
Retrieval & Fine-Tuning for In-Context Tabular Models

Valentin Thomas∗
valentin.t@layer6.ai

Junwei Ma∗

jeremy@layer6.ai
Rasa Hosseinzadeh
rasa@layer6.ai

Keyvan Golestan
keyvan@layer6.ai

Guangwei Yu
guang@layer6.ai

Maksims Volkovs
maks@layer6.ai

Anthony Caterini
anthony@layer6.ai

Abstract

Tabular data is a pervasive modality spanning a wide range of domains, and
this inherent diversity poses a considerable challenge for deep learning. Recent
advancements using transformer-based in-context learning have shown promise
on smaller and less complex tabular datasets, but have struggled to scale to larger
and more complex ones. To address this limitation, we propose a combination
of retrieval and fine-tuning: we can adapt the transformer to a local subset of the
data by collecting nearest neighbours, and then perform task-specific fine-tuning
with this retrieved set of neighbours in context. Using TabPFN as the base model
– currently the best tabular in-context learner – and applying our retrieval and
fine-tuning scheme on top results in what we call a locally-calibrated PFN, or
LoCalPFN. We conduct extensive evaluation on 95 datasets curated by TabZilla
from OpenML, upon which we establish a new state-of-the-art with LoCalPFN –
even with respect to tuned tree-based models. Notably, we show a significant boost
in performance compared to the base in-context model, demonstrating the efficacy
of our approach and advancing the frontier of deep learning in tabular data.

1 Introduction

Tabular data is the most pervasive modality for practical problems in data science, spanning across
a wide variety of domains including finance, healthcare, and science [3, 47, 12, 46, 48]. The diversity
and heterogeneity of tabular data pose great challenges for deep learning approaches [21], unlike
modalities such as text and images in which neural networks can be designed to specifically exploit
inductive biases underlying the data [9]. As such, obtaining a performant neural network on a
particular tabular data task often results in expensive iterations of training and hyperparameter tuning.
Meanwhile, tree-based methods such as XGBoost [11] and CatBoost [40] have proven to be more
robust to the inherent challenges of tabular data, and thus have remained the dominant approach for
this setting [21, 44, 9]. Yet recently, there has been progress made with transformers and In-Context
Learning (ICL): one such example is TabPFN [26], which is trained using a prior-fitting procedure
[36] that exposes the network to millions of possible data-generating processes, thus taking a step
towards encapsulating the heterogeneity of tabular data. Such approaches differ from classical
algorithms in that they process entirely new datasets in a single forward pass and obviate the need
for training and hyperparameter tuning.

Despite the promise of transformer-based ICL methods in the tabular setting – particularly on smaller
datasets – scaling remains an issue: memory scales quadratically with the size of the context. This
limits performance when the entire dataset cannot fit into memory, and contrasts with classical
algorithms that tend to improve as the amount of available data increases. In addition to this, and
as depicted in Figure 1, TabPFN in particular can struggle with underfitting as dataset complexity
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(a) Vanilla TabPFN, full context (b) TabPFN-kNN, k = 100
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Figure 1: a) TabPFN – even when using the entire training data as context – underfits and cannot clas-
sify patterns such as three pairs of concentric circles of two classes. Decision boundaries are in black
and shaded areas show the predicted class. b) Applying an adaptive local context for each point using
its k nearest neighbours can easily solve this problem. c) We observe that this approach is robust to
the numbers of neighbours used (k) even when the dataset complexity increases and always performs
better than vanilla TabPFN using full context (N = 1000). Each point is averaged over 25 seeds.

increases, even when the entire dataset fits into the context; we observe this shortcoming in real
datasets as well, and suspect this could apply to any ICL-based model for tabular data.

To improve the scaling of tabular ICL methods in both dataset size and complexity, we draw
on two techniques that have been incredibly successful in foundational large language models:
retrieval [31] and fine-tuning [6]. On the retrieval side, we use the k-Nearest Neighbours (kNN)
of a given query point as the context for classification; modifying the context in this way empirically
allows for both enhanced processing of larger datasets and more complex decision boundaries.
We also fine-tune end-to-end for each task, using an approximate neighbour scheme to facilitate
backpropagation, and demonstrate significant performance gains beyond just kNN. We named our
model Locally-Calibrated PFN – or LoCalPFN for short – to represent the addition of retrieval
and fine-tuning on top of a base TabPFN model, although this idea should naturally transfer to
potential future ICL-based tabular foundation models as well [49]. We demonstrate that LoCalPFN is
state-of-the-art when comparing against both neural approaches and well-tuned tree-based techniques
across a 95-dataset benchmark from TabZilla [35]. We summarize our contributions below:

1. Provide insights into TabPFN – the current state-of-the-art tabular ICL transformer-based
framework – and analyze how its performance scales across several axes in both synthetic and
real datasets. We identify failures to scale in both dataset size and complexity.

2. Propose LoCalPFN to address the scaling failures mentioned above, using a combination of
retrieval and fine-tuning to allow for more effective use of the context.

3. Show LoCalPFN compares favourably to strong baselines on a large variety of datasets through
extensive experimentation, analysis, and ablation.

2 Improving Tabular In-Context Learning with Retrieval and Fine-Tuning

In this section, we describe ICL applied to tabular data – in particular TabPFN – and the limitations
of such an approach. Then, we present our contributions where we treat the in-context learner as a
base model on top of which retrieval and fine-tuning are applied.

2.1 Preliminaries on In-Context Learning for Tabular Data and TabPFN

Our method generally applies to in-context learners, specifically for classification tasks on tabular data.
While, at the time of writing the only successful model of that type is TabPFN [26], we expect other
such base models to be published in the future. TabPFN is trained using a prior-fitting procedure [36]
where a large number of synthetic datasets are generated using randomly initialized neural networks.
This approach trains an underlying transformer-based network on various generative processes
designed to simulate the diverse interrelations that exist among the features of realistic tabular datasets.
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After the prior-fitting procedure, the learned TabPFN model ingests an entire training dataset
Dtrain ≜ {(xi

train, y
i
train)}Ni=1 consisting of feature-label pairs xi

train ∈ RD and yitrain ∈ {1, . . . , C}
for i ∈ {1, . . . , N}, along with features of a query point xqy (potentially in a batch), and outputs a
distribution over labels yqy ∈ {1, . . . , C}. Specifically, denoting the TabPFN network (outputting
logits) with parameters θ as fθ, the resulting posterior predictive distribution is modelled by:

pθ(yqy | xqy,Dtrain) =
exp(fθ(xqy,Dtrain)[yqy])∑C
c=1 exp(fθ(xqy,Dtrain)[c])

, (1)

where [·] denotes the vector indexing operation.

Contrary to classical machine learning methods which are trained on one dataset and then evaluated
on the same distribution, TabPFN has been shown to be able to perform classification on a wide
range of tasks without training, thanks to its diverse prior-fitting procedure. This makes it one of the
rare foundation models for tabular data. Key to this is the ICL ability of TabPFN: by using various
training examples as context, analogous to how transformers on language use the preceding tokens as
context, TabPFN can classify new query points in a single forward pass.

2.2 What Constitutes a Good Context for Tabular Data?

The quadratic growth of memory usage with context length in transformers presents a challenge: the
number of support examples we can use is limited. For instance, while TabPFN performs best on
small and simple datasets, where the entire training set fits within the context, it is unclear how to
best use TabPFN for large and complex datasets. Naïvely, we might consider a random subsample of
the training data as context [35, 19]. However, Ma et al. [34] show that this method does not scale
either and observe a drop in performance as the dataset size increases.

Given these limitations, it is natural to ask “What constitutes a good context for tabular data?”.
This topic has been thoroughly researched in natural language processing, which resulted in various
techniques for prompt engineering. The situation is more complicated in the tabular domain, as there
is no natural order to tabular data as opposed to the natural order of the words in language.

Specifically for TabPFN, some attempts have been made to use a summary of the dataset as context,
through either k-means centroids [19] or direct prompt optimization [19, 34]. Yet in either case the
flexibility of the method is limited by the use of a single context for all query points. Instead, we
propose a different approach here, where we use a local context tailored to each individual point
we wish to classify. For tabular data, we hypothesize that the most critical information to classify
a query point xqy is contained in its vicinity. Extensive evaluations [35] support this fact by showing
that a simple kNN classifier can rival modern deep architectures designed for tabular data, such as
TabNet [2] and VIME [54]. We thus believe that using nearby points as context is a good inductive
bias for tabular data classification.

2.3 Better Expressivity and Scaling Using Local Information

To do this, the first step is to replace the global context by a local context, i.e., with kNN(xqy) as the
k-nearest neighbours of the query xqy in the training data Dtrain, we replace equation 1 by

pθ(y | xqy,Dtrain) =
exp(fθ(xqy, kNN(xqy))[y])∑C
c=1 exp(fθ(xqy, kNN(xqy))[c])

. (2)

Better Expressivity It is well known that in kNN regression and classification, the number of
neighbours k controls the bias/variance trade-off and as such the expressivity of the model. More
precisely, large k tends to “oversmooth” and suffer from high bias/underfitting, while small k enables
more complex decision boundaries but can suffer from more variance/overfitting [24]. We show that
this phenomenon is still true for transformers, beyond the simple kNN classifier, in Figure 1. We
generate datasets of size N = 1000 so that it can be used as context by TabPFN without subsampling.
As we increase the complexity of the dataset, measured by the number of concentric circles in this
case, TabPFN fails to accurately classify (e.g., for 3 pairs of circles in (a) and more generally in
(c)). Retrieving fewer samples (k = 10, 30, 100, or 300) for each query point using its k-nearest
neighbours from the training data leads to large improvements in AUC over TabPFN as the complexity
of the data increases ((b) and (c)). Note that k = 1000 would correspond to using all samples as
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context, and thus is equivalent to vanilla TabPFN. As such there is a continuum between TabPFN using
the full dataset as context and our local context method using kNN, which we call TabPFN-kNN.

While Figure 1 is on toy synthetic data, we believe this result remains surprising: a priori, we would
expect a 25-million-parameter model (TabPFN) to be able to learn a few circles, even with just ICL.
Meanwhile, we believe that using local contexts allows TabPFN to fit more complex patterns, such
as the three circles of Figure 1, in the same way that using local linear regression enables more
expressive (and in that case nonlinear) decision boundaries [13, 23].
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Figure 2: Example of the behaviour of TabPFN and TabPFN-kNN as we vary the dataset size and the
context length for three large datasets. TabPFN is in shades of green and TabPFN-kNN is in shades
of blue. The opacity represents the context length used (also labelled on each line). It corresponds
to random training samples for TabPFN and nearest neighbours for TabPFN-kNN. TabPFN is limited
by context size and cannot make efficient use of larger datasets. While for context length = dataset
size (k = N ), TabPFN and TabPFN-kNN have the same performance, TabPFN-kNN can leverage
larger datasets with kNN-based contexts and shows improvements, often even for lower context
lengths. Each point on this plot is the average of 100 random resamplings of the data.

Better Scaling Using a local context has another benefit: it allows our method’s performance to
scale with the training dataset size. In machine learning, it is generally expected that the performance
of an algorithm improves as the training set size N increases, since the empirical risk converges
to the expected risk [50]. However, ICL-based methods (such as TabPFN) that require subsampling
when the maximum context length is smaller than N do not scale with N . TabPFN-kNN, on the
other hand, can still benefit from larger training set sizes N even when the number of neighbours
k is much smaller than N , as the search is performed over the whole training set. We demonstrate
this fact in Figure 2 for three real datasets. While the exact patterns in the loss curves differ, we
observe a similar trend across many datasets, where the benefits of using TabPFN-kNN grow as
the dataset becomes larger. In Figure 9 we provide more detailed figures which include training loss.

2.4 Efficient End-to-End Fine-Tuning With Retrieved Samples

In addition to retrieval, we fine-tune the model end-to-end on each dataset to further improve
performance, as is common in Retrieval-Augmented Generation (RAG) [31]. However, naïve
fine-tuning is not computationally efficient. Transformer-based in-context models work with inputs
of shape (B,Lctx + Lqy, d) where B is the batch size, Lctx and Lqy are the context and query lengths,
and d is the embedding dimension. TabPFN uses only one fixed context for all points, with B = 1,
Lctx the training dataset size (or maximum context length if too large), and Lqy = Nqy the number of
points to classify. Contrary to text, there is no auto-regressive attention mask: the context examples
all attend to each other (blue arrows on Figure 3a) while the queries only attend to the context and
not to each other (red arrows on Figure 3a). Therefore, the predicted classes can be computed in
parallel and at a reduced memory footprint.

By comparison, when using a local context with exact neighbours, the context is no longer shared,
and therefore the batch dimension must be used for queries: the input has shape B = Nqy, Lctx = k –
the number of neighbours – and Lqy = 1, since the queries use distinct contexts. This is significantly
less efficient than the inference performed by TabPFN, which both requires much less memory,
and also allows the queries to be processed in parallel. Therefore, our main limitation is in fact the
forward and backward passes when using exact neighbours, unlike most applications where retrieval
is the bottleneck. As such, most common approximate kNN methods cannot address this issue.

4



p(· |xqy,Dtrain)TabPFN

Local contextkNN

Dtrain xqy

(a) Overall architecture of LoCalPFN

1) Sample point 2) Compute kNN

3) Shuffle and split into context and queries

Context

Queries

(b) Efficient local context computation for fine-tuning

Figure 3: Details of the architecture and the efficient context used during fine-tuning. a) During
inference, for each query xqy, we compute its kNNs and use them as context. b) During fine-tuning,
we have a modified procedure allowing shared context between many queries. We first select a random
training point, then compute its kNNs. Finally we randomly split those into a context and a query set,
allowing us to have a shared (yet local) context for many queries, similarly to vanilla TabPFN. Colours
correspond to classes, highlighting that different classes can (and should) appear in the same context.

Instead, to improve computational efficiency during the end-to-end fine-tuning, we opt for a simple
neighbour approximation technique wherein many queries share the same context. An illustration
of the method is provided in Figure 3b for a single batch dimension. More generally, let us assume
that we want to pass gradients on Nqy examples at once, using a context length of Lctx. We propose
to only use B different contexts, which we will use to classify Nqy/B samples each: First, B training
examples are sampled. Then, their individual kNN search is performed with k = Lctx + Lqy

2 for
Lqy = Nqy/B. Finally, those batches of k samples are each shuffled and split into a context vector of
length Lctx, and a query vector of length Lqy, constructing the input vector of size (B,Lctx + Lqy, d).
This allows us to efficiently trade-off accuracy of the neighbours versus computational complexity:
with lower B we share contexts between many points but this comes at the cost of an approximation
in the kNN search as the notion of neighbourhood is not transitive, i.e., the neighbour of your
neighbour might not be your neighbour. However each sequence in each batch only contains
examples which are in the general vicinity of each other. In practice, we observe that this method
does not lead to any significant degradation in performance while allowing much faster training.

3 Related work

Foundational Techniques to Improve Tabular Deep Learners Deep learning techniques have
historically struggled on tabular data [21], where inductive biases are much harder to capture
architecturally [4] as compared to text or images. The comparative lack of progress on a large
foundation model for tabular data [49] is yet more evidence of this. However, recent approaches
have successfully begun to leverage foundational ideas to improve performance. For example,
Non-Parametric Transformers [30] and SAINT [45] both combine row-attentive transformer-based
backbones with some form of self-supervised pre-training; however, the former is limited by context
size (a common theme for naïve ICL-based learners), whereas the latter is not based on ICL and
thus does not as easily apply to novel datasets. Models such as RIM [41] and TabR [20] on the other
hand demonstrate how to effectively design tabular deep learners incorporating retrieval modules, but
still require costly and brittle rounds of hyperparameter tuning to adapt to any specific dataset. Our
approach is meant to target some combination of all these methods: provide ICL-based generalization
capabilities, but without limitations on the context size. The retrieval mechanism within TabR itself
relies on kNN, which is one of the most straightforward and widely used retrieval-based machine
learning methods [24]. In fact, kNN is still being actively studied in the literature, e.g., in Differential
Nearest Neighbours Regression (DNNR) [38] and follow-up work [53], which aims to make kNN

2Note that, as we sample training points, these original B points are part of their own kNN. To avoid
duplicates, we exclude the original B points from the kNN search.
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differentiable; this showcases the potential of simple methods like kNN in different forms, although
DNNR tackles a separate scope from our method.

TabPFN and Extensions TabPFN [26] is a transformer-based in-context learner that has emerged
as a popular model for tabular data, demonstrating strong performance on some benchmarks [35].
It uses a prior-fitting process [36] allowing for rapid adaptation to new tasks. This strong ability to
quickly generalize makes TabPFN somewhat of a foundation model for tabular data [49], from which
techniques for generation [33] and dataset distillation [34] for example can emerge – interpretability
is also being studied [43]. TuneTables [19] attempts to use tabular sketching [37] to summarize
the incoming dataset and more effectively scale TabPFN’s context; however, much like Ma et al.
[34], this approach is limited by the use of a single context for all datapoints, as opposed to an
adaptive local context. den Breejen et al. [15] is able to show some limited improvements by
fine-tuning TabPFN, which we extend here by more closely pairing the retrieval and fine-tuning
aspects. Concurrently, Xu et al. [52] are able to improve TabPFN by first clustering the training data
with K-Means and routing each testing point to a given cluster, which is then used as a prompt; our
method does not require any clustering of the data.

Links with LLMs The idea of pre-training a model on corpora of text prior to fine-tuning has
been explored in the Natural Language Processing domain for both classification and generation
tasks [14, 27, 42]. Later iterations refined this idea to train a model and use its in-context learning
abilities for new tasks [10]. This elicited research into prompt engineering to determine what to
actually put in a model’s context [39, 51]. Similar to prompt engineering, to better utilize the model’s
context, one can search for similar examples from a corpora and use them to facilitate the task; this
is known as Retrieval-Augmented Generation (RAG) [31] in the generative context. Other variants
of the idea include training jointly with retrieval [22, 8] and augmenting the output of the model
with kNN via interpolating [29]. These ideas are analogous to our approach of (i) fine-tuning and
retrieving jointly, and (ii) disjoint kNN and fine-tuning in our ablations, respectively. LLMs have also
been directly applied to tabular data [16, 25, 18] however, due to the pre-training of these foundation
models on large text corpora, there is the possibility of data leakage, which causes concern with
evaluations [7]. Note that this is not the case with TabPFN as it has been trained on synthetic data.

4 Experiments

In this section, we showcase the performance of LoCalPFN against a wide range of alternatives. We
release all code to reproduce our results at https://github.com/layer6ai-labs/LoCalPFN.

4.1 Experimental Setup

We evaluate our methods against competitive baselines using 95 out of the 176 datasets from
TabZilla [35], originally sourced from OpenML [5]. These datasets originate from diverse sources,
including academic research, competitions, government agencies, and corporations. The 95 datasets
are filtered from TabZilla to meet TabPFN’s architectural requirements by ensuring that each dataset
has at most 100 features, at most 10 classes, does not contain NaN values, and has at least one
instance per class for each split. The details of the datasets are described in Appendix A.1. We
further split the datasets into two subsets: “small” datasets which contain less than 2,000 instances,
and “medium/large” which contain at least 2,000 instances (up to 130,064). For each dataset, we
use the splits from TabZilla with train-validation-test ratio of 80:10:10. Since TabPFN was trained
with a maximum of 1,024 data points as context size, the small datasets are roughly considered
in-distribution for TabPFN whereas the large datasets are considered out-of-distribution.

We conduct our experiments using 10-fold cross-validation over all datasets for all methods. For all
baselines, we apply 30 rounds of hyperparameter tuning as in McElfresh et al. [35] and choose the
best hyperparameters for each fold according to validation AUC. In addition, the TabPFN baseline
is reported without further ensembling or transformations, unless otherwise noted. Our methods also
build on top of this same TabPFN baseline without further processing. We also compare against
TabPFN with transformations in Section 4.4. More details of the baseline models can be found in Ap-
pendix A.2.1. We use the faiss [28, 17] library for efficient kNN search in our methods; this enables
us to harness parallel computation to accelerate the nearest neighbour search. We evaluate our methods
TabPFN-kNN and LoCalPFN against other models in the following sections. Notably, without further
fine-tuning, LoCalPFN is identical to TabPFN-kNN. Details of our method are in Appendix A.2.2.
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For LoCalPFN we also conducted some small experiments on hyperparameter optimization, but
saw no real difference in performance across hyperparameter choices, besides learning rate which
we tuned by hand on a global level (i.e., not on a per-dataset basis). Thus, we retained the default
hyperparameters we had initially from the TabPFN repository (other than learning rate). We will see
later in this section that LoCalPFN is also insensitive to choices in embedding and retrieval metric;
combining this with the strong performance across hyperparameter choices shows that the approach
is quite robust overall.

Note on evaluation and the computation of proper confidence intervals: While many works
evaluate tabular data methods on a small set of datasets and report confidence intervals/standard
deviations for those, we choose to evaluate on a large number of datasets in order to have more
meaningful results. However, this makes it harder to compute meaningful uncertainty. Agarwal et al.
[1] dealt with a related problem in reinforcement learning; we follow their lead by, for example,
reporting the interquartile mean (IQM, i.e., the mean of the middle 50% of scores), and we use their
library3 to compute 95% confidence intervals via stratified bootstrapping.

4.2 Main Experiments

As shown in Table 1, averaged over 95 datasets, LoCalPFN outperforms all other baselines, with
significant improvement over TabPFN itself. Among the 47 small datasets, we found that TabPFN is in
fact quite competitive with other methods, similar to what had been reported by McElfresh et al. [35].
Nevertheless, LoCalPFN further improves the performance even in this setting and positions itself as
the best method. For the 48 medium/large datasets, TabPFN underperforms the tree-based methods by
a wide margin. Simply applying kNN on top of TabPFN leads to a drastic performance increase on top
of TabPFN. Finally, LoCalPFN further improves on TabPFN-kNN, and either performs on par with,
or outperforms, all other methods. We also measure the accuracy, F1 score, and relative AUC metrics
such as average rank and z-score and see a similar pattern; those details can be found in Tables 6 to 8.

Deep Learning Model Comparisons: Note that most deep learning baselines are significantly
more expensive to train and tune on larger datasets, and as such, most of them could not be run on
all datasets [35]. Nevertheless, in Table 5 we compare TabPFN-kNN and LoCalPFN to other deep
learning based methods on the datasets on which the baselines have been able to run, and show an even
larger improvement in performance. The datasets we used for this comparison can be found in Table 4.

Table 1: AUC scores and confidence intervals for all 95 datasets, 47 small datasets, and 48
medium/large datasets, respectively.

All Small Medium/Large
Algorithm IQM AUC Mean AUC IQM AUC Mean AUC IQM AUC Mean AUC
kNN 0.843 [0.838-0.847] 0.812 [0.808-0.816] 0.807 [0.798-0.816] 0.781 [0.772-0.789] 0.882 [0.880-0.884] 0.848 [0.847-0.850]

TabPFN 0.917 [0.914-0.919] 0.867 [0.864-0.870] 0.898 [0.892-0.904] 0.849 [0.843-0.856] 0.927 [0.925-0.929] 0.884 [0.883-0.885]

TabPFN 3k 0.924 [0.922-0.927] 0.873 [0.869-0.876] 0.903 [0.897-0.909] 0.852 [0.845-0.858] 0.938 [0.937-0.939] 0.893 [0.892-0.894]

LightGBM 0.940 [0.937-0.942] 0.885 [0.881-0.888] 0.884 [0.876-0.891] 0.838 [0.831-0.845] 0.966 [0.964-0.967] 0.931 [0.930-0.932]

RandomForest 0.936 [0.934-0.939] 0.886 [0.883-0.890] 0.895 [0.888-0.901] 0.848 [0.841-0.854] 0.955 [0.954-0.956] 0.920 [0.919-0.921]

CatBoost 0.942 [0.939-0.944] 0.891 [0.888-0.895] 0.907 [0.901-0.914] 0.856 [0.849-0.862] 0.961 [0.960-0.962] 0.926 [0.925-0.927]

XGBoost 0.943 [0.940-0.946] 0.892 [0.889-0.895] 0.907 [0.900-0.914] 0.861 [0.854-0.867] 0.965 [0.964-0.966] 0.931 [0.929-0.932]

TabPFN-kNN 0.943 [0.941-0.946] 0.891 [0.887-0.894] 0.922 [0.916-0.927] 0.864 [0.857-0.871] 0.955 [0.953-0.956] 0.916 [0.915-0.917]

LoCalPFN 0.958 [0.956-0.960] 0.908 [0.905-0.911] 0.937 [0.931-0.942] 0.882 [0.875-0.889] 0.968 [0.967-0.969] 0.934 [0.933-0.935]

4.3 Analysis: Scaling with Dataset Size and Complexity

In this section, we further validate that LoCalPFN addresses the scaling problems of TabPFN. We
see in Figures 1 and 2 that TabPFN scales badly with both size and complexity; here, we verify this
phenomenon in real datasets. While this may appear contradictory to Table 1 of McElfresh et al. [35],
which shows TabPFN excelling on a large benchmark suite, we note that the aforementioned study
mostly contained small datasets and thus it did not show the same performance drop-off observed here.

Scaling with Size In Figure 4a, we report the AUC of different algorithms relative to the AUC of
Random Forest for different dataset sizes. We choose relative AUC for clarity as there is no clear
correlation between the maximum AUC attainable on a dataset and its size. We see that, compared to
the Random Forest baseline, TabPFN’s performance drops drastically when the dataset size increases

3https://github.com/google-research/rliable
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beyond 3,000, indicating poor scaling with N . On the other hand, the other methods we report scale
more favourably with the dataset size. We also see that LoCalPFN scales favourably compared to
the Random Forest baseline, and even outperforms XGBoost for large datasets. Error bars represent
the 95% confidence interval.

Scaling with Complexity While in Figure 1 we could easily control the complexity of the task, there
is no generally accepted measure of complexity for an arbitrary dataset. Here, we propose a simple
proxy for complexity: for a given dataset, we measure the difference between the best and worst AUCs
of a given set of algorithms, similarly to McElfresh et al. [35]. The rationale is that AUC itself cannot
capture complexity, as for instance learning to separate two Gaussians can be done optimally by a
linear classifier, but the error rate depends on their variances. In Figure 4b, we analyze performance
across different levels of this complexity measure. We first calculate the difference in AUC for each
dataset using all listed methods in Table 1, then we divide the datasets into five quantiles on the x-axis,
with increasing complexity as we move to the right; on the y-axis, we report the mean AUC relative
to Random Forest across 10 folds and across the datasets in each bin. We see that TabPFN scales
poorly with increasing complexity, and LoCalPFN still outperforms all other methods in the quantiles
of higher complexity, demonstrating that its improvements are not just limited to “easy” datasets.
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Figure 4: Analysis of AUC as a function of size and complexity. TabPFN fails to scale both in size
and complexity while LoCalPFN is able to still outperform on the far end of the spectrum. See
Figure 8 for a version with absolute AUC. Note that each of the plots contain all datasets in the
95-dataset benchmark, and no subsampling is performed.

4.4 Ablation Studies

In this section, we provide ablation studies on different design choices for LoCalPFN.

Importance of Joint Retrieval and Fine-Tuning One could naïvely consider simply fine-tuning
the in-context learner on randomly sampled context during training. In Figure 5 (left) and Table 9,
we see that this indeed improves performance over the original TabPFN baseline. However, applying
TabPFN-kNN on top of a naïvely fine-tuned model does not improve performance further. Therefore,
it is crucial to fine-tune the model end-to-end with the retrieval (LocalPFN).

Choice of Embedding We also try different embeddings. The simplest approach is to use the raw
standardized features for the nearest neighbour retrieval. In Figure 5 (centre) and Table 10, it is shown
that this simple approach is actually very competitive. We compare it to two additional approaches:
using one hot encodings (when the size of the resulting vector does not exceed 100 features), and
the output of the encoder layer of TabPFN. For the latter, we recompute the search index every
30 gradient steps. The results show that the former, using one hot encodings, does lead to some
improvement, however mostly for smaller datasets (see Figure 10 and Figure 11).

Why do simple embeddings work so well? While tabular data is complex in many regards [21],
features in tabular data are often semantically meaningful. For this reason, we expect metrics that
decompose over individual features, i.e., d(x, x′) =

∑
i di(xi, x

′
i), to be a good inductive bias for

tabular data, especially when it is normalized. This would not be the case for most natural signals.
We experimented with two different metrics here, including the Euclidean (L2) distance and cosine
similarity; in practice, these two choices are quite similar when applied to standardized features
and so we stuck with the Euclidean distance.

8



Tab
PFN

Fin
e-t

un
e

Fin
e-t

un
e +

 kN
N

Tab
PFN

-kN
N

LoC
alP

FN
0.86

0.87

0.88

0.89

0.90

0.91

0.92

M
ea

n 
AU

C

Importance of joint retrieval and fine-tuning

LoC
alP

FN
-en

cod
er

LoC
alP

FN
-ra

w

LoC
alP

FN
-on

e h
ot

0.86

0.87

0.88

0.89

0.90

0.91

0.92 Impact of embedding choices

Tab
PFN

Tab
PFN

-32
en

s

Tab
PFN

-3k
-32

en
s

Tab
PFN

-3k
-32

en
s-in

t

Tab
PFN

-IC
D

Tab
PFN

-kN
N

LoC
alP

FN
0.86

0.87

0.88

0.89

0.90

0.91

0.92 Importance of using a local context

Figure 5: Ablations for different design choices on all 95 datasets. Left: Fine-tuning jointly with
retrieval yields better performance. Centre: The choice of embeddings for retrieval does not change
the performance drastically but can lead to some improvements. Right: Methods using a context that
does not depend on the current query do not match the performance of methods that use a local context.

Importance of Using a Local Context Up until now, we have mostly compared to TabPFN with
a random context of size 1,000. To prove our point that using a local context is inherently better
than a global context (same context for all queries), we attempt to find the best model using a global
context by first using an ensemble of 32 TabPFN models (with randomized feature and class ordering
as in Hollmann et al. [26]), which we denote TabPFN-32ens, and then by increasing the context
size of the ensembled TabPFN to 3,000 (TabPFN-3k-32ens). As depicted in Figure 5 (right) and
detailed in Table 11, while improving significantly upon TabPFN, these are still not competitive
even with our TabPFN-kNN. As one can criticize the use of a single context to classify queries,
we further experimented with a “Bayesian” view of the probability by averaging it over contexts
pθ(yqy | xqy,Dtrain) ≜

∫
C pθ(yqy | xqy, C)p(C | Dtrain)dC, where C is a context obtained from the

training data Dtrain. We experimented with splitting Dtrain into chunks of size 3,000, and averaging the
probabilities over those chunks. We call this method TabPFN-32ens-3k-int (for integral) and show
that, while it does improve upon the single random context, it does not outperform TabPFN-kNN.
Additionally, this method is very expensive as: (i) using 3,000 context examples is GPU memory
intensive, and (ii) the integral over chunks makes the inference scale as O(N). The last method we
compared to is “In-Context Distillation” [34] (TabPFN-ICD) where, similarly to Feuer et al. [19], the
authors directly optimize the context. While this last method leads to better performance (including
on larger datasets, see Figure 11), since it performs task-specific tuning it is more comparable
computationally to LoCalPFN, which remains superior.
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Figure 6: Ablating max # of neighbours

Sensitivity to Number of Neighbours We also ablate
the choice of the number of neighbours used as context.
This is the only hyperparameter for TabPFN-kNN and also
an important hyperparameter for LoCalPFN. In practice,
for the number of neighbours, we use the minimum of (i)
10 times the square root of the training set size, and (ii)
a pre-defined maximum. For large datasets, the number
of neighbours should roughly align with the pre-defined
maximum. In Figure 6, we vary this pre-defined maximum
while observing the mean AUC on the 48 medium/large
datasets. We found that TabPFN-kNN is not very sensitive
to this choice as long as it is at least 100. We also see that
LoCalPFN is able to improve TabPFN-kNN on all context
sizes. Surprisingly, we observe that LoCalPFN is able to outperform the random forest baseline
using a maximum context size of only 50, and also outperform the XGBoost baseline with maximum
context size of 500. The details of the ablation can be found in Table 12.

Quality of Approximate Local Context In addition to the above, we also assess the quality of the
approximate local context in real datasets in Appendix A.5.5 and Table 13.
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4.5 Runtime Study

We also conduct a runtime analysis for LoCalPFN, TabPFN-kNN, and other tree-based models, show-
ing mean test-set AUC as a function of runtime. In Figure 7a, we measure this runtime as the total
time taken for training and evaluation. We can see that the general trend for all our algorithms shows a
positive correlation between runtime and AUC. We also observe that TabPFN-kNN runs surprisingly
fast while still achieving quite high AUC on the 95 datasets. The fast runtime together with very few
hyperparameters suggests that TabPFN-kNN will perform very well in practical machine learning en-
gineering and research. LoCalPFN achieves significantly higher performance than all other techniques,
and even though it obtains this performance which a much higher runtime, it is also worth noting that
the deep learning baselines shown in Table 5 take an even longer time for training and evaluation.

One of the drawbacks of using a local context, though, is that TabPFN-kNN’s and LoCalPFN’s
inference time is slower by 1 to 2 orders of magnitudes when compared to tree-based methods. This
fact is to be taken into account when extremely high throughput inference is needed.
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(a) Train+Inference time vs. AUC

Algorithm Training (s) Inference (s)
CatBoost 6.86 0.01
LightGBM 2.94 0.02
RandomForest 1.15 0.04
XGBoost 2.26 0.01
LoCalPFN-1000 43.47 0.72
LoCalPFN-200 22.45 0.55
LoCalPFN-100 19.76 0.38
TabPFN-kNN-1000 0 0.72
TabPFN-kNN-200 0 0.55
TabPFN-kNN-100 0 0.38

(b) Training and inference times. Note that LoCalPFN
has the same inference time as TabPFN-kNN.

Figure 7: a) AUC vs. Runtime for all 95 datasets. TabPFN-kNN has very low runtime and strong
performance, while LoCalPFN is able to achieve the highest AUC overall. We use bold text to
denote maximum number of neighbours k used. b) Breakdown of the total time in training time
and inference time for all algorithms. As local in-context methods are all significantly larger than
tree-based methods, their raw inference time is slower.

5 Conclusion and Limitations

In this paper, we demonstrate how to use retrieval and fine-tuning to improve performance on tabular
data classification tasks, introducing LoCalPFN as a version of this framework that uses TabPFN as
the base model. LoCalPFN breaks new ground for neural approaches on tabular data, even showing
improvements over workhorse tree-based techniques. We also provide TabPFN-kNN as a variant
without fine-tuning, demonstrating its superiority over the base TabPFN model and practical utility.

However, despite its successes, our framework also has some limitations. The first is that we have only
shown that retrieval and fine-tuning improve TabPFN, since it is the only proven ICL-based tabular
model. Thus, we cannot be certain that our ideas would directly transfer to new base models, although
the success of these concepts in other domains provides some evidence. It is also worth noting that the
original RAG paper [31] only initially demonstrated success on BART. Next, the reliance on TabPFN
as a base model brings some limitations: besides the constraints on number of features and classes dis-
cussed in Section 4.1, we are also unable to easily test our ideas in regression tasks since TabPFN is not
designed for them. Although we expect these constraints to gradually be lifted as tabular foundation
models improve and increase their scope, we also note that tree-based methods are not nearly as sus-
ceptible to these issues. Going further on the comparison with tree-based methods, while we note that
LoCalPFN performs better than them in our experimental study, we also point out in Section 4.5 that
the runtime of LoCalPFN is slower. However, it is still faster than other deep learning approaches, and
the cheaper TabPFN-kNN variant runs as fast as any tree-based method on datasets we studied, while
still attaining respectable performance. Overall, we believe that the benefits of our framework far out-
weigh the limitations, as LoCalPFN greatly expands the capabilities of deep learning on tabular data.
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A Appendix

A.1 Datasets

Table 2: 47 Small Datasets

dataset did # instances # feat # classes # cat imbalance ratio

Australian 146818 690 14 2 8 1.248
LED-display-domain-7digit 125921 500 7 10 0 1.541
acute-inflammations 10089 120 6 2 5 1.400
balance-scale 11 625 4 3 0 5.878
banknote-authentication 10093 1372 4 2 0 1.249
blood-transfusion-service-center 10101 748 4 2 0 3.202
breast-cancer 145799 286 9 2 9 2.365
car-evaluation 146192 1728 21 4 21 18.615
car 146821 1728 6 4 6 18.615
climate-model-simulation-crashes 146819 540 18 2 0 10.739
cmc 23 1473 9 3 7 1.889
credit-g 31 1000 20 2 13 2.333
diabetes 37 768 8 2 0 1.866
dresses-sales 125920 500 12 2 11 1.381
fertility 9984 100 9 2 0 7.333
hayes-roth 146063 160 4 3 0 2.097
hill-valley 145847 1212 100 2 0 1.000
ilpd 9971 583 10 2 1 2.491
ionosphere 145984 351 34 2 0 1.786
iris 59 150 4 3 0 1.000
kc2 3913 522 21 2 0 3.879
monks-problems-2 146065 601 6 2 6 1.917
pc1 3918 1109 21 2 0 13.403
pc3 3903 1563 37 2 0 8.769
pc4 3902 1458 37 2 0 7.191
postoperative-patient-data 146210 88 8 2 8 2.667
profb 3561 672 9 2 4 2.000
qsar-biodeg 9957 1055 41 2 0 1.963
socmob 3797 1156 5 2 4 3.516
sonar 39 208 60 2 0 1.144
steel-plates-fault 146817 1941 27 7 0 12.236
tae 47 151 5 3 2 1.061
tic-tac-toe 49 958 9 2 9 1.886
transplant 3748 131 3 2 0 1.729
vehicle 53 846 18 4 0 1.095
wdbc 9946 569 30 2 0 1.684
yeast 145793 1269 8 4 0 2.704

Table 3: 48 Medium/Large Datasets

dataset did # instances # feat # classes # cat imbalance ratio

GesturePhaseSegmentationProcessed 14969 9873 32 5 0 2.956
JapaneseVowels 3510 9961 14 9 0 2.064
MagicTelescope 3954 19020 10 2 0 1.844
MiniBooNE 168335 130064 50 2 0 2.563
PhishingWebsites 14952 11055 30 2 30 1.257
Satellite 167211 5100 36 2 0 67.000
adult-census 3953 32561 14 2 8 3.153
adult 7592 48842 14 2 8 3.179
artificial-characters 14964 10218 7 10 0 2.360
bank-marketing 14965 45211 16 2 9 7.548
cardiotocography 9979 2126 35 10 0 10.925
churn 167141 5000 20 2 4 6.072
connect-4 146195 67557 42 3 42 6.896
eeg-eye-state 14951 14980 14 2 0 1.228
electricity 219 45312 8 2 1 1.355
elevators 3711 16599 18 2 0 2.236
first-order-theorem-proving 9985 6118 51 6 0 5.255
jannis 168330 83733 54 4 0 22.835
kc1 3917 2109 21 2 0 5.469
kr-vs-kp 3 3196 36 2 36 1.093
magic 146206 19020 10 2 0 1.844
mfeat-fourier 14 2000 76 10 0 1.000
mfeat-karhunen 16 2000 64 10 0 1.000
mfeat-morphological 18 2000 6 10 0 1.000

Continued on next page
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Table 3: 48 Medium/Large Datasets

dataset did # instances # feat # classes # cat imblance ratio

mfeat-zernike 22 2000 47 10 0 1.000
mushroom 24 8124 22 2 22 1.075
numerai28.6 167120 96320 21 2 0 1.021
nursery 9892 12958 8 4 8 13.171
optdigits 28 5620 64 10 0 1.032
ozone-level-8hr 9978 2534 72 2 0 14.838
page-blocks 30 5473 10 5 0 175.464
pendigits 32 10992 16 10 0 1.084
phoneme 9952 5404 5 2 0 2.407
pollen 3735 3848 5 2 0 1.000
satimage 2074 6430 36 6 0 2.450
segment 146822 2310 16 7 0 1.000
shuttle 146212 58000 9 7 0 4558.600
spambase 43 4601 57 2 0 1.538
splice 45 3190 60 3 60 2.158
sylvine 168912 5124 20 2 0 1.000
wall-robot-navigation 9960 5456 24 4 0 6.723
wilt 146820 4839 5 2 0 17.540

Table 4: 71 Datasets Selected for Benchmarking Deep Learning Models

dataset did # instances # feat # classes # cat imblance ratio

Australian 146818 690 14 2 8 1.248
LED-display-domain-7digit 125921 500 7 10 0 1.541
Satellite 167211 5100 36 2 0 67.000
acute-inflammations 10089 120 6 2 5 1.400
balance-scale 11 625 4 3 0 5.878
banknote-authentication 10093 1372 4 2 0 1.249
blood-transfusion-service-center 10101 748 4 2 0 3.202
breast-cancer 145799 286 9 2 9 2.365
car-evaluation 146192 1728 21 4 21 18.615
car 146821 1728 6 4 6 18.615
cardiotocography 9979 2126 35 10 0 10.925
churn 167141 5000 20 2 4 6.072
climate-model-simulation-crashes 146819 540 18 2 0 10.739
cmc 23 1473 9 3 7 1.889
credit-g 31 1000 20 2 13 2.333
diabetes 37 768 8 2 0 1.866
dresses-sales 125920 500 12 2 11 1.381
eeg-eye-state 14951 14980 14 2 0 1.228
fertility 9984 100 9 2 0 7.333
first-order-theorem-proving 9985 6118 51 6 0 5.255
hayes-roth 146063 160 4 3 0 2.097
hill-valley 145847 1212 100 2 0 1.000
ilpd 9971 583 10 2 1 2.491
ionosphere 145984 351 34 2 0 1.786
iris 59 150 4 3 0 1.000
kc1 3917 2109 21 2 0 5.469
kc2 3913 522 21 2 0 3.879
kr-vs-kp 3 3196 36 2 36 1.093
mfeat-fourier 14 2000 76 10 0 1.000
mfeat-karhunen 16 2000 64 10 0 1.000
mfeat-morphological 18 2000 6 10 0 1.000
mfeat-zernike 22 2000 47 10 0 1.000
monks-problems-2 146065 601 6 2 6 1.917
mushroom 24 8124 22 2 22 1.075
optdigits 28 5620 64 10 0 1.032
ozone-level-8hr 9978 2534 72 2 0 14.838
page-blocks 30 5473 10 5 0 175.464
pc1 3918 1109 21 2 0 13.403
pc3 3903 1563 37 2 0 8.769
pc4 3902 1458 37 2 0 7.191
phoneme 9952 5404 5 2 0 2.407
pollen 3735 3848 5 2 0 1.000
postoperative-patient-data 146210 88 8 2 8 2.667
profb 3561 672 9 2 4 2.000
qsar-biodeg 9957 1055 41 2 0 1.963
satimage 2074 6430 36 6 0 2.450
segment 146822 2310 16 7 0 1.000
socmob 3797 1156 5 2 4 3.516
sonar 39 208 60 2 0 1.144

Continued on next page
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Table 4: 71 Datasets Selected for Benchmarking Deep Learning Models

dataset did # instances # feat # classes # cat imblance ratio

spambase 43 4601 57 2 0 1.538
splice 45 3190 60 3 60 2.158
steel-plates-fault 146817 1941 27 7 0 12.236
tae 47 151 5 3 2 1.061
tic-tac-toe 49 958 9 2 9 1.886
transplant 3748 131 3 2 0 1.729
vehicle 53 846 18 4 0 1.095
wall-robot-navigation 9960 5456 24 4 0 6.723
wdbc 9946 569 30 2 0 1.684
wilt 146820 4839 5 2 0 17.540
yeast 145793 1269 8 4 0 2.704

A.2 Experiment Details

A.2.1 Baseline Details

We use the experimental results from TabZilla [35] when they are available; in particu-
lar, we do not use TabZilla’s results for the TabPFN variants because they are not always
complete, and there is one dataset for CatBoost which does not have any results in the
TabZilla repository. These results include the tree-based models and the deep learning model
baselines. These results can be found in https://github.com/naszilla/tabzilla and
https://drive.google.com/drive/folders/1cHisTmruPHDCYVOYnaqvTdybLngMkB8R. For
different variations of TabPFN inference techniques, we conduct experiments directly using the
TabPFN repository https://github.com/automl/TabPFN.

A.2.2 LoCalPFN Details

For all TabPFN-kNN experiments, we use a fixed number of neighbours equal to the minimum of (i)
10 times the square root of the dataset size, and (ii) 1000. We find this works well since it adapts to
small and large datasets. We use a batch size of 512 for inference using the faiss library for speedup.

For LoCalPFN experiments, we use the exact same setup as TabPFN-kNN during inference. There-
fore, at step 0, LoCalPFN and TabPFN-kNN are equivalent. For training LoCalPFN, we adopt the
AdamW [32] optimizer with a learning rate of 0.01 and weight decay of 0.01. We do not have warmup
or a learning rate scheduler. For the approximate local context for training, we use the same number
of neighbours as TabPFN-kNN. We use a fixed number of query points (1,000) sampled from the
training set and a batch of 2. For our reported results, we also use one-hot encoding for neighbour
retrieval and inference. In addition, we evaluate our model every 30 gradient steps and apply early
stopping based on the validation set AUC for each fold respectively.

All experiments for our proposed methods can be run on a machine with a single NVIDIA RTX 6000
GPU Ada Generation, 995Gi RAM, and AMD Ryzen Threadripper PRO 5995WX 64-Cores CPU.
Additional runtime analysis can be found in Figure 7a.

A.3 Additional Experiments

A.3.1 Comparison to Deep Learning Models

In addition to tree-based models, we also compare LoCalPFN and TabPFN-kNN with deep learning
based methods. We use the results directly from the TabZilla repository. However, due to the fact
that a lot of the deep learning baselines are very computationally expensive, many of them were
not able to run on all datasets. Therefore, we propose a subset of the 95 datasets which contains
71 datasets upon which all the deep learning methods could run. The details of the 71 dataset subset
can be found in Table 4. The complete results can be found in Table 5. We can see that LoCalPFN
still outperforms all other models.

A.3.2 Comparison with Other Metrics

Here we also compare the performance of LoCalPFN with other models using accuracy, F1 score.
or relative AUC measures such as average rank and z-score as the metric. We can observe a similar
pattern here: LoCalPFN either matches or outperforms other models on either of these metrics as well.
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Table 5: LoCalPFN outperforms deep learning baselines significantly.
All 71 Datasets

Algorithm IQM AUC Mean AUC
VIME 0.771 [0.760-0.782] 0.741 [0.732-0.750]
rtdl_MLP 0.855 [0.848-0.862] 0.812 [0.806-0.818]
TabNet 0.881 [0.874-0.888] 0.825 [0.818-0.832]
STG 0.877 [0.872-0.883] 0.829 [0.823-0.834]
rtdl_ResNet 0.917 [0.912-0.922] 0.862 [0.857-0.867]
rtdl_FTTransformer 0.919 [0.913-0.924] 0.869 [0.864-0.874]
TabPFN 0.929 [0.925-0.932] 0.875 [0.871-0.879]
Fine-Tune 0.936 [0.932-0.939] 0.881 [0.876-0.886]
TabPFN-kNN 0.948 [0.944-0.951] 0.889 [0.884-0.894]
LoCalPFN-encoder 0.956 [0.953-0.959] 0.892 [0.887-0.897]
LoCalPFN-raw 0.957 [0.954-0.960] 0.893 [0.887-0.898]
Fine-Tune+kNN 0.951 [0.948-0.954] 0.893 [0.888-0.897]
LoCalPFN 0.959 [0.956-0.962] 0.903 [0.899-0.907]

Table 6: Accuracy comparison for LoCalPFN and the baseline models.
All Small Medium/Large

Algorithm IQM Acc Mean Acc IQM Acc Mean Acc IQM Acc Mean Acc
TabPFN 0.856 [0.853-0.859] 0.817 [0.815-0.820] 0.836 [0.830-0.842] 0.806 [0.801-0.811] 0.871 [0.869-0.872] 0.828 [0.826-0.830]

TabPFN 3k 0.862 [0.859-0.865] 0.823 [0.820-0.826] 0.839 [0.833-0.845] 0.808 [0.803-0.813] 0.881 [0.879-0.882] 0.837 [0.835-0.839]

RandomForest 0.875 [0.873-0.878] 0.839 [0.837-0.841] 0.834 [0.827-0.840] 0.807 [0.802-0.812] 0.900 [0.899-0.901] 0.866 [0.865-0.867]

LightGBM 0.878 [0.875-0.881] 0.842 [0.839-0.845] 0.830 [0.824-0.837] 0.807 [0.802-0.812] 0.918 [0.916-0.919] 0.886 [0.885-0.887]

CatBoost 0.883 [0.880-0.886] 0.847 [0.844-0.849] 0.844 [0.838-0.850] 0.815 [0.810-0.820] 0.908 [0.907-0.909] 0.876 [0.875-0.877]

XGBoost 0.889 [0.886-0.892] 0.848 [0.845-0.851] 0.840 [0.833-0.847] 0.811 [0.804-0.817] 0.919 [0.918-0.920] 0.887 [0.886-0.888]

TabPFN-kNN 0.877 [0.874-0.879] 0.843 [0.841-0.845] 0.856 [0.851-0.862] 0.825 [0.820-0.829] 0.891 [0.890-0.892] 0.861 [0.860-0.862]

LoCalPFN 0.902 [0.900-0.905] 0.865 [0.863-0.868] 0.875 [0.869-0.881] 0.840 [0.835-0.845] 0.918 [0.916-0.919] 0.890 [0.889-0.891]

Table 7: F1 score comparison for LoCalPFN and the baseline models.
All Small Medium/Large

Algorithm IQM F1 Mean F1 IQM F1 Mean F1 IQM F1 Mean F1
TabPFN 0.843 [0.840-0.846] 0.796 [0.794-0.799] 0.818 [0.812-0.825] 0.783 [0.778-0.789] 0.861 [0.859-0.863] 0.809 [0.807-0.811]

TabPFN 3k 0.850 [0.847-0.853] 0.801 [0.798-0.804] 0.821 [0.814-0.828] 0.784 [0.779-0.789] 0.872 [0.870-0.874] 0.818 [0.816-0.820]

RandomForest 0.875 [0.872-0.877] 0.837 [0.835-0.839] 0.831 [0.824-0.838] 0.805 [0.800-0.811] 0.900 [0.898-0.901] 0.863 [0.862-0.864]

LightGBM 0.877 [0.874-0.881] 0.841 [0.838-0.844] 0.829 [0.823-0.836] 0.806 [0.801-0.811] 0.917 [0.916-0.919] 0.885 [0.884-0.886]

CatBoost 0.882 [0.879-0.885] 0.845 [0.843-0.848] 0.842 [0.836-0.849] 0.814 [0.808-0.819] 0.908 [0.907-0.909] 0.875 [0.874-0.876]

XGBoost 0.888 [0.885-0.891] 0.847 [0.844-0.850] 0.839 [0.832-0.846] 0.810 [0.804-0.816] 0.919 [0.918-0.920] 0.886 [0.885-0.887]

TabPFN-kNN 0.867 [0.864-0.870] 0.829 [0.827-0.832] 0.841 [0.834-0.847] 0.804 [0.800-0.809] 0.884 [0.883-0.886] 0.854 [0.853-0.855]

LoCalPFN 0.897 [0.894-0.899] 0.859 [0.856-0.861] 0.869 [0.863-0.874] 0.832 [0.827-0.837] 0.915 [0.913-0.916] 0.885 [0.884-0.886]

Table 8: Relative score comparison for LoCalPFN and the baseline models. For brevity, we exclude
the split between small and medium/large, but that split also tells much of the same story.

Algorithm Mean AUC Rank Normalized AUC AUC z-score

TabPFN 5.3 [4.9, 5.5] 0.56 [0.54, 0.57] -0.28 [-0.31, -0.25]

TabPFN 3k 4.3 [4.1, 4.7] 0.62 [0.61, 0.64] -0.07 [-0.10, -0.04]

RandomForest 4.2 [4.0, 4.5] 0.71 [0.70, 0.73] 0.18 [0.16, 0.21]

LightGBM 3.4 [3.0, 3.6] 0.72 [0.70, 0.73] 0.19 [0.15, 0.23]

CatBoost 3.1 [2.9, 3.4] 0.76 [0.75, 0.77] 0.33 [0.30, 0.36]

XGBoost 3.3 [3.1, 3.6] 0.73 [0.72, 0.74] 0.23 [0.19, 0.26]

KNN 7.1 [6.9, 7.3] 0.23 [0.22, 0.25] -1.38 [-1.42, -1.33]

TabPFN-kNN 3.8 [3.5, 4.0] 0.72 [0.70, 0.73] 0.17 [0.15, 0.20]

LoCalPFN 1.7 [1.3, 1.8] 0.85 [0.84, 0.87] 0.62 [0.59, 0.66]
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A.4 Additional Analyses
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Figure 8: Analysis of AUC as a function of size and complexity. TabPFN fails to scale both in size
and complexity while LoCalPFN is able to still outperform on the far end of the spectrum.
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Figure 9: Test loss vs. training loss for TabPFN-kNN (crosses), TabPFN (circles) for different dataset
sizes and context/number of neighbours used on four datasets. We observe generally that for low
number of neighbours (dark crosses) and especially for small datasets (small crosses) there is signifi-
cant overfitting (higher test loss than train loss). TabPFN tends to overfit less, especially on larger
datasets, which is expected. Overall, using TapPFN-kNN results in better underfitting/overfitting
trade-offs where we obtain both lower test and train losses, however the gap between them increases.
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A.5 Ablation Studies

Figure 10 and Figure 11 show summaries of ablations on only the small datasets, and only the
medium/large datasets, respectively. In the remainder of this subsection we see tables that show even
further detail on the results presented in the main text.
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Figure 10: Ablations on Small Datasets
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Figure 11: Ablations on Medium/Large Datasets

A.5.1 Importance of Joint Retrieval and Fine-tuning

Table 9: Ablation for fine-tuning. Applying TabPFN-kNN on a fine-tuned model degrades the overall
performance. On the other hand, performing local calibration by jointly retrieving and fine-tuning
improve performance drastically.

All Small Medium/Large
Algorithm IQM AUC Mean AUC IQM AUC Mean AUC IQM AUC Mean AUC
TabPFN 0.917 [0.914-0.919] 0.867 [0.864-0.870] 0.898 [0.892-0.904] 0.849 [0.843-0.856] 0.927 [0.925-0.929] 0.884 [0.883-0.885]

Fine-Tune 0.934 [0.932-0.937] 0.885 [0.882-0.889] 0.905 [0.897-0.911] 0.854 [0.847-0.861] 0.953 [0.951-0.954] 0.916 [0.915-0.917]

Fine-Tune + kNN 0.938 [0.935-0.940] 0.887 [0.883-0.890] 0.928 [0.922-0.933] 0.870 [0.863-0.877] 0.946 [0.945-0.948] 0.903 [0.902-0.904]

TabPFN-kNN 0.943 [0.941-0.946] 0.891 [0.887-0.894] 0.922 [0.916-0.927] 0.864 [0.857-0.871] 0.955 [0.953-0.956] 0.916 [0.915-0.917]

LoCalPFN 0.958 [0.956-0.960] 0.908 [0.905-0.911] 0.937 [0.931-0.942] 0.882 [0.875-0.889] 0.968 [0.967-0.969] 0.934 [0.933-0.935]

A.5.2 Choice of Feature Encoding

Table 10: Ablation for choices of embedding. Converting categorical variables to one-hot gives a
relatively moderate gain over other configurations.

All Small Medium/Large
Algorithm IQM AUC Mean AUC IQM AUC Mean AUC IQM AUC Mean AUC
LoCalPFN-encoder 0.955 [0.953-0.957] 0.899 [0.896-0.903] 0.926 [0.920-0.932] 0.864 [0.857-0.872] 0.969 [0.967-0.969] 0.934 [0.933-0.935]

LoCalPFN-raw 0.956 [0.954-0.958] 0.900 [0.896-0.904] 0.928 [0.922-0.934] 0.866 [0.858-0.873] 0.968 [0.967-0.969] 0.933 [0.932-0.934]

LoCalPFN-one_hot 0.958 [0.956-0.960] 0.908 [0.905-0.911] 0.937 [0.931-0.942] 0.882 [0.875-0.889] 0.968 [0.967-0.969] 0.934 [0.933-0.935]
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A.5.3 Other Inference Methods of TabPFN

Table 11 shows the detailed performance values for TabPFN with different inference methods.

Table 11: Ablation for different TabPFN inference methods.
All Small Medium/Large

Algorithm IQM AUC Mean AUC IQM AUC Mean AUC IQM AUC Mean AUC
TabPFN-1k-1ens 0.917 [0.914-0.919] 0.867 [0.864-0.870] 0.898 [0.892-0.904] 0.849 [0.843-0.856] 0.927 [0.926-0.929] 0.884 [0.883-0.885]

TabPFN-1k-32ens 0.936 [0.934-0.938] 0.879 [0.875-0.882] 0.923 [0.917-0.929] 0.863 [0.857-0.870] 0.943 [0.941-0.944] 0.894 [0.891-0.896]

TabPFN-3k-32ens 0.943 [0.941-0.945] 0.885 [0.881-0.888] 0.924 [0.918-0.930] 0.864 [0.857-0.870] 0.954 [0.953-0.955] 0.905 [0.901-0.908]

TabPFN-3k-32ens-int 0.945 [0.942-0.947] 0.887 [0.883-0.890] 0.924 [0.918-0.930] 0.864 [0.857-0.870] 0.956 [0.955-0.957] 0.909 [0.908-0.910]

TabPFN-ICD 0.946 [0.944-0.948] 0.892 [0.888-0.895] 0.924 [0.919-0.930] 0.864 [0.858-0.871] 0.958 [0.957-0.959] 0.919 [0.918-0.920]

TabPFN-kNN 0.943 [0.941-0.946] 0.891 [0.887-0.894] 0.922 [0.916-0.928] 0.864 [0.857-0.871] 0.955 [0.953-0.956] 0.916 [0.915-0.917]

LoCalPFN 0.958 [0.956-0.960] 0.908 [0.905-0.911] 0.937 [0.931-0.942] 0.882 [0.876-0.888] 0.968 [0.967-0.969] 0.934 [0.933-0.935]

A.5.4 Ablation for Maximum Number of Neighbours

Table 12 shows the detailed performance values for varying size of maximum number of neighbours.

Table 12: Ablation for sensitivity of k. The number after c indicates the maximum number of
neighbours used.

All Small Medium/Large
Algorithm IQM AUC Mean AUC IQM AUC Mean AUC IQM AUC Mean AUC
TabPFN-kNN-c20 0.923 [0.920-0.925] 0.874 [0.871-0.878] 0.894 [0.887-0.901] 0.845 [0.838-0.852] 0.937 [0.936-0.939] 0.903 [0.901-0.904]

TabPFN-kNN-c50 0.935 [0.933-0.938] 0.886 [0.882-0.889] 0.911 [0.905-0.917] 0.859 [0.852-0.866] 0.949 [0.948-0.950] 0.912 [0.910-0.913]

TabPFN-kNN-c100 0.943 [0.940-0.945] 0.890 [0.887-0.894] 0.921 [0.916-0.927] 0.864 [0.857-0.871] 0.954 [0.952-0.955] 0.916 [0.915-0.917]

TabPFN-kNN-c200 0.943 [0.941-0.946] 0.890 [0.887-0.894] 0.922 [0.916-0.927] 0.864 [0.857-0.871] 0.955 [0.953-0.956] 0.916 [0.915-0.917]

TabPFN-kNN-c500 0.943 [0.941-0.946] 0.891 [0.887-0.894] 0.922 [0.916-0.928] 0.864 [0.857-0.871] 0.955 [0.953-0.956] 0.917 [0.915-0.918]

TabPFN-kNN-c700 0.943 [0.941-0.946] 0.891 [0.887-0.894] 0.922 [0.916-0.927] 0.864 [0.857-0.871] 0.955 [0.953-0.956] 0.916 [0.915-0.918]

TabPFN-kNN-c1000 0.943 [0.941-0.946] 0.891 [0.887-0.894] 0.922 [0.916-0.927] 0.864 [0.857-0.871] 0.955 [0.953-0.956] 0.916 [0.915-0.917]

LoCalPFN-c20 0.941 [0.938-0.944] 0.890 [0.887-0.894] 0.920 [0.913-0.926] 0.865 [0.858-0.872] 0.953 [0.952-0.955] 0.916 [0.914-0.917]

LoCalPFN-c50 0.950 [0.948-0.953] 0.898 [0.894-0.902] 0.932 [0.925-0.938] 0.873 [0.865-0.881] 0.960 [0.959-0.961] 0.923 [0.922-0.924]

LoCalPFN-c100 0.953 [0.951-0.955] 0.901 [0.897-0.904] 0.932 [0.926-0.938] 0.875 [0.868-0.882] 0.963 [0.962-0.964] 0.926 [0.925-0.927]

LoCalPFN-c200 0.955 [0.953-0.958] 0.904 [0.900-0.908] 0.935 [0.929-0.941] 0.879 [0.872-0.886] 0.965 [0.964-0.966] 0.928 [0.927-0.929]

LoCalPFN-c500 0.957 [0.955-0.959] 0.905 [0.901-0.908] 0.935 [0.930-0.941] 0.877 [0.870-0.883] 0.968 [0.967-0.968] 0.932 [0.931-0.933]

LoCalPFN-c700 0.958 [0.955-0.960] 0.906 [0.902-0.910] 0.935 [0.930-0.941] 0.879 [0.871-0.886] 0.968 [0.967-0.969] 0.933 [0.932-0.934]

LoCalPFN-c1000 0.958 [0.956-0.960] 0.908 [0.905-0.911] 0.937 [0.931-0.942] 0.882 [0.875-0.889] 0.968 [0.967-0.969] 0.934 [0.933-0.935]

A.5.5 Quality of Efficient Local Context

In order to show the efficacy of the efficient local context, we compare LoCalPFN with the exact
version where we use the exact neighbours for the context during training. In Table 13, LoCalPFN-
exact-b32 indicates the aforementioned configuration with a batch size of 32, which is capped because
of the GPU memory constraint. We compare this with another variant of LoCalPFN where we use 32
queries for training, i.e., LoCalPFN-approx-q32. These two variants turn out to have very similar
AUCs, which indicates the efficacy of the efficient approximate neighbour search method.

Table 13: Exact nearest neighbour search vs. approximate nearest neighbour search.
Medium/Large

Algorithm IQM AUC Mean AUC
LoCalPFN-exact-b32 0.967 [0.966-0.968] 0.931 [0.930-0.932]

LoCalPFN-approx-q32 0.968 [0.967-0.968] 0.931 [0.930-0.932]

LoCalPFN 0.968 [0.967-0.969] 0.934 [0.933-0.935]
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Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our main contributions are highlighted in abstract and introduction. These are
supported experimentally in section 2 and 4.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss related work thorough the paper and have a related work section.
Some limitations are discussed thorough the paper and others are addressed in the limitation
and conclusion section
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: The paper does not contain proofs.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We aim at providing all the information necessary to reproduce our figures.
We explain how they are constructed and provide all our hyperparameters and the details of
the tasks in appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We are releasing code for all experiments and providing a simple-to-use library
to encourage adoption of this method before the conference occurs.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Yes, we provide all necessary details to reproduce our results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Yes, we provide 95% confidence intervals based on stratified bootstrapping
following Agarwal et al. [1].
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide details of the computational resources needed to conduct all
experiments in Appendix A.2.2.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our work does not involve humans or proprietary data. We do not foresee
direct risks from the method itself either.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: We do not foresee societal impacts for this work.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We use public models and public data. We do not foresee risks directly arising
from the use of our method.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We properly cite and reference all code repositories that we use.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We use public models and data.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.
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• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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