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ABSTRACT

Given a set of images, our goal is to map each image to a point in a feature space
such that, not only point proximity indicates visual similarity, but where it is located
directly encodes how prototypical the image is according to the dataset.
Our key insight is to perform unsupervised feature learning in hyperbolic instead of
Euclidean space, where the distance between points still reflects image similarity,
yet we gain additional capacity for representing prototypicality with the location
of the point: The closer it is to the origin, the more prototypical it is. The latter
property is simply emergent from optimizing the metric learning objective: The im-
age similar to many training instances is best placed at the center of corresponding
points in Euclidean space, but closer to the origin in hyperbolic space.
We propose an unsupervised feature learning algorithm in Hyperbolic space with
sphere pACKing. HACK first generates uniformly packed particles in the Poincaré
ball of hyperbolic space and then assigns each image uniquely to a particle. With
our feature mapper simply trained to spread out training instances in hyperbolic
space, we observe that images move closer to the origin with congealing - a warping
process that aligns all the images and makes them appear more common and similar
to each other, validating our idea of unsupervised prototypicality discovery. We
demonstrate that our data-driven prototypicality provides an easy and superior
unsupervised instance selection to reduce sample complexity, increase model
generalization with atypical instances and robustness with typical ones.

1 INTRODUCTION

Not all instances are created equally. Some instances are more representative of the data set, whereas
others are outliers or anomalies. Representative instances can be viewed as prototypes and used for
interpretable machine learning (Bien & Tibshirani, 2011), curriculum learning (Bengio et al., 2009),
and learning better decision boundaries (Carlini et al., 2018). Prototypes also allow us to classify
with as few as or even one example (Miller et al., 2000). Given a set of images, thus it is desirable to
organize them based on prototypicality to form a visual hierarchy.

If the image feature is given, it is relatively easy to find prototypes: We just need to identify density
peaks of the feature distribution of the image set. Otherwise, discovering prototypical instances
without supervision is difficult: There is no universal definition or simple metric to assess the
prototypicality of the examples.

A naive method to address this problem is to examine the gradient magnitude (Carlini et al., 2018).
However, this approach is shown to have a high variance which is resulted from different training
setups (Carlini et al., 2018). Some methods address this problem from the perspective of adversarial
robustness (Stock & Cisse, 2018; Carlini et al., 2018): prototypical examples should be more
adversarially robust. However, the selection of the prototypical examples highly depends on the
adversarial method and the metric used in the adversarial attack. Several other methods exist for this
problem but they are either based on heuristics or lack a proper justification (Carlini et al., 2018).

Naturally, given a feature space, prototypical examples can be identified as density peaks. How-
ever, prototypicality undergoes changes as the feature space undergoes changes. In this paper, we
propose an unsupervised feature learning algorithm, called HACK, for learning features that reflect
prototypicality.In particular, HACK constructs a hierarchical arrangement of all the samples, with

1



Under review as a conference paper at ICLR 2024

typical examples positioned at the top level and atypical examples residing at the lower levels of the
hierarchy. Different from existing unsupervised learning methods, HACK naturally leverages the
geometry of hyperbolic space for unsupervised learning. Hyperbolic space is non-Euclidean space
with constant non-negative curvature (Anderson, 2006). Different from Euclidean space, hyperbolic
space can represent hierarchical relations with low distortion. Poincaré ball model is one of the most
commonly used models for hyperbolic space (Nickel & Kiela, 2017b). One notable property of
Poincaré ball model is that the distance to the origin grows exponentially as we move towards the
boundary. Thus, the points located in the center of the ball are close to all the other points while the
points located close to the boundary are infinitely far away from other points. With unsupervised
learning in hyperbolic space, HACK can learn features which capture both visual similarity and
hierarchical arrangements of the samples.

HACK optimizes the organization of the dataset by assigning the images to a set of uniformly
distributed particles in hyperbolic space. The assignment is done by minimizing the total hyperbolic
distance between the features and the particles via the Hungarian algorithm. The prototypicality arises
naturally based on the distance of the example to the others. Prototypical examples tend to locate in
the center of the Poincaré ball and atypical examples tend to locate close to the boundary. Hyperbolic
space readily facilitates such an organization due to the property of the hyperbolic distance.

Our paper makes the following contributions.

• We propose the first unsupervised feature learning method to learn features which capture both
visual similarity and prototypicality. The positions of the features reflect prototypicality of the
examples.

• The proposed method HACK assigns images to particles that are uniformly packed in hyperbolic
space. HACK fully exploits the property of hyperbolic space to construct a hierarchy of the samples
in an unsupervised manner.

• We ground the concept of prototypicality based on congealing which conforms to human visual
perception. The congealed examples can be used to replace the original examples for constructing
datasets with known prototypicality. We validate the effectiveness of the method by using synthetic
data with natural and congealed images. We further apply the proposed method to commonly used
image datasets to reveal prototypicality.

• The discovered prototypical and atypical examples are shown to reduce sample complexity and
increase the robustness of the model.

2 RELATED WORK

Prototypicality. The study of prototypical examples in machine learning has a long history. In
Zhang (1992), the authors select typical instances based on the fact that typical instances should
be representative of the cluster. In Kim et al. (2016), prototypical examples are defined as the
examples that have maximum mean discrepancy within the data. Li et al. (Li et al., 2018) propose
to discover prototypical examples by architectural modifications: project the dataset onto a low-
dimensional manifold and use a prototype layer to minimize the distance between inputs and the
prototypes on the manifold. The robustness to adversarial attacks is also used as a criterion for
prototypicality (Stock & Cisse, 2018). In Carlini et al. (2018), the authors propose multiple metrics
for prototypicality discovery. For example, the features of prototypical examples should be consistent
across different training setups. However, these metrics usually depend heavily on the training setups
and hyperparameters. The idea of prototypicality is also extensively studied in meta-learning for
one-shot or few-shot classification (Snell et al., 2017). No existing works address the prototypicality
discovery problem in a data-driven fashion. Our proposed HACK naturally exploits hyperbolic space
to organize the images based on prototypicality.

Unsupervised Learning in Hyperbolic Space. Learning features in hyperbolic space have shown to
be useful for many machine learning problems (Nickel & Kiela, 2017a; Ganea et al., 2018). One
useful property is that hierarchical relations can be embedded in hyperbolic space with low distortion
(Nickel & Kiela, 2017a). Wrapped normal distribution, which is a generalized version of the normal
distribution for modeling the distribution of points in hyperbolic space (Nagano et al., 2019), is
used as the latent space for constructing hyperbolic variational autoencoders (VAEs) (Kingma &
Welling, 2013). Poincaré VAEs is constructed in Mathieu et al. (2019) with a similar idea to Nagano
et al. (2019) by replacing the standard normal distribution with hyperbolic normal distribution.
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Figure 1: Congealed images are more typical than the original images. First row: sampled original
images. Second row: the corresponding congealed images.

Unsupervised 3D segmentation (Hsu et al., 2020) and instance segmentation (Weng et al., 2021) are
conducted in hyperbolic space via hierarchical hyperbolic triplet loss. CO-SNE (Guo et al., 2021a) is
recently proposed to visualize high-dimensional hyperbolic features in a two-dimensional hyperbolic
space. Although hyperbolic distance facilitates the learning of hierarchical structure, how to leverage
hyperbolic space for unsupervised prototypicality discovery is not explored in the current literature.

3 SAMPLE HIERARCHY

Sample Hierarchy VS. Class Hierarchy. While most of the existing works in hierarchical image
classification are focusing on using label hierarchy (Dhall et al., 2020; Guo et al., 2018), there also
exists a natural hierarchy among different samples. In Khrulkov et al. (2020), the authors conducted
an experiment to measure the δ-hyperbolicity of the various image datasets and showed that common
image datasets such as CIFAR10 and CUB exhibits natural hierarchical structure among the samples.
Amongst a collection of images representing digit 1, suppose x is used for representing an image
with a digit ‘1’ that is upright, x′ is used for representing an image with a digit 1 that leaning left and
x′′ is used for representing an image with a digit ‘1’ that leaning right. Given a metric d(·, ·), if we
assume that d(x′′,x′) ≈ d(x′′,x) + d(x′,x), in this context, we can naturally view the sample x as
the root, and consider the other samples as its children in an underlying tree.

Compared with class hierarchy which can be extracted based on the pre-defined label relations,
sample hierarchy is much harder to construct due to the lack of ground truth. Once a sample hierarchy
is established, there are currently no existing methods available for verifying the accuracy of the
hierarchy. Additionally, just like with class hierarchies, there may be ambiguities when constructing
a sample hierarchy since multiple samples could potentially serve as the root.

Building Sample Hierarchy from Density Peaks. Given existing features {f(vi)} obtained by
applying a feature extractor for each instance vi, prototypical examples can be found by examining
the density peaks via techniques from density estimation. For example, the K-nearest neighbor density
(K-NN) estimation (Fix & Hodges, 1989) is defined as pknn(vi, k) = k

n
1

Ad·Dd(vi,vk(i))
, where d is the

feature dimension, Ad = πd/2/Γ(d/2 + 1), Γ(x) is the Gamma function and k(i) is the kth nearest
neighbor of example vi. The nearest neighbors can be found by computing the distance between the
features. Therefore, the process of constructing sample hierarchy through density estimation can be
conceptualized as a two-step procedure involving: 1) feature learning and 2) detecting density peaks.

In the density estimation approach outlined above, the level of prototypicality depends on the learned
features. Varying training setups can induce diverse feature spaces, resulting in differing conclusions
on prototypicality. Nevertheless, prototypicality is an inherent attribute of the dataset and should
remain consistent across various features. The aim of this paper is to extract features that intrinsically
showcase the hierarchical organization of the samples. Specifically, by examining the feature alone
within the feature space, we should be able to identify the example’s prototypicality.

Construct a Sample Hierarchy from Congealing. To determine whether the feature truly captures
prototypicality, it is necessary to identify which sample is the prototype. We ground our concept
of prototypicality based on congealing (Miller et al., 2000). In particular, we define prototypical
examples in the pixel space by examining the distance of the images to the average image in the
corresponding class. Our idea is based on a traditional computer vision technique called image
alignment (Szeliski et al., 2007) that aims to find correspondences across images. During congealing
(Miller et al., 2000), a set of images are transformed to be jointly aligned by minimizing the joint
pixel-wise entropies. The congealed images are more prototypical: they are better aligned with the
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a) Supervised classification b) Our unsupervised feature learning c) Metric feature learning
with fixed known targets with fixed but unknown targets with unknown targets

Figure 2: The proposed HACK has a predefined geometrical arrangement and allows the images
to be freely assigned to any particle. a) Standard supervised learning has predefined targets. The
image is only allowed to be assigned to the corresponding target. b) HACK packs particles uniformly
in hyperbolic space to create initial seeds for the organization. The images are assigned to the particles
based on their prototypicality and semantic similarities. c) Standard unsupervised learning has no
predefined targets and images are clustered based on their semantic similarities.

average image. Thus, we have a simple way to transform an atypical example into a typical example
(see Figure 1). This is useful since given an unlabeled image dataset the typicality of the examples is
unknown, congealing examples can be naturally served as examples with known typicality and be
used as a validation for the effectiveness of our method.

4 UNSUPERVISED HYPERBOLIC FEATURE LEARNING

4.1 POINCARÉ BALL MODEL FOR HYPERBOLIC SPACE

Poincaré Ball Model for Hyperbolic Space. Euclidean space has a curvature of zero and a hyperbolic
space is a Riemannian manifold with constant negative curvature.. There are several isometrically
equivalent models for visualizing hyperbolic space with Euclidean representation. The Poincaré ball
model is the commonly used one in hyperbolic representation learning (Nickel & Kiela, 2017b). The
n-dimensional Poincaré ball model is defined as (Bn, gx), where Bn = {x ∈ Rn : ∥x∥ < 1} and
gx = (γx)

2In is the Riemannian metric tensor. γx = 2
1−∥x∥2 is the conformal factor and In is the

Euclidean metric tensor.

Hyperbolic Distance. Given two points u ∈ Bn and v ∈ Bn, the hyperbolic distance is defined as,

dBn(u,v) = arcosh

(
1 + 2

∥u− v∥2

(1− ∥u∥2)(1− ∥v∥2)

)
(1)

where arcosh is the inverse hyperbolic cosine function and ∥·∥ is the usual Euclidean norm.

Hyperbolic distance has the unique property that it grows exponentially as we move towards the
boundary of the Poincaré ball. In particular, the points on the circle represent points in infinity.
Hyperbolic space is naturally suitable for embedding hierarchical structure (Sarkar, 2011; Nickel
& Kiela, 2017b) and can be regarded as a continuous representation of trees (Chami et al., 2020).
The hyperbolic distance between samples implicitly reflects their hierarchical relation. Thus, by
embedding images in hyperbolic space we can naturally organize images based on their semantic
similarity and prototypicality.

4.2 BUILDING SAMPLE HIERARCHY IN HYPERBOLIC SPACE

Hyperbolic space is naturally suitable for embedding tree structure. However, in order to leverage
hyperbolic space to build a sample hierarchy in an unsupervised manner, a suitable objective function
is still missing. There are two challenges in designing the objective function. First, the underlying
tree structure of the samples is unknown. Second, how to perform feature learning such that hierarchy
can naturally emerge is unclear.
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To address the first challenge, instead of creating a predefined tree structure that might not faithfully
represent the genuine hierarchical organization, we leverage sphere packing in hyperbolic space for
building a skeleton for placing the samples. We specify where the particles should be located ahead
of training with uniform packing, which by design are maximally evenly spread out in hyperbolic
space. The uniformly distributed particles guide feature learning to achieve maximum instance
discrimination (Wu et al., 2018) while enabling us to extract a tree structure from the samples.

To address the second challenge, HACK figures out which instance should be mapped to which
target through bipartite graph matching as a global optimization procedure. During training, HACK
minimizes the total hyperbolic distances between the mapped image point (in the feature space) and
the target, those that are more typical naturally emerge closer to the origin of Poincaré ball. HACK
differs from the existing learning methods in several aspects (Figure 2). Different from supervised
learning, HACK allows the image to be assigned to any target (particle). This enables the exploration
of the natural organization of the data. Different from unsupervised learning method, HACK specifies
a predefined geometrical organization which encourages the corresponding structure to be emerged
from the dataset.

4.3 SPHERE PACKING IN HYPERBOLIC SPACE

Given n particles, our goal is to pack the particles into a two-dimensional hyperbolic space as densely
as possible. We derive a simple repulsion loss function to encourage the particles to be equally distant
from each other. The loss is derived via the following steps. First, we need to determine the radius
of the Poincaré ball used for packing. We use a curvature of 1.0 so the radius of the Poincaré ball
is 1.0. The whole Poincaré ball cannot be used for packing since the volume is infinite. We use
r < 1 to denote the actual radius used for packing. Thus, our goal is to pack n particles in a compact
subspace of Poincaré ball. Then, the Euclidean radius r is further converted into hyperbolic radius rB.
Let s = 1√

c
, where c is the curvature. The relation between r and rB is rB = s log s+r

s−r . Next, the

total hyperbolic area AB of a Poincaré ball of radius rB can be computed as AB = 4πs2 sinh2( rB2s ),
where sinh is the hyperbolic sine function. Finally, the area per point An can be easily computed
as AB

n , where n is the total number of particles. Given An, the radius per point can be computed as

rn = 2s sinh−1(
√

An

4πs2 ). We use the following loss to generate uniform packing in hyperbolic space.
Given two particles i and j, the repulsion loss V is defined as,

V (i, j) = { 1

[2rn −max(0, 2rn − dB(i, j))]k
− 1

(2rn)k
} · C(k) (2)

where C(k) = (2rn)
k+1

k and k is a hyperparameter. Intuitively, if the particle i and the particle j are
within 2rn, the repulsion loss is positive. Minimizing the repulsion loss would push the particles
i and j away. If the repulsion is zero, this indicates all the particles are equally distant. Also the
repulsion loss grows significantly when two particles become close.

We also adopt the following boundary loss to prevent the particles from escaping the ball,

B(i; r) = max(0, normi − r + margin) (3)

where normi is the ℓ2 norm of the representation of the particle i. Figure 2 b) shows an example of
the generated particles that are uniformly packed in hyperbolic space.

4.4 HYPERBOLIC INSTANCE ASSIGNMENT

HACK learns the features by optimizing the assignments of the images to particles (Figure 3). The
assignment should be one-to-one, i.e., each image should be assigned to one particle and each particle
is allowed to be associated with one image. We cast the instance assignment problem as a bipartite
matching problem (Gibbons, 1985) and solve it with Hungarian algorithm (Munkres, 1957).

Initially, we randomly assign the particles to the images, thus there is a random one-to-one cor-
respondence between the images to the particles (not optimized). Given a batch of samples
{(x1, s1), (x2, s2), ..., (xB , sB)}, where xi is an image and si is the corresponding particle, and an
encoder fθ, we generate the hyperbolic feature for each image xi as fθ(xi) ∈ B2, where B2 is a
two-dimensional Poincaré ball. For a given hyperbolic feature fθ(x), with fixed particle locations,
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Figure 3: HACK conducts unsupervised learning
in hyperbolic space with sphere packing. The im-
ages are mapped to particles by minimizing the total
hyperbolic distance. HACK learns features that can
capture both visual similarities and prototypicality.

Algorithm 1 HACK: Unsupervised Learning
in Hyperbolic Space.
Require: # of images: n ≥ 0. Radius for

packing: r < 1. An encoder with param-
eters θ: fθ

1: Generate uniformly distributed particles
in hyperbolic space by minimizing the
repulsion loss in Equation 2

2: Given {(x1, s1), (x2, s2), ..., (xb, sb)},
optimize fθ by minimizing the total
hyperbolic distance via Hungarian
algorithm.

the distance between the hyperbolic feature and the particles signifies the hierarchical level of the
associated sample. Thus, to determine the hierarchical levels for all samples within the hierarchy, we
must establish a one-to-one mapping between all the samples and the particles. This can be cast as
the following bipartite matching problem in hyperbolic space,

ℓ(θ, π) =

B∑
i=1

dBn(fθ(xi), sπ(fθ(xi))) (4)

where π : fθ(x) → N is a projection function which projects hyperbolic features to a particle index.
Minimizing ℓ(θ, π) with respect to π is a combinatorial optimization problem, which can hardly be
optimized with θ using gradient-based algorithms. Thus, we adopt a joint optimization strategy which
optimizes θ and π alternatively. In each batch, we first leverage the Hungarian algorithm (Munkres,
1957) to find the optimal matching π∗ based on the current hyperbolic features. Then we minimize
Eq. 4 with respect to θ based on the current assignment π∗. This process is repeated for a certain
number of epochs until convergence is achieved.

The Hungarian algorithm (Munkres, 1957) has a complexity of O(x3), where x is the number of
items. As we perform the particle assignment in the batch level, the time and memory complexity is
tolerable. Also, the one-to-one correspondence between the images and particles is always maintained
during training. After training, based on the assigned particle, the level of the sample in the hierarchy
can be easily retrieved. The details of HACK are shown in Algorithm 1.

5 EXPERIMENTS

We design several experiments to show the effectiveness of HACK for the semantic and hierarchical
organization. First, we first construct a dataset with known hierarchical structure using the congealing
algorithm (Miller et al., 2000). Then, we apply HACK to datasets with unknown hierarchical structure
to organize the samples based on the semantic and prototypical structure. Finally, we show that
the prototypical structure can be used to reduce sample complexity and increase model robustness.
Datasets. We first construct a dataset called Congealed MNIST. To verify the efficacy of HACK for
unsupervised prototypicality discovery, we need a benchmark with known prototypical examples.
However, currently there is no standard benchmark for this purpose. To construct the benchmark,
we use the congealing algorithm from Miller et al. (2000) to align the images in each class of
MNIST (LeCun, 1998). The congealing algorithm is initially used for one-shot classification. During
congealing, the images are brought into correspondence with each other jointly. The congealed
images are more prototypical: they are better aligned with the average image. The synthetic data is
generated by replacing 500 original images with the corresponding congealed images. In Section
E of the Appendix, we show the results of changing the number of replaced original images. We
expect HACK to discover the congealed images and place them in the center of the Poincaré ball.
We also aim to discover the prototypical examples from each class of the standard MNIST dataset
(LeCun, 1998) and CIFAR10 (Krizhevsky et al., 2009). CIFAR10 consists of 60000 from 10 object
categories ranging from airplane to truck. CIFAR10 is more challenging than MNIST since it has
larger intra-class variations.
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a) b)
Figure 5: Congealed images are located in
the center of the Poincaré ball. a) Red dots
denote congealed images and cyan dots de-
note original images. b) Typical images are in
the center and atypical images are close to the
boundary. Images are also clustered together
based on visual similarity. Congealed images
are shown in red boxes.

a) b)
Figure 6: Original images are pushed to the
center of the ball after congealing. We train
the first model with original images. Then we
train the second model by replacing a subset
of original images (marked with cyan) with
the corresponding congealed images. The fea-
tures of the congealed images (marked with
red) become closer to the center of the ball.

Baselines. We consider several existing metrics proposed in Carlini et al. (2018) for prototypicality
discovery, the details can be found in Section C of the Appendix.

• Holdout Retraining (Carlini et al., 2018): We consider the Holdout Retraining proposed in Carlini
et al. (2018). The idea is that the distance of features of prototypical examples obtained from
models trained on different datasets should be close.

• Model Confidence (Carlini et al., 2018): Intuitively, the model should be confident in prototypical
examples. Thus, it is natural to use the confidence of the model prediction as the criterion for
prototypicality.

• UHML (Yan et al., 2021): UHML is an unsupervised hyperbolic learning method which aims
to discover the natural hierarchies of data by taking advantage of hyperbolic metric learning and
hierarchical clustering.

Implementation Details. We implement HACK in PyTorch and the code will be made public. To
generate uniform particles, we first randomly initialize the particles and then run the training for 1000
epochs with a 0.01 learning rate to minimize the repulsion loss and boundary loss. The curvature of
the Poincaré ball is 1.0 and the r is 0.76 which is used to alleviate the numerical issues (Guo et al.,
2021b). The hyperparameter k is 1.55 which is shown to generate uniform particles well. For the
assignment, we use a LeNet (LeCun et al., 1998) for MNIST and a ResNet20 (He et al., 2016) for
CIFAR10 as the encoder. We apply HACK to each class separately. We attach a fully connected layer
to project the feature into a two-dimensional Euclidean space. The image features are then projected
onto hyperbolic space via an exponential map. We run the training for 200 epochs using a cosine
learning rate scheduler (Loshchilov & Hutter, 2016) with an initial learning rate of 0.1. We optimize
the assignment every other epoch. All the experiments are run on an NVIDIA TITAN RTX GPU.

5.1 PROTOTYPICALITY IN THE HYPERBOLIC FEATURE NORM

Figure 4: Hyperbolic space can capture
the prototypicality inherently. The error
bar of each point is given by the variance of
density within the corresponding portion,
and the width of the shaded band indicates
the number of features within the portion.

We explicitly show that the hyperbolic space can capture
prototypicality by analyzing the relation between hyper-
bolic norms and the K-NN density estimation. Taking
the learned hyperbolic features, we first divide the range
of norms of hyperbolic features into numerous portions
with equal length (50 portions for this plot). The mean
K-NN density is calculated by averaging the density
estimation of features within each portion. Figure 4
shows that the mean density drops as the norm increases,
which shows that the prototypicality emerges automat-
ically within the norms, the inherent characteristic of
hyperbolic space. This validates that prototypicality is
reflected in the hyperbolic feature norm.
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a) b) c) d)
Figure 8: Our unsupervised learning methods conform to our visual perception. a) Samples of
2000 images from MNIST. b) Images of MNIST arranged angularly. c) Samples of 2000 images from
CIFAR10. d) Images of CIFAR10 arranged angularly. Images are organized based on prototypicality
and visual similarity.

5.2 VISUAL PROTOTYPICALITY: CONGEALED MNIST

We further apply HACK for visual feature learning on congealed MNIST. Figure 5 shows that HACK
can discover the congealed images from all images. In Figure 5 a), the red particles denote the
congealed images and cyan particles denote the original images. We can observe that the congealed
images are assigned to the particles located in the center of the Poincaré ball. This verifies that HACK
can indeed discover prototypical examples from the original dataset. Section G.1 in the Appendix
shows that the features of atypical examples gradually move to the boundary of the Poincaré ball
during training. In Figure 5 b), we show the actual images that are embedded in the two-dimensional
hyperbolic space. We can observe that the images in the center of Poincaré ball are more prototypical
and images close to the boundary are more atypical. Also, the images are naturally organized by
their semantic similarity. Figure 6 shows that the features of the original images become closer to the
center of Poincaré ball after congealing. In summary, HACK can discover prototypicality and also
organize the images based on their semantic and hierarchical structure. To the best of our knowledge,
this is the first unsupervised learning method that can be used to discover prototypical examples in a
data-driven fashion.

5.3 PROTOTYPICALITY FOR INSTANCE SELECTION

Figure 8 shows the embedding of class 0 from MNIST and class “airplane” from CIFAR10 in
the hyperbolic space. We sample 2000 images from MNIST and CIFAR10 for better visual-
ization. We also show the arrangement of the images angularly with different angles. Radially,
we can observe that images are arranged based on prototypicality. The prototypical images tend
to be located in the center of the Poincaré ball. Especially for CIFAR10, the images become
blurry and even unrecognizable as we move toward the boundary of the ball. Angularly, the
images are arranged based on visual similarity. The visual similarity of images has a smooth
transition as we move around angularly. Please see Section D in the Appendix for more results.

Typical Images Atypical Images
HACK

HR

MC

Figure 7: HACK can better identify typical and
atypical examples compared with HR and MR.

Comparison with Baselines. Figure 7 shows
the comparison of the baselines with HACK .
We can observe that both HACK and Model
Confidence (MC) can discover typical and atypi-
cal images. Compared with MC, HACK defines
prototypicality as the distance of the sample to
other samples which is more aligned with hu-
man intuition. Moreover, in addition to proto-
typicality, HACK can also be used to organize
examples by semantic similarities. Holdout Re-
training (HR) is not effective for prototypicality discovery due to the randomness of model training.
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a) b)
Figure 9: HACK can be used to construct sample hierarchy which is useful for several down-
stream tasks. a) Training with atypical examples achieves higher accuracy than training with typical
examples. b) The adversarial accuracy greatly improves after removing the X% of most atypical
examples.

5.4 APPLICATION OF PROTOTYPICALITY

Reducing Sample Complexity. The proposed HACK can discover prototypical images as well
as atypical images. We show that with atypical images we can reduce the sample complexity for
training the model. Prototypical images are representative of the dataset but lack variations. Atypical
examples contain more variations and it is intuitive that models trained on atypical examples should
generalize better to the test samples. To verify this hypothesis, we select a subset of samples based on
the norm of the features which indicates prototypicality of the examples. In particular, typical samples
correspond to the samples with smaller norms and atypical samples correspond to the samples with
larger norms. The angular layout of the hyperbolic features naturally captures sample diversity, thus
for selecting atypical examples, we also consider introducing more diversity by sampling images
with large norms along the angular direction.

We train a LeNet on MNIST for 10 epochs with a learning rate of 0.1. Figure 9 a) shows that
training with atypical images can achieve much higher accuracy than training with typical images. In
particular, training with the most atypical 10% of the images achieves 16.54% higher accuracy than
with the most typical 10% of the images. Thus, HACK provides an easy solution to reduce sample
complexity. We also compared UHML (Yan et al., 2021), which is an unsupervised metric learning
in hyperbolic space, with HACK on the MNIST dataset. By incorporating 10% atypical samples
based on feature norm, HACK outperformed UHML by 10.2%. Also by excluding the 1% atypical
examples, HACK achieved an additional 5.7% improvement over UHML.

Increasing Model Robustness. Training models with atypical examples can lead to a vulnerable
model to adversarial attacks (Liu et al., 2018; Carlini et al., 2018). Intuitively, atypical examples
lead to a less smooth decision boundary thus a small perturbation to examples is likely to change
the prediction. With HACK, we can easily identify atypical samples to improve the robustness of
the model. We use MNIST as the benchmark and use FGSM (Goodfellow et al., 2014) to attack the
model with an ϵ = 0.07. We identify the atypical examples with HACK and remove the most atypical
X% of the examples. Figure 9 b) shows that discarding atypically examples greatly improves the
robustness of the model: the adversarial accuracy is improved from 84.72% to 93.42% by discarding
the most atypical 1% of the examples. It is worth noting that the clean accuracy remains the same
after removing a small number of atypical examples.

6 SUMMARY
We propose an unsupervised learning method, called HACK, for organizing images with sphere
packing in hyperbolic space. HACK optimizes the assignments of the images to a fixed set of
uniformly distributed particles by naturally exploring the properties of hyperbolic space. As a
result, prototypical and semantic structures emerge naturally due to feature learning. We apply
HACK to synthetic data with known prototypicality and standard image datasets. The discovered
prototypicality and atypical examples can be used to reduce sample complexity and increase model
robustness. The idea of HACK can also be generalized to learn other geometrical structures from the
data by specifying different geometric patterns.
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Figure 10: Decoded images in feature space learned by HACK. The decoder for every class is
trained individually. The angles indicate the uniform division of the space. For each orientation, ten
equidistant points were selected and fed into the decoder to generate corresponding images.

A HYPERBOLIC SPACE AS A CONTINUOUS TREE

As the Poincaré ball model can be regarded as a continuous representation of trees (Chami et al.,
2020), every point in the space should correspond to a certain image. To verify the feature space
learned by HACK can reflect the prototypicality, we train a simple MLP decoder with two hidden
layers with the representations learned by HACK. Specifically, this decoder takes as input the 2-
dimensional features in the Poincaré ball model and outputs an image. Using this decoder, we can get
an image corresponding to every point in the Poincaré ball model.

Figure 10 shows the results of the decoder on a subset of MNIST digits. Initially, individual decoders
were trained for each class. The entire space was then uniformly divided into 12 orientations. For each
orientation, ten equidistant points were selected and fed into the decoder to generate corresponding
images. It is evident that the images produced by the decoder exhibit a transition from typical to
atypical representations across every orientation. Moreover, similar trends are observed for closely
aligned orientations. For example, in the results for class 2, the imagery transitions from a typical
representation at the origin to 12 distinct atypical forms. Notably, in the orientations spanning 120°
to 270°, six showed a small loop at the base of the 2. Conversely, the remaining six orientations
displayed a 2 with a straight base. The results suggest that the feature space learned by HACK

12
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distinctly positions typical image characteristics closer to the center, while atypical image features
are pushed to the boundary.

B MORE DETAILS ON HYPERBOLIC INSTANCE ASSIGNMENT

A more detailed description of the hyperbolic instance assignment is given.

Initially, we randomly assign the particles to the images. Given a batch of samples
{(x1, s1), (x2, s2), ..., (xb, sb)}, where xi is an image and si is the corresponding particle. Given
an encoder fθ, we generate the hyperbolic feature for each image xi as fθ(xi) ∈ B2, where B2 is a
two-dimensional Poincaré ball.

we aim to find the minimum cost bipartite matching of the images to the particles. The cost to
minimize is the total hyperbolic distance of the hyperbolic features to the particles. We first compute
all the pairwise distances between the hyperbolic features and the particles. This is the cost matrix of
the bipartite graph. Then we use the Hungarian algorithm to optimize the assignment (Figure 11).

Suppose we train the encoder fθ for T epochs. We run the hyperbolic instance assignment every other
epoch to avoid instability during training. We optimize the encoder fθ to minimize the hyperbolic
distance of the hyperbolic feature to the assigned particle in each batch.

C DETAILS OF BASELINES

Holdout Retraining: We consider the Holdout Retraining proposed in Carlini et al. (2018). The idea
is that the distance of features of prototypical examples obtained from models trained on different
datasets should be close. In Holdout Retraining, multiple models are trained on the same dataset. The
distances of the features of the images obtained from different models are computed and ranked. The
prototypical examples are those examples with the closest feature distance.

Model Confidence: Intuitively, the model should be confident on prototypical examples. Thus, it is
natural to use the confidence of the model prediction as the criterion for prototypicality. Once we train
a model on the dataset, we use the confidence of the model to rank the examples. The prototypical
examples are those examples that the model is most

D MORE RESULTS ON PROTOTYPICALITY DISCOVERY

We show the visualization of all the images in Figure 16 and Figure 17. The images are organized
naturally based on their prototypicality and semantic similarity. We further conduct retrieval based
on the norm of the hyperbolic features to extract the most typical and atypical images on CIAFR10 in
Figure 18. The hyperbolic features with large norms correspond to atypical images and the hyperbolic
features with small norms correspond to typical images. It can be observed that the object in the
atypical images is not visible.

E GRADUALLY ADDING MORE CONGEALED IMAGES

We gradually increase the number of original images replaced by congealed images from 100 to
500. Still, as shown in Figure 12, HACK can learn a representation that captures the concept of
prototypicality regardless of the number of congealed images. This again confirms the effectiveness
of HACK for discovering prototypicality.

F DIFFERENT RANDOM SEEDS

We further run the assignment 5 times with different random seeds. The results are shown in Figure
13. We observe that the algorithm does not suffer from high variance and the congealed images are
always assigned to the particles in the center of the Poincaré ball. This further confirms the efficacy
of the proposed method for discovering prototypicality.
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a) b)
Figure 11: Hyperbolic Instance Assignment minimizes the total hyperbolic distances between
the image features and the particles. a) Initial assignment. b) Optimized assignment.

100 200 300 400 500
Figure 12: HACK consistently places congealed images in the center of the Poincaré ball. We
gradually increase the number of original images replaced by congealed images from 100 to 500.
The congealed images are marked with red dots and the original images are marked with cyan dots.

Seed 1 Seed 2 Seed 3 Seed 4 Seed 5
Figure 13: HACK consistently places congealed images in the center of the Poincaré ball in
multiple runs with different random seeds.. The congealed images are marked with red dots and
the original images are marked with cyan dots.

G EMERGENCE OF PROTOTYPICALITY IN THE FEATURE SPACE

Existing unsupervised learning methods mainly focus on learning features for differentiating different
classes or samples Wu et al. (2018); He et al. (2020); Chen et al. (2020). The learned representations
are transferred to various downstream tasks such as segmentation and detection. In contrast, the
features learned by HACK aim at capturing prototypicality within a single class.

To investigate the effectiveness of HACK in revealing prototypicality, we can include or exclude
congealed images in the training process. When the congealed images are included in the training
process, we expect the congealed images to be located in the center of the Poincaré ball while the
original images to be located near the boundary of the Poincaré ball. When the congealed images
are excluded from the training process, we expect the features of congealed images produced via the
trained network to be located in the center of the Poincaré ball.

G.1 TRAINING WITH CONGEALED IMAGES AND ORIGINAL IMAGES

We follow the same setups as in Section 4.3.1 of the main text. Figure 14 shows the hyperbolic
features of the congealed images and original images in different training epochs. The features of
the congealed images stay in the center of the Poincaré ball while the features of the original images
gradually expand to the boundary.
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Epoch 1 Epoch 5 Epoch 10 Epoch 15 Epoch 200
Figure 14: Atypical images gradually move to the boundary of the Poincaré ball. This shows that
the representations learned by HACK capture prototypicality. Congealed images are in red boxes
which are more typical. The network is trained with both the congealed images and original images.

G.2 TRAINING ONLY WITH ORIGINAL IMAGES

Epoch 1 Epoch 10 Epoch 20 Epoch 40 Epoch 200
Figure 15: The representations learned by HACK gradually capture prototypicality during
the training process. Congealed images are in red boxes which are more typical. We produce the
features of the congealed images with the trained network in different epochs. The network is only
trained with original images.
Figure 15 shows the hyperbolic features of the congealed images when the model is trained only
with original images. As we have shown before, congealed images are naturally more typical than
their corresponding original images since they are aligned with the average image. The features of
congealed images are all located close to the center of the Poincaré ball. This demonstrates that
prototypicality naturally emerges in the feature space.

Without using congealed images during training, we exclude any artifacts and further confirm the
effectiveness of HACK for discovering prototypicality. We also observe that the features produced by
HACK also capture the fine-grained similarities among the congealing images despite the fact that all
the images are aligned with the average image.
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a) b)

c) d)
Figure 16: HACK captures prototypicality and semantic similarity on MNIST. a) Class 0. b)
Class 1. c) Class 2. d) Class 3.
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a) b)

c) d)
Figure 17: HACK captures prototypicality and semantic similarity on CIFAR10. a) Class
“airplane”. b) Class “automobile”. c) Class “bird”. d) Class “cat”.

Typical Images:

Atypical Images:

Typical Images:

Atypical Images:

Figure 18: Most typical and atypical images extracted by HACK from CIFAR10.

H DISCUSSIONS ON SOCIETAL IMPACT AND LIMITATIONS.

We address the problem of unsupervised learning in hyperbolic space. We believe the proposed
HACK should not raise any ethical considerations. We discuss current limitations below,

Applying to the Whole Dataset Currently, HACK is applied to each class separately. Thus, it would
be interesting to apply HACK to all the classes at once without supervision. This is much more
challenging since we need to differentiate between examples from different classes as well as the
prototypical and semantic structure.
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Exploring other Geometrical Structures We consider uniform packing in hyperbolic space to
organize the images. It is also possible to extend HACK by specifying other geometrical structures to
encourage the corresponding organization to emerge from the dataset.
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