.

We evaluate the translation performance using both auto­

matic and human evaluation metrics. In automatic metrics,

we employ lexical­based metrics such as BLEU (Papineni

et al., 2002), and chrF (Popović, 2015), along with model­

based metrics like COMET (Rei et al., 2020; 2022)8. For

human evaluation, we assess 100 randomly sampled transla­

tion outputs using the widely­used XSTS (Licht et al., 2022)

metric, rated on a scale from 1 to 5. We report our results on

the In22­Gen (Gala et al., 2023) test set. To ensure control

over our experiments, we apply lookup and model­based

pre­tokenization only on the source text. Experiments were

conducted on four NVIDIAH100 80 GB GPUs.

Language Modeling: We train a 355M­parameter language

model based on the GPT­2 Medium architecture (Radford

et al., 2019), using various tokenization strategies. In par­

ticular, we evaluate our proposed lexically grounded tok­

enization approach, which combines a linguistically curated

lookup­based pre­tokenization step with Byte Pair Encoding

(BPE) using 32k merge operations. For Hindi and Marathi,

the model is trained on 1 billion words drawn from the

Sangraha corpus (Khan et al., 2024). We use the Fairseq

framework to conduct all language modeling experiments

and assess model performance using perplexity and cross­

entropy loss on a held­out set of 500 sentences. Detailed

training configurations are provided in Appendix E.

5. Results and Discussions

In this section, we discuss our results and observations.

Machine translation scores on automatic metrics for BPE,
6https://github.com/anoopkunchukuttan/indic_

nlp_library
7https://github.com/facebookresearch/fairseq
8We use reference­free wmt22­comet­da model

Table 3. Perplexity and loss metrics for the Hindi and Marathi

languages on the language modeling task. Results are reported

after training for 7 epochs.

Tokenization Algorithm Hindi Marathi

PPL Loss PPL Loss

BPE 350.00 8.45 107.45 6.748
Lookup + BPE 225.00 7.81 97.78 6.611

CBPE 240.00 7.68 113.36 6.825
Lookup + CBPE 151.00 7.24 99.83 6.641

Lookup + BPE, Model WS+BPE, CBPE, Lookup + CBPE,
and Model WS+CBPE are presented in Table 4.

5.1. Quantitative Evaluation

Morphologically Grounded Tokenizer vs. BPE: In down­

stream machine translation tasks for Hindi to Marathi and

Marathi to Hindi, we observe that lexical grounded pre­

tokenization (Lookup + BPE) followed by BPE consis­

tently yields a higher COMET score than that of BPE for

16k and 32k merges except for Marathi to Hindi direction

with 32k merges, where both tokenization methods achieve

similar COMET scores. In terms of chrF2 scores, for Hindi

to Marathi, we see an improvement of +2.2 for 32k merges

compared to BPE. For the Marathi to Hindi, we observe a

minor improvement of +0.9 for 16k merges.

In the language modeling task, the Lookup + BPE con­

figuration consistently outperforms standard BPE, achiev­

ing lower perplexity and loss values. Similarly, Lookup
+ CBPE yields substantial improvements over CBPE, in­

dicating that incorporating linguistically informed pre­

tokenization significantly enhances model performance.

These findings underscore the value of lexically grounded

tokenization in facilitating more effective subword segmen­

tation and representation learning.

It is important to note that perplexity scores between BPE

and CBPE­based models are not directly comparable, as

they are trained with different vocabulary structures. Nev­

ertheless, within each tokenization family, the inclusion of

a lookup­based pre­tokenization step results in clear and

consistent gains. The detailed results are summarized in

Table 3.

BPE vs. CBPE:We observe a reduction in fertility scores

for CBPE compared to BPE for 8k, 16k, and 32k merge

operations, indicating the effectiveness of constraining de­

pendent vowels during the vocabulary creation process of

BPE. Notably, vocab with 8k merges showed a difference

of 0.021 for Hindi, suggesting that CBPE is more effective

for smaller vocabulary sizes. Fertility scores of Hindi and

Marathi for 8k, 16k, and 32kmerges for both BPE and CBPE

on the In22­Gen are shown in Table 5.

6

https://github.com/anoopkunchukuttan/indic_nlp_library
https://github.com/anoopkunchukuttan/indic_nlp_library
https://github.com/facebookresearch/fairseq


MorphTok: Morphologically Grounded Tokenization for Indic languages

Table 4.Machine Translation results on In22­Gen. chrF2 and COMET scores are reported for Hindi to Marathi andMarathi to Hindi

translation.

Hindi→Marathi Marathi→ Hindi

16k 32k 16k 32k

chrF2 (↑) COMET (↑) chrF2 (↑) COMET (↑) chrF2 (↑) COMET (↑) chrF2 (↑) COMET (↑)
BPE 37.7 0.6428 35.2 0.6155 37.0 0.6035 36.8 0.5962
Lookup + BPE 36.5 0.6454 36.1 0.6301 37.9 0.6115 36.3 0.5962

Model WS + BPE 37.8 0.6433 36.1 0.6142 37.9 0.6072 36.3 0.5853

CBPE 37.3 0.6448 36.7 0.6274 38.4 0.6151 37.6 0.5954

Lookup + CBPE 37.1 0.6395 36.7 0.6261 38.4 0.6232 36.2 0.5946
Model WS + CBPE 37.6 0.6380 36.0 0.5144 37.0 0.5991 36.3 0.5788

Table 5. Fertility scores on In22­Gen for Hindi and Marathi

Hindi Marathi

Algorithm 8k 16k 32k 8k 16k 32k

BPE 1.2708 1.1612 1.0953 2.0952 1.8858 1.7240

CBPE 1.2495 1.1566 1.0925 2.0082 1.8174 1.6633

For machine translation, CBPE yields higher COMET scores

than BPE for Hindi to Marathi at 16k and 32k merges and

for Marathi to Hindi at 16k merges. At 32k merges for

Marathi to Hindi, the COMET scores of BPE and CBPE

are comparable. In terms of chrF2 scores, we observe a

gain of +1.4 for Marathi to Hindi translation for 16k merges

compared to BPE. In the Hindi to Marathi direction, we

observe a gain of +1.5 chrF2 for 32k merges.

Overall, our findings suggest that tokenization with con­

straining dependent vowels helps reduce fertility while main­

taining comparable performance to BPE. In some cases,

CBPE also leads to improved COMET and chrF2 scores.

Lookup vs. Model­driven segmentation: We observe that

Lookup­based segmentation consistently performs better

than Model­based segmentation in terms of COMET scores.

This suggests that (a) linguistically grounded segmentation

may not be necessary for all words, and (b) model­driven

segmentation may introduce noise, requiring further verifi­

cation through human evaluation.

5.2. Post­Hoc Human Evaluation

For a comprehensive assessment of tokenization quality, we

employ the EvalTok metric, detailed in Section 4.2, which

quantifies morphological correctness and semantic coher­

ence in segmented tokens

5.2.1. Human Evaluation of MT Results

Commonly used metric for the evaluation of MT results

is the BLEU score. BLEU is infamously ignorant of the

meaningfulness of the output and is highly dependent on

the literalness of the reference translations. Hence, BLEU

is not completely reliable, especially for morphologically

rich languages, which often yield low scores for the said

reasons. Therefore, we use the XSTS metric, as proposed

Table 6. Human evaluation of MT predictions for various tokeniza­

tion settings for vocabulary size of 32k

Source→ Target BPE Lookup + BPE Model WS + BPE

HIN→MAR 1.98 2.06 1.94
MAR→ HIN 2.85 2.81 2.80

by Licht et al. (2022), as a method of post­hoc intrinsic

(qualitative) evaluation by language experts. We randomly

selected 100 sentences subjected to translation under the

3 tokenization settings viz. S1: default BPE tokenization,

S2: pre­tokenization with lookup followed by BPE and S3:

pre­tokenization with our segmenter model (Model WS),

followed by BPE. Language experts9 followed the XSTS

metric to score the target predictions from all 3 tokenization

settings.

Table 6 shows the human evaluation results of theMToutput,

using the XSTS metric for the three tokenization settings:

S1, S2, and S3, as discussed above. The evaluation shows

that the translation quality is better with setting 2 for Hindi

→Marathi, with an increase in score of 0.8. The score is 0.4

lesser for S2 compared to S1 forMarathi→Hindi. The score

with the setting S3 is slightly lower in both cases, which can

be attributed to the possible errors from the segmentation

model, yet it is promising to note that the values are not

significantly lower than their counterparts.

5.2.2. Human Evaluation of Tokenization

To analyze the quality of tokenization with BPE versus our

method of pre­tokenization + BPE, we propose a new metric

EvalTok, as described in Section 4.2. We randomly chose

100 words and their respective tokenized outputs in the two

settings: (a) default BPE and (b) pre­tokenization + BPE10

The language experts scored the tokenization based on the

EvalTok metric as described in Section 4.2. The average

score is 2.56 for setting (a) and 3.16 for setting (b). The

results are consistent with our assumption that a morpholog­

9The experts assigned to the task have native/advanced level
proficiency in both source and target languages.

10We chose the words only from the set of words that underwent
the pre­tokenization step for better comparison.
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Table 7. Number of the dependent vowels as a separate token for

various LLMs tokenizers. Here, Indic models are LLMs trained

specifically for Indian languages. DV represents Dependent Vow­

els of the Devanagari script.

Models Indic Model DV count as separate token

LLAMA-3.1-8B N 12330
GEMMA-2-2B N 2157
NANDA Y 454
SARVAM-1 Y 325
CBPE ­ 0

ically aware pre­tokenization will lead to better quality to­

kens. Sample human evaluation scores for BPE and Lookup
+ BPE using the EvalTok metric are shown in Figure 7.

6. FurtherAnalyses

In this section, we present a detailed analysis of our ap­

proaches across different aspects. Specifically, we examine

(a) dependent vowels in existing LLM tokenizers (Section

6.1), (b) lookup pre­tokenization and constraining in mul­

tilingual setup (Section 6.2), (c) downstream performance

correlation with Rényi’s efficiency (Section 6.3), and (d)

word length and segmentation size (Section 6.4).

6.1. Dependent Vowels in Existing LLM Tokenizers

We quantify the dependent vowels of the Devanagari script

appearing as a single token in existing tokenizers of popu­

lar multilingual LLMs: LLAMA-3.1.8B (Grattafiori et al.,

2024), GEMMA-2-2B (Team et al., 2024), and LLMs trained

focused on Indian languages such as SARVAM-1 (SarvamAI,

2024) and NANDA (Choudhury et al., 2024). We use the IN22­

Gen Hindi benchmark corpus, consisting of 1024 sentences,

particularly for each sentence, and we count the number of

times dependent vowels are used as a separate token.

We observe that popular multilingual LLM tokenizers such

as LLAMA-3.1-8B and GEMMA-2-2B trained with traditional
statistical tokenization algorithms have high counts. Simi­

larly, models that are explicitly trained on Indian language

data also have a significant count. Table 7 shows the total

counts for various tokenizers. In contrast, CBPE have zero

dependent vowels as a separate token.

6.2. Multilingual (1 to M) translation

To further study the effectiveness of pre­tokenization with

lookup and constrained BPE on amultilingual machine trans­

lation setup. We select 6 target languages: Dogri (doi),

Konkani (gom), Maithili (mai), Marathi (mar), Nepali (npi),

and Sanskrit (san), belonging to the same language fam­

ily and similar script as the source language. Recall that

the lookup­based pre­tokenization used in our multilingual

Table 8. Comparison of Tokenization Algorithms using Rényi’s

efficiency and chrF2 score forMarathi→ HindiMachine Trans­

lation task.

Tokenization algorithm Rényi’s efficiency chrF2 score

Vocabulary size: 32k

BPE 0.356 36.8

Lookup + BPE 0.372 36.2

Vocabulary size: 16k

BPE 0.393 37.0
Lookup + BPE 0.407 37.6

translation experiments is described in detail in Section 3.1.1,

where we outline the dictionary construction process. We

find that in multilingual settings, BPE has slightly better

scores than Lookup + BPE. This suggests that applying

lookup­based pre­tokenization only to the source language

might not necessarily facilitate cross­lingual transfer. The

results are reported in Table 16.

6.3. MT results correlation with Rényi’s efficiency

Recent work on tokenizer evaluation: Rényi’s efficiency

(Zouhar et al., 2023) utilizes an information theory frame­

work to measure the tokenization quality intrinsically to

show a significant correlation with BLEUmetric for English­

German MT. Rényi’s efficiency measures the ratio of the

unigram entropy of the tokenized text to the maximum pos­

sible entropy given the vocabulary size.

Table 9. Comparison of Tokenization Algorithms using Rényi’s ef­

ficiency and chrF2 score forHindi→Marathimachine translation

task.

Tokenization algorithm Rényi’s efficiency chrF2 score

Vocabulary size: 32k

BPE 0.376 35.2
Lookup + BPE 0.378 37.4

Vocabulary size: 16k

BPE 0.408 37.7

Lookup + BPE 0.410 36.5

We analyze the correlation between chrF2 scores and Rényi’s

efficiency11 on BPE and Lookup + BPE tokenization meth­

ods for both Hindi→Marathi and Marathi→Hindi transla­

tion. We compute Rényi’s Efficiency on MT training data

and set α = 2.5. The results for Hindi to Marathi and

Marathi to Hindi are shown in Table 9 and Table 8, respec­

tively. For the Hindi→Marathi translation, we observe a

positive correlation between Rényi’s Efficiency and chrF2

for 32k vocabulary but a negative correlation for 16k. Con­

versely, in Marathi→Hindi, we observe a positive correla­

11We use https://github.com/zouharvi/tokenization­scorer to
compute Rényi’s efficiency.
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Figure 4. Comparison of Average Segment size for varying word

length

tion for 16k vocabulary but a negative correlation for 32k.

This suggests that the relationship between Rényi’s Effi­

ciency and translation quality depends on vocabulary size

and translation direction. Our findings indicate that Rényi’s

efficiency is not always a reliable indicator of tokenization

quality in machine translation, which is in line with ob­

servations made by (Libovický & Helcl, 2024). Further

investigation is required to understand its variability across

language directions and vocabulary size.

6.4. Word length and Segment size

We randomly sample 395 words with varying lengths and

apply BPE and CBPE on merges learned for 32k merge

operations. Then, we count the segment size with space

separation. We exclude words that have the same segment

size. On the remaining words, we compute the average seg­

ment size for BPE and CBPE for varying word lengths. We

observe that, on average, CBPE has a smaller segment size

than BPE, suggesting its effectiveness. Figure 4 shows the

average segment size for BPE and CBPE groups according

to word length.

7. Conclusion & Future Works

We introduced a new dataset for Hindi and Marathi to sup­

port a novel lookup­based pretokenization method followed

by BPE, aiming to improve tokenization for low­resource

languages. Our approach outperformed standard BPE in

both machine translation and language modeling tasks and

received higher scores in human evaluations. We also pro­

posed a new human evaluation metric to better assess tok­

enization quality. By incorporating constraints on dependent

vowels, our method (CBPE) effectively addressed common

tokenization issues in syllabic writing scripts, reducing fer­

tility without compromising model performance. Given its

foundation in morphological and script­based features, the

method is extendable to other Indo­Aryan and Dravidian

languages. Future work will explore multilingual extensions

and the method’s impact on larger language models.

Impact Statement

This paper proposes incorporating linguistically grounded

segmentation during the pre­tokenization stage compared

to the statistically based tokenization algorithm. Also, we

propose a method to respect the script­specific properties of

Indic writing systems. These contributions have the potential

to contribute to morphologically rich languages and more

efficient training of large language models.
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Appendix

A. Lookup Data

Table 10 shows the sample entries in our dataset for Hindi. We are covering word splits from both internal Sandhi (leading

to stem/root and affixes split) and external Sandhi (leading to multi­word split).

Table 10. Examples from the Lookup Hindi Data

Word Split 1 Split 2 Split 3

�वद्यालय �वद्या आलय

उठता उठ ता

उतारना उतार ना

कराकर करा कर

हडबडाना हड बडा ना

काया�लय काय� आलय

जगदम्बा जगत् अम्बा

B. Hyperparameters & Dataset

The hyperparameters for language modeling experiments and model­based word segmentation are shown in Table 11 and 12,

respectively. The dataset details for Multilingual analysis are shown in Table 13.

Table 11. Hyperparameter for Language Modeling

Hyperparameter Value

Architecture transformer_lm_gpt2_medium

Share Decoder Input­Output Embed True

Dropout 0.1

Optimizer Adam

Adam Betas (0.9, 0.98)

Weight Decay 0.01

Clip Norm 0.0

Learning Rate 0.0005

LR Scheduler inverse_sqrt

Warmup Updates 4000

Warmup Init LR 1× 10−7

Tokens per Sample 16

Max Tokens 64

Update Frequency 16

FP16 (Mixed Precision) True

Max Updates 500000

C. Word Segmentation

Table 14 shows the word segmentation performance of various models.

D. BLEU scores

The BLEU scores for Hindi→Marathi and Marathi→ Hindi machine translation tasks are shown in Table 15.

14



MorphTok: Morphologically Grounded Tokenization for Indic languages

Table 12. Hyperparameter for Model­based word segmentation

Hyperparameter Value

num_train_epochs 30

per_device_train_batch_size 16

per_device_eval_batch_size 4

logging_steps 1000

save_steps 1000

save_total_limit 3

eval_strategy steps

eval_steps 1000

metric_for_best_model eval_loss

load_best_model_at_end True

dataloader_num_workers 32

bf16 True

save_safetensors False

gradient_checkpointing False

Table 13. Dataset used for 1 to M MT model

Languages #Train #Dev #Test

Hindi−Marathi ∼ 2M 997 1024

Hindi−Dogri ∼ 25.2K 997 1024

Hindi−Konkani ∼96.3K 997 1024

Hindi−Maithili ∼23.6K 997 1024

Hindi−Nepali ∼0.12M 997 1024

Hindi−Sanskrit ∼35.7K 997 1024

Table 14. Model­based word segmentation results

Models
hin mar

EM P R F1 EM P R F1

mT5­Small 80.820 0.977 0.972 0.972 96.71 0.994 0.994 0.994
mT5­Base 80.76 0.9774 0.9980 0.9725 97.084 0.9952 0.9958 0.9951
ByT5­Base 84.846 0.9797 0.9821 0.9791 98.477 0.9979 0.999 0.9983

Table 15.Machine Translation results on IN22­Gen. BLEU scores are reported for Hindi to Marathi andMarathi to Hindi translation.

HIN→MAR MAR→ HIN

16k 32k 16k 32k

BPE 10.5 9.0 13.7 14.2
Lookup + BPE 9.6 9.6 14.1 13.3
Model WS + BPE 9.9 9.6 14.1 13.3

CBPE 10.3 9.8 14.4 14.3
Lookup + CBPE 10.0 9.6 14.2 13.9
Model WS + CBPE 9.9 9.3 13.5 13.9

E. Marathi to Hindi MT correlations with Rényi’s efficiency

The Marathi to Hindi MT correlations scores of Rényi’s efficiency with chrF2 scores are shown in Table 8.
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F. Perplexity and loss comparison for language modeling

Figure 5 and 6 illustrate the impact of word segmentation for different strategies on language modeling performance in terms

of perplexity and loss. It is evident that the lookup­enhanced approaches (Lookup + BPE and Lookup + CBPE) achieve
lower perplexity and loss compared to their standard counterparts (BPE and CBPE). This suggests that leveraging segmented

words through lookup­based enhancements helps in better language modeling. Notably, Lookup + CBPE achieves the

lowest loss and perplexity, reinforcing the idea that segmentation strategies incorporating lookup mechanisms can improve

model efficiency.

Figure 5. Comparison of Perplexity over Epochs

Figure 6. Comparison of Loss over Epochs

G. Multilingual (1 to M) translation analysis

The MT results for Hindi→ {Dogri, Konkani, Maithili, Marathi, Nepali, Sanskrit} are shown in Table 16.
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Table 16. BLEU, chrF2 scores for BPE, Lookup + BPE, CBPE and Lookup + CBPE for Hindi to {Dogri, Konkani, Maithili, Marathi,

Nepali, and Sanskrit} MT with 8k, 16k, and 32k merges.

Method Metric
doi gom mai mar npi san

8k 16k 32k 8k 16k 32k 8k 16k 32k 8k 16k 32k 8k 16k 32k 8k 16k 32k

BPE

BLEU 21.6 21.3 21.4 11.4 11.2 12.1 13.9 14.0 13.6 9.2 9.5 9.8 10.1 10.1 9.9 8 8.2 7.7

chrF2 49.0 48.9 48.8 41.0 41.0 40.7 46.6 46.6 45.8 40.6 40.2 39.9 44.7 44.6 44.6 35.9 35.8 35.4

Lookup + BPE

BLEU 21.5 21.4 21.1 10.3 11.9 11.7 13.7 14.4 13.6 9.0 9.9 9.8 9.7 9.8 10.0 7.6 8.1 7.9

chrF2 48.8 48.9 48.5 40.3 41.1 41 46.3 46.4 45.7 40.1 40.5 39.8 44.4 44.5 44.5 35.2 35.9 35.6

CBPE

BLEU 21.5 21.6 21.3 12.1 11.4 12.8 14.1 13.8 13.9 9.4 9.6 10.6 10.3 10.0 9.4 7.9 7.6 7.3

chrF2 49.1 49.0 48.5 41.0 40.9 40.6 46.5 46.1 45.4 39.8 40.2 39.8 44.8 44.6 43.7 35.9 35.5 34.8

Lookup + CBPE

BLEU 21.4 21.3 20.9 11.6 11.6 12.1 14.1 13.2 14.0 9.7 9.3 10.1 9.9 10.1 9.8 7.7 7.4 7.2

chrF2 48.8 48.6 48.2 41.1 40.5 40.5 46.7 45.7 45.5 40.8 39.2 40.0 44.8 44.4 44.3 36.0 35.0 34.6
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Hindi Word BPE Segmentation (32k) SCORE Lookup+BPE Segmentation (32k) SCORE
अंतरा अंतर@@ ◌ा 4 अंतर@@ ** ◌ा 4

अजैिवक अ@@ जैिवक 4 अ@@ ** जैिवक 4
अपचयन अप@@ चयन 4 अप@@ ** चयन 4
अथ�पूण� अथ�@@ पूण� 4 अथ�@@ ** पूण� 4

अि�नीकुमार
अश्@@ िव@@ नी@@

कुमार 2 अश्@@ िव@@ नी@@ ** कुमार 2
अ�ाव� अ@@ �ा@@ व@@ � 1 अ@@ ष्@@ टा** व@@ � 1
असताना अस@@ ताना 4 अस** ताना 4
आगरकर आग@@ रकर 1 आग@@ र** कर 1
आठवले आठवले 4 आठव** ले 4

आनंददायी आनंद@@ दायी 4 आनंद@@ ** दायी 4
आ�य�जनक आ�य�जनक 4 आ�य�** जनक 4

उतरता उतरता 4 उतर** ता 4
उतरते उतरते 4 उतर** ते 4
उतरवा उतर@@ वा 4 उतर@@ व** ◌ा 2
उ�हन उ@@ �@@ हन 1 उद्@@ ** वहन 4
उपजता उप@@ जता 1 उपज** ता 4
उपजेल उप@@ जेल 1 उपज** ◌ेल 4
उपनगर उपनगर 4 उप** नगर 4
उभारता उभारता 4 उभार** ता 4
उभारते उभार@@ ते 4 उभार** ते 4
उभारा उभारा 4 उभार** ◌ा 4
उभारे उभारे 4 उभार** ◌े 4

एक�पता एक�पता 4 एक** �पता 4
ऑ�� ेिलयाने ऑ@@ �� े@@ िलया@@ ने 2 ऑ@@ �� े@@ िलया@@ ** ने 2

करकरे कर@@ करे 2 कर@@ कर** ◌े 4
क�ता कल्@@ पता 1 कल्@@ प** ता 2
क�ा कल्@@ पा 1 कल्@@ प** ◌ा 2

कांडला का@@ ◌ंड@@ ला 1 कांड** ला 4
कांडा का@@ ◌ंडा 1 कांड** ◌ा 4

काकडे का@@ क@@ डे 1 का@@ क@@ ड** ◌े 2
काटता का@@ टता 1 काट** ता 4
काटते काटते 4 काट** ते 4
कातते का@@ तते 1 का@@ त** ते 3
कात� का@@ तर@@ ◌ू 2 का@@ तर@@ ** ◌ू 2
कापता का@@ पता 1 का@@ प** ता 3

काय�कता� काय�कता� 4 काय�** कता� 4
कालखंड कालखंड 4 काल** खंड 4
िकरिकरा िकरिक@@ रा 1 िकरिक@@ र** ◌ा 1
िकरिकरे िकरिक@@ रे 1 िकरिक@@ र** ◌े 1
कुरकुरा कुर@@ कु@@ रा 1 कुर@@ कु@@ र** ◌ा 1
कुरकुरे कुर@@ कु@@ रे 2 कुर@@ कु@@ र** ◌े 2
कोडंली को@@ ◌ंड@@ ली 2 को@@ ◌ंड@@ ** ली 2
कोडंा कोडंा 4 को@@ ◌ंड@@ ** ◌ा 2
कोबंो को@@ ◌ंब@@ ◌ो 1 को@@ ◌ंब@@ ** ◌ो 1

�मवार �म@@ वार 4 �@@ म** वार 2
खचा� खचा� 4 खच�** ◌ा 4

Figure 7. Sample EvalTok scores for BPE and Lookup + BPE segmentation.
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