Self-Distilled Pruning of Neural Networks

Anonymous ACL submission

Abstract

Pruning aims to reduce the number of parameters while maintaining performance close to the original network. This work proposes a novel self-distillation based pruning strategy, whereby the representational similarity between the pruned and unpruned versions of the same network is maximized. Unlike previous approaches that treat distillation and pruning separately, we use distillation to inform the pruning criteria, without requiring a separate student network as in knowledge distillation. We show that the proposed cross-correlation objective for self-distilled pruning implicitly encourages sparse solutions, naturally complementing magnitude-based pruning criteria. Experiments on the GLUE and XGLUE benchmarks show that self-distilled pruning increases mono- and cross-lingual language model performance. Self-distilled pruned models also outperform smaller Transformers with an equal number of parameters and are competitive against (6 times) larger distilled networks. We also observe that self-distillation (1) maximizes class separability, (2) increases the signal-to-noise ratio, and (3) converges faster after pruning steps, providing further insights into why self-distilled pruning improves generalization.

1 Introduction

Neural network pruning (Mozer and Smolensky, 1989; Karnin, 1990; Reed, 1993) zeros out weights of a pretrained model with the aim of reducing parameter count and storage requirements, while maintaining performance close to the original model. The criteria to choose which weights to prune has been an active research area over the past three decades (Karnin, 1990; LeCun et al., 1990; Han et al., 2015a; Anwar et al., 2017; Molchanov et al., 2017). Lately, there has been a focus on pruning models in the transfer learning setting whereby a self-supervised pretrained model trained on a large amount of unlabelled data is fine-tuned to a downstream task while weights are simultaneously pruned. In this context, recent work proposes to learn important scores over weights with a continuous mask and prune away those that having the smallest scores (Mallya et al., 2018; Sanh et al., 2020). However, these learned masks double the number of parameters in the network, requiring twice the number of gradient updates to tune the original parameters and their continuous masks (Sanh et al., 2020). Ideally, we aim to perform task-dependent fine-pruning without adding more parameters to the network, or at least far fewer than twice the count. Additionally, we desire pruning methods that can recover from performance degradation directly after pruning steps, faster than current pruning methods while encoding task-dependent information into the pruning process. To this end, we hypothesize self-distillation may recover performance faster after consecutive pruning steps, which becomes more important with larger performance degradation at a higher compression regime. Additionally, self-distillation has shown to encourage sparsity as the training error tends to 0 (Mobahi et al., 2020). This implicit sparse regularization effect complements magnitude-based pruning, an efficient and well-established pruning approach.

Hence, this paper proposes to combine self-distillation and magnitude-based pruning to achieve task-dependent pruning efficiently. This is achieved by maximizing the cross-correlation between output representations of the fine-tuned pretrained network and a pruned version of the same network – referred to as self-distilled pruning (SDP). Cross-correlation maximization has shown to reduce redundancy and encourage sparse solutions (Zbontar et al., 2021), naturally fitting with magnitude-based pruning. This sets state of the art results for magnitude-based pruning. Unlike typical knowledge distillation (KD) where the student is a separate network trained from random
initialization, here the student is initially a masked version of the teacher. We then provide three insights as to why self-distillation leads to more generalizable pruned networks. We observe that self-distilled pruning (1) recovers performance faster after pruning steps (i.e., improves convergence), (2) maximizes the signal-to-noise ratio (SNR), where pruned weights are considered as noise, and (3) improves the fidelity between pruned and unpruned representations as measured by mutual information of the respective penultimate layers. We focus on pruning fine-tuned monolingual and cross-lingual transformer models, namely BERT (Devlin et al., 2018) and XLM-RoBERTa (Conneau et al., 2019). To our knowledge, this is the first study that introduces the concept of self-distilled pruning, analyzes iterative pruning in the mono-lingual and cross-lingual settings on the GLUE and XGLUE benchmarks respectively and the only work to include an evaluation of pruned model performance in the cross-lingual transfer setting.

2 Background and Related Work

Regularization-based pruning can be achieved by using a weight regularizer that encourages network sparsity. Three well-established regularizers are L_1, L_2 and L_0 weight regularization (Louizos et al., 2017; Liu et al., 2017; Ye et al., 2018) for weight sparsity (Han et al., 2015b,a). For structured pruning, Group-wise Brain Damage (Lee and Lempitsky, 2016) and SSL (Wen et al., 2016) propose to use Group LASSO (Yuan and Lin, 2006) to prune whole structures (e.g., convolution blocks or blocks within standard linear layers). Park et al. (2020) avoid pruning small weights if they are connected to larger weights in consecutive layers and vice-versa, by penalizing the Frobenius norm between pruned and unpruned layers to be small. Importance-based pruning assigns a score for each weight in the network and removes weights with the lowest importance score. The simplest scoring criteria is magnitude-based pruning (MBP), which uses the lowest absolute value (LAV) as the criteria (Reed, 1993; Han et al., 2015b,a) or L_1/L_2-norm for structured pruning (Liu et al., 2017). MBP can be seen as a zero-th order pruning criteria. However higher order pruning methods approximate the difference in pruned and unpruned model loss using a Taylor series expansion up until 1st order (LeCun et al., 1990; Hassibi and Stork, 1993) or the 2nd order, which requires approximating the Hessian matrix (Martens and Grosse, 2015; Wang et al., 2019; Singh and Alistarh, 2020) for scalability. Lastly, the regularization-based pruning is commonly used with importance-based pruning e.g. using L_2 weight regularization alongside MBP.

Knowledge Distillation (KD) transfers the logits of an already trained network (Hinton et al., 2015) and uses them as soft targets to optimize a student network. The student network is typically smaller than the teacher network and benefits from the additional information soft targets provide. There has been various extensions that involve distilling intermediate representations (Romero et al., 2014), distributions (Huang and Wang, 2017), maximizing mutual information between student and teacher representations (Ahn et al., 2019), using pairwise interactions for improved KD (Park et al., 2019) and contrastive representation distillation (Tian et al., 2019; Neill and Bollegala, 2021).

Self-Distillation is a special case of KD whereby the student and teacher networks have the same capacity. Interestingly, self-distilled students often generalize better than the teacher (Furlanello et al., 2018; Yang et al., 2019), however the mechanisms by which self-distillation leads to improved generalization remains somewhat unclear. Recent works have provided insightful observations of this phenomena. For example, (Stanton et al., 2021) have shown that soft targets make optimization easier for the student when compared to the task-provided one-hot targets. (Allen-Zhu and Li, 2020) view self-distillation as implicitly combining ensemble learning and KD to explain the improvement in test accuracy when dealing with multi-view data. The core idea is that the self-distillation objective results in the network learning a unique set of features that are distinct from the original model, similar to features learned by combining the outputs of independent models in an ensemble. Given this background on pruning and distillation, we now describe our proposed methodology for SDP.

3 Proposed Methodology

We begin by defining a dataset $D := \{(X_i, y_i)\}_{i=1}^{D}$ with single samples $s_i = (X_i, y_i)$, where each X_i (in the D training samples) consists of a sequence of vectors $X_i := (x_1, \ldots, x_N)$ and $x_i \in \mathbb{R}^d$. For structured prediction (e.g., NER, POS) $y_i \in \{0, 1\}^{N \times C}$, and for single and pairwise sentence classification, $y_i \in \{0, 1\}^C$, where C is the number of classes. Let $\mathbf{y}^\theta = \mathbf{f}_\theta(X_i)$ be the output prediction ($\mathbf{y}^\theta \in \mathbb{R}^C$) from the student $\mathbf{f}_\theta(\cdot)$ with pretrained parameters $\theta := \{W_l, b_l\}_{l=1}^L$ for
L layers. The input to each subsequent layer is denoted as $z_l \in \mathbb{R}^{n_l}$ where $x := z_0$ for n_1 number of units in layer l and the corresponding output activation as $A_l = g(z_l)$. The loss function for standard classification fine-tuning is defined as the cross-entropy loss $\ell_{CE}(y_S, y) := -\frac{1}{C} \sum_{c=1}^{C} y_c \log(y_c^T)$.

For self-distilled pruning, we also require an already fine-tuned teacher network f_Θ, that has been tuned from the pretrained state f_Θ, to retrieve the soft teacher labels $y^T := f_\Theta(x)$, where $y^T \in \mathbb{R}^C$ and $\sum_{c} y^T_c = 1$. The soft label y^T can be more informative than the one-hot targets y used for standard classification as they implicitly approximate pairwise class similarities through logit probabilities. The Kullback-Leibler divergence ℓ_{KLD} is then used with the main task cross-entropy loss ℓ_{CE} to express $\ell_{SDP-KLD}$ as shown in Equation 1,

$$\ell_{SDP-KLD} = (1-\alpha)\ell_{CE}(y_S, y) + \alpha \tau^2 D_{KL}(y^S, y^T)$$ (1)

where $D_{KL}(y^S, y^T) = \mathbb{H}(y^T) - y^T \log(y^S)$, $\mathbb{H}(y^T) = y^T \log(y^T)$ is the entropy of the teacher distribution and τ is the softmax temperature. Following (Hinton et al., 2015), the weighted sum of cross-entropy loss and KLD loss shown in Equation 1 is used as our main SDP-based KD loss baseline, where $\alpha \in [0, 1]$. After each pruning step during iterative pruning, we aim to recover the immediate performance degradation by minimizing $\ell_{SDP-KLD}$. In our experiments, we use weight magnitude-based pruning as the criteria for SDP given MBP's flexibility, scalability and mimiscule computation overhead (only requires a binary tensor multiplication to be applied for each linear layer at each pruning step). However, D_{KL} only distills the knowledge from the soft targets which may not propagate enough information about the intermediate dynamics of the teacher, nor does it penalize representational redundancy. This brings us to our proposed cross-correlation SDP objective.

3.1 Maximizing Cross-Correlation Between Pruned and Unpruned Embeddings

Iterative pruning can be viewed as progressively adding noise $M_i \in \{0, 1\}^{n_i-1 \times n_i}$ to the weights $W_i \in \mathbb{R}^{n_i \times n_i}$. Thus, as the pruning steps increase, the outputs become noisier and the relationship between the inputs and outputs becomes weaker. Hence, a correlation measure is a natural choice for dealing with such pruning-induced noise.

To this end, we use a cross-correlation loss to maximize the correlation between the output representations of the last hidden state of the pruned network and the unpruned network to reduce the effects of this pruning noise. The proposed cross-correlation SDP loss function, ℓ_{CC}, is expressed in Equation 2, where λ controls the importance of minimizing the non-adjacent pairwise correlations between z^S and z^T in the correlation matrix C. Here, m denotes the sample index in a mini-batch of M samples. Unlike ℓ_{KLD}, this loss is applied to the outputs of the last hidden layer as opposed to the classification logit outputs. Thus, we have,

$$\ell_{\text{CC}} := \sum_{i} (1 - C_{ii})^2 + \lambda \sum_{i} \sum_{j \neq i} C_{ij}^2$$ (2)

such that $C_{ij} := \frac{\sum_{m} z_{i,m}^S z_{j,m}^T}{\sqrt{\sum_{m} (z_{i,m}^S)^2} \sqrt{\sum_{m} (z_{j,m}^T)^2}}$.

Maximizing correlation along the diagonal of C makes the representations invariant to pruning noise, while minimizing the off-diagonal term decorrelates the components of the representations that are batch normalized. To reiterate, z^S is obtained from the pruned version of the network (f_Θ) and z^T is obtained from the unpruned version (f_Θ). Since the learned output representations should be similar if their inputs are similar, we aim to address the problem where a correlation measure may produce representations that are instead proportional to their inputs. To address this, batch normalization is used across mini-batches to stabilize the optimization when using the cross-correlation loss, avoiding local optima that correspond to degenerate representations that do not distinguish proportionality. In our experiments, this is used with the classification loss and KLD distillation loss as shown in Equation 3.

$$\ell_{\text{SDP-CC}} = (1 - \alpha)\ell_{CE}(y_S, y) + \alpha \tau^2 D_{KL}(y^S, y^T) + \beta \ell_{\text{CC}}(z^S, z^T)$$ (3)

Figure 1 illustrates the proposed framework of Self-Distilled Pruning with cross-correlation loss (SDP-CC), where I is the identity matrix. Additionally, we provide a PyTorch based pseudo-code for SDP-CC the supplementary material.
3.2 A Frobenius Distortion Perspective of Self-Distilled Pruning

To formalize the objective being minimized when using MBP with self-distillation, we take the view of Frobenius distortion minimization (FDM; Dong et al., 2017) which says that layer-wise MBP is equivalent to minimizing the Frobenius distortions of a single layer. This can be described as

\[
\min_{M: ||M||_F = p} \|W - M \odot W||_F, \quad \text{where } \odot \text{ is the Hadamard product and } p \text{ is a constraint of the number of weights to remove as a percentage of the total number of weights for a layer. Therefore, the output distortion is approximately the product of single layer Frobenius distortions. However, this minimization only defines a } 1^{st} \text{ order approximation of pruning induced Frobenius distortions which is a loose approximation for deep networks. In contrast, the } y^T \text{ targets provide higher-order information outside of the } l^{th} \text{-layer being pruned in this FDM framework because } \Theta \text{ encodes information of all neighboring layers. Hence, we reorganize the FDM problem for SDP as an approximately higher-order MBP method as in Equation 4 where } W^T \text{ are the weights in } f_{\theta}.
\]

\[
(4)
\]

As described in (Dong et al., 2017; Hassibi and Stork, 1993), the difference in error can be approximated with a Taylor Series (TS) expansion as

\[
\delta E_l \approx (\nabla^2 E_l) \delta \theta_l + \frac{1}{2} \delta \theta_l^T H_l \delta \theta_l + O(||\delta W_l||^3) \quad \text{where } H_l \text{ is the Hessian matrix. When using SDP with a } 1^{st} \text{ TS, we can further express the TS approximation for SDP as shown in Equation 5, where } \delta E^S_l \text{ is the error of the pruned network for task provided targets and } \delta E^T_l \text{ are the errors of the pruned network with distilled logits.}
\]

\[
(\delta E_l - \delta E^S_l)^2 + \lambda(\delta E_l - \delta E^T_l)^2 \approx \delta E^S_l + \delta E^T_l \approx (\nabla^3 E_l) \delta \theta_l + \lambda(\nabla^2 E_l) \delta \theta_l
\]

\[
(5)
\]

3.3 How Does Self-Distillation Improve Pruned Model Generalization?

We put forth the following insights as to the advantages provided by self-distillation for better pruned model generalization, and later experimentally demonstrate their validity.

Recovering Faster From Performance Degradation After Pruning Steps. The first explanation for why self-distillation leads to better generalization in iterative pruning is that the soft targets bias the optimization and smoothen the loss surface through implicit similarities between the classes encoded in the logits. We posit this too holds true for performance recovery after pruning steps, as the classification boundaries become distorted due to the removal of weights. Faster convergence is particularly important for high compression rates where the performance drops become larger.

Implicit Maximization of the Signal-to-Noise Ratio. One explanation for faster convergence is that optimizing for soft targets translates to maximizing the margin of class boundaries given the implicit class similarities provided by teacher logits. Intuitively, task provided one-hot targets do not inform SGD of how similar incorrect predictions are to the correct class, whereas the teacher logits do, to the extent they have learned on the same task. To measure this, we use a formulation of the signal-to-noise ratio\(^1\) (SNR) to measure the class separability and compactness differences between pruned model representations trained with and without self-distillation. We formulate SNR as Equation 6, where for a batch of inputs \(X\), we obtain \(Z\) output representations from the pruned network, which contain samples with \(C\) classes where each class has the same \(N\) number of samples. The numerator expresses the average distance between instances of each class pair and the denominator expresses the intra-class distance between instances within the same class.

\[
1/C(C-1)\sum_{i=1}^{C} \sum_{j \neq i}^{C} \frac{1}{N_i} \sum_{n=1}^{N_i} \sum_{m=1}^{N_j} ||Z_{i,n} - Z_{j,m}||^2
\]

\[
1/(C(N-1))\sum_{i=1}^{C} \sum_{j \neq i}^{C} \sum_{n=1}^{N_i} \sum_{m=1}^{N_j} ||Z_{i,n} - Z_{j,m}||^2
\]

This estimation is \(C - 1 \left(\frac{C+1}{2}\right)\) in the number of pairwise distances to be computed between the inter-class distances for the classes. For large output spaces (e.g., language modeling) we recommend defining the top \(k\)-NN classes for each class and estimate their distances on samples from them.

Quantifying Fidelity Between Pruned Models Trained With and Without Self-Distillation. A natural question to ask is how much generalization power does the distilled soft targets provide when compared to the task provided one-hot targets? If best generalization is achieved when \(\alpha = 1\) in Equation 1, this implies that the pruned network should have as high fidelity as possible with the unpruned network. However, as we will see there is a bias-variance trade-off between fidelity and

\(^1\)A measure typically used in signal processing to evaluate signal quality.
generalization performance, i.e., $\alpha = 1$ is not optimal in most cases. To measure fidelity between SDP representations and standard fine-tuned representations, we compute their mutual information (MI) and compare this to the MI between representations of pruned models without self-distillation and standard fine-tuned models. The MI between continuous variables can be expressed as,

$$
I(Z^T; Z^S) = H(Z^T) - H(Z^T | Z^S) = -E_{Z^T} [\log p(Z^T)] + E_{Z^T, Z^S} [\log p(Z^T | Z^S)]
$$

(7)

where $H(Z^T)$ is the the entropy of the teacher representation and $H(Z^T | Z^S)$ is the conditional entropy that is derived from the joint distribution $p(Z^T, Z^S)$. This can also be expressed as the KL divergence between the joint probabilities and product of marginals as $I(Z^T; Z^S) = D_{KLD}[p(Z^S, Z^T) || p(Z^S)p(Z^T)]$. However, these theoretical quantities have to be estimated from test sample representations. We use a k-NN based MI estimator (Kraskov et al., 2004; Evans, 2008; Ver Steeg and Galstyan, 2013; Ver Steeg, 2000) which partitions the supports into a finite number of bins of equal size, forming a histogram that can be used to estimate $I(Z^S; Z^T)$ based on discrete counts in each bin. This MI estimator is given as,

$$
I(z^S; z^T) \approx \epsilon \left(\sum \frac{\phi_{z^S}(i, k|z^S)}{\phi_z(i, k)} \right)
$$

(8)

where $\phi_{z^S}(i, k|z^S)$ is the probability measure of the k-th nearest neighbour ball of $z^S \in \mathbb{R}^n_L$ and $\omega_{z^T}(i, k|z^T)$ is the probability measure of the k-th nearest neighbour ball of $z^T \in \mathbb{R}^n_L$ where n_L is the dimension of the penultimate layer. In our experiments, we use 256 bins for the histogram with Gaussian smoothing and $k = 5$ (see (Kraskov et al., 2004) for further details).

4 Experimental Setup

Iterative Pruning Baselines.

For XGLUE tasks, we perform 15 pruning steps on XLM-RoBERTA$_{\text{Base}}$, one per 15 epochs, while for the GLUE tasks, we perform 32 pruning steps on BERT$_{\text{Base}}$. The compression rate and number of pruning steps is higher for GLUE tasks compared to XGLUE, because GLUE tasks involve evaluation in the supervised classification setting; whereas in XGLUE we report in the more challenging zero-shot cross-lingual transfer setting with only a single language used for training (i.e., English). At each pruning step, we uniformly pruning 10% of the parameters for both the models. Although prior work suggests non-uniform pruning schedules (e.g., cubic schedule (Zhu and Gupta, 2017)), we did not see any major differences to uniform pruning. We compare the performance of the proposed SDP-CC method against the following baselines: **Random Pruning** (MBP-Random) - prunes weights uniformly at random across all layers. Random pruning can be considered as a lower bound on iterative pruning performance. **Layer-wise Magnitude Based Pruning** (MBP) - for each layer, prunes weights with the LAV. **Global Magnitude Pruning** (Global-MBP) - prunes the LAV of all weights in the network. **Layer-wise Gradient Magnitude Pruning** (Grad-MBP) - for each layer, prunes the weights with the LAV of the accumulated gradients evaluated on a batch of inputs. **1st Taylor Series Pruning** (TS) - prunes weights based on the LAV of $|\text{gradient} \times \text{weight}|$. **L$_0$ norm MBP** (Louizos et al., 2017) - uses non-negative stochastic gates that choose which weights are set to zero as a smooth approximation to the non-differentiable L_0-norm. **L$_1$ norm MBP** (Li et al., 2016) - applies L_1 weight regularization and uses MBP.Lookahead pruning (LAP) (Park et al., 2020) - prunes weight paths that have the smallest magnitude across blocks of layers, unlike MBP that does not consider neighboring layers. **Layer-Adaptive MBP** (LAMP) (Lee et al., 2020) - adaptively compute the pruning ratio per layer. For all above pruning methods we exclude weight pruning of the embeddings, layer normalization parameters and the last classification layer, as they play an important role for generalization and account for less than 1% of weights in both BERT and XLM-R$_{\text{Base}}$.

For **Knowledge Distillation** we also compare against a class of smaller knowledge distilled versions of BERT model with varying parameter sizes on the GLUE benchmark. We report prior results of DistilBERT (Sanh et al., 2019) and also mini-BERT models including TinyBERT (Jiao et al., 2019), BERT-small (Turc et al., 2019) and BERT-medium (Turc et al., 2019). In addition, we consider maximizing the cosine similarity between pruned and unpruned representations in the SDP loss, as $\ell_{\text{SDP-COS}} := \alpha \ell_{\text{CE}}(y^p, y) + (1 - \alpha) \frac{\sum_{y^p,z^T} z^T}{\sum_{y^p} z^T}$. Unlike cross-correlation, there is no decorrelation of non-adjacent features in both representations for SDP-COS. This helps identify whether the redundancy reduction in cross-correlation is beneficial compared to the correlation loss that does not di-
5 Empirical Results

Pruning Results on GLUE

Table 1 shows the test performance across all GLUE tasks of the different models with varying pruning ratios, up to 10% remaining weights of original BERT_{Base} along with mini-BERT models (Sanh et al., 2019; Turc et al., 2019) of varying size. However, for the CoLA dataset, we report at 20% pruning as nearly all compression methods have an MCC score of 0, making the compressed method performance indistinguishable. For this reason, the GLUE score (Score) is computed for all tasks and methods at 10% apart from CoLA. The best performing compression method per task is marked in bold. We find that our proposed SDP approaches (all three variants) outperform against baseline pruning methods, with SDP-CC performing the best across all tasks. We note that for the tasks with fewer training samples (e.g., CoLA has 8.5k samples, STS-B has 7k samples and RTE has 3k samples), the performance gap is larger compared to BERT_{Base}, as the pruning step interval is shorter and less training data allows lesser time for the model to recover from pruning losses and also less data for the teacher model to distil in the case of using SDP.

![Figure 2: Iterative Pruning Test Performance on GLUE tasks.](image)

Smaller dense versions of BERT require more labelled data in order to compete with unstructured MBP and higher-order pruning methods such as 1st order Taylor series and Lookahead pruning. For example, we see BERT-Mini (@10%) shows competitive test accuracy with our proposed SDP-CC on QNLI, MNL and QQP, the three datasets with the most training samples (105k, 393k and 364k respectively). Overall, \(L_2 \)-MBP + SDP-CC achieves the highest GLUE score for all models at 10% remaining weights when compared to BERT_{Base} parameter count. Moreover, we find that \(L_2 \)-MBP + SDP-CC achieves best performance for 5 of the 8 tasks, with 1 of the remaining 3 being from \(L_2 \)-MBP+SDP-KLD. This suggests that redundancy reduction via a cross-correlation objective is use-

![Table 1: GLUE benchmark results for pruned models @10% (or @20%) remaining weights.](table)
Table 2: XGLUE Iterative Pruning @ 30% Remaining Weights of XLM-Rbase - Zero Shot Cross-Lingual Performance Per Task and Overall Average Score (Avg).

<table>
<thead>
<tr>
<th>Prune Method</th>
<th>XNLI</th>
<th>NC</th>
<th>NER</th>
<th>PAWSX</th>
<th>POS</th>
<th>QAM</th>
<th>QAM</th>
<th>WPR</th>
<th>Avg</th>
</tr>
</thead>
<tbody>
<tr>
<td>XLM-Rbase</td>
<td>73.48</td>
<td>80.10</td>
<td>82.60</td>
<td>89.24</td>
<td>80.34</td>
<td>68.56</td>
<td>68.06</td>
<td>73.32</td>
<td>76.96</td>
</tr>
<tr>
<td>Random</td>
<td>51.22</td>
<td>70.19</td>
<td>38.19</td>
<td>57.37</td>
<td>52.57</td>
<td>53.85</td>
<td>52.34</td>
<td>70.69</td>
<td>55.80</td>
</tr>
<tr>
<td>Global-Random</td>
<td>50.97</td>
<td>69.88</td>
<td>38.30</td>
<td>56.74</td>
<td>53.02</td>
<td>54.02</td>
<td>53.49</td>
<td>69.11</td>
<td>55.69</td>
</tr>
<tr>
<td>(L_0)-MBP</td>
<td>64.75</td>
<td>78.98</td>
<td>56.22</td>
<td>72.09</td>
<td>71.38</td>
<td>53.35</td>
<td>51.35</td>
<td>71.70</td>
<td>65.97</td>
</tr>
<tr>
<td>(L_2)-MBP</td>
<td>64.30</td>
<td>78.79</td>
<td>54.43</td>
<td>77.99</td>
<td>70.68</td>
<td>59.24</td>
<td>59.03</td>
<td>71.52</td>
<td>67.16</td>
</tr>
<tr>
<td>(L_2)-Global-MBP</td>
<td>65.12</td>
<td>78.64</td>
<td>54.47</td>
<td>79.13</td>
<td>71.37</td>
<td>59.26</td>
<td>60.31</td>
<td>71.60</td>
<td>67.55</td>
</tr>
<tr>
<td>(L_2)-Gradient-MBP</td>
<td>61.11</td>
<td>73.77</td>
<td>53.25</td>
<td>79.56</td>
<td>65.89</td>
<td>57.35</td>
<td>59.33</td>
<td>71.59</td>
<td>65.23</td>
</tr>
<tr>
<td>1(st)-order Taylor</td>
<td>64.26</td>
<td>79.34</td>
<td>63.60</td>
<td>82.83</td>
<td>68.94</td>
<td>61.69</td>
<td>62.42</td>
<td>72.28</td>
<td>69.09</td>
</tr>
<tr>
<td>Lookahead</td>
<td>60.84</td>
<td>79.18</td>
<td>54.44</td>
<td>71.05</td>
<td>68.76</td>
<td>55.94</td>
<td>53.41</td>
<td>71.26</td>
<td>64.36</td>
</tr>
<tr>
<td>LAMP</td>
<td>58.04</td>
<td>63.64</td>
<td>51.92</td>
<td>66.05</td>
<td>67.43</td>
<td>55.36</td>
<td>52.42</td>
<td>71.09</td>
<td>60.74</td>
</tr>
<tr>
<td>(L_2)-MBP + SDP-COS</td>
<td>64.96</td>
<td>79.02</td>
<td>62.77</td>
<td>78.70</td>
<td>72.88</td>
<td>60.21</td>
<td>60.94</td>
<td>72.04</td>
<td>68.94</td>
</tr>
<tr>
<td>(L_2)-MBP + SDP-KLD</td>
<td>65.94</td>
<td>80.72</td>
<td>64.50</td>
<td>79.25</td>
<td>73.18</td>
<td>61.66</td>
<td>61.09</td>
<td>71.84</td>
<td>69.77</td>
</tr>
<tr>
<td>(L_2)-MBP + SDP-CC</td>
<td>66.47</td>
<td>79.73</td>
<td>66.34</td>
<td>80.03</td>
<td>73.45</td>
<td>63.73</td>
<td>62.78</td>
<td>72.59</td>
<td>70.76</td>
</tr>
</tbody>
</table>

ful for SDP and clearly improve over SDP-COS which does not minimize correlations between off-diagonal terms. Figure 2 shows the performance across all pruning steps. Interestingly, for QNLI we observe the performance notably improves between 30-70% for SDP-CC and SDP-KLD. For SST-2, we observe a significant gap between SDP-KLD and SDP-CC compared to the pruning baselines and smaller versions of BERT, while TinyBERT becomes competitive at extreme compression (<4%).

Pruning Results on XGLUE. We show the per task performance and the average task understanding score on XGLUE for pruning baselines and our proposed SDP approaches in Table 2. Our proposed cross-correlation objective for SDP again achieves the best average (Avg.) score and achieves the best task performance in 6 out of 8 tasks, while standard SDP-KLD achieves best performance on one (news classification) of the remaining two. Most notably, we outperform methods which use higher order gradient information (1\(st\)-order Taylor) at 30% remaining weights, which tends to be a point at which XLM-Rbase begins to degrade performance below 10% of the original fine-tuned test performance for SDP methods and competitive baselines. In Figure 3, we can observe this trend from the various tasks within XGLUE. We note that the number of training samples used for retraining plays an important role in the rate of performance degradation. For example, of the 6 presented XGLUE tasks, NER has the lowest number of training samples (15k) of all XGLUE tasks and also degrades the fastest in performance (from 90% to 50% Test F1 at 30% remaining weights). In comparison, XNLI has the most training samples for retraining (433k) and maintains performance relatively well, keeping within 10% of the original fine-tuned model at 30% remaining weights.

Summary of Results. From our experiments on GLUE and XGLUE task, we find that SDP consistently outperforms pruning, KD and smaller BERT baselines. SDP-KLD and SDP-CC both outperform larger sized BERT models (BERT-Small), somewhat surprisingly, given that BERT-Small (and the remaining BERT models) have the advantage of large-scale self-supervised pretraining, while pruning only has supervision from the downstream task. For NER in XGLUE, higher order pruning methods such as Taylor-Series pruning have an advantage at high compression rates mainly due to lack of training samples (only 15k). Apart from this low training sample regime, SDP with MBP dominates at high compression rates.

Measuring Fidelity To The Fine-Tuned Model. We now analyse the empirical evidence that soft targets used in SDP may force higher fidelity with the representations of the fine-tuned model when compared to using MBP without self-distillation. As described in subsection 3.3 we measure mutual dependencies between both representations of models with the best performing hyperparameter settings of \(\alpha\), \(\beta\) and the softmax temperature \(\tau\). We note that increasing the temperature \(\tau\) translates to “peakier” teacher logit distributions, encouraging SGD to learn a student with high fidelity to the teacher. From the LHS of Figure 4, we can see that SDP models have higher mutual information (MI) with the teacher compared to MBP, which performs worse for PAWS-X (similar on remaining tasks, not shown for brevity). In fact, the rank order of the best performing pruned models at each pruning step has a direct correlation with MI, e.g., SDP-COS-MBP maintains highest MI and the highest test accuracy for PAWS-X for the same \(\alpha\). However, too high fidelity (\(\alpha = 1\)) led to worse generalization compared to a balance between the task
provided targets and the teacher logits ($\alpha = 0.5$).

Self-Distilled Pruning Increases Class Separability and The Signal-To-Noise Ratio (SNR). We also find that the SNR is increased at each pruning step as formulated in subsection 3.3. From this observation, we find that SDP-CC-MBP using cross-correlation loss does particularly well in the 30%-50% remaining weights range. More generally, all 3 SDP losses clearly lead to better class separability and class compactness across all pruning steps compared to MBP (i.e., no self-distillation).

Self-Distilled Pruning Recovers Faster Performance Degradation Directly After Pruning Steps. In the right plot of Figure 4 we show how SDP with Magnitude pruning (SDP-MBP) recovers during training in between pruning steps. The top of each vertical bar is the recovery development accuracy and the bottom is the initial performance degradation prior to retraining. We see that SDP pruned models degrade in performance more than magnitude pruning without self-distillation. This suggests that SDP-MBP may force weights to be closer, as there is more initial performance degradation if weights are not driven to zero. However, the recovery is faster. This may be explained by recent work that suggests the stability generalization tradeoff (Bartoldson et al., 2019).

6 Conclusion

In this paper, we proposed a novel self-distillation based pruning technique based on a cross-correlation objective. We extensively studied the confluence between pruning and self-distillation for masked language models and its enhanced utility on downstream tasks in both monolingual and multi-lingual settings. We find that self-distillation aids in recovering directly after pruning in iterative magnitude-based pruning, increases representational fidelity with the unpruned model and implicitly maximize the signal-to-noise ratio. Additionally, we find our cross-correlation based self-distillation pruning objective minimizes neuronal redundancy and achieves state-of-the-art in magnitude-based pruning baselines, and even out-performs KD based smaller BERT models with more parameters.
References

Michael C Mozer and Paul Smolensky. 1989. Skele-
tonization: A technique for trimming the fat from a
network via relevance assessment. In Advances in
neural information processing systems, pages 107–
115.

Semantically-conditioned negative samples for ef-
ficient contrastive learning. arXiv preprint

Sejun Park, Jaeho Lee, Sangwoo Mo, and Jinwoo
Shin. 2020. Lookahead: A far-sighted alterna-
tive of magnitude-based pruning. arXiv preprint

Wonpyo Park, Dongiu Kim, Yan Lu, and Minsu Cho.
2019. Relational knowledge distillation. In
Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 3967–3976.

Adriana Romero, Nicolas Ballas, Samira Ebrahimi-Ka-
hou, Antoine Chassang, Carlo Gatta, and Yoshua Ben-

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. arXiv preprint

2020. Movement pruning: Adaptive sparsity by fine-

Sidak Pal Singh and Dan Alistarh. 2020. Woodfisher:
Efficient second-order approximations for model

Samuel Stanton, Pavel Izmailov, Polina Kirichenko,
Alexander A Alemi, and Andrew Gordon Wilson.
2021. Does knowledge distillation really work?

Yonglong Tian, Dilip Krishnan, and Phillip Isola. 2019.
Contrastive representation distillation. arXiv preprint

Iulia Turc, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. 2019. Well-read students learn better:
On the importance of pre-training compact models.

Greg Ver Steeg. 2000. Non-parametric entropy estima-
tion toolbox (npeet). Technical report. Technical Re-
port. 2000. Available online: https://www.isi.edu/~
gregv .

Greg Ver Steeg and Aram Galstyan. 2013. Information-
theoretic measures of influence based on content dy-
namics. In Proceedings of the sixth ACM interna-
tional conference on Web search and data mining,
pages 3–12.