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Abstract

Pruning aims to reduce the number of pa-001
rameters while maintaining performance close002
to the original network. This work proposes003
a novel self-distillation based pruning strat-004
egy, whereby the representational similarity005
between the pruned and unpruned versions of006
the same network is maximized. Unlike previ-007
ous approaches that treat distillation and prun-008
ing separately, we use distillation to inform the009
pruning criteria, without requiring a separate010
student network as in knowledge distillation.011
We show that the proposed cross-correlation012
objective for self-distilled pruning implicitly013
encourages sparse solutions, naturally comple-014
menting magnitude-based pruning criteria. Ex-015
periments on the GLUE and XGLUE bench-016
marks show that self-distilled pruning increases017
mono- and cross-lingual language model per-018
formance. Self-distilled pruned models also019
outperform smaller Transformers with an equal020
number of parameters and are competitive021
against (6 times) larger distilled networks. We022
also observe that self-distillation (1) maximizes023
class separability, (2) increases the signal-to-024
noise ratio, and (3) converges faster after prun-025
ing steps, providing further insights into why026
self-distilled pruning improves generalization.027

1 Introduction028

Neural network pruning (Mozer and Smolensky,029

1989; Karnin, 1990; Reed, 1993) zeros out weights030

of a pretrained model with the aim of reducing031

parameter count and storage requirements, while032

maintaining performance close to the original033

model. The criteria to choose which weights to034

prune has been an active research area over the past035

three decades (Karnin, 1990; LeCun et al., 1990;036

Han et al., 2015a; Anwar et al., 2017; Molchanov037

et al., 2017). Lately, there has been a focus on prun-038

ing models in the transfer learning setting whereby039

a self-supervised pretrained model trained on a040

large amount of unlabelled data is fine-tuned to041

a downstream task while weights are simultane- 042

ously pruned. In this context, recent work pro- 043

poses to learn important scores over weights with 044

a continuous mask and prune away those that hav- 045

ing the smallest scores (Mallya et al., 2018; Sanh 046

et al., 2020). However, these learned masks dou- 047

ble the number of parameters in the network, re- 048

quiring twice the number of gradient updates to 049

tune the original parameters and their continuous 050

masks (Sanh et al., 2020). Ideally, we aim to per- 051

form task-dependent fine-pruning without adding 052

more parameters to the network, or at least far 053

fewer than twice the count. Additionally, we de- 054

sire pruning methods that can recover from per- 055

formance degradation directly after pruning steps, 056

faster than current pruning methods while encoding 057

task-dependent information into the pruning pro- 058

cess. To this end, we hypothesize self-distillation 059

may recover performance faster after consecutive 060

pruning steps, which becomes more important with 061

larger performance degradation at a higher com- 062

pression regime. Additionally, self-distillation has 063

shown to encourage sparsity as the training er- 064

ror tends to 0 (Mobahi et al., 2020). This im- 065

plicit sparse regularization effect complements 066

magnitude-based pruning, an efficient and well- 067

established pruning approach. 068

Hence, this paper proposes to combine self- 069

distillation and magnitude-based pruning to 070

achieve task-dependent pruning efficiently. This 071

is achieved by maximizing the cross-correlation 072

between output representations of the fine-tuned 073

pretrained network and a pruned version of the 074

same network – referred to as self-distilled pruning 075

(SDP). Cross-correlation maximization has shown 076

to reduce redundancy and encourage sparse solu- 077

tions (Zbontar et al., 2021), naturally fitting with 078

magnitude-based pruning. This sets state of the 079

art results for magnitude-based pruning. Unlike 080

typical knowledge distillation (KD) where the stu- 081

dent is a separate network trained from random 082
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initialization, here the student is initially a masked083

version of the teacher. We then provide three in-084

sights as to why self-distillation leads to more gen-085

eralizable pruned networks. We observe that self-086

distilled pruning (1) recovers performance faster087

after pruning steps (i.e., improves convergence), (2)088

maximizes the signal-to-noise ratio (SNR), where089

pruned weights are considered as noise, and (3)090

improves the fidelity between pruned and unpruned091

representations as measured by mutual information092

of the respective penultimate layers. We focus on093

pruning fine-tuned monolingual and cross-lingual094

transformer models, namely BERT (Devlin et al.,095

2018) and XLM-RoBERTa (Conneau et al., 2019).096

To our knowledge, this is the first study that in-097

troduces the concept of self-distilled pruning, an-098

alyzes iterative pruning in the mono-lingual and099

cross-lingual settings on the GLUE and XGLUE100

benchmarks respectively and the only work to in-101

clude an evaluation of pruned model performance102

in the cross-lingual transfer setting.103

2 Background and Related Work104

Regularization-based pruning can be achieved105

by using a weight regularizer that encourages net-106

work sparsity. Three well-established regularizers107

are L1, L2 and L0 weight regularization (Louizos108

et al., 2017; Liu et al., 2017; Ye et al., 2018) for109

weight sparsity (Han et al., 2015b,a). For struc-110

tured pruning, Group-wise Brain Damage (Lebe-111

dev and Lempitsky, 2016) and SSL (Wen et al.,112

2016) propose to use Group LASSO (Yuan and113

Lin, 2006) to prune whole structures (e.g., convo-114

lution blocks or blocks within standard linear lay-115

ers). Park et al. (2020) avoid pruning small weights116

if they are connected to larger weights in consecu-117

tive layers and vice-versa, by penalizing the Frobe-118

nius norm between pruned and unpruned layers to119

be small. Importance-based pruning assigns a120
score for each weight in the network and removes121

weights with the lowest importance score. The sim-122

plest scoring criteria is magnitude-based pruning123

(MBP), which uses the lowest absolute value (LAV)124

as the criteria (Reed, 1993; Han et al., 2015b,a)125

or L1/L2-norm for structured pruning (Liu et al.,126

2017). MBP can be seen as a zero-th order pruning127

criteria. However higher order pruning methods ap-128

proximate the difference in pruned and unpruned129

model loss using a Taylor series expansion up until130

1st order (LeCun et al., 1990; Hassibi and Stork,131

1993) or the 2nd order, which requires approximat-132

ing the Hessian matrix (Martens and Grosse, 2015;133

Wang et al., 2019; Singh and Alistarh, 2020) for 134

scalability. Lastly, the regularization-based pruning 135

is commonly used with importance-based pruning 136

e.g using L2 weight regularization alongside MBP. 137

Knowledge Distillation (KD) transfers the log- 138

its of an already trained network (Hinton et al., 139

2015) and uses them as soft targets to optimize 140

a student network. The student network is typi- 141

cally smaller than the teacher network and benefits 142

from the additional information soft targets pro- 143

vide. There has been various extensions that involve 144

distilling intermediate representations (Romero 145

et al., 2014), distributions (Huang and Wang, 2017), 146

maximizing mutual information between student 147

and teacher representations (Ahn et al., 2019), us- 148

ing pairwise interactions for improved KD (Park 149

et al., 2019) and contrastive representation distilla- 150

tion (Tian et al., 2019; Neill and Bollegala, 2021). 151

Self-Distillation is a special case of KD whereby 152
the student and teacher networks have the same 153

capacity. Interestingly, self-distilled students often 154

generalize better than the teacher (Furlanello et al., 155

2018; Yang et al., 2019), however the mechanisms 156

by which self-distillation leads to improved gener- 157

alization remains somewhat unclear. Recent works 158

have provided insightful observations of this phe- 159

nomena. For example, (Stanton et al., 2021) have 160

shown that soft targets make optimization easier 161

for the student when compared to the task-provided 162

one-hot targets. (Allen-Zhu and Li, 2020) view self- 163

distillation as implicitly combining ensemble learn- 164

ing and KD to explain the improvement in test 165

accuracy when dealing with multi-view data. The 166

core idea is that the self-distillation objective re- 167

sults in the network learning a unique set of features 168

that are distinct from the original model, similar 169

to features learned by combining the outputs of 170

independent models in an ensemble. Given this 171

background on pruning and distillation, we now 172

describe our proposed methodology for SDP. 173

3 Proposed Methodology 174

We begin by defining a dataset D := {(Xi, yi)}Di=1 175

with single samples si = (Xi,yi), where each 176

Xi (in the D training samples) consists of a se- 177

quence of vectors Xi := (x1, . . . ,xN ) and xi ∈ 178

Rd. For structured prediction (e.g., NER, POS) 179

yi ∈ {0, 1}N×C , and for single and pairwise sen- 180

tence classification, yi ∈ {0, 1}C , where C is the 181

number of classes. Let yS = fθ(Xi) be the out- 182

put prediction (yS ∈ RC) from the student fθ(·) 183

with pretrained parameters θ := {Wl, bl}Ll=1 for 184
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L layers. The input to each subsequent layer is de-185

noted as zl ∈ Rnl where x := z0 for nl number186

of units in layer l and the corresponding output187

activation as Al = g(zl). The loss function for188

standard classification fine-tuning is defined as the189

cross ℓCE(y
S ,y) := − 1

C

∑c
i=1 yc log(y

s
c).190

For self-distilled pruning, we also require an al-191

ready fine-tuned teacher network fΘ, that has been192

tuned from the pretrained state fθ, to retrieve the193

soft teacher labels yT := fΘ(x), where yT ∈ RC194

and
∑C

c yTc = 1. The soft label yT can be more195

informative than the one-hot targets y used for stan-196

dard classification as they implicitly approximate197

pairwise class similarities through logit probabili-198

ties. The Kullbeck-Leibler divergence ℓKLD is then199

used with the main task cross-entropy loss ℓCE to200

express ℓSDP−KLD as shown in Equation 1,201

ℓSDP-KLD = (1-α)ℓCE(y
S ,y)+ατ2DKLD

(
yS ,yT

)
(1)202

where DKLD(y
S ,yT ) = H(yT ) − yT log(yS),203

H(yT ) = yT log(yT ) is the entropy of the teacher204

distribution and τ is the softmax temperature. Fol-205

lowing (Hinton et al., 2015), the weighted sum of206

cross-entropy loss and KLD loss shown in Equa-207

tion 1 is used as our main SDP-based KD loss208

baseline, where α ∈ [0, 1]. After each pruning209

step during iterative pruning, we aim to recover210

the immediate performance degradation by min-211

imizing ℓSDP−KLD. In our experiments, we use212

weight magnitude-based pruning as the criteria for213

SDP given MBP’s flexibility, scalability and minis-214

cule computation overhead (only requires a binary215

tensor multiplication to be applied for each linear216

layer at each pruning step). However, DKLD only217

distils the knowledge from the soft targets which218

may not propagate enough information about the219

intermediate dynamics of the teacher, nor does it220

penalize representational redundancy. This brings221

us to our proposed cross-correlation SDP objective.222

3.1 Maximizing Cross-Correlation Between223

Pruned and Unpruned Embeddings224
Iterative pruning can be viewed as progressively225

adding noise Ml ∈ {0, 1}nl−1×nl to the weights226

Wl ∈ Rnl−1×nl . Thus, as the pruning steps in-227

crease, the outputs become noisier and the rela-228

tionship between the inputs and outputs becomes229

weaker. Hence, a correlation measure is a natural230

choice for dealing with such pruning-induced noise.231

To this end, we use a cross-correlation loss to maxi-232

mize the correlation between the output representa-233

tions of the last hidden state of the pruned network234

Backprop

 Target Identity Matrix

Student-Teacher Cross-
Correlation Matrix

Unpruned Model

Pruned Model

Figure 1: Self-Distilled Pruning with a Cross-
Correlation Knowledge Distillation Loss.

and the unpruned network to reduce the effects of 235

this pruning noise. The proposed cross-correlation 236

SDP loss function, ℓCC, is expressed in Equation 2, 237

where λ controls the importance of minimizing the 238

non-adjacent pairwise correlations between zS and 239

zT in the correlation matrix C. Here, m denotes the 240

sample index in a mini-batch of M samples. Unlike 241

ℓKLD, this loss is applied to the outputs of the last 242

hidden layer as opposed to the classification logit 243

outputs. Thus, we have, 244

ℓCC :=
∑
i

(1− Cii)2 + λ
∑
i

∑
j ̸=i

C2
ij (2) 245

such that Cij :=
∑

m zS
m,iz

T
m,j√∑

m(zS
m,i)

2
√∑

m(zT
m,j)

2
. 246

Maximizing correlation along the diagonal of 247

C makes the representations invariant to pruning 248

noise, while minimizing the off-diagonal term 249

decorrelates the components of the representations 250

that are batch normalized. To reiterate, zS is ob- 251

tained from the pruned version of the network (fθp) 252

and zT is obtained from the unpruned version (fθ). 253

Since the learned output representations should be 254

similar if their inputs are similar, we aim to address 255

the problem where a correlation measure may pro- 256

duce representations that are instead proportional 257

to their inputs. To address this, batch normaliza- 258

tion is used across mini-batches to stabilize the 259

optimization when using the cross-correlation loss, 260

avoiding local optima that correspond to degen- 261

erate representations that do not distinguish pro- 262

portionality. In our experiments, this is used with 263

the classification loss and KLD distillation loss as 264

shown in Equation 3. 265

ℓSDP−CC = (1− α)ℓCE(y
S ,y)+

ατ2DKLD(y
S ,yT ) + βℓCC(z

S , zT )
(3) 266

Figure 1 illustrates the proposed framework of Self- 267

Distilled Pruning with cross-correlation loss (SDP- 268

CC), where I is the identity matrix. Additionally, 269

we provide a PyTorch based pseudo-code for SDP- 270

CC the supplementary material. 271
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3.2 A Frobenius Distortion Perspective of272

Self-Distilled Pruning273

To formalize the objective being minimized when274

using MBP with self-distillation, we take the view275

of Frobenius distortion minimization (FDM; Dong276

et al., 2017) which says that layer-wise MBP277

is equivalent to minimizing the Frobenius distor-278

tions of a single layer. This can be described as279

minM:||M||0=p ||W − M ⊙ W||F , where ⊙ is the280

Hadamard product and p is a constraint of the num-281

ber of weights to remove as a percentage of the total282

number of weights for a layer. Therefore, the output283

distortion is approximately the product of single284

layer Frobenius distortions. However, this mini-285

mization only defines a 1st order approximation286

of pruning induced Frobenius distortions which is287

a loose approximation for deep networks. In con-288

trast, the yT targets provide higher-order informa-289

tion outside of the l-th layer being pruned in this290

FDM framework because Θ encodes information291

of all neighboring layers. Hence, we reformulate292

the FDM problem for SDP as an approximately293

higher-order MBP method as in Equation 4 where294

WT are the weights in fΘ.295

min
M:||M||0=p

[
||W-M⊙W||F +λ||WT −M⊙W||F

]
(4)296

As described in (Dong et al., 2017; Hassibi and297

Stork, 1993), the difference in error can be ap-298

proximated with a Taylor Series (TS) expansion as299

δEl ≈
(
∂El
∂Wl

)⊤
δWl+

1
2δW⊤

l HlδWl+O(||δWl||3)300

where H is the Hessian matrix. When using SDP301

with a 1st TS, we can further express the TS approx-302

imation for SDP as shown in Equation 5, where ES
l303

is the error of the pruned network for task provided304

targets and ET
l are the errors of the pruned network305

with distilled logits.306 (
El − ES

l

)2
+ λ

(
El − ET

l

)2 ≈ δES
l + δET

l

≈
(∂ES

l

∂θl

)⊤
δθl + λ

(∂ET
l

∂θl

)⊤
δθl

(5)307

3.3 How Does Self-Distillation Improve308

Pruned Model Generalization ?309

We put forth the following insights as to the ad-310

vantages provided by self-distillation for better311

pruned model generalization, and later experimen-312

tally demonstrate their validity.313

Recovering Faster From Performance Degra-314

dation After Pruning Steps. The first explanation315

for why self-distillation leads to better generaliza-316

tion in iterative pruning is that the soft targets bias317

the optimization and smoothen the loss surface 318

through implicit similarities between the classes 319

encoded in the logits. We posit this too holds true 320

for performance recovery after pruning steps, as 321

the classification boundaries become distorted due 322

to the removal of weights. Faster convergence is 323

particularly important for high compression rates 324

where the performance drops become larger. 325

Implicit Maximization of the Signal-to-Noise 326

Ratio. One explanation for faster convergence is 327

that optimizing for soft targets translates to max- 328

imizing the margin of class boundaries given the 329

implicit class similarities provided by teacher log- 330

its. Intuitively, task provided one-hot targets do 331

not inform SGD of how similar incorrect predic- 332

tions are to the correct class, whereas the teacher 333

logits do, to the extent they have learned on the 334

same task. To measure this, we use a formulation 335

of the signal-to-noise ratio1 (SNR) to measure the 336

class separability and compactness differences be- 337

tween pruned model representations trained with 338

and without self-distillation. We formulate SNR as 339

Equation 6, where for a batch of inputs X, we ob- 340

tain Z output representations from the pruned net- 341

work, which contain samples with C classes where 342

each class has the same N number of samples. The 343

numerator expresses the average ℓ2 inter-class dis- 344

tance between instances of each class pair and the 345

denominator expresses the intra-class distance be- 346

tween instances within the same class. 347

1/N(C-1)2
∑N

n

∑C
c=1

∑C
i ̸=c ||

√
Zc,n-

√
Zi,n||2

1/C(N -1)2
∑C

c=1

∑N
n

∑
j ̸=n ||

√
Zc,n-

√
Zc,j ||2

(6) 348

This estimation is C − 1
(
C+1
2

)
in the number of 349

pairwise distances to be computed between the 350

inter-class distances for the classes. For large out- 351

put spaces (e.g., language modeling) we recom- 352

mend defining the top k-NN classes for each class 353

and estimate their distances on samples from them. 354

Quantifying Fidelity Between Pruned Models 355

Trained With and Without Self-Distillation. A 356

natural question to ask is how much generalization 357

power does the distilled soft targets provide when 358

compared to the task provided one-hot targets ? 359

If best generalization is achieved when α = 1 in 360

Equation 1, this implies that the pruned network 361

should have as high fidelity as possible with the 362

unpruned network. However, as we will see there 363

is a bias-variance trade-off between fidelity and 364

1A measure typically used in signal processing to evaluate
signal quality.
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generalization performance, i.e., α = 1 is not op-365

timal in most cases. To measure fidelity between366

SDP representations and standard fine-tuned rep-367

resentations, we compute their mutual information368

(MI) and compare this to the MI between represen-369

tations of pruned models without self-distillation370

and standard fine-tuned models. The MI between371

continuous variables can be expressed as,372

Î(ZT ;ZS) = H(ZT )−H(ZT |ZS) =

−EzT [log p(Z
T )] + EZT ,ZS [log p(ZT |ZS)]

(7)373

where H(ZT ) is the the entropy of the teacher374

representation and H(ZT |ZS) is the conditional375

entropy that is derived from the joint distribu-376

tion p(ZT ,ZS). This can also be expressed as377

the KL divergence between the joint probabili-378

ties and product of marginals as I(ZT ;ZS) =379

DKLD[p(Z
S , ZT )||p(ZS)p(ZT )]. However, these380

theoretical quantities have to be estimated from381

test sample representations. We use a k-NN based382

MI estimator (Kraskov et al., 2004; Evans, 2008;383

Ver Steeg and Galstyan, 2013; Ver Steeg, 2000)384

which partitions the supports into a finite number385

of bins of equal size, forming a histogram that can386

be used to estimate Î(ZS ;ZT ) based on discrete387

counts in each bin. This MI estimator is given as,388

I(zS ; zT ) ≈ ϵ
(
log

ϕ[zS ](i, k[zS ])ϕ[zT ](i, k[zT ])

ϕz(i, k)

)
(8)389

where ϕzS (i, k[zS ]) is the probability measure of390

the k-th nearest neighbour ball of zS ∈ RnL and391

ω[zT ](i, k[zT ]) is the probability measure of the ky-392

th nearest neighbour ball of zT ∈ RnL where nL393

is the dimension of the penultimate layer. In our394

experiments, we use 256 bins for the histogram395

with Gaussian smoothing and k = 5 (see (Kraskov396

et al., 2004) for further details).397

4 Experimental Setup398

Iterative Pruning Baselines. For XGLUE399

tasks, we perform 15 pruning steps on XLM-400

RoBERTABase, one per 15 epochs, while for the401

GLUE tasks, we perform 32 pruning steps on402

BERTBase. The compression rate and number of403

pruning steps is higher for GLUE tasks com-404

pared to XGLUE, because GLUE tasks involve405

evaluation in the supervised classification setting;406

whereas in XGLUE we report in the more challeng-407

ing zero-shot cross-lingual transfer setting with408

only a single language used for training (i.e., En-409

glish). At each pruning step, we uniformly pruning410

10% of the parameters for both the models. Al- 411

though prior work suggests non-uniform pruning 412

schedules (e.g., cubic schedule (Zhu and Gupta, 413

2017)), we did not see any major differences to 414

uniform pruning.We compare the performance of 415

the proposed SDP-CC method against the follow- 416

ing baselines: Random Pruning (MBP-Random) - 417

prunes weights uniformly at random across all lay- 418

ers. Random pruning can be considered as a lower 419

bound on iterative pruning performance. Layer- 420

wise Magnitude Based Pruning (MBP) - for each 421

layer, prunes weights with the LAV. Global Mag- 422

nitude Pruning (Global-MBP) - prunes the LAV 423

of all weights in the network. Layer-wise Gra- 424

dient Magnitude Pruning (Gradient-MBP) - for 425

each layer, prunes the weights with the LAV of 426

the accumulated gradients evaluated on a batch of 427

inputs. 1st Taylor Series Pruning (TS) - prunes 428

weights based on the LAV of |gradient × weight|. 429

L0 norm MBP (Louizos et al., 2017) - uses non- 430

negative stochastic gates that choose which weights 431

are set to zero as a smooth approximation to the 432

non-differentiable L0-norm. L1 norm MBP (Li 433

et al., 2016) - applies L1 weight regularization and 434

uses MBP.Lookahead pruning (LAP) (Park et al., 435

2020) - prunes weight paths that have the small- 436

est magnitude across blocks of layers, unlike MBP 437

that does not consider neighboring layers. Layer- 438

Adaptive MBP (LAMP) (Lee et al., 2020) - adap- 439

tively compute the pruning ratio per layer. For all 440

above pruning methods we exclude weight pruning 441

of the embeddings, layer normalization parameters 442

and the last classification layer, as they play an im- 443

portant role for generalization and account for less 444

than 1% of weights in both BERT and XLM-RBase. 445

For Knowledge Distillation we also compare 446

against a class of smaller knowledge distilled ver- 447

sions of BERT model with varying parameter sizes 448

on the GLUE benchmark. We report prior results 449

of DistilBERT (Sanh et al., 2019) and also mini- 450

BERT models including TinyBERT (Jiao et al., 451

2019), BERT-small (Turc et al., 2019) and BERT- 452

medium (Turc et al., 2019). In addition, we consider 453

maximizing the cosine similarity between pruned 454

and unpruned representations in the SDP loss, as 455

ℓSDP−COS := αℓCE(y
S ,y) + β

(
1 − zS ·zT

||zS ||||zT ||
)
. 456

Unlike cross-correlation, there is no decorrelation 457

of non-adjacent features in both representations for 458

SDP-COS. This helps identify whether the redun- 459

dancy reduction in cross-correlation is beneficial 460

compared to the correlation loss that does not di- 461
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Compression Method Score Single Sentence Similarity and Paraphrase Natural Language Inference
(avg.) CoLA SST-2 MNLI MRPC STS-B QQP RTE QNLI

(mcc) (acc) (acc) (f1/acc) (pears./spear.) (f1/acc) (acc) (acc)

BERTBase (Ours) 84.06 53.24 90.71 80.27 80.9/77.7 83.5/83.8 83.9/88.0 68.59 86.91

Knowledge Distilled Baselines (% parameters w.r.t. original BERT)

DistilBERT (60%) 82.85 51.3 91.3 82.2 87.5/-.- 86.9/-.- -.-/85.5 59.9 89.2
BERT-Medium (44.4%) 81.54 38.0 89.6 80.0 86.6/81.6 80.4/78.4 69.6/87.9 62.2 87.7
BERT-Small (20%) 79.02 27.8 89.7 77.6 83.4/76.2 78.8/77.0 68.1/87.0 61.8 86.4
BERT-Mini (10%) 76.97 0.0 85.9 75.1 74.8/74.3 75.4/73.3 66.4/86.2 57.9 84.1
BERT-Tiny (3.6%) 73.32 0.0 83.2 70.2 81.1/71.1 74.3/73.6 62.2/83.4 57.2 81.5

Pruning Baselines 20% 10% 10% 10% 10% 10% 10% 10%

Random 66.03 6.50 78.44 69.55 77.5/67.1 27.4/26.9 77.07/81.86 52.70 74.66
L0-MBP 77.25 31.68 83.37 75.61 78.4/68.2 75.9/75.7 81.56/86.49 64.26 82.62
L2-MBP 76.48 29.51 83.37 76.19 78.4/68.2 75.3/75.6 77.50/82.98 62.09 82.61
L2-Global-MBP 77.16 29.25 82.83 76.40 81.2/69.9 75.1/75.5 82.77/86.70 62.01 82.24
L2-Gradient-MBP 74.84 15.46 82.91 72.51 81.0/73.7 73.8/73.6 80.41/85.19 56.31 79.33
1st-order Taylor 76.31 28.88 83.26 74.64 83.0/74.8 76.7/76.6 80.09/85.29 57.76 81.20
Lookahead 76.40 28.15 82.80 75.31 79.8/70.5 71.9/71.9 81.84/86.53 60.29 81.80
LAMP 74.03 20.31 83.26 74.27 72.3/63.7 73.7/74.1 79.32/85.07 58.84 81.09

Proposed Methodology

L2-MBP + SDP-COS 77.83 31.80 86.00 75.68 81.6/72.2 76.4/76.3 81.39/86.68 61.73 83.07
L2-MBP + SDP-KLD 78.34 36.74 87.96 77.94 80.5/68.2 77.1/77.3 83.21/85.58 63.18 83.54
L2-MBP + SDP-CC 78.90 36.77 87.84 78.04 81.1/71.0 77.3/77.5 83.79/86.37 62.64 84.20
BERT- results reported from Sanh et al. (2019); Jiao et al. (2019); Turc et al. (2019) and MNLI results are for the matched dataset.

Table 1: GLUE benchmark results for pruned models @10% (or @20%) remaining weights.
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(b) Sentiment Analysis (SST-
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(c) Multi-Genre NLI (MNLI)
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Figure 2: Iterative Pruning Test Performance on
GLUE tasks.

5 Empirical Results463

Pruning Results on GLUE. Table 1 shows the464

test performance across all GLUE tasks of the dif-465

ferent models with varying pruning ratios, up to466

10% remaining weights of original BERTBase along467

with mini-BERT models (Sanh et al., 2019; Turc468

et al., 2019) of varying size. However, for the CoLA469

dataset, we report at 20% pruning as nearly all com-470

pression methods have an MCC score of 0, making471

the compressed method performance indistinguish-472

able. For this reason, the GLUE score (Score) is473

computed for all tasks and methods @10% apart 474

from CoLA. The best performing compression 475

method per task is marked in bold. We find that 476

our proposed SDP approaches (all three variants) 477

outperform against baseline pruning methods, with 478

SDP-CC performing the best across all tasks. We 479

note that for the tasks with fewer training samples 480

(e.g., CoLA has 8.5k samples, STS-B has 7k sam- 481

ples and RTE has 3k samples), the performance 482

gap is larger compared to BERTBase, as the prun- 483

ing step interval is shorter and less training data 484

allows lesser time for the model to recover from 485

pruning losses and also less data for teacher model 486

to distil in the case of using SDP. 487

Smaller dense versions of BERT require more 488

labelled data in order to compete with unstructured 489

MBP and higher-order pruning methods such as 490

1st order Taylor series and Lookahead pruning. 491

For example, we see BERT-Mini (@10%) shows 492

competitive test accuracy with our proposed SDP- 493

CC on QNLI, MNLI and QQP, the three datasets 494

with the most training samples (105k, 393k and 495

364k respectively). Overall, L2−MBP + SDP-CC 496

achieves the highest GLUE score for all models at 497

10% remaining weights when compared to BERT- 498

Base parameter count. Moreover, we find that L2- 499

MBP + SDP-CC achieves best performance for 5 500

of the 8 tasks, with 1 of the remaining 3 being from 501

L2MBP+SDP-KLD. This suggests that redundancy 502

reduction via a cross-correlation objective is use- 503
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Prune Method XNLI NC NER PAWSX POS QAM QADSM WPR Avg.

XLM-RBase 73.48 80.10 82.60 89.24 80.34 68.56 68.06 73.32 76.96

Random 51.22 70.19 38.19 57.37 52.57 53.85 52.34 70.69 55.80
Global-Random 50.97 69.88 38.30 56.74 53.02 54.02 53.49 69.11 55.69
L0-MBP 64.75 78.98 56.22 72.09 71.38 59.31 53.35 71.70 65.97
L2-MBP 64.30 78.79 54.43 77.99 70.68 59.24 60.33 71.52 67.16
L2-Global-MBP 65.12 78.64 54.47 79.13 71.37 59.26 60.61 71.80 67.55
L2-Gradient-MBP 61.11 73.77 53.25 79.56 65.89 57.35 59.33 71.59 65.23
1st-order Taylor 64.26 79.34 63.60 82.83 68.94 61.69 62.42 72.28 69.09
Lookahead 60.84 79.18 54.44 71.05 68.76 55.94 53.41 71.26 64.36
LAMP 58.04 63.64 51.92 66.05 67.43 55.36 52.42 71.09 60.74

L2-MBP + SDP-COS 64.96 79.02 62.77 78.70 72.88 60.21 60.94 72.04 68.94
L2-MBP + SDP-KLD 65.94 80.72 64.50 79.25 73.18 61.66 61.09 71.84 69.77
L2-MBP + SDP-CC 66.47 79.73 66.34 80.03 73.45 63.73 62.78 72.59 70.76

Table 2: XGLUE Iterative Pruning @ 30% Remaining Weights of XLM-Rbase - Zero Shot Cross-Lingual
Performance Per Task and Overall Average Score (Avg).

ful for SDP and clearly improve over SDP-COS504

which does not minimize correlations between off-505

diagonal terms. Figure 2 shows the performance506

across all pruning steps. Interestingly, for QNLI we507

observe the performance notably improves between508

30-70% for SDP-CC and SDP-KLD. For SST-2, we509

observe a significant gap between SDP-KLD and510

SDP-CC compared to the pruning baselines and511

smaller versions of BERT, while TinyBERT be-512

comes competitive at extreme compression (<4%).513

Pruning Results on XGLUE. We show the per514
task test performance and the average task under-515

standing score on XGLUE for pruning baselines516

and our proposed SDP approaches in Table 2. Our517

proposed cross-correlation objective for SDP again518

achieves the best average (Avg.) score and achieves519

the best task performance in 6 out of 8 tasks, while520

standard SDP-KLD achieves best performance on521

one (news classification) of the remaining two.522

Most notably, we outperform methods which use523

higher order gradient information (1st-order Tay-524

lor) at 30% remaining weights, which tends to be525

a point at which XLM-RBase begins to degrade526

performance below 10% of the original fine-tuned527

test performance for SDP methods and competi-528

tive baselines. In Figure 3, we can observe this529

trend from the various tasks within XGLUE. We530

note that the number of training samples used for531

retraining plays an important role in the rate of532

performance degradation. For example, of the 6533

presented XGLUE tasks, NER has the lowest num-534

ber of training samples (15k) of all XGLUE tasks535

and also degrades the fastest in performance (from536

90% to 50% Test F1 at 30% remaining weights). In537

comparison, XNLI has the most training samples538

for retraining (433k) and maintains performance539

relatively well, keeping within 10% of the origi-540

nal fine-tuned model at 30% remaining weights.541

Summary of Results. From our experiments on 542

GLUE and XGLUE task, we find that SDP consis- 543

tently outperforms pruning, KD and smaller BERT 544

baselines. SDP-KLD and SDP-CC both outperform 545

larger sized BERT models (BERT-Small), some- 546

what surprisingly, given that BERT-Small (and the 547

remaining BERT models) have the advantage of 548

large-scale self-supervised pretraining, while prun- 549

ing only has supervision from the downstream task. 550

For NER in XGLUE, higher order pruning methods 551

such as Taylor-Series pruning have an advantage 552

at high compression rates mainly due to lack of 553

training samples (only 15k). Apart from this low 554

training sample regime, SDP with MBP dominates 555

at high compression rates. 556

Measuring Fidelity To The Fine-Tuned Model. 557

We now analyse the empirical evidence that soft 558

targets used in SDP may force higher fidelity with 559

the representations of the fine-tuned model when 560

compared to using MBP without self-distillation. 561

As described in subsection 3.3 we measure mu- 562

tual dependencies between both representations of 563

models with the best performing hyperparameter 564

settings of α, β and the softmax temperature τ . We 565

note that increasing the temperature τ translates to 566

“peakier” teacher logit distributions, encouraging 567

SGD to learn a student with high fidelity to the 568

teacher. From the LHS of Figure 4, we can see that 569

SDP models have higher mutual information (MI) 570

with the teacher compared to MBP, which performs 571

worse for PAWS-X (similar on remaining tasks, not 572

shown for brevity). In fact, the rank order of the 573

best performing pruned models at each pruning 574

step has a direct correlation with MI, e.g., SDP- 575

COS-MBP maintains highest MI and the highest 576

test accuracy for PAWS-X for the same α. How- 577

ever, too high fidelity (α = 1.) led to worse gener- 578

alization compared to a balance between the task 579
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(c) News Classification
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(d) Question Answer Matching

20 30 40 50 60 70
Percentage of remaining weights

50

55

60

65

70

Te
st

 A
cc

ur
ac

y

SDP-COS-MBP
gradient-MBP
gradient-taylor
SDP-CC-MBP
SDP-KLD-MBP
L0-MBP

LAMP
lookahead
MBP
MBP-global
MBP-random

(e) XNLI
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Figure 3: Zero-Shot Results After Iteratively Fine-Pruning XLM-RBase on XGLUE tasks.
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Figure 4: Mutual Information Between Unpruned and Pruned Representations (left) and Signal-To-Noise Ratio (middle)
from PAWS-X Development Set Representations and (right) Pruning Performance Recovery with Self-Distilled Pruning.

provided targets and the teacher logits (α = 0.5).580

Self-Distilled Pruning Increases Class Separa-581

bility and The Signal-To-Noise Ratio (SNR). We582

also find that the SNR is increased at each pruning583

step as formulated in subsection 3.3. From this ob-584

servation, we find that SDP-CC-MBP using cross-585

correlation loss does particularly well in the 30%-586

50% remaining weights range. More generally, all587

3 SDP losses clearly lead to better class separabil-588

ity and class compactness across all pruning steps589

compared to MBP (i.e., no self-distillation).590

Self-Distilled Pruning Recovers Faster Per-591

formance Degradation Directly After Pruning592

Steps. In the right plot of Figure 4 we show how593

SDP with Magnitude pruning (SDP-MBP) recovers594

during training in between pruning steps. The top595

of each vertical bar is the recovery development596

accuracy and the bottom is the initial performance597

degradation prior to retrainng. We see that SDP598

pruned models degrade in performance more than599

magnitude pruning without self-distillation. This600

suggests that SDP-MBP may force weights to be601

closer, as there is more initial performance degra-602

dation if weights are not driven to zero. However, 603

the recovery is faster. This may be explained by re- 604

cent work that suggests the stability generalization 605

tradeoff (Bartoldson et al., 2019). 606

6 Conclusion 607

In this paper, we proposed a novel self-distillation 608

based pruning technique based on a cross- 609

correlation objective. We extensively studied the 610

confluence between pruning and self-distillation 611

for masked language models and its enhanced util- 612

ity on downstream tasks in both monolingual and 613

multi-lingual settings. We find that self-distillation 614

aids in recovering directly after pruning in iter- 615

ative magnitude-based pruning, increases repre- 616

sentational fidelity with the unpruned model and 617

implicitly maximize the signal-to-noise ratio. Ad- 618

ditionally, we find our cross-correlation based 619

self-distillation pruning objective minimizes neu- 620

ronal redundancy and achieves state-of-the-art in 621

magnitude-based pruning baselines, and even out- 622

performs KD based smaller BERT models with 623

more parameters. 624
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