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ABSTRACT

Making large language models (LLMs) more efficient in memory, latency, and
serving cost is crucial for edge deployment, interactive applications, and sustain-
able inference at scale. Pruning is a promising technique, but existing pruning
methods are limited: width pruning often breaks the standard transformer layout,
requiring custom inference code, while depth pruning can cause abrupt accuracy
drops. Also, while many pruning approaches are effective against LLMs, they
struggle to maintain performance on small language models (SLMs). In this work,
we propose COMPACT, which jointly (i) prunes rare vocabulary to shrink embed-
ding/LM head layers and (ii) prunes FFN intermediate channels using common-
token–weighted activations, aligning importance with the post-pruning token dis-
tribution. COMPACT inherits strengths of both depth and width pruning, such
as: deployment-friendliness (keeps a standard transformer architecture), scale-
adaptivity (trade off vocab. vs. FFN pruning), competitive pruning times, and
strong memory savings alongside throughput gains. Experiments across Qwen,
LLaMA, and Gemma families (0.5B–70B) show state-of-the-art downstream per-
formance, with substantial reductions in parameters, GPU memory, and latency1.

1 INTRODUCTION

Large language models (LLMs) have achieved remarkable performance across a wide range of natu-
ral language tasks, but their ever-growing parameter counts, reaching billions to hundreds of billions,
make deployment expensive in terms of memory, inference time, and energy cost. To broaden access
and enable real-world applications such as on-device inference, classroom use, or latency-sensitive
systems, it is crucial to compress LLMs while retaining as much performance as possible.

Quantization (Frantar et al., 2022; Lin et al., 2024) and pruning (Frantar & Alistarh, 2023; Sun et al.,
2024) have been a major line of compression work. This work focuses on structured pruning, re-
moving entire rows and columns of weight matrices. Structured pruning is mainly categorized into
depth pruning and width pruning. Depth pruning removes entire transformer blocks (Kim et al.,
2024; Song et al., 2024; Gromov et al., 2025), but the coarse-grained removal of layers leads to
sharp performance drops. Width pruning trims hidden dimensions such as FFN channels or atten-
tion heads (Ma et al., 2023; Ashkboos et al., 2024; An et al., 2024), but they typically deviate from a
standard transformer architecture and require custom inference code. In addition, these approaches
are limited in three other ways: (i) They prune largely mechanistically, without analyzing where
parameters are concentrated within LLMs (embeddings, FFNs, or attention). This blind pruning
means that methods that work for large LLMs often fail for SLMs, as they have different param-
eter distributions. (ii) They ignore the linguistic nature of NLP models: not all tokens are equally
important, yet pruning typically treats all tokens as if they contribute equally. (iii) They often re-
quire custom implementation changes to accommodate every model family, making implementation
maintenance tedious. These oversights lead to non-robust pruning performance across scales.

To address these issues, we propose COMPACT, a simple but powerful pruning framework with two
modules: (i) Vocabulary pruning removes rare tokens and shrinks embedding/LM head matrices,
directly reducing parameters and memory usage, especially in SLMs. (ii) Common-token–weighted
FFN pruning further reduces redundancy by scoring channels using activations, but weighting only

1All code will be released, and the method will be packaged as a plug-in tool.
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the common tokens that remain valid after vocabulary pruning. Together, these two complemen-
tary modules address the limitations of prior work: pruning is now guided by parameter distribu-
tion, respects the linguistic structure of language tasks, remains compatible with existing inference
frameworks, and is architecture-agnostic across most model families.

We systematically analyze parameter distributions across model families and scales. This re-
veals a clear pattern: embeddings (vocabulary and LM head layers) are important in SLMs, while
FFNs dominate in larger models. This explains why prior pruning methods lack robustness across
scales—they prune the same way regardless of where redundancy actually lies. A second insight
comes from the statistics of natural language: token frequencies follow a Zipfian distribution (Zhem-
chuzhina et al., 2022), meaning that rare tokens occur extremely infrequently and contribute little to
downstream performance. Removing such rare tokens from the vocabulary reduces embedding size
without significantly affecting performance, because language tasks are overwhelmingly driven by
common tokens. Together, these observations validate the effectiveness of the COMPACT method.

We evaluate COMPACT on diverse LLM families (Qwen 2.5, LLaMA 3.1/3.2, and Gemma 3) and
across scales from 0.5B to 70B parameters. We test on seven downstream benchmarks (MMLU
(Hendrycks et al., 2021), HellaSwag (Zellers et al., 2019), WinoGrande (Sakaguchi et al., 2020),
ARC-C/E (Clark et al., 2018), PIQA (Bisk et al., 2020), GSM8K (Cobbe et al., 2021)) and also
measure pruning time, inference throughput, and GPU memory usage. Our experiments highlight
three phenomena: (i) Scale robustness: COMPACT maintains state-of-the-art performance at high
pruning ratios even for SLMs. (ii) Smooth degradation: Unlike depth pruning, which shows abrupt
performance drops, COMPACT degrades gracefully with higher pruning. (iii) End-to-end efficiency:
COMPACT yields substantial GPU memory savings and improved throughput.

Our contributions are threefold: i) We provide a systematic analysis of parameter distribution across
embeddings, FFNs, and attention, revealing scale-dependent redundancy that prior pruning methods
overlook. ii) We propose COMPACT, a novel pruning method which is linguistically grounded,
scale-adaptive, and structure-agnostic. iii) We demonstrate state-of-the-art pruning results across
LLM families and scales, showing superior retention on downstream tasks together with clear gains
in pruning time, inference efficiency, and GPU memory usage.

Table 1: Advantages of COMPACT.

Depth pruning Width pruning COMPACT

ShortGPT LaCo LLM-Streamline SliceGPT 2SSP FLAP (ours)

Maintains architecture ✓ ✓ ✓ ✓

Scale-adaptive ✓ ✓

Inference speedups ✓ ✓ ✓ ✓ ✓ ✓

Fast pruning ✓ ✓ ✓ ✓ ✓ ✓

Architecture-agnostic ✓

Linguistically grounded ✓

2 RELATED WORK

Depth Pruning removes entire transformer blocks while preserving the standard architecture and
compatibility with common inference frameworks (He et al., 2024; Lu et al., 2024). Represen-
tative methods include Shortened LLaMA (perplexity-minimizing), SLEB (iterative recalibration),
and angular-similarity pruning (Kim et al., 2024; Song et al., 2024; Gromov et al., 2025). LLM-
Streamline trains a lightweight network to recover accuracy but requires hours–days and significant
GPUs (Chen et al., 2025). We therefore focus on training-free pruning that runs in minutes on a sin-
gle GPU; COMPACT can optionally be fine-tuned and outperforms training-based baselines. Because
depth pruning is coarse-grained and can cause sharp drops, COMPACT instead prunes rows/columns
for a finer-grained alternative.

Width Pruning removes hidden dimensions or channels in each layer (Xia et al., 2024; Gao et al.,
2024b; Guo et al., 2025). Methods include LLM-Pruner/LoRAPrune (gradient-based) (Ma et al.,
2023; Zhang et al., 2024), SliceGPT (orthogonal transforms + low-rank) (Ashkboos et al., 2024),
FLAP (stability-based) (An et al., 2024), and Bonsai (perturbation modeling) (Dery et al., 2024).
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While effective, they often break the standard transformer layout, requiring custom inference code
and limiting deployment. COMPACT avoids these issues by preserving architecture, yielding a
deployment-friendly width-pruning method that outperforms depth pruning.

Vocabulary Size/Pruning. The vocabulary size of a model is the number of tokens that the model
can recognize. Modern LLM vocabularies often reach into the hundreds of thousands and typically
remain the same across model scales within a family (Tao et al., 2024). Research into vocabulary
size scaling (Tao et al., 2024) has shown that the optimal vocabulary size increases with increasing
LLM size, contradicting the common practice of keeping vocabulary size constant over a wide range
of model sizes. Prior work prunes vocabularies to tailor vocabulary to a target language/domain
(Ushio et al., 2023b; Dorkin et al., 2025; Ushio et al., 2023a; Bogoychev et al., 2024; Yang et al.,
2022; 2024b). Others prune the drafter’s LM head for speculative decoding speedups (Goel et al.,
2025), which does not compress the base model used at inference. In contrast, we (i) perform non-
domain-specific vocabulary pruning for general-purpose LLMs, and (ii) couple it with common-
token–weighted FFN pruning, so channel scores reflect the token distribution after vocab removal.
This keeps a standard Transformer layout, is training-free, and proves robust from 0.5B to 70B.

3 PROPOSED METHOD: COMPACT

Before designing an effective pruning strategy (Sections 3.2-3.4 ), we first analyze where parameters
are concentrated within modern decoder-only transformers (Section 3.1).

3.1 ANALYZING PARAMETER DISTRIBUTION IN LLMS: Vocabulary VS. FFN VS. Attention
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Figure 1: Parameter distribution across
Qwen 2.5 models of different scales.

Mainstream generative LLMs consist of three major
groups of parameters: (i) vocab parameters, located in
the embedding and LM head layers; (ii) attention pa-
rameters, from the self-attention blocks; and (iii) FFN
parameters, from the feed-forward blocks.

Formally, the embedding and LM head layers map be-
tween the vocabulary space of size V and the hidden
dimension D, giving

Nvocab = 2V D, (1)

(or V D if tied embeddings are used). Each FFN block
contains three projection matrices of size D×I , where
I is the intermediate dimension, yielding

NFFN = 3LDI, (2)

for L layers. For attention, the number of parameters depends on whether grouped query attention
is used (Ainslie et al., 2023). With H denoting the ratio of attention heads to KV heads, the count is

Nattention = 2LD2

(
1 +

1

H

)
. (3)

When H = 1, this reduces to Nattention = 4LD2.

Asymptotically, NFFN and Nattention scale as O(LD2)—I ≈ O(D)—while Nvocab scales only as
O(D), as V is kept constant when scaling. Thus, as model size grows, vocab parameters become
proportionally smaller. Conversely, for smaller models, vocab parameters can constitute a significant
fraction of the total. We observe this empirically by calculating the relative proportions of each
parameter group on popular model families. Figure 1 shows our empirical analysis on the Qwen
2.5 model family (Yang et al., 2024a), which validates our theoretical analysis. Proportions of other
model families can be found in Appendix A.1. This motivates our strategy: vocabulary pruning
is an efficient way to reduce parameters, especially in small-to-medium LLMs, while FFN
pruning is critical for large models.

3
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Algorithm 1 COMPACT

Require: Model M , calibration dataset D, target vocabulary size V ′, target intermediate size I ′

1: Identify S ← set of V − V ′ rarest tokens in vocabulary.
2: Run forward passes of M on D, collect squared activations.
3: For each channel k, compute importance Ik using common act2 (Eq. 5).
4: for each layer do
5: Prune I − I ′ least important channels (remove rows of Wgate,Wup and columns of Wdown).
6: end for
7: Prune vocab parameters: remove final V −V ′ rows of embedding and LM head matrices; delete

tokenizer merges for tokens in S.
8: return pruned model M ′.

3.2 FROM RARE TO COMMON: RATIONALE OF VOCABULARY PRUNING

Byte-Pair Encoding (BPE) tokenizers follow Zipf’s law (Zhemchuzhina et al., 2022), where most
tokens appear extremely rarely. Since BPE builds its vocabulary by merging frequent token pairs,
the rarest tokens naturally appear at the end of the vocabulary list.

We define the set S as the V − V ′ rarest tokens in the vocabulary. These tokens can be directly
removed by pruning the corresponding rows in the embedding/LM head matrices and deleting the
corresponding merge rules from the tokenizer. The key insight is conceptual: the deleted tokens
will never be generated in the pruned model. This means that subsequent optimization steps
should focus on preserving performance under the common-token distribution rather than the full
distribution. VOCAB-PRUNING is highly efficient: it requires no calibration data or forward passes.

3.3 INTERMEDIATE PRUNING UNDER THE COMMON-TOKEN DISTRIBUTION

Pruning vocabulary parameters alone reduces the embedding size but does not address redundan-
cies in the FFNs, which dominate parameter count in large models. To prune FFNs, we adopt an
activation-based criterion. The standard act2 method (Muralidharan et al., 2024; Sandri et al., 2025)
defines the importance of FFN intermediate channel k as

Ik =

N∑
i=1

(
SiLU(XiWgate)XiWup

)2
k
, (4)

summing squared activations over a calibration dataset. Here, Xi is FFN input and Wgate,Wup are
model weights. However, this equally weights all tokens xi, including xi ∈ S. Since such tokens
will never appear in the input after pruning, their activations should not guide channel importance.
We therefore introduce common act2, a weighted variant:

Ik =

N∑
i=1

wi

(
SiLU(XiWgate)XiWup

)2
k
, wi =

{
0 xi ∈ S,

1 otherwise.
(5)

This ensures that FFN pruning is explicitly optimized for the tokens that remain valid after pruning.

3.4 COMPACT: JOINT PRUNING PIPELINE

Our proposed method, COMPACT, integrates vocabulary pruning with common act2-based FFN
pruning. Importantly, embedding pruning and channel pruning are not performed sequentially in
isolation: knowledge of S (rarest tokens) is first identified, then used to guide intermediate pruning,
and finally both vocab and FFN parameters are removed. The full pipeline is given in Algorithm 1.

Advantages of COMPACT. i) COMPACT is scale-adaptive. COMPACT uses two different knobs for
pruning: (i) vocabulary pruning at the embedding/LM head layers and (ii) common-token–weighted
pruning of FFN intermediate channels. These two knobs are orthogonal, allowing COMPACT to be
tunable for SLMs (emphasize vocab pruning) LLMs (emphasize intermediate pruning), or any mix
to meet a target budget. This tunability preserves capacity on frequent tokens while enabling strong
compression across model scales. ii) COMPACT is compatible with LLM frameworks. One weakness
of most width pruning methods is that they do not maintain a standard transformer architecture.
This is indeed the case with SliceGPT, which prunes the hidden size in all layers except for the

4
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final one, as well as 2SSP, which prunes entire attention modules. As a result, these methods are not
compatible with the transformers library, vLLM, or any other inference engines, limiting practicality.
In this aspect, COMPACT is similar to depth pruning, since pruning the vocabulary and intermediate
size does not affect the transformer architecture. As a result, COMPACT models are compatible
with all inference engines, making it a practical approach to width pruning. The full advantages of
COMPACT is summarized in Table 1.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Baselines. We compare with representative and state-of-the-art i) width pruning methods: SliceGPT,
(Ashkboos et al., 2024), 2SSP (Sandri et al., 2025); ii) depth pruning methods: ShortGPT (Men
et al., 2024), LaCo (Yang et al., 2024c). All methods use the default calibration set in their paper.
For COMPACT, we use 256 calibration samples from the C4 dataset (Raffel et al., 2020).

LLMs to prune. We evaluate on a diverse set of LLMs spanning architectures and scales: (i) SLMs:
Qwen 2.5–0.5B, LLaMA 3.2–1B, and Gemma 3–1B. This mix covers three distinct families, enabling
a robustness assessment across architectures; moreover, small LLMs are particularly challenging to
prune, as they are often trained beyond the Chinchilla-optimal compute–data balance, leaving lim-
ited redundancy. Nevertheless, pruning small LLMs is highly valuable for edge/on-device use
and in privacy- or bandwidth-constrained settings (healthcare, classrooms, federated clients):
it shrinks memory/storage, improves end-to-end latency, lowers energy use, and reduces serv-
ing cost. (ii) LLMs: LLaMA 3.1–8B and LLaMA 3.1–70B. Together with the 1B variant above, this
suite evaluates pruning effectiveness across a wide scale.

Evaluation tasks. Following SliceGPT (Ashkboos et al., 2024), we evaluate pruned models us-
ing HellaSwag (HeSw), WinoGrande (WiGr), ARC-C, ARC-E, and PIQA. Since Jaiswal et al.
(2024) shows that pruned LLMs degrade more on complex tasks, we add MMLU for general knowl-
edge, and GSM8K for generation tasks. This gives a more complete view of model performance.

Evaluation Criteria. Details about the evaluation setup and pruning hyperparameters can be found
in Appendix A.2 and Appendix A.3, respectively. (A) We report the percentage of parameters that
were removed (Ratio (%)), the mean score of the 7 benchmarks (Avg), and the relative mean score
compared to the dense model (Avg%); (B) It is standard to evaluate pruned models on perplexity and
downstream tasks. However, because we reduce vocabulary size, our perplexity naturally decreases,
making comparisons to baselines unfair. Thus, we only report i) performance on downstream
tasks, ii) efficiency regarding pruning time, inference time, and memory usage.

4.2 PERFORMANCE ON DOWNSTREAM TASKS

4.2.1 RESULTS ON SMALLER LLMS

COMPACT outperforms baselines by large margins. Our results are summarized in Table 2.
Although prior works report strong results on LLMs, they perform poorly on SLMs. On Qwen 2.5–
0.5B, GSM8K accuracy collapses for all baselines at only 10% pruning. Likewise, at 10% pruning,
MMLU drops to near-random for all models and baselines, with the sole exception of LaCo on Qwen
2.5–0.5B. Because MMLU and GSM8K are the most demanding tasks in our suite, these trends in-
dicate that existing methods fail to preserve performance on challenging benchmarks for SLMs.
In contrast, COMPACT delays this collapse: it remains marginally above random on MMLU and
GSM8K even at 35% pruning across all models. Across models and pruning ratios, COMPACT at-
tains the highest mean score and leads on nearly all individual benchmarks, despite using a slightly
higher pruning ratio than the baselines. Notably, at 35% pruning, COMPACT maintains similar per-
formance to the baselines at 20%, demonstrating superior robustness under high compression.

COMPACT supports a wide variety of model architectures out-of-the-box. The official imple-
mentations of existing approaches support just a few model architectures. For instance, SliceGPT
supports LLaMA/OPT/Phi, LaCo supports LLaMA 2/Baichuan, and ShortGPT only supports
LLaMA. Adding support for modern model families like LLaMA 3 and Qwen 2.5 required adding
architecture-specific changes, since these architectures can differ significantly in how they handle

5
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Table 2: Pruning SLMs (Qwen 2.5-0.5B, LLaMA 3.2–1B, and Gemma 3–1B) at a ∼10%, ∼20%,
and ∼35% ratio. Please note pruning baselines cannot be applied to Gemma 3

Method Ratio (%) MMLU HeSw WiGr ARC-C ARC-E PIQA GSM8K Avg Avg%
Q

w
en

2.
5–

0.
5B

Dense 0.00 47.3 52.2 56.4 32.3 58.2 69.9 34.9 50.2 100.0
Random - 25.0 25.0 50.0 25.0 25.0 50.0 0.0 28.6 57.0

ShortGPT 9.11 27.8 44.0 53.0 25.9 45.8 66.8 0.2 37.6 75.1
LaCo 9.11 46.1 45.5 56.3 28.2 51.6 65.5 0.4 41.9 83.6

SliceGPT 10.71 23.2 43.2 53.3 26.4 50.3 63.8 0.0 37.2 74.1
2SSP 10.12 25.5 46.6 54.7 27.8 52.2 68.7 1.9 39.6 79.0

COMPACT 11.13 45.2 51.9 55.3 32.4 59.5 70.1 28.7 49.0 97.7
ShortGPT 18.02 25.0 37.7 52.0 27.1 41.7 62.1 0.0 35.1 70.0

LaCo 18.02 24.0 36.3 49.9 23.5 41.7 62.9 0.0 34.0 67.8
SliceGPT 19.64 23.1 32.1 52.0 20.2 33.4 53.7 0.0 30.6 61.1

2SSP 19.64 24.3 40.9 53.8 25.3 43.9 64.3 0.5 36.1 72.0
COMPACT 20.24 44.1 48.1 55.4 30.6 53.3 66.6 26.3 46.3 92.4
ShortGPT 36.23 24.3 27.8 50.1 25.7 26.2 51.8 0.0 29.4 58.7

LaCo 36.23 23.9 28.2 47.9 23.9 30.6 56.2 0.0 30.1 60.0
SliceGPT 36.61 23.1 29.0 51.5 22.5 30.7 53.4 0.0 30.0 59.9

2SSP 36.23 22.9 31.3 49.6 22.9 33.8 59.0 0.0 31.4 62.5
COMPACT 37.04 25.5 40.0 53.8 25.2 40.0 62.2 0.5 35.3 70.4

L
L

aM
A

3.
2–

1B

Dense 0.00 36.6 63.8 60.7 36.2 60.7 74.5 5.4 48.3 100.0
Random - 25.0 25.0 50.0 25.0 25.0 50.0 0.0 28.6 59.2

ShortGPT 10.03 23.4 48.0 60.2 30.4 49.8 68.0 0.0 40.0 82.8
LaCo 10.03 24.4 48.4 52.0 29.5 47.9 69.3 0.5 38.9 80.5

SliceGPT 10.16 23.1 49.4 54.0 28.6 43.4 64.0 0.0 37.5 77.7
2SSP 9.87 30.5 55.5 57.9 32.9 56.7 72.9 3.0 44.2 91.6

COMPACT 10.03 36.7 61.1 59.7 35.1 57.1 71.9 6.1 46.8 97.0
ShortGPT 19.66 22.8 40.0 55.3 29.9 35.2 58.9 0.0 34.6 71.7

LaCo 19.66 23.0 35.7 52.4 25.9 37.0 62.4 0.4 33.9 70.1
SliceGPT 20.31 23.0 39.9 52.3 26.2 38.9 58.6 0.0 34.1 70.7

2SSP 19.66 26.8 46.9 53.9 27.1 50.4 68.1 2.2 39.3 81.5
COMPACT 19.98 30.6 54.4 58.6 32.0 51.3 69.9 3.1 42.8 88.8
ShortGPT 34.47 24.3 32.5 50.0 28.4 28.9 55.4 0.0 31.4 65.0

LaCo 34.47 23.2 37.3 50.1 23.9 29.3 55.3 0.0 29.9 61.9
SliceGPT 35.16 23.0 30.4 51.2 22.0 32.9 53.4 0.0 30.4 63.1

2SSP 34.63 22.9 35.1 52.6 24.5 38.9 60.9 0.0 33.6 69.6
COMPACT 35.03 27.9 42.8 55.6 27.7 41.7 60.6 1.8 36.9 76.4

G
em

m
a3

–1
B Dense 0.00 24.9 62.1 59.0 38.2 71.9 74.8 2.4 47.6 100.0

Random - 25.0 25.0 50.0 25.0 25.0 50.0 0.0 28.6 60.0

COMPACT
10.01 24.9 60.3 59.0 39.1 69.0 74.1 1.7 46.9 98.4
20.02 25.0 55.4 59.0 37.9 63.3 70.0 1.7 44.6 93.6
34.99 24.2 45.1 55.9 26.5 46.4 65.3 0.5 37.7 79.2

self-attention, layer normalization, etc. The strength of COMPACT is that it only prunes the vo-
cabulary embeddings and FFN blocks, which have been standardized and remain unchanged across
the vast majority of model architectures. As a consequence, COMPACT is architecture-agnostic and
runs out-of-the-box across many model families. This is most evident with Gemma 3, which uses
QK-norm and alternating local and global attention layers—optimizations that prevented us from
adapting our baselines. Accordingly, baseline results for Gemma 3 are omitted in Table 2. In con-
trast, COMPACT operates on Gemma 3 without any architecture-specific changes.

4.2.2 RESULTS ON LARGER LLMS

COMPACT is robust across scales. Our results are in Table 3. We see that COMPACT achieves
state-of-the-art performance for larger models as well, with over 80% performance at a 35% ratio,
indicating that our method is highly robust to a wide range of sizes. We attribute this robustness to
our dual approach to width pruning. As model size increases, the proportion of vocabulary parame-
ters decreases, which decreases the effectiveness of pruning vocabulary size. However, intermediate
pruning becomes more effective as model size increases, similarly to most pruning methods (Xu
et al., 2024). These two techniques complement each other’s strengths, leading to a robust hybrid
pruning method. Although the performance gap between COMPACT and 2SSP narrows at the 70B
size, we note that 2SSP’s hybrid approach of pruning FFN channels and entire attention blocks de-
viates from the standard transformer architecture, while COMPACT’s approach does not. This makes
COMPACT more practical to deploy, while also achieving slightly higher performance.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 3: Pruning larger LLMs (LLaMA 3.1–8B & LLaMA 3.1–70B) at a∼10%,∼20%, and∼35%
ratio. LaCo failed to prune LLaMA 3.1-70B due to OOM errors, so it is omitted from our results.

Method Ratio (%) MMLU HeSw WiGr ARC-C ARC-E PIQA GSM8K Avg Avg%
L

L
aM

A
3.

1–
8B

Dense 0.00 63.4 78.9 73.6 53.4 80.9 81.1 51.6 69.0 100.0
Random - 25.0 25.0 50.0 25.0 25.0 50.0 0.0 28.6 41.4

ShortGPT 10.86 58.0 73.8 70.2 47.4 71.2 77.5 29.3 61.1 88.5
LaCo 10.86 58.8 73.3 72.3 48.9 73.7 76.3 32.0 62.2 90.1

SliceGPT 10.16 43.9 65.6 67.2 39.4 66.2 71.0 19.4 53.2 77.2
2SSP 10.86 54.1 74.6 71.6 46.8 71.6 79.7 14.1 58.9 85.4

COMPACT 10.00 59.6 75.2 73.7 50.3 74.9 78.4 27.8 62.9 91.1
ShortGPT 19.02 58.6 64.9 68.4 42.2 58.3 71.6 0.6 52.1 75.5

LaCo 19.02 24.1 54.0 55.3 29.2 51.1 72.4 0.4 40.9 59.3
SliceGPT 20.12 24.5 51.4 61.8 30.3 49.0 61.9 0.0 39.8 57.8

2SSP 19.99 37.4 67.2 68.4 38.1 61.8 76.8 4.3 50.6 73.3
COMPACT 20.00 50.7 69.9 70.1 42.8 66.0 75.9 10.8 55.2 80.0
ShortGPT 35.31 23.2 34.3 59.1 29.7 36.9 57.2 0.0 34.4 49.8

LaCo 35.31 23.1 34.8 53.1 27.3 31.5 58.8 0.0 32.7 47.3
SliceGPT 35.16 23.0 35.0 54.3 23.5 37.2 55.0 0.0 32.6 47.2

2SSP 34.77 25.3 49.9 59.3 27.1 44.3 68.7 2.3 39.5 57.3
COMPACT 34.99 35.9 56.0 63.3 30.8 48.4 70.6 1.7 43.8 63.5

L
L

aM
A

3.
1–

70
B

Dense 0.00 75.2 85.0 79.5 64.7 86.7 84.4 80.6 79.4 100.0
Random - 25.0 25.0 50.0 25.0 25.0 50.0 0.0 28.6 36.0

ShortGPT 9.77 75.0 82.9 78.5 60.8 84.8 83.4 74.5 77.1 97.1
SliceGPT 10.06 70.6 75.4 76.6 58.3 82.0 79.7 62.4 72.1 90.8

2SSP 9.92 73.4 84.7 78.6 63.9 85.4 84.2 75.1 77.9 98.1
COMPACT 10.06 73.5 84.5 79.5 64.0 86.0 84.1 76.0 78.2 98.5
ShortGPT 20.68 74.9 79.3 78.0 56.0 80.1 80.1 53.0 71.6 90.2
SliceGPT 20.02 63.1 64.8 74.0 52.4 76.7 73.7 0.0 57.8 72.8

2SSP 20.11 68.8 83.7 76.2 59.5 82.1 83.7 62.1 73.7 92.8
COMPACT 20.11 70.6 83.3 76.2 59.7 82.6 83.7 62.6 74.1 93.3
ShortGPT 36.40 71.2 66.5 75.7 46.8 69.6 72.3 0.0 57.4 72.3
SliceGPT 35.06 29.3 37.1 66.6 34.5 59.3 62.6 0.0 41.3 52.0

2SSP 35.13 58.5 77.7 72.1 50.7 74.2 81.6 25.0 62.8 79.1
COMPACT 34.99 59.6 78.1 72.8 53.2 76.1 81.3 25.0 63.7 80.2

COMPACT shows smooth degradation. On LLaMA 3.1–8B, we observe that ShortGPT sur-
passes COMPACT at a 20% pruning ratio, but not at 10% or 35%, with its 20% score even exceeding
its 10% score. This aligns with the step-like behavior in Gromov et al. (2025) for depth-pruning
methods, where performance remains intact up to a critical threshold and then collapses abruptly.
ShortGPT also exhibits this pattern, explaining the spike at 20%. In contrast, COMPACT (a width-
pruning method) shows smooth MMLU degradation as pruning increases—hence the dip relative to
ShortGPT at 20%, followed by recovery and a lead at 35%. Even at 35% pruning, COMPACT re-
mains above random on both MMLU and GSM8K. A similar effect is seen on LLaMA 3.1–70B.

Table 4: Proportion of words re-
tokenized after 35% pruning of
Qwen 2.5–0.5B, by dataset.

Dataset Rare%
MMLU 4.43%

HellaSwag 3.48%
WinoGrande 5.01%

ARC-C 3.82%
ARC-E 3.95%
PIQA 5.68%

GSM8K 3.60%
C4 4.56%

Analysis: Why our pruning hurts performance minimally?
Changing the vocabulary affects how text is tokenized: If a to-
ken is removed during pruning, the text associated with the
token is now tokenized as multiple shorter, more common to-
kens. We analyze how often rare tokens occur. We use the
questions in each of our benchmarks, as well as 10k ran-
dom samples from the C4 dataset. Our results are in Table
4. Our pruned model reduces vocabulary size from 150k to
50k, a 67% reduction. Despite this, only 4% of words are tok-
enized differently from the original, regardless of text source.
These results provide insight to the effectiveness of VOCAB-
PRUNING: significant proportions of vocabulary only affects a
small fraction of text, so removing these vocabulary has little
impact on performance.

4.3 EFFICIENCY IN PRUNING TIME, INFERENCE LATENCY, AND MEMORY

Pruning time. The main strength of training-free methods is that they can prune large models
efficiently. To test this, we report pruning times at 35% pruning on LLaMA 3.1-8B and 70B to best
discriminate between methods.
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Table 6: Throughput and memory usage for LLaMA 3.1-8B.

Method Ratio Memory Usage (MB) Throughput (q/s)

Classification

Dense 0.00% 50030 147.01
ShortGPT/LaCo 35.31% 44624 (0.89x) 221.61 (1.51x)

2SSP 34.77% 44985 (0.90x) 104.03 (0.71x)
SliceGPT 35.16% 42440 (0.85x) 173.94 (1.18x)
COMPACT 34.99% 32066 (0.64x) 201.19 (1.37x)

Generation
Dense 0.00% 21787 81.18

ShortGPT/LaCo 35.31% 16336 (0.75x) 128.03 (1.57x)
COMPACT 34.99% 14248 (0.65x) 112.40 (1.38x)

Table 7: Comparison of post-pruning recovery fine-tuning methods.
Method Params (M) MMLU HeSw WiGr ARC-C ARC-E PIQA GSM8K Avg Avg%
Dense 494 47.3 52.2 56.4 32.3 58.2 69.9 34.9 50.2 100.0

Random - 25.0 25.0 50.0 25.0 25.0 50.0 0.0 28.6 57.0
LLM-Streamline 315 23.0 31.8 53.4 23.5 37.9 59.7 0.2 32.8 65.4
Gemma 3-270M 268 26.2 41.5 53.8 28.4 57.2 68.4 1.2 39.5 -
Our COMPACT 311 25.5 40.0 53.8 25.2 40.0 62.2 0.5 35.3 70.4

+ CPT 311 25.8 45.1 55.8 27.9 52.7 67.7 0.0 39.3 78.3
+ SDD 311 39.7 43.0 54.9 28.6 50.6 65.6 11.3 41.9 83.6

Table 5: 3-run average pruning
time (mm:ss) comparison at a 35%
pruning ratio for LLaMA 3.1. We
exclude I/O time for fairness.

Method Pru. Time

8B

ShortGPT 0:18
LaCo 0:05

SliceGPT 10:48
2SSP 1:26

COMPACT 0:32

70B

ShortGPT 2:10
SliceGPT 84:38

2SSP 13:48
COMPACT 2:17

Our results are in Table 5. With LLaMA 3.1-8B, COMPACT is
3 times faster than 2SSP, our strongest baseline, and com-
parable our depth pruning methods, with pruning times un-
der a minute. At the 70B size, COMPACT now becomes 6
times faster than 2SSP. The low pruning times show that COM-
PACT has competitive efficiency to our baselines.

Inference speed and memory usage. We evaluate two in-
ference paradigms: Text classification and Text generation.
The inference setup is in Appendix A.4.

Our results are in Table 6. Note that ShortGPT and LaCo
prune the same number of layers, so they have the same infer-
ence performance. In the text classification task, our method
achieves the highest memory reduction, and the second-
highest throughput increase. The low memory usage is from
the reduced vocabulary size. During the forward pass, logits are stored in GPU memory, which
becomes very large with high batch sizes. By pruning the vocabulary size, COMPACT shrinks logit
size, causing large memory reductions. This is especially important in edge computing applica-
tions, where memory is very limited and can spell the difference in whether a model can be
used or not. COMPACT has higher throughput than our width pruning baselines SliceGPT/2SSP,
although it falls behind depth pruning methods. This aligns with Bian et al. (2025), which showed
that scaling down layer count proportionally increases throughput, but scaling layer size does not.
While COMPACT achieves faster inference than other width pruning methods, more work is needed
to match the throughput of depth pruning methods. In the generation task, the trends in memory
usage and throughput are similar to that of the classification task.

4.4 RECOVERY FINE-TUNING

Although COMPACT is training-free, we optionally apply recovery fine-tuning. We fine-tune Qwen
2.5–0.5B pruned at 35% using two approaches: (i) Continued Pretraining (CPT): train on 900M
tokens from FineWeb-Edu (Penedo et al., 2024); (ii) Self-Data Distillation (SDD): generate 900M
tokens from the unpruned model (temperature = 1.0) to match its training distribution, then fine-tune
on this synthetic data (Thangarasa et al., 2024).

Despite some incoherence in the SDD synthetic dataset, our results (Table 7) show that SDD con-
sistently improves all benchmarks and yields a higher average score than CPT, which fails to boost
MMLU or GSM8K. This confirms SDD’s effectiveness even below 1B parameters (Thangarasa
et al., 2024). With fine-tuning, COMPACT surpasses training-based LLM-Streamline (Chen et al.,
2025) and even outperforms Gemma 3-270M, pretrained on 6T tokens—highlighting pruning’s ef-
ficiency relative to pretraining.
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Table 8: Multiple values of V ′ and I ′ over a fixed pruning ratio for Qwen 2.5-0.5B.

V’ I’ Ratio Avg Avg%
Dense 151936 4864 0.00% 50.2 100.0
ACT2 151936 2048 36.84% 31.6 63.0

COMPACT

131584 2304 37.04% 31.8 63.3
111104 2560 37.45% 33.1 66.1
90752 2944 36.23% 34.2 68.2
70400 3200 36.44% 34.5 68.9
49536 3456 37.04% 35.3 70.4
29568 3712 37.25% 34.7 69.2
9088 3968 37.65% 32.4 64.7

5 ABLATION STUDY

common act2 act2 |act|
66

68

70

70.4

69.2

67.6A
vg

%
Figure 2: COMMON-ACT2 outperforms both
ACT2 and |act| (Qwen 2.5-0.5B at a 35%
pruning ratio).

In our ablation study, we try to further four ques-
tions: i) Q1: how effective is COMMON-ACT2? ii)
Q2: how to trade off VOCAB-PRUNING and FFN-
PRUNING? iii) Q3: how much calibration data?

Answer to Q1: effectiveness of COMMON-ACT2.
We compare our novel COMMON-ACT2 method with
ACT2. To isolate the effect of the intermediate
pruning method, we prune rare vocabulary for all
models, then apply the specified intermediate prun-
ing method. We also test another commonly used
method, |act|, which is similar to ACT2 but uses the
summed absolute activations instead of squared activations. Our results are summarized in Figure
2. We find that COMMON-ACT2 achieves the highest mean performance compared to our baselines.

8 16 32 64 128 256 5121024
66

68

70

72

# Samples

A
vg

%

Figure 3: Downstream performance by calibration
dataset size. Although all benchmarks used 256
calibration samples, 16 samples is sufficient.

Answer to Q2: vocabulary-intermediate
tradeoff COMPACT has two hyperparame-
ters: the new vocabulary size V ′ and the new
intermediate size I ′. These can be adjusted to
produce many configurations at a given pruning
ratio. We test different configurations of Qwen
2.5-0.5B at 35% pruning. Our results are in Ta-
ble 8. Note that V ′ = 151936, I ′ = 2048 is
identical to ACT2. Despite ACT2’s simplicity, it
achieves better performance than our baselines
even without VOCAB-PRUNING. However, the
best result is achieved with a combination of
both, validating COMPACT’s methodology.

Answer to Q3: calibration data size. We perform ablations over the number of calibration sam-
ples, with our results in Figure 3. COMPACT is highly robust to sample count, and similar perfor-
mance can be achieved with just 16 samples, implying that the pruning time can be reduced further.

6 CONCLUSION

We propose COMPACT, a training-free pruning method combining vocabulary and FFN pruning un-
der the common-token distribution. Experiments show that it achieves robust performance across
model scales, offering smooth degradation, strong efficiency, and broad deployment compatibility.
In future works, we plan to address the discrepancy in throughput between our method and Short-
GPT/LaCo, closing the gap between width and depth pruning.

LLM Usage Disclosure. We used GPT-5 to assist with language polishing of the manuscript. No
parts of the methodology, experimental design, or results were generated by an LLM.
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Figure 4: Llama 3 Parameter Distribution
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Figure 5: Gemma 3 Parameter Distribution
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A APPENDIX

A.1 PARAMETER DISTRIBUTION ACROSS OTHER MODEL FAMILIES

Figures 4 and 5 provide parameter distributions for the LLaMA 3 and Gemma 3 model families,
respectively. We see that these models follow the same trend as Qwen 2.5 where SLMs have a
higher proportion of vocabulary parameters, corroborating our theoretical analysis.

A.2 EVALUATION METHODOLOGY

Downstream evaluations were conducted using the LM-Evaluation-Harness (Gao et al., 2024a),
specifically lm-eval 0.4.8. The evaluation details for each benchmark are in Table 9.
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Table 9: Evaluation methodology for each benchmark.

Benchmark n-shot Type Metric
MMLU 0 multiple-choice acc

HellaSwag 0 multiple-choice acc norm
WinoGrande 0 multiple-choice acc

ARC-C 0 multiple-choice acc norm
ARC-E 0 multiple-choice acc norm
PIQA 0 multiple-choice acc norm

GSM8K 5 generative strict match

Table 10: COMPACT pruning hyperparameters for all main results.

Ratio (%) V’ I’

Qwen 2.5–0.5B

0.00 151936 4864
10.00 99968 4736
20.00 49536 4736
35.00 49536 3456

LLaMA 3.2–1B

0.00 128256 8192
10.00 67968 8192
20.00 56704 7168
35.00 33792 5760

Gemma 3–1B

0.00 262144 6912
10.00 174592 6912
20.00 86912 6912
35.00 95232 5120

LLaMA 3.1–8B

0.00 128256 14336
10.00 73216 13440
20.00 67328 11520
35.00 67840 8448

LLaMA 3.1–70B

0.00 128256 28672
10.00 112384 25216
20.00 111872 21632
35.00 110976 16256

A.3 PRUNING HYPERPARAMETERS

We provide V ′ and I ′ for all our main results in Table 10. These hyperparameters were found by
sweeping over all possible configurations for the given pruning ratio, similarly to Table 8.

A.4 INFERENCE SETTINGS

Settings: i) Text classification: When running our pruned models on our downstream performance
benchmarks, we record the maximum memory usage as well as the throughput, measured in number
of questions per second. For this test, we use the HellaSwag benchmark, as it is the longest test
in our benchmark suite, which allows us to better discriminate between the methods. We test on a
larger model (LLaMA 3.1-8B) using a 3-run average, again to better discriminate between methods.
All models are loaded in 16-bit precision on a single A100-80GB GPU, with a batch size of 256. ii)
Text generation: We use the vLLM library (Kwon et al., 2023) to test the memory reduction and
inference speedup of our method. As mentioned before, because SliceGPT and 2SSP are incompat-
ible with vLLM, we omit it from our tests. Similarly to the text classification test, we use a 3-run
average of LLaMA 3.1-8B in 16-bit precision on a single A100-80GB GPU, but with a batch size
of 1 instead, as this is a more realistic workload for on-device text generation. Tests are conducted
with 128 input tokens and 128 output tokens.
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