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ABSTRACT

Quantum Machine Learning (QML) is becoming increasingly prevalent due to its
potential to enhance classical machine learning (ML) tasks, such as classification.
Although quantum noise is often viewed as a major challenge in quantum comput-
ing, it also offers a unique opportunity to enhance privacy. In particular, intrinsic
quantum noise provides a natural stochastic resource that, when rigorously ana-
lyzed within the differential privacy (DP) framework and composed with classical
mechanisms, can satisfy formal (ε, δ)-DP guarantees. This enables a reduction
in the required classical perturbation without compromising the privacy budget,
potentially improving model utility. However, the integration of classical and quan-
tum noise for privacy preservation remains unexplored. In this work, we propose a
hybrid noise-added mechanism, HYPER-Q, that combines classical and quantum
noise to protect the privacy of QML models. We provide a comprehensive analysis
of its privacy guarantees and establish theoretical bounds on its utility. Empiri-
cally, we demonstrate that HYPER-Q outperforms existing classical noise-based
mechanisms in terms of adversarial robustness across multiple real-world datasets.

1 INTRODUCTION

Quantum Machine Learning (QML) has emerged as a compelling paradigm that integrates the
computational advantages of quantum systems with the modeling power of machine learning (ML). A
fundamental feature of quantum systems is quantum noise, the inherent randomness and decoherence
that arise due to interactions with the environment. Although quantum noise is typically considered
to be a barrier to achieving fault-tolerant quantum computing, it provides an opportunity to serve as a
natural and intrinsic source of randomness for privacy-preservation.

In classical ML, Differential Privacy (DP) (Dwork, 2006) has become the standard framework for
providing formal privacy guarantees. DP ensures that the output of an algorithm does not change
significantly when a single individual’s data is added or removed from the input dataset, thereby
protecting individual privacy. Beyond its role in privacy preservation, DP has also been extended to
certify the robustness of ML models against adversarial attacks (Lecuyer et al., 2019; Cohen et al.,
2019). Privacy in DP is typically achieved by injecting carefully calibrated random noise, such as
Gaussian or Laplacian, into the learning process (Geng & Viswanath, 2012; Balle & Wang, 2018; Ji &
Li, 2024). Furthermore, the overall privacy guarantee can be amplified through additional stochastic
techniques such as subsampling (Balle et al., 2018), iterative composition (Feldman et al., 2018), and
diffusion-based mechanisms (Balle et al., 2019a). Nevertheless, theoretical privacy amplification is
not guaranteed under arbitrary combinations of stochastic techniques.

Recent studies extend the notion of DP to the quantum domain, leading to Quantum Differential
Privacy (QDP) (Du et al., 2021b; Hirche et al., 2023). However, several key challenges remain
unaddressed. First, existing efforts primarily focus on defining privacy guarantees for quantum data.
However, most practical, near-term QML applications are hybrid models that operate on classical data
and use the quantum circuit only as an intermediate processing component. This hybrid architecture
presents a critical privacy challenge: a DP guarantee applied only to the intermediate quantum layer
does not ensure end-to-end privacy for the full model, especially if the preceding classical components
are sensitive. Second, the interaction between classical noise (e.g., Gaussian, Laplacian) and intrinsic
quantum noise has not yet been investigated. This research gap is critical because certain types of
quantum noise, such as depolarizing noise, can naturally inject randomness into the learning process
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without significantly degrading the performance of models (Du et al., 2021b). This raises a crucial
open question: can this intrinsic quantum randomness be formally utilized as a stochastic technique
to amplify the privacy guarantee originating from a preceding classical mechanism? To date, no work
has theoretically established how to compose the privacy guarantees of classical and quantum noise
sources within these hybrid models. In addition, understanding this relationship is crucial to control
the preset privacy budget, especially considering that quantum noise in physical devices is inherently
dynamic and difficult to precisely control.

Contributions. The key contributions and insights of this work can be highlighted as follows:

1. Hybrid Privacy-Preserving Mechanism. We propose HYPER-Q, a HYbrid Privacy-
presERving mechanism for Quantum Neural Networks (QNNs). To the best of our knowl-
edge, this is the first work to investigate the joint effect of classical and quantum noise in
amplifying DP within quantum hybrid models. Specifically, HYPER-Q composes a classical
input perturbation (e.g., Gaussian noise) with the intrinsic depolarizing noise of a quantum
circuit, forming a dual-noise framework compatible with a broad class of QNNs.

2. Privacy Guarantee Analysis. We provide a rigorous analysis of HYPER-Q’s DP guarantees.
Our mechanism is a composition Q(η) ◦A where A is a classical mechanism satisfying an
original (ε, δ)-DP and Q(η) is the quantum post-processing operation with the depolariz-
ing noise factor of η. We analyze how this composition achieves new amplified privacy
parameters (ε′, δ′). We provide three main analytical results:

• First (Theorem 1): We show that quantum post-processing in a d-dimensional Hilbert
space acts as a privacy amplifier by strictly reducing the failure probability (achieving
δ′ =

[
η(1−eε)

d + (1− η)δ
]
+
< δ), while the privacy loss remains fixed (ε′ = ε). This

result directly implies stricter certifiable adversarial robustness.
• Second (Theorem 2): We demonstrate that under a certain condition, it is possible to

simultaneously amplify both parameters, ε′ and δ′. This analysis yields two crucial
insights. First, we show how to select Positive Operator-Valued Measures (POVMs)
to maximize the privacy gain: the bound on δ′ is minimized (i.e., the guarantee is
strongest) when all POVM elements have equal trace. Second, we derive the explicit
threshold that the quantum noise η must exceed to guarantee the strict amplification of
both privacy parameters.

• Third (Theorems 1.1 and 1.2): We generalize the privacy amplification framework
to asymmetric noise channels by identifying trace distance contraction as the core
mechanism. We derive strict privacy amplification for Generalized Amplitude Damping
(GAD) based on thermal relaxation (δ′ = (2

√
η − η)δ) and for Generalized Dephasing

(GD) under the assumption of product equatorial encoding, where the suppression of
phase coherences scales the failure probability to δ′ = |1− 2η|δ.

3. Utility Analysis. We derive a formal utility bound (Theorem 3) that quantifies the model’s
performance. Specifically, we characterize the total error as a high-probability trade-off
between the classical noise variance (σ) and the quantum depolarization probability (η).

4. Empirical Experiments. We empirically demonstrate that, under a fixed end-to-end pri-
vacy budget, HYPER-Q achieves significantly greater adversarial robustness than standard
classical-only DP mechanisms across multiple datasets. These results indicate that replacing
classical noise with quantum depolarizing noise can yield higher performance without
weakening the privacy guarantee.

2 PRELIMINARY

2.1 QUANTUM INFORMATION BASICS

Qubits and States. Quantum computing systems operate on quantum bits (qubits). Unlike classical
bits, qubits can exist in superpositions of 0 and 1. An n-qubit system resides in a 2n-dimensional
Hilbert space H. While ideal (pure) states are represented by vectors |ψ⟩, general (possibly noisy)
states are described by density matrices ρ: d× d positive semi-definite matrices with a trace of one
(i.e., Tr[ρ] = 1).
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Quantum Channels. The evolution of a quantum state, including noise effects, is modeled by a
quantum channel. For example, the depolarizing channel, denoted as f (η)dep , replaces the state ρ with
the maximally mixed state I

d with probability η and leaves it unchanged with probability 1− η:

f
(η)
dep (ρ) = (1− η)ρ+ η

I

d

where η ∈ [0, 1] is the probability, I is the identity matrix and d is the dimension of the Hilbert space.

Classical information is extracted from a quantum state via measurement. A general measurement is
defined by a set of operators Ek forming a Positive Operator-Valued Measure (POVM). For a state ρ,
the probability of observing the outcome k is:

Pr(outcome = k) = Tr[Ekρ].

2.2 DIFFERENTIAL PRIVACY

Differential Privacy (DP) provides a formal guarantee that the presence or absence of any individual
sample in a dataset has limited impact on the output (Dwork, 2006). More formally:
Definition 1 ((ε, δ)-Differential Privacy). A randomized mechanism M : D → R satisfies (ε, δ)-
differential privacy if for any two adjacent datasets D1 and D2 that differs by a single element, , and
for any subset of outputs S ⊆ R, the following inequality holds:

Pr[M(D1) ∈ S] ≤ eε Pr[M(D2) ∈ S] + δ

,

Here, ε ≥ 0 is the privacy loss parameter while δ ∈ [0, 1) is the failure probability. The smaller ε or
the smaller δ implies stronger privacy.

An equivalent characterization of DP can be formulated using the hockey-stick divergence. For two
distributions P and Q, the hockey-stick divergence is defined as:

Deε(P∥Q) =

∫
max(0, P (x)− eεQ(x))dx

A mechanism M satisfies (ε, δ)-DP if and only if Deε(M(D1)∥M(D2)) ≤ δ for all adjacent
D1, D2.

This framework extends to the quantum setting (Hirche et al., 2023), where the quantum hockey-stick
divergence for states ρ, ρ′ is defined as:

D
(q)
eε (ρ∥ρ′) = Tr [(ρ− eερ′)+]

A quantum mechanism E satisfies (ε, δ)-quantum DP if for any adjacent states ρ, ρ′, the divergence is
bounded by δ where D

(q)
eε (E(ρ)∥E(ρ′)) ≤ δ.

Noise-added Mechanisms. A standard way to achieve DP is by adding noise proportional to the
sensitivity of a function, which is the maximum output change from altering one data point. The
Gaussian mechanism adds noise ηcdp ∼ N (0, σ2I) to a function f : D → R based on the function’s
L2 sensitivity:

∆2(f) = max
D1,D2

||f(D1)− f(D2)||2

This mechanism outputs f(x)+ηcdp. For appropriate choices of σ, this mechanism satisfies (ε, δ)-DP.
Additional background on hybrid quantum machine learning, the connection between differential
privacy and adversarial robustness, and classical noise mechanisms for achieving DP is provided in
Appendix A.

3 RELATED WORKS

Differential Privacy in Classical Machine Learning. Differential Privacy (DP) has been established
as a leading framework for protecting data in ML workflows. DP provides formal guarantees (Dwork
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et al., 2006) that ensure that the inclusion or exclusion of a single data point has a limited impact on
the output of an algorithm, thus minimizing the risk of information leakage. In machine learning, the
most common way to achieve DP in practice is by injecting calibrated random noise into the learning
process. This noise can be introduced at various stages, such as perturbing the input data (Lecuyer
et al., 2019; Phan et al., 2019; Cohen et al., 2019), the gradients during optimization (Abadi et al.,
2016; Ghazi et al., 2025), or the final model parameters (Yuan et al., 2023).

Input perturbation is particularly effective for providing instance-level privacy and is a key technique
for certifying the adversarial robustness of a model’s predictions (Lecuyer et al., 2019; Cohen et al.,
2019). Standard mechanisms, such as the Gaussian or Laplacian mechanism, add noise scaled to
the function’s sensitivity to provide (ε, δ)-DP guarantee (Dwork & Roth, 2014). To mitigate the
degradation in model performance which is often caused by noise injection, a crucial line of research
focuses on privacy amplification. The core idea is that certain stochastic processes can strengthen the
final privacy guarantee without requiring additional initial noise. Privacy amplification can also be
achieved through established techniques such as subsampling (Bun et al., 2015; Balle et al., 2018;
Wang et al., 2019; Koga et al., 2022), shuffling (Cheu et al., 2018; Erlingsson et al., 2019; Balle et al.,
2019b), iterative composition (Feldman et al., 2018), and specialized forms of post-processing (Balle
et al., 2019a; Ye & Shokri, 2022). In particular, post-processing is fundamental: while standard post-
processing can never weaken a privacy guarantee (Dwork, 2006), certain stochastic transformations
can actively enhance it. However, not all combinations of stochastic sources yield amplification. For
example, post-processing a Gaussian mechanism with an additional Gaussian transformation can
amplify privacy, whereas composing a Gaussian mechanism with a Laplacian transformation does
not yield such an effect.

Differential Privacy in Quantum Settings. The notion of DP has recently been extended to
quantum settings, reflecting the growing interest of privacy-preserving quantum computing and
quantum machine learning (QML). The foundational concept was introduced by (Zhou & Ying,
2017), who proposed a definition of QDP that is a direct quantum analogue of classical DP. Building
on this, (Du et al., 2021a) demonstrated a practical application for QML by showing that inherent
quantum noise could be leveraged to achieve QDP in quantum classifiers. Specifically, they analyzed
the depolarizing noise channel as a privacy-preserving mechanism and derived the mathematical
relationship between the noise strength and the resulting (ε, δ)-QDP guarantee. They also proved that
this privacy mechanism simultaneously enhances the model’s adversarial robustness. Later, (Hirche
et al., 2023) developed a comprehensive theoretical framework for QDP. Using tools such as quantum
relative entropy, their work provides a more general and rigorous foundation for QDP. More recent
works(Bai et al., 2024; Watkins et al., 2023; Song et al., 2025) have examined how various quantum
noise sources, such as depolarizing, bit-flip, and phase-flip channels, affect the QDP budget.

Despite this progress in defining privacy for either purely quantum or purely classical systems, a
critical gap remains for the hybrid quantum-classical architectures that are essential for near-term
quantum advantage. These models are paramount for applying quantum computation to real-world
problems. However, to date, no work has theoretically established how to compose the privacy
guarantees of classical and quantum noise sources within hybrid quantum models. This significant
gap highlights the importance of our proposed HYPER-Q and the need for further exploration of
hybrid approaches that combine traditional DP mechanisms with the privacy properties innate to
quantum systems.

4 HYBRID NOISE-ADDED MECHANISM

In this section, we present our privacy-preserving mechanism that integrates classical and quantum
noise to achieve differential privacy (DP) in QNN models. We first describe the structure of the hybrid
mechanism, then analyze its DP guarantees, and finally provide a utility bound that characterizes the
impact of noise on model performance.

4.1 MECHANISM OVERVIEW

The proposed mechanism is designed to mitigate privacy leakage at two levels. First, classical data
can be vulnerable to reconstruction attacks before it enters the quantum circuit. To prevent such
exposure, we introduce classical noise mechanisms to perturb the input. Second, we leverage inherent
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Figure 1: Overview of the proposed hybrid noise-added mechanism, HYPER-Q.

quantum depolarizing noise to enhance privacy after encoding. This noise has been shown to preserve
utility in the ideal case of infinite measurements (Du et al., 2021b). By combining classical and
quantum noise, our dual-layer approach reduces reliance on excessive classical noise, achieving
stronger privacy with minimal utility loss.

We formally describe each stage of the mechanism using a modular function-based representation
(see an overview in Figure 1):

Classical Noise Function fcdp : X → X. This function adds calibrated classical noise to the input,
providing an initial DP guarantee.

fcdp(x) = x+ ηcdp, where ηcdp ∼ N (0, σ2I)

Here, the noise ηcdp is drawn from a multivariate Gaussian distribution with covariance σ2I .

Parameterized Linear Transformation fpar : X → Y. This function serves as a learnable classical
layer, transforming the input data into a feature space. The weights W and biases b are learnt during
model training.

fpar(x
′) =Wx′ + b = y

Quantum Encoding Function fenc : Y → H. This function encodes the classical feature vector
y into a quantum state ρ within a d-dimensional Hilbert space H composed of n qubits (d = 2n).
Let |ψy⟩ =

∏n
j=1 e

−iyjHj |0⟩⊗n be the encoded pure state vector, where Hj are Hermitian operators.
The function’s output is the corresponding density matrix:

fenc(y) = |ψy⟩⟨ψy| = ρ

Depolarizing Noise Channel f (η)dep : H → H. This quantum channel adds a second layer of
randomness by applying noise directly to the encoded state ρ. This process will be shown to amplify
the initial privacy guarantee from the classical noise layer in the subsequent analysis.

f
(η)
dep (ρ) = (1− η)ρ+ η

I

d
= ρ̃

Here, η ∈ [0, 1] is the depolarization probability, and I is the identity operator on H.

Measurement Function fmea : H → Z. This final stage maps the noisy quantum state ρ̃ to a single
classical class label z from the output space Z = {0, 1, . . . ,K − 1}. This mapping is inherently
stochastic and is formally defined as:

Pr(fmea(ρ̃) = k) = Tr[Ekρ̃], ∀k
This hybrid approach allows independent tuning of classical and quantum noise for flexible privacy-
utility trade-offs. Its modular design also supports theoretical analysis of privacy guarantees and
performance impact, as detailed below.

4.2 DIFFERENTIAL PRIVACY BOUND

We now define the concepts used in our DP analysis. Specifically, our proposed mechanism can be
expressed as the composition Q(η) ◦ A, where A = fpar ◦ fcdp is a classical mechanism satisfying
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(ε, δ)-DP, and Q(η) = fmeas ◦ f (η)dep ◦ fenc is a quantum post-processing operation controlled by
a noise parameter η. Assuming the random process fcdp satisfies (ε, δ)-DP, it follows from the
post-processing theorem (Dwork, 2006) that the mechanism A also satisfies (ε, δ)-DP.

Our goal is to analyze how the composed mechanism Q(η) ◦ A achieves new privacy parameters
(ε′, δ′), and how these parameters amplify the original guarantees (ε, δ). Specifically, we provide
two analytical results for the proposed mechanism. In the first analysis, we show that Q(η) ◦A can
improve the failure probability by establishing that ε′ = ε and δ′ < δ. In the second analysis, we
demonstrate that under certain conditions, Q(η) ◦A can amplify both the privacy loss and the failure
probability, achieving ε′ < ε and δ′ < δ. All proofs are presented in Appendix B.

4.2.1 FIRST ANALYSIS — AMPLIFYING THE FAILURE PROBABILITY

We investigate how the failure probability is amplified under quantum post-processing, assuming a
fixed privacy loss parameter ε. Theorem 1 formalizes this by establishing a new bound on the failure
probability δ′ of the composed mechanism Q(η) ◦A, while keeping the privacy loss fixed at ε′ = ε.
The proof for this theorem bridges the classical and quantum divergence measures by involving
two key steps: (1) establishing that the classical hockey-stick divergence of the final, measured
probabilities is upper-bounded by the quantum hockey-stick divergence of the quantum states before
measurement , and (2) proving that this quantum divergence contracts under the depolarizing channel
f
(η)
dep by a factor of (1−η). The detailed derivation of Theorem 1, along with its corresponding proofs,

is provided in Appendix B.
Theorem 1 (Amplification on Failure Probability). Let A : X → P(Y) be a classical mechanism
satisfying (ε, δ)-DP where A = fpar ◦ fcdp, and let Q(η) : Y → P(Z) be a quantum mechanism in a
d-dimensional Hilbert space defined as Q(η) = fmea ◦f (η)dep ◦fenc where 0 ≤ η ≤ 1 is the depolarizing
noise factor. Then, the composed mechanism Q(η) ◦A satisfies (ε′, δ′)-DP, where

ε′ = ε, δ′ =

[
η(1− eε)

d
+ (1− η)δ

]
+

From the final bound, it follows that for ε ∈ [0, 1], we have δ′ ≤ δ. Therefore, the failure probability
is strictly reduced, resulting in a privacy amplification effect, as formally stated in Corollary 1.

Corollary 1. The composed mechanism Q(η) ◦ A satisfies (ε, δ′)-DP with δ′ < δ, thus strictly
amplifying the overall failure probability.

Based on (Lecuyer et al., 2019), we derive an explicit condition for certifiable adversarial robustness
of the composed mechanismQ(η)◦A in Corollary 2. This condition defines a robustness threshold that
the model’s expected confidence scores must exceed. Notably, due to the privacy amplification effect
formalized in Corollary 1, the robustness threshold under the composed mechanism (parameterized
by δ′) is strictly lower than that of the original classical mechanism (parameterized by δ). As a result,
quantum post-processing provably enlarges the set of inputs for which adversarial robustness can be
guaranteed. For further details on adversarial robustness, we refer readers to Appendix A.

Corollary 2. The composed mechanism Q(η) ◦A is certifiably robust against adversarial perturba-
tions for an input x ∈ X if the following condition holds for the correct class k:

E[[(Q(η) ◦A)(x)]k] > e2ε max
i̸=k

E[[(Q(η) ◦A)(x)]i] + (1 + eε)δ′

4.2.2 SECOND ANALYSIS — AMPLIFYING THE PRIVACY LOSS

We investigate how the composed mechanism Q(η) ◦A can simultaneously amplify both the privacy
loss ε and the failure probability δ. The result is formalized in Theorem 2 which provides new (ε′, δ′)
bound. The proof (detailed in Appendix B) relies on the Advanced Joint Convexity theory, originally
introduced in (Balle et al., 2018). The key insight is that the depolarizing channel transforms the
final output distribution into a convex combination of the original (noiseless) distribution and the
distribution of a maximally mixed state. This explicit mixture structure allows the joint convexity
theorem to be applied, yielding a new DP bound on both privacy loss and failure probability.
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Theorem 2 reveals that the amplified failure probability δ′ depends on the choice of POVMs. In
particular, δ′ becomes tighter as φ = mink

(
Tr(Ek)

d

)
increases. This insight leads to Corollary 3,

highlighting that δ′ is minimized when all POVM elements Ek have equal trace (i.e., Tr(Ek) =
1
K ).

Contrarily, ε′ ≤ ε for all η ∈ [0, 1], the privacy loss in terms of ε is always reduced. However, the
bound on δ is only improved (i.e., δ′ ≤ δ) when the noise level η exceeds the threshold given in
Corollary 4. This condition highlights that a sufficient level of quantum noise is required to achieve
strict amplification of the privacy guarantee in both parameters.

Theorem 2 (Amplification on Privacy Loss). LetA = fpar◦fcdp be (ε, δ)-DP, andQ(η) = fmea◦f (η)dep ◦
fenc be a quantum mechanism in a d-dimensional Hilbert space where 0 ≤ η ≤ 1 is the depolarizing
noise factor. Then, the composition Q(η) ◦A is (ε′, δ′)-DP where ε′ = log

(
1+ (1− η)(eε − 1)

)
and

δ′ = (1− η)
(
1− eε

′−ε(1− δ)− (eε − eε
′
)φ
)

with φ = mink

(
Tr(Ek)

d

)
.

Corollary 3. Let {Ek}Kk=1 be the POVM used in fmea. Then, the amplified failure probability δ′

in Theorem 2 is minimized when all POVM elements have equal trace (i.e., Tr[Ek] =
d
K for all

k ∈ {1, . . . ,K}).

Corollary 4. Given an optimal measurement such that Tr[Ek] =
d
K ∀k, the composed mechanism

Q(η) ◦A strictly improves the privacy guarantee (i.e., ε′ ≤ ε and δ′ ≤ δ) if

η ≥ 1− δ

(1− δ)(1− e−ε)− (eε − 1)/K

4.2.3 THIRD ANALYSIS — GENERALIZATION TO OTHER NOISE CHANNELS

While our first analysis focuses on depolarizing noise, the underlying mechanism responsible for
privacy amplification extends naturally to a broader class of quantum channels. The central insight
is whenever a quantum noise channel induces a non-trivial contraction of the quantum hockey-stick
divergence, it will inherently lead to privacy amplification. In this subsection, we show how this
principle generalizes our analysis to two widely studied asymmetric noise models: Generalized
Amplitude Damping (GAD) and Generalized Dephasing (GD).
Amplification Under Generalized Amplitude Damping. GAD channel is inherently asymmetric
and non-unital. Despite this, we show that it contracts trace distance by a factor of at most
(2
√
η − η), where η is the damping strength. Substituting this contraction into the proof framework

for Theorem 1 yields the following amplification bound.
Theorem 1.1 (Amplification Under Generalized Amplitude Damping Noise). Let A : X → P(Y)
be a classical mechanism satisfying (ε, δ)-DP where A = fpar ◦ fcdp, and let Q(p,η) : Y → P(Z)
be a quantum mechanism in d-dimensional Hilbert space defined as Q(p,η) = fmea ◦ f (p,η)GAD ◦ fenc.
Then, the composed mechanism Q(p,η) ◦A satisfies (ε′, δ′)-DP, where

ε′ = ε, δ′ = (2
√
η − η)δ.

Generalized Dephasing Under Equatorial Encoding. Dephasing noise preserves classical popu-
lations but suppresses quantum coherences. Although its worst-case contraction coefficient is 1, we
show that for many QML encoding schemes, including angle-based encoders, the encoded states lie
in the equatorial plane of the Bloch sphere. Under this structure, all distinguishability is encoded in
coherence terms directly affected by GD noise, enabling nontrivial contraction.
Assumption 1 (Product Equatorial Encoding on All Qubits). For each input y ∈ Y, the encoder
prepares a product state

ρy = fenc(y) =

n⊗
j=1

ρ(j)y ,

where each single-qubit factor ρ(j)y is an equatorial state on the Bloch sphere, i.e.,

ρ(j)y =
1

2

(
I + cosϕ(j)y X + sinϕ(j)y Y

)
,

7
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for some angle ϕ(j)y ∈ R and with no Z-component.

Under this assumption, the GD channel contracts all relevant coherence terms by a factor of |1−2η|,
leading to the following privacy guarantee.
Theorem 1.2. Let A : X → P(Y) be a classical mechanism satisfying (ε, δ)-DP, and let

Q(η) := fmea ◦ f (η)GD ◦ fenc

be an n-qubit quantum mechanism where f (η)GD is the n-qubit GD channel defined above and fenc
satisfies Assumption 1. Then the composed mechanism Q(η) ◦A satisfies (ε′, δ′)-DP with

ε′ = ε, δ′ = |1− 2η| · δ.

The full proofs and derivations of Theorem 1.1 and 1.2 are provided in Appendix B.4.

4.3 UTILITY BOUND

We finally establish a rigorous framework to study the utility loss, defined as the absolute error
between the noisy and noise-free versions of our mechanism. The final output of the mechanism
is stochastic, due to the sampling-based measurement process. Thus, we analyze the difference
between the expected values of their output. The expected value represents the average behavior of a
mechanism and provides a deterministic quantity that we can use to measure utility loss.

Formally, we define the expectation measurement function fexp : H → R as:

fexp(ρ) =
∑
k

kTr[Ekρ] = Tr

[(∑
k

kEk

)
ρ

]
= Tr[Eexpρ]

where Eexp =
∑

k kEk is the expectation value observable.

Using this function, we define our deterministic expectation mechanisms. The full mechanism,
including classical and quantum noise, is Mfull(x) = (fexp ◦ f (η)dep ◦ fenc ◦ fpar ◦ fcdp)(x). On the other
hand, the noise-free mechanism (clean) is Mclean(x) = (fexp ◦ fenc ◦ fpar)(x). The total utility loss
is the worst-case absolute error between their expected outputs:

Error = sup
x∈X

|Mfull(x)−Mclean(x)|

Theorem 3 (Utility Bound). Let the classical noise be κ ∼ N (0, σ2I) acting on an input space X
of dimension dX = dim(X). For any desired failure probability p > 0, the utility loss is bounded
probabilistically as:

Pr

(
Error ≤ L∞ · σ

√
2 ln

2dX
p

+ 2η∥Eexp∥op

)
≥ 1− p

where L∞ = 2(1− η)∥Eexp∥op∥W∥∞
(∑

j ∥Hj∥op
)

.

Theorem 3 provides a utility bound that quantifies the trade-off between privacy and performance. The
proof (detailed in Appendix B) utilizes an intermediate mechanism (half) that includes only quantum
noise as Mhalf(x) = (fexp ◦ f (η)dep ◦ fenc ◦ fpar)(x). Specifically, first, we bound the error introduced
by the quantum noise (|Mhalf −Mclean|), which is shown to be proportional to the quantum noise
level η. Second, we bound the error from the classical noise by establishing a Lipschitz constant
L∞ for the quantum-only mechanism. As the classical noise is unbounded, the final guarantee is a
high-probability statement relating the utility loss to the classical (σ) and quantum (η) noise levels.

5 EXPERIMENTAL EVALUATION

We empirically evaluate HYPER-Q, focusing on adversarial robustness, a direct outcome of the
Differential Privacy (DP) guarantees in Corollary 2. Specifically, we aim to show that for a fixed
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privacy budget (ε′, δ′), the hybrid noise strategy of HYPER-Q yields higher model utility than the
purely classical mechanisms including Basic Gaussian, Analytic Gaussian (Balle & Wang, 2018) and
DP-SGD Abadi et al. (2016); Watkins et al. (2023) (more details can be found in Appendix A). We
note that the first two mechanisms apply noise at the input level, whereas DP-SGD performs noise
injection at the gradient level. We first evaluate HYPER-Q across various quantum noise settings and
compare its performance to that of the classical mechanisms on a quantum machine learning (QML)
model. We then benchmark the performance of the HYPER-Q-equipped QML model against various
classical learning models protected by the Analytic Gaussian mechanism. Each experiment reports
the averaged accuracy over 10 runs.

Implementation Details. We implement a QML model designed to incorporate HYPER-Q. The
model architecture follows the mechanism proposed and analyzed in Section 4. The implementation
uses the PennyLane library (Bergholm et al., 2022), with quantum circuits executed on simulators,
which is a standard practice for prototyping and evaluating quantum applications (Cicero et al., 2025).
To ensure DP, Gaussian noise is added directly to the input and depolarizing noise is applied as a
layer in the quantum circuit. Specifically, given a target privacy budget (ε′, δ′), the depolarizing noise
level η is fixed, while the Gaussian noise level σ2 is computed according to Theorem 1. Additional
details are provided in Appendix C.

Datasets & Benchmark Models. We evaluate our approach on three standard image classification
datasets: MNIST (Lecun et al., 1998), FashionMNIST (Xiao et al., 2017), and USPS (Hull, 2002).
To assess the practical viability of HYPER-Q, we compare its robustness against three standard deep
learning architectures: a Multi-Layer Perceptron (MLP), a ResNet-9-based Convolutional Neural
Network (CNN) (He et al., 2016), and a Vision Transformer (ViT) (Dosovitskiy et al., 2021). Each
of these classical models is protected by the Analytic Gaussian mechanism with identical privacy
budgets. Specific descriptions of each dataset and benchmark are provided in Appendix D.

Adversarial Robustness Settings. We use a certified defense framework (Lecuyer et al., 2019) that
trains models with noise layers calibrated by a DP budget (ε′, δ′) and a construction attack bound
Lcons. We then evaluate robustness by measuring the model’s accuracy against FGSM (Goodfellow
et al., 2015) and PGD (Madry et al., 2018) attacks, whose strength is defined by the empirical attack
bound Lattk. More details are provided in Appendix E.

5.1 ROBUSTNESS ANALYSIS IN QML

In this experiment, we illustrate that under the same privacy budget, HYPER-Q preserves adversarial
robustness more efficiently than classical mechanisms in QML. We evaluate the adversarial robustness
of HYPER-Q under two quantum noise settings, η ∈ {0.1, 0.3}. We compare its performance with
Basic Gaussian, Analytic Gaussian and DP-SGD mechanisms. For fair comparisons, we ensure that
all methods are evaluated under the same privacy budget and applied to the same QML model.

Figure 2 presents the average accuracy on the MNIST, FashionMNIST, and USPS datasets under
both FGSM and PGD attacks for four distinct privacy budgets ε′ ∈ {0.25, 0.5, 0.75, 1}. We observe
that HYPER-Q with η = 0.1 consistently outperforms all baseline methods, both in the absence of
attack (Lattk = 0) and under attack (Lattk > 0). As the ε′ increases, the performance gap becomes
more pronounced. Specifically, HYPER-Q surpasses the second-best method, Analytic Gaussian, by
an average of 16.54%, 5.37%, 6.44%, and 5.20% in accuracy across the four respective ε′ values.
This demonstrates that replacing a reasonable amount of classical noise with quantum noise can
significantly enhance adversarial accuracy. In addition, we observe that while HYPER-Qwith η = 0.3
performs better than classical mechanisms at ε′ = 0.25, its relative efficiency decreases at higher
settings of ε′ where the amount of classical noise added diminishes. This suggests that when quantum
noise outweighs classical noise, the overall performance degrades. Therefore, selecting an appropriate
value of η is crucial. For a detailed analysis of η, we refer readers to Appendix F.5.

5.2 COMPARATIVE BENCHMARK WITH CLASSICAL MODELS

HYPER-Q is intrinsically designed for QML models. This raises a critical question of practical
viability: Can a QML model protected by HYPER-Q compare to or outperform classical models that
are protected by their own conventional privacy mechanisms? Figure 3 illustrates the performance
comparison of a QML model protected by HYPER-Q (with its empirically best quantum noise

9
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Figure 2: Average accuracy of noise-added mechanisms under FGSM and PGD attacks on MNIST,
FashionMNIST, and USPS. Accuracy is averaged over allLcons settings for each (Lattk, ε

′). HYPER-Q
is evaluated with η ∈ [0.1, 0.3] and δ′ = 1× 10−5.

Figure 3: Average accuracy of the QML model with HYPER-Q protection versus three classical
baselines (ResNet-9, ViT, and MLP) with Analytic Gaussian protection, averaged over FGSM and
PGD attacks and across MNIST, FashionMNIST, and USPS. The HYPER-Q model is evaluated with
its empirically best quantum noise setting (η = 0.1). For each (Lattk, ε

′) pair, the reported accuracy
is averaged over all Lcons settings. δ′ = 1× 10−5 for all settings.

setting, η = 0.1) against three classical baselines protected by Analytic Gaussian noise. We observe
that for smaller privacy parameters, ε′ ∈ {0.25, 0.5}, HYPER-Q outperforms the best classical
baseline (ResNet-9) by 20.44% and 3.41% in average accuracy, respectively. This indicates that a
large amount of Gaussian noise can significantly degrade model performance, and in such cases,
substituting classical noise with quantum noise can result in better utility. However, for larger ε′
values, HYPER-Q performs comparably (at ε′ = 0.75) and worse (at ε′ = 1) than ResNet-9. This
suggests that when only a small amount of classical noise is needed to preserve the utility of a
classical model, QML may not yet offer a performance advantage due to current limitations in
quantum systems compared to their classical counterparts.

For a complete performance evaluation, including results on each dataset (MNIST, FashionMNIST,
and USPS) and robustness against each attack (FGSM and PGD), we refer the reader to Appendix F.
In Appendix F, we also provide analysis of dimensional scalability, verification of utility bound
tightness, sensitivity analysis of η and analysis of performance on CIFAR-10.

6 CONCLUSION

In this work we have presented HYPER-Q as a hybrid privacy-preserving mechanism for quantum
systems. Through extensive experimental analyses across three real-world datasets subjected to the
FGSM and PGD attacks, we demonstrate that the combination of quantum and classical noise is
both robust and scalable, while yielding significant improvements in privacy preservation and model
utility. Classical components ensure stable training and feasibility in interpretation, while quantum
noise introduces natural randomness that enhances privacy without heavily degrading model utility.
As quantum hardware matures, we expect frameworks like HYPER-Q to be essential in shaping the
future of privacy-preserving ML. An important direction for future work is to investigate the behavior
of hybrid DP mechanisms on larger variational circuits deployed on actual quantum hardware.
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REPRODUCIBILITY STATEMENT

All datasets used in this work are publicly available for download. We include the model architecture
of the proposed method, HYPER-Q, in Appendix C along with resources used to implement our work.
Furthermore, we include descriptions of the benchmarks along with their respective citations for
reproducibility in Appendix D. We also describe our specific hyperparameters to replicate our results.
A repository to our code will be made publicly available upon acceptance.
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privacy and analytical moments accountant. In The 22nd international conference on artificial
intelligence and statistics, pp. 1226–1235. PMLR, 2019.

William M Watkins, Samuel Yen-Chi Chen, and Shinjae Yoo. Quantum machine learning with
differential privacy. Scientific Reports, 13(1):2453, 2023.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmarking
machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

Xing Xiao, Yao Yao, Lei-Ming Zhou, and Xiaoguang Wang. Distribution of quantum fisher informa-
tion in asymmetric cloning machines. Scientific Reports, 4(1):7361, Dec 2014. ISSN 2045-2322.
doi: 10.1038/srep07361. URL https://doi.org/10.1038/srep07361.

Jiayuan Ye and Reza Shokri. Differentially private learning needs hidden state (or much faster
convergence). In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.),
Advances in Neural Information Processing Systems, volume 35, pp. 703–715. Curran Asso-
ciates, Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/
2022/file/04b42392f9a3a16aea012395359b8148-Paper-Conference.pdf.

Xin Yuan, Wei Ni, Ming Ding, Kang Wei, Jun Li, and H. Vincent Poor. Amplitude-varying pertur-
bation for balancing privacy and utility in federated learning. IEEE Transactions on Information
Forensics and Security, 18:1884–1897, 2023. doi: 10.1109/TIFS.2023.3258255.

Li Zhou and Mingsheng Ying. Differential privacy in quantum computation. In 2017 IEEE 30th
Computer Security Foundations Symposium (CSF), pp. 249–262, 2017. doi: 10.1109/CSF.2017.23.

14

https://api.semanticscholar.org/CorpusID:219558337
https://api.semanticscholar.org/CorpusID:219558337
https://link.aps.org/doi/10.1103/PhysRevLett.122.040504
https://link.aps.org/doi/10.1103/PhysRevLett.122.040504
https://doi.org/10.1038/srep07361
https://proceedings.neurips.cc/paper_files/paper/2022/file/04b42392f9a3a16aea012395359b8148-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/04b42392f9a3a16aea012395359b8148-Paper-Conference.pdf


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

APPENDIX

A ADDITIONAL BACKGROUND

A.1 QUANTUM NEURAL NETWORKS

Quantum neural networks (QNNs) are a class of quantum machine learning models that employ
parameterized quantum circuits to learn from classical or quantum data. In this work, we focus on
QNNs designed for classical input. In a supervised learning context, a QNN aims to approximate an
unknown function K : X → Y by training on a dataset S = {(xi, yi)}Ni=1, where each xi ∈ Rd is an
input data vector and yi is the associated label.

QNN models use parameterized quantum circuits to process data. The workflow for a typical QNN
involves:

• Data Encoding: Classical data is mapped into the quantum state of qubits using a pa-
rameterized ”encoder” circuit. This step is crucial, as it can be trained to find powerful
data representations and can introduce quantum features like entanglement to increase the
model’s capacity.

• Model Circuit: A sequence of parameterized quantum gates, analogous to the layers of a
classical neural network, processes the encoded quantum state.

• Measurement: A measurement is performed on the final state to extract a classical output,
which serves as the model’s prediction.

Training a QNN is a hybrid quantum-classical process. The quantum computer executes the circuit
and performs the measurement. A classical computer then calculates a loss function (e.g., Mean
Squared Error) to quantify the error between the prediction and the true label. Given a differentiable
loss function f(·), the objective is to minimize:

L(θ) =
N∑
i=1

f(ℓi(θ; yi), yi).

Finally, the classical computer uses gradient-based optimization to update the circuit’s parameters,
θ. This process is repeated iteratively until the model converges. The goal is to find the optimal
parameters θ∗ that minimize the loss:

θ∗ = argmin
θ
L(θ).

A.2 ADVERSARIAL ROBUSTNESS

A model is considered adversarially robust if it can consistently make correct predictions even
when its inputs are slightly altered by malicious perturbations. These altered inputs are known as
adversarial samples. Formally, we define a model f : X → Y, which maps an input in the space X to
an output distribution over labels y = {y1, y2, . . . , yk} ∈ Y. The model f is considered adversarially
robust if its prediction for an input x is unchanged when a small perturbation α is added to x. This
can be stated as:

max
i∈[1,k]

[f(x)]i = max
i∈[1,k]

[f(x+ α)]i, ∀α ∈ Bp(L),

where Bp(Lcons) represents the p-norm ball of radius Lcons, that restricts the perturbation size to
∥α∥p ≤ Lcons. We also call Lcons as the construction bound.

Recently, Differential Privacy (DP) has emerged as a promising approach to enhance model robustness.
Originally developed to protect individual data in statistical databases, DP ensures that the output of an
algorithm does not significantly change when a single individual’s data is added or removed. This is
typically achieved by injecting carefully calibrated randomness into the algorithm’s computation. This
property of prediction stability forms the foundation of the connection between DP and adversarial
robustness, as explored in (Lecuyer et al., 2019). By design, models trained with DP noise are
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inherently less sensitive to small input perturbations, thereby improving their resistance to adversarial
attacks.

Formally, given a model f which is (ε, δ) differentially privated under a p-norm metric, it is guar-
anteed to be robust against adversarial perturbations α of size ∥α∥p ≤ 1 if the following condition
holds Lecuyer et al. (2019):

E([f(x)]k) > e2ε max
i:i̸=k

E([f(x)]i) + (1 + eε)δ, ∃k ∈ K,

where E([f(x)]k) is the expected confidence score for the correct label k, and E([f(x)]i) is the
expected confidence score for other labels.

This condition certifies that any input satisfying the inequality is immune to adversarial attacks within
the defined perturbation size. A stronger DP guarantee, meaning smaller values for ε and δ, expands
the set of inputs for which this robustness holds. In this work, our goal is to explore how quantum
noise can amplify the DP guarantee, thereby significantly enhancing the model’s overall robustness.

A.3 NOISE MECHANISMS

Noise injection is a simple, yet, useful technique that can achieve DP guarantees by perturbing inputs,
gradients, or outputs. In this work, we focus on input-perturbation mechanisms that satisfy (ε, δ)-DP.
For adversarial robustness, the amount of noise added is determined by three factors: the desired
privacy budget (ε, δ), the sensitivity ∆ of the function, and the construction bound Lcons. Because
we add noise directly into the input, we have the trivial sensitivity ∆ = 1 (Lecuyer et al., 2019).
Thus, we can omit it in the following analysis. Below, we summarize three common noise-added
mechanisms:
Basic Gaussian. The Gaussian mechanism is a standard approach for providing (ε, δ)-DP. The
Gaussian mechanism introduces noise from a normal distribution with zero mean and a variance
calibrated to predefined privacy parameters (Dong et al., 2022). It’s well-suited for functions whose
sensitivity is measured using the ℓ2 norm. Given a function f with a construction bound Lcons
measured in ℓ2 norm, the mechanism achieves (ε, δ)-DP by adding noise N (0, σ2I) with σ is
computed as:

σ =

√
2 ln

(
1.25

δ

)
Lcons/ε

Analytic Gaussian. The analytic Gaussian mechanism improves on the basic Gaussian approach by
exploiting tighter bounds derived from the privacy loss distribution (Balle & Wang, 2018). Specifically,
we can implicitly characterize the privacy loss as (Cullen et al., 2024):

δ(ε) = Φ

(
−Lcons

2σ
+

εσ

Lcons

)
− eε · Φ

(
−Lcons

2σ
− εσ

Lcons

)
where Φ(·) is the cumulative distribution function of the standard Gaussian distribution. This
formulation allows us to numerically solve for the minimum σ required to satisfy a target (ε, δ).

Laplacian. The Laplace mechanism introduces noise based on the Laplace distribution and centered
at zero with scale proportional to defined sensitivity (Dwork et al., 2006). It is typically used in
settings that call for ϵ-DP. The noise introduced is proportional to the sensitivity of the function being
analyzed, ensuring that small adjustments to input data produce statistically similar outputs. In this
work, we focus on flexible mechanisms which are able to achieve (ε, δ)-DP, so we do not consider
Laplacian for our comparison.

DP-SGD. The Differentially Private Stochastic Gradient Descent (DP-SGD) algorithm achieves
privacy by clipping per-sample gradients and adding calibrated Gaussian noise during each
optimization step Abadi et al. (2016). As a gradient-perturbation mechanism, DP-SGD is designed
to provide (ε, δ)-DP while maintaining compatibility with large-scale deep learning. The privacy
guarantee arises from controlling the sensitivity of gradient updates and injecting noise proportional
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to this sensitivity. Although DP-SGD is a well-established baseline in classical machine learning,
its behavior in QML settings remains largely unexplored. Beyond a direct application presented
in Watkins et al. (2023), the interplay between DP-SGD’s gradient noise and quantum gradient
estimation has not been systematically examined. For completeness, we include DP-SGD in our
comparison as a representative gradient-level classical mechanism.

B THEORETICAL DERIVATIONS AND PROOFS

B.1 DERIVATION OF THEOREM 1

We investigate how the failure probability is amplified under quantum post-processing, assuming a
fixed privacy loss parameter ε. Specifically, we aim to upper bound the quantity:

sup
x,x′

Deε

(
Q(η) ◦A(x) ∥Q(η) ◦A(x′)

)
(1)

Lemma 1. Let µ and ν be probability distributions such that Deε(µ∥ν) ≤ δ, and define θ =

Deε(µ∥ν). Then, there exist distributions µ′, ν′, and ω, along with a parameter ε̃ := log
(
1 + eε−1

θ

)
such that:

µ = (1− θ)ω + θµ′, ν =
1− θ

eε
ω +

(
1− 1− θ

eε

)
ν′,

with disjoint distributions: µ′ ⊥ ν′. Then, the following bound holds:

Deε(µ∥ν) = θ · Deε̃(µ
′∥ν′)

Let the output distributions of A be denoted by µ = A(x) and ν = A(x′), where µ, ν ∈ P(Y).
Lemma 1, originally studied in (Balle et al., 2019a), establishes a decomposition of two distributions
µ and ν based on their divergence θ = Deε(µ∥ν). Specifically, µ is decomposed into a mixture of an
overlapping component ω and a residual component µ′, while ν is similarly decomposed into ω and a
residual ν′. The shared component ω is defined via the density pω =

min(pµ,e
εpν)

1−θ The remaining
distributions µ′ and ν′ correspond to the non-overlapping parts of µ and ν, and it is shown that they
have disjoint support (i.e., µ′ ⊥ ν′). Lemma 1 also yields a transformation of the divergence between
µ and ν in terms of the divergence between their respective components µ′ and ν′, specifically
Deε(µ∥ν) = θ · Deε̃(µ

′∥ν′). Because the quantum process Q is a linear map (Nielsen & Chuang,
2010), it preserves convex combinations of input distributions. Consequently, we obtain

Deε(µQ∥νQ) = θ · Deε̃(µ
′Q∥ν′Q) (2)

In addition, the orthogonality of µ′ and ν′ plays a crucial role in analyzing the contraction behavior
of post-processing mechanisms, as will be demonstrated in the following lemma.

Lemma 2. Given a post-process mechanism Q, we have:

sup
µ⊥ν

Dε(µQ∥νQ) ≤ sup
y ̸=y′

Dε(Q(y)∥Q(y′))

Lemma 2 establishes an upper bound on the divergence between two orthogonal distributions after
applying a post-processing mechanism. Let τy denote the point mass distribution at y, i.e., τy(ỹ) = 1
if ỹ = y and τy(ỹ) = 0 otherwise. Then, µ =

∑
y∈supp(µ) µ(y)τy and similarly for ν. By convexity

of Deε and linearity of Q, we have:

Deε(µQ∥νQ) ≤ sup
y ̸=y′

Deε(τyQ∥τy′Q) ≤ sup
y ̸=y′

Deε(Q(y)∥Q(y′))
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Together, Lemmas 1 and 2 clarify how the divergence between the outputs of A transforms under
post-processing. It remains to analyze the divergence induced solely by Q(η), allowing us to focus on
bounding:

sup
y ̸=y′

Deε(Q
(η)(y)∥Q(η)(y′)) (3)

Lemma 3. Given a measurement E = {Ei} with
∑

iEi = I , and two quantum states ρ and ρ′, the
classical hockey-stick divergence of the resulting probability distributions is less than or equal to the
quantum hockey-stick divergence between the states.

Dα(P ∥ P ′) ≤ D(q)
α (ρ ∥ ρ′)

Lemma 3 establishes the dependence between classical and quantum hockey-stick divergences under
a fixed measurement. As a consequence, we can eliminate the explicit measurement map fmea from
the post-processing pipeline. Specifically, we have:

Dα

(
Q(η)(y) ∥Q(η)(y′)

)
≤ D(q)

α

(
f
(η)
dep ◦ fenc(y) ∥ f (η)dep ◦ fenc(y

′)
)

(4)

Lemma 4. Given a depolarizing channel f (η)dep(ρ) = η I
d + (1− η)ρ, for η ∈ [0, 1] and α ≥ 1, we

have:

D(q)
α (f

(η)
dep(ρ) ∥ f

(η)
dep(ρ

′)) ≤ max
{
0, (1− α)

η

d
+ (1− η)D(q)

α (ρ ∥ ρ′)
}

Lemma 4 establishes that the quantum hockey-stick divergence contracts under a depolarizing channel
by a factor of (1 − η), with an additive term depending on α and the dimension d. Applying this
result with ρ = fenc(y) and ρ′ = fenc(y

′) yields an upper bound on the right-hand side of Equation 4,
which in turn provides a bound for Equation 3.
Theorem 1 (Amplification on Failure Probability). Let A : X → P(Y) be a classical mechanism
satisfying (ε, δ)-DP where A = fpar ◦ fcdp, and let Q(η) : Y → P(Z) be a quantum mechanism in a
d-dimensional Hilbert space defined as Q(η) = fmea ◦f (η)dep ◦fenc where 0 ≤ η ≤ 1 is the depolarizing
noise factor. Then, the composed mechanism Q(η) ◦A satisfies (ε′, δ′)-DP, where

ε′ = ε, δ′ =

[
η(1− eε)

d
+ (1− η)δ

]
+

Theorem 1 establishes a bound on the failure probability δ′ of the composed mechanism Q(η) ◦A,
while keeping the privacy loss fixed at ε′ = ε. This result is derived by sequentially applying
Lemmas 2, 3, and 4 to Equation 2. From the final bound, it follows that for ε ∈ [0, 1], we have δ′ ≤ δ.
Therefore, the failure probability is strictly reduced, resulting in a privacy amplification effect, as
formally stated in Corollary 1.

Based on (Lecuyer et al., 2019), we derive an explicit condition for certifiable adversarial robustness
of the composed mechanismQ(η)◦A in Corollary 2. This condition defines a robustness threshold that
the model’s expected confidence scores must exceed. Notably, due to the privacy amplification effect
formalized in Corollary 1, the robustness threshold under the composed mechanism (parameterized
by δ′) is strictly lower than that of the original classical mechanism (parameterized by δ). As a result,
quantum post-processing provably enlarges the set of inputs for which adversarial robustness can be
guaranteed. For further details on adversarial robustness, we refer readers to Appendix A.

Corollary 1. The composed mechanism Q(η) ◦ A satisfies (ε, δ′)-DP with δ′ < δ, thus strictly
amplifying the overall failure probability.

Corollary 2. The composed mechanism Q(η) ◦A is certifiably robust against adversarial perturba-
tions for an input x ∈ X if the following condition holds for the correct class k:

E[[(Q(η) ◦A)(x)]k] > e2ε max
i̸=k

E[[(Q(η) ◦A)(x)]i] + (1 + eε)δ′
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B.2 DERIVATION OF THEOREM 2

We investigate how the composed mechanism Q(η) ◦A can simultaneously amplify both the privacy
loss ε and the failure probability δ. Our approach relies on the Advanced Joint Convexity theory,
originally introduced in (Balle et al., 2018). We restate the theory below as Lemma 5.
Lemma 5 (Advanced Joint Convexity). Let µ, µ′ be probability distributions such that

µ = (1− σ)µ0 + σµ1, µ′ = (1− σ)µ0 + σµ′
1,

for some σ ∈ [0, 1], and distributions µ0, µ1, µ
′
1. Given α ≥ 1, define α′ = 1+ σ(α− 1), β = α′

α .
Then the following inequality holds:

Dα′(µ∥µ′) ≤ (1− β)σDα(µ1∥µ0) + βσDα(µ1∥µ′
1)

Lemma 5 provides an upper bound on the divergence Dα′(µ∥µ′) in terms of Dα divergences between
the component distributions µ0, µ1, and µ′

1. The bound becomes tighter as the contribution of the
shared (overlapping) distribution µ0, controlled by the mixing parameter σ, increases. Returning
to our analysis, given µ = A(x) and ν = A(x′) for adjacent inputs x ∼ x′, and a tighter privacy
loss ε′ = log[1 + σ(eε − 1)] we are able to bound Deε′ (µQ

(η)∥νQ(η)) by identifying the shared
component between the distributions µQ(η) and νQ(η) as illustrated in Lemma 6.
Lemma 6. Let ρ be a density matrix on a d-dimensional Hilbert space, and let

ρ′ = fdep(ρ) = η
I

d
+ (1− η)ρ

be its depolarized version, where 0 ≤ η ≤ 1. Let {Ek}Kk=1 be a POVM satisfying
∑

k Ek = I . Then,
the measurement probabilities satisfy:

ζ ′(k) =
η

d
Tr(Ek) + (1− η)ζ(k),

where ζ ′ = fmea(ρ
′) and ζ = fmea(ρ) with ζ ′, ζ ∈ P(Z).

Lemma 6 establishes how depolarizing noise in the quantum system H affects the resulting classical
output distribution over Z. Specifically, it shows that the measurement distribution under depolariza-
tion becomes a convex combination of the original (noiseless) distribution and that of a maximally
mixed state, with the noise strength η controlling the mixing ratio.

Based on Lemma 6, we can decompose the output distributions µQ(η) and νQ(η) accordingly.
By definition, the quantum mechanism Q(η) can be expressed as a convex combination of two
mechanisms: Q(0) (applies no noise) and Q(1) (applies full depolarizing noise). The mechanism Q(1)

is constant, as it always outputs the measurement distribution of a maximally mixed state. That is,
for all y ∈ Y, we have Q(1)(y)(k) = Tr(Ek)

d , where Ek is the k-th POVM element and d = dim(H).
We denote this constant output distribution as ζmix. On the other hand, Q(0)(y) corresponds to the
noiseless distribution ζ, and Q(η)(y) corresponds to the distribution ζ ′ defined in Lemma 6. Using
the decomposition given by the lemma, we have

Q(η)(y) = ηQ(1)(y) + (1− η)Q(0)(y), ∀y ∈ Y

Using the linearity of Q(η) and the representations µ =
∑

y∈supp(µ) µ(y)τy and ν =∑
y∈supp(ν) ν(y)τy , we obtain µQ(η) = ηζmix + (1− η)µQ(0), and νQ(η) = ηζmix + (1− η)νQ(0).

By applying the Advanced Joint Convexity theory (Lemma 5) on µQ(η) and νQ(η) with ε′ =

log
(
1 + (1− η)(eε − 1)

)
and β = eε

′−ε, we have:

Deε
′
(
µQ(η)||νQ(η))≤ (1− η)

(
(1− β)Deε(µQ

(0)||ζmix) + βDeε(µQ
(0)||νQ(0))

)
(5)

Lemma 7. Given the measurement distribution of a maximally mixed state ζmix and an arbitrary
distribution z ∈ P(Z), we have:

Dα(z||ζmix) ≤ 1− αmin
k

(Tr(Ek)

d

)
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Based on Lemma 7, we can derive an upper bound on Deε(µQ
(0)∥ζmix) in terms of the trace values

of the POVM elements. Additionally, from the data-processing inequality for the hockey-stick
divergence, we have Deε(µQ

(0)∥νQ(0)) ≤ Deε(µ∥ν) ≤ δ. Combining these results, we obtain an
improved bound for Equation 5:

Deε′
(
µQ(η)∥νQ(η)

)
≤ (1− η)

(
1− eε

′−ε(1− δ)− (eε − eε
′
)φ
)

, where φ = mink

(
Tr(Ek)

d

)
. This result is formalized in Theorem 2, which characterizes

how depolarizing noise amplifies the privacy guarantees of the composed mechanism Q(η) ◦ A.
Specifically, the mechanism satisfies (ε′, δ′)-DP, where ε′ = log (1 + (1− η)(eε − 1)) and δ′ =
(1− η)

[
1− eε

′−ε(1− δ)− (eε − eε
′
)φ
]
.

Theorem 2 reveals that the amplified failure probability δ′ depends on the choice of POVMs. In
particular, δ′ becomes tighter as φ = mink

(
Tr(Ek)

d

)
increases. This insight leads to Corollary 3,

highlighting that δ′ is minimized when all POVM elements Ek have equal trace (i.e., Tr(Ek) =
1
K ).

Contrarily, ε′ ≤ ε for all η ∈ [0, 1], the privacy loss in terms of ε is always reduced. However, the
bound on δ is only improved (i.e., δ′ ≤ δ) when the noise level η exceeds the threshold given in
Corollary 4. This condition highlights that a sufficient level of quantum noise is required to achieve
strict amplification of the privacy guarantee in both parameters.

Theorem 2 (Amplification on Privacy Loss). LetA = fpar◦fcdp be (ε, δ)-DP, andQ(η) = fmea◦f (η)dep ◦
fenc be a quantum mechanism in a d-dimensional Hilbert space where 0 ≤ η ≤ 1 is the depolarizing
noise factor. Then, the composition Q(η) ◦A is (ε′, δ′)-DP where ε′ = log

(
1+ (1− η)(eε − 1)

)
and

δ′ = (1− η)
(
1− eε

′−ε(1− δ)− (eε − eε
′
)φ
)

with φ = mink

(
Tr(Ek)

d

)
.

Corollary 3. Let {Ek}Kk=1 be the POVM used in fmea. Then, the amplified failure probability δ′

in Theorem 2 is minimized when all POVM elements have equal trace (i.e., Tr[Ek] =
d
K for all

k ∈ {1, . . . ,K}).
Corollary 4. Given an optimal measurement such that Tr[Ek] =

d
K ∀k, the composed mechanism

Q(η) ◦A strictly improves the privacy guarantee (i.e., ε′ ≤ ε and δ′ ≤ δ) if

η ≥ 1− δ

(1− δ)(1− e−ε)− (eε − 1)/K

B.3 DERIVATION OF THEOREM 3

Here, we establish a rigorous framework to study the utility loss, defined as the absolute error between
the noisy and noise-free versions of our mechanism. The final output of the mechanism is stochastic
due to the sampling-based measurement process. Thus, we analyze the difference between the
expected values of their output. The expected value represents the average behavior of a mechanism
and provides a deterministic quantity that we can use to measure utility loss.

Formally, we define the expectation measurement function fexp : H → R as:

fexp(ρ) =
∑
k

kTr[Ekρ] = Tr

[(∑
k

kEk

)
ρ

]
= Tr[Eexpρ]

where Eexp =
∑

k kEk is the expectation value observable.

Using this function, we define our deterministic expectation mechanisms. The full mechanism,
including classical and quantum noise, is Mfull(x) = (fexp ◦ f (η)dep ◦ fenc ◦ fpar ◦ fcdp)(x). On the other
hand, the noise-free mechanism (clean) is Mclean(x) = (fexp ◦ fenc ◦ fpar)(x). The total utility loss
is the worst-case absolute error between their expected outputs:

Error = sup
x∈X

|Mfull(x)−Mclean(x)|

To analyze this error, we introduce an intermediate mechanism (half) that includes only quantum
noise as Mhalf(x) = (fexp ◦ f (η)dep ◦ fenc ◦ fpar)(x).
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Lemma 8. The intermediate mechanism Mhalf is L∞-Lipschitz with respect to the input perturbation
κ, satisfying |Mhalf(x+ κ)−Mhalf(x)| ≤ L∞∥κ∥∞. L∞ is given by:

L∞ = 2(1− η)∥Eexp∥op∥W∥∞

∑
j

∥Hj∥op


Lemma 8 establishes a bound on the sensitivity of Mhalf with respect to perturbations in its classical
input. We use ∥ · ∥p to denote the p-norm, and ∥ · ∥op to denote the operator norm. The proof
leverages the chain rule for Lipschitz continuity, where the overall Lipschitz constant L∞ is given by
the product of the individual constants associated with each component function in the composition,
namely, fexp, fdep, fenc, and fpar. In addition, we observe that if κ ∼ N (0, σ2I), then Mhalf(x+κ) is
equivalent in distribution to Mfull(x). Thus, this lemma results in a bound on the difference between
these two mechanisms.
Lemma 9. The absolute difference between the expected outputs of the intermediate and noise-free
mechanisms is uniformly bounded by:

|Mhalf(x)−Mclean(x)| ≤ 2η∥Eexp∥op

Lemma 9 directly bounds the difference between Mhalf and Mclean. The proof leverages the Lipschitz
property of the function fexp and the fundamental property that the trace norm difference between
any two density matrices is at most 2. Along with the result in Lemma 8, we can establish the bound
on the absolute error.
Theorem 3 (Utility Bound). Let the classical noise be κ ∼ N (0, σ2I) acting on an input space X
of dimension dX = dim(X). For any desired failure probability p > 0, the utility loss is bounded
probabilistically as:

Pr

(
Error ≤ L∞ · σ

√
2 ln

2dX
p

+ 2η∥Eexp∥op

)
≥ 1− p

where L∞ = 2(1− η)∥Eexp∥op∥W∥∞
(∑

j ∥Hj∥op
)

.

Theorem 3 combines the previous results to provide a single utility guarantee. The proof exploits the
triangle inequality to additively combine the bounds from Lemmas 8 and 9. As the classical noise is
unbounded, the final guarantee is a high-probability statement showing the trade-off between utility
loss and the classical (σ) and quantum (η) noise level.

B.4 GENERALIZATION TO OTHER QUANTUM NOISE CHANNELS

In this section, we show how the privacy amplification result of Theorem 1 can be extended to a
broad class of quantum noise channels beyond depolarizing noise. First, we identify the essential
mechanism responsible for privacy amplification. Then, we illustrate the generalization by analyzing
two asymmetric and physically relevant noise processes: the Generalized Amplitude Damping
(GAD) channel and the Generalized Dephasing (GD) channel.

B.4.1 KEY INSIGHT BEHIND THE GENERALIZATION

Here, first we review the proof trajectory of Theorem 1 presented in Appendix B.1. The analysis
begins by decomposing the output distributions of the mechanism on neighboring inputs using
Lemma 1 (Lemma 1). It then reduces the divergence analysis to the worst-case pair of orthogonal
inputs via Lemma 2 (Lemma 2). Crucially, Lemma 3 (Lemma 3) establishes that the classical
hockey-stick divergence of the measurement outcomes is upper-bounded by the quantum hockey-
stick divergence of the evolved quantum states.
We can see that in Theorem 1, the privacy amplification is derived from Lemma 4, which establishes
the contraction of the quantum hockey-stick divergence D(q)

α under the depolarizing channel. While
Theorem 1 utilizes the specific form of D(q)

eϵ , we discuss that even if we relax the bound to the
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standard trace distanceD(q)
1 , the privacy guarantee still holds. Specifically, for any privacy parameter

α ≥ 1 (where α = eε̃ in our context), the quantum hockey-stick divergence is upper-bounded by
the trace distance divergence:

D(q)
α (ρ∥σ) = Tr[(ρ− ασ)+] ≤ Tr[(ρ− σ)+] = D

(q)
1 (ρ∥σ).

This inequality holds because subtracting a larger multiple of σ (since α ≥ 1) reduces the positive
part of the operator difference.
Then, the insight is that to generalize Theorem 1 to an arbitrary noise channel E , we need to identify
its contraction coefficient under the trace distance (or D1 divergence). If a channel E satisfies a
contraction bound κ(E) such that:

sup
ρ̸=σ

D1(E(ρ)∥E(σ))
D1(ρ∥σ)

≤ κ(E),

then the composed mechanism naturally satisfies a privacy amplification where the failure probability
δ is scaled by κ(E). In the following subsections, we apply this insight to two asymmetric noise
channels.

B.4.2 GENERALIZED AMPLITUDE DAMPING CHANNEL

Generalized Amplitude Damping (GAD) channel is a noise process describing energy exchange
between a qubit and its thermal environment. Unlike depolarizing, GAD is inherently asymmetric
because it drives the qubit toward a temperature-dependent equilibrium state while simultaneously
suppressing quantum coherence. The channel is parameterized by a damping strength η ∈ [0, 1] and
an excitation probability p ∈ [0, 1], where p = 0 corresponds to relaxation toward |0⟩, p = 1 toward
|1⟩, and intermediate values represent nonzero-temperature behavior. This asymmetry makes GAD
a realistic noise model for superconducting and trapped-ion devices. To formalize this, we consider
the n-qubit channel acting on a single designated qubit:

f
(p,η)
GAD = I2n−1 ⊗A

(p,η)
GAD.

Despite its non-unital nature, the GAD channel contracts distinguishability between quantum states.
Differences in excitation probabilities shrink because all states relax toward the same thermal fixed
point, while differences in coherence decay due to energy dissipation. In Lemma 4.1, we construct
the contraction coefficient of f (p,η)GAD.

Lemma 4.1. Let A(p,η)
GAD be the generalized amplitude damping (GAD) channel on a single qubit,

with damping parameter η ∈ [0, 1] and excitation parameter p ∈ [0, 1]. Define the n-qubit channel

f
(p,η)
GAD := I2n−1 ⊗A

(p,η)
GAD ,

Then the contraction coefficient of f (p,η)GAD satisfies

κ(f
(p,η)
GAD) := sup

ρ̸=σ

D1

(
f
(p,η)
GAD(ρ)

∥∥∥ f (p,η)GAD(σ)
)

D1(ρ∥σ)
≤ 2

√
η − η

Proof. By definition D1(ρ∥σ) = 1
2∥ρ− σ∥1, so κ(f (p,η)GAD) is the trace-distance contraction coeffi-

cient of the channel f (p,η)GAD = I2n−1 ⊗A
(p,η)
GAD :

κ
(
f
(p,η)
GAD

)
= sup

ρ̸=σ

∥f (p,η)GAD(ρ)− f
(p,η)
GAD(σ)∥1

∥ρ− σ∥1
.

The supremum is over all n-qubit states ρ, σ, which may be entangled across the ancilla system and
the noisy qubit.
Based on Hirche (2024), this is upper-bounded by the complete trace-distance contraction coefficient
of the single-qubit channel A(p,η)

GAD , defined as

ηcTr(A
(p,η)
GAD ) := sup

k≥1
sup
ρ̸=σ

∥(Ik ⊗A
(p,η)
GAD )(ρ)− (Ik ⊗A

(p,η)
GAD )(σ)∥1

∥ρ− σ∥1
.
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Since f (p,η)GAD is exactly I2n−1 ⊗A
(p,η)
GAD for one particular ancilla dimension, we have

κ
(
f
(p,η)
GAD

)
≤ ηcTr(A

(p,η)
GAD ).

Based on the Lemma 9 and Proposition 28 in Hirche (2024), we have:

κ(f
(p,η)
GAD) = ηcTr(A

(p,η)
GAD )

≤ 1− α(A
(p,η)
GAD )

= 1− (1−√
η)2

= 1− (1− 2
√
η + η)

= 2
√
η − η.

Based on Lemma 4.1, we now derive a privacy amplification result for the GAD channel in
Theorem 1.1.
Theorem 1.1 (Amplification Under Generalized Amplitude Damping Noise). Let A : X → P(Y)
be a classical mechanism satisfying (ε, δ)-DP where A = fpar ◦ fcdp, and let Q(p,η) : Y → P(Z)
be a quantum mechanism in d-dimensional Hilbert space defined as Q(p,η) = fmea ◦ f (p,η)GAD ◦ fenc.
Then, the composed mechanism Q(p,η) ◦A satisfies (ε′, δ′)-DP, where

ε′ = ε, δ′ = (2
√
η − η)δ.

Proof. Let µ = A(x) and ν = A(x′) be the output distributions of the mechanismA on neighboring
inputs x and x′. We aim to bound the hockey-stick divergence

Deε(µQ
(p,η)∥νQ(p,η)).

By Lemma 1, we can decompose µ and ν using a parameter θ = Deε(µ∥ν) and define auxiliary
distributions µ′, ν′, and ω with µ′ ⊥ ν′ such that

µ = (1− θ)ω + θµ′, ν =
1− θ

eε
ω +

(
1− 1− θ

eε

)
ν′.

Additionally, define ε̃ = log
(
1 + eε−1

θ

)
.

We now consider the post-processed outputs:

Deε(µQ
(p,η)∥νQ(p,η))

≤ θ · Deε̃(µ
′Q(p,η)∥ν′Q(p,η)) (Lemma 1)

≤ θ · sup
y ̸=y′

Deε̃(Q
(p,η)(y)∥Q(p,η)(y′)) (Lemma 2)

≤ θ · sup
y ̸=y′

D(q)
eε̃

(
f
(p,η)
GAD ◦ fenc(y) ∥ f (p,η)GAD ◦ fenc(y

′)
)

(Lemma 3)

= θ · sup
ρ,ρ′

D(q)
eε̃

(
f
(p,η)
GAD(ρ) ∥ f

(p,η)
GAD(ρ

′)
)

(where ρ, ρ′ are pure)

≤ θ · sup
ρ,ρ′

D(q)
1

(
f
(p,η)
GAD(ρ) ∥ f

(p,η)
GAD(ρ

′)
)

(eε̃ ≥ 1)

≤ θ · sup
ρ,ρ′

(
(2
√
η − η) · D(q)

1 (ρ∥ρ′)
)

(Lemma 4.1)

≤ θ · (2√η − η) · 1 (Because D(q)
eε̃

(ρ∥ρ′) ≤ 1)

Since the original mechanism A is (ε, δ)-DP, we have θ = Deε(µ∥ν) ≤ δ. We substitute this into
the final bound:

Deε(µQ
(p,η)∥νQ(p,η)) ≤ (2

√
η − η) · δ.

This yields the advertised DP parameters.
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B.4.3 GENERALIZED DEPHASING CHANNEL

Generalized Dephasing (GD) channel is one of the most fundamental and widely studied noise pro-
cesses in quantum information. It suppresses quantum coherence while leaving classical populations
unchanged. Specifically, this channel is formulated as:

A
(η)
GD(ρ) = (1− η)ρ+ ηZρZ

where η ∈ [0, 1] is the dephasing parameter and Z is the Pauli-Z operator. From Proposition
33 in Hirche (2024), the complete trace-distance contraction coefficient of a single-qubit GD
channel is exactly 1 (i.e., ηcTr(A

(η)
GD) = 1). This implies that no worst-case privacy amplification

can be guaranteed under dephasing noise. In other words, for some input states, the noise does not
reduce distinguishability at all. However, this worst case is only attained for states distinguished
solely through diagonal differences. In many common QML architectures such as those using
angle encoding, the encoded data occupies families of states where all information is carried in the
off-diagonal components (coherences). In this setting, GD noise does provide nontrivial contraction,
and thus we obtain privacy amplification. One instance of this setting is formally presented in
Assumption 1.
Assumption 1 (Product Equatorial Encoding on All Qubits). For each input y ∈ Y, the encoder
prepares a product state

ρy = fenc(y) =

n⊗
j=1

ρ(j)y ,

where each single-qubit factor ρ(j)y is an equatorial state on the Bloch sphere, i.e.,

ρ(j)y =
1

2

(
I + cosϕ(j)y X + sinϕ(j)y Y

)
,

for some angle ϕ(j)y ∈ R and with no Z-component.
This equatorial–state assumption is satisfied by common QML encoders where data are mapped
into phases and superpositions via single-qubit rotations and Hadamard-type preparation such as
circuits of the form H → RZ(ϕ

(j)
y ) on each qubit Schuld & Killoran (2019); Pérez-Salinas et al.

(2020); Hatakeyama-Sato et al. (2023). Beyond QML, equatorial states also play a central role
in quantum communication and quantum key distribution (QKD), where they are used for phase
encoding and coherence-based information transfer Fisher et al. (2014); Xiao et al. (2014). Thus,
analyzing privacy amplification of GD channel under this assumption is both realistic and practically
meaningful.
We consider the n-qubit GD channel acting independently on every qubit as follow:

f
(η)
GD =

n⊗
j=1

A
(η)
GD,

We now establish a contraction bound for f (η)GD under Assumption 1 in Lemma 4.2.

Lemma 4.2. Let f (η)GD be the n-qubit GD channel defined above, and assume the encoder fenc
satisfies Assumption 1. Then the trace-distance contraction coefficient of f (η)GD over the encoder
family {ρy}y∈Y satisfies

κ
(
f
(η)
GD

)
:= sup

y ̸=y′

D1

(
f
(η)
GD(ρy)

∥∥ f (η)GD(ρy′)
)

D1(ρy∥ρy′)
≤ |1− 2η|.

Proof. For each y, we have

ρy =

n⊗
j=1

ρ(j)y , ρ(j)y = 1
2

(
I + cosϕ(j)y X + sinϕ(j)y Y

)
.

Let ∆ = ρy − ρy′ for two distinct inputs y ̸= y′. Expanding ∆ in the n-qubit Pauli basis, we have:

∆ =
∑

P∈Pn

cPP,
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where Pn = {I,X, Y, Z}⊗n is the n-qubit Pauli group, and cP ∈ R since ∆ is Hermitian.
Because each single-qubit factor ρ(j)y contains only I , X , and Y components and no Z component,
any product state ρy =

⊗
j ρ

(j)
y expands only in Pauli strings whose single-qubit factors are in

{I,X, Y }. The same holds for ρy′ , and therefore their difference ∆ = ρy − ρy′ has no support on
any string consisting solely of I’s and Z’s. In particular,

cP = 0 for all P ∈ Pn such that P ∈ {I, Z}⊗n.

Equivalently, every nonzero coefficient cP corresponds to a Pauli string P that contains at least one
factor X or Y .
The n-qubit GD channel acts diagonally in the Pauli basis:

f
(η)
GD(P ) = λPP,

where

λP =

n∏
j=1

λPj
, λI = λZ = 1, λX = λY = 1− 2η,

and P = P1 ⊗ · · · ⊗ Pn with Pj ∈ {I,X, Y, Z}. Thus, for any Pauli string P that contains at least
one X or Y , we have

λP = (1− 2η)k

for k ≥ 1. As a result, we have:
|λP | ≤ |1− 2η|.

It implies that:
f
(η)
GD(∆) =

∑
P∈Pn

cPλPP,

with each nonzero coefficient satisfying |λP | ≤ |1− 2η|. As a linear map on the subspace spanned
by Pauli strings with at least one X or Y , f (η)GD is diagonal in an orthonormal operator basis with
eigenvalues bounded in modulus by |1 − 2η|. Thus, its operator norm on any unitarily invariant
norm, in particular the trace norm, is at most |1− 2η| on this subspace. Concretely,

∥f (η)GD(∆)∥1 ≤ |1− 2η| ∥∆∥1.

Since D1(ρ∥σ) = 1
2∥ρ− σ∥1, we conclude that for all y ̸= y′,

D1

(
f
(η)
GD(ρy)

∥∥ f (η)GD(ρy′)
)

D1(ρy∥ρy′)
=

1
2∥f

(η)
GD(∆)∥1
1
2∥∆∥1

≤ |1− 2η|.

Taking the supremum over all y ̸= y′ gives the desired bound.

Finally, similar to the amplification analysis for depolarizing noise and GAD noise, we now derive
a privacy amplification theorem for the GD channel acting on all qubits. The result follows
immediately by combining the contraction bound in Lemma 4.2 with the classical post-processing
and distribution-decomposition tools used earlier.
Theorem 1.2. Let A : X → P(Y) be a classical mechanism satisfying (ε, δ)-DP, and let

Q(η) := fmea ◦ f (η)GD ◦ fenc

be an n-qubit quantum mechanism where f (η)GD is the n-qubit GD channel defined above and fenc
satisfies Assumption 1. Then the composed mechanism Q(η) ◦A satisfies (ε′, δ′)-DP with

ε′ = ε, δ′ = |1− 2η| · δ.
Proof. Let µ = A(x) and ν = A(x′) be the output distributions of A on neighboring inputs x, x′.
As in Theorem 1.1, we apply Lemma 1 to decompose µ, ν with parameter θ = Deε(µ∥ν) ≤ δ and
reduce the analysis to the worst-case pair of orthogonal inputs. Using Lemma 2 and Lemma 3, we
can bound

Deε(µQ
(η)∥νQ(η)) ≤ θ · sup

ρ̸=ρ′
D1

(
f
(η)
GD(ρ)

∥∥ f (η)GD(ρ
′)
)
,
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where the supremum is taken over encoded states ρ, ρ′ in the image of fenc.
By Lemma 4.2,

D1

(
f
(η)
GD(ρ)

∥∥ f (η)GD(ρ
′)
)
≤ |1− 2η|D1(ρ∥ρ′) ≤ |1− 2η|.

Therefore,
Deε(µQ

(η)∥νQ(η)) ≤ θ |1− 2η| ≤ |1− 2η| δ,
which yields the claimed privacy parameters ε′ = ε and δ′ = |1− 2η|δ.

B.5 PROOFS

Lemma 1. Let µ and ν be probability distributions such that Deε(µ∥ν) ≤ δ, and define θ =

Deε(µ∥ν). Then, there exist distributions µ′, ν′, and ω, along with a parameter ε̃ := log
(
1 + eε−1

θ

)
such that:

µ = (1− θ)ω + θµ′, ν =
1− θ

eε
ω +

(
1− 1− θ

eε

)
ν′,

with disjoint distributions: µ′ ⊥ ν′. Then, the following bound holds:

Deε(µ∥ν) = θ · Deε̃(µ
′∥ν′).

Proof. Studied in (Balle et al., 2019a)

Lemma 2. Given a post-process mechanism Q, we have:

sup
µ⊥ν

Dε(µQ∥νQ) ≤ sup
y ̸=y′

Dε(Q(y)∥Q(y′)).

Proof. Studied in (Balle et al., 2019a)

Lemma 3. Given a measurement E = {Ei} with
∑

iEi = I , and two quantum states ρ and ρ′, the
classical hockey-stick divergence of the resulting probability distributions is less than or equal to the
quantum hockey-stick divergence between the states.

Dα(P ∥ P ′) ≤ D(q)
α (ρ ∥ ρ′)

Proof. The quantum hockey-stick divergence is defined as:

D(q)
α (ρ ∥ ρ′) = Tr

[
(ρ− αρ′)+

]
,

whereA+ denotes the positive part of a Hermitian operatorA. Let us define the operatorA = ρ−αρ′.
Applying measurement E to ρ and ρ′ yields probability distributions with elements:

P (i) = Tr(Eiρ), P ′(i) = Tr(Eiρ
′).

The classical hockey-stick divergence is defined as:

Dα(P ∥ P ′) =
∑
i

[P (i)− αP ′(i)]+,

where [x]+ = max(x, 0).
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We begin the proof from the definition of the classical divergence:

Dα(P ∥ P ′) =
∑
i

max (0,Tr(Eiρ)− αTr(Eiρ
′))

=
∑
i

max (0,Tr (Ei(ρ− αρ′)))

=
∑
i

max (0,Tr(EiA))

For any positive semi-definite operator Ei and any Hermitian operator A, it holds that Tr(EiA) ≤
Tr(EiA+). Since A+ is a positive semi-definite operator, Tr(EiA+) is non-negative. Therefore, we
can conclude that max(0,Tr(EiA)) ≤ Tr(EiA+).

Applying this inequality to our expression, we get:

Dα(P ∥ P ′) ≤
∑
i

Tr(EiA+)

= Tr

(∑
i

EiA+

)

= Tr

((∑
i

Ei

)
A+

)
= Tr(I ·A+)

= D(q)
α (ρ ∥ ρ′).

Lemma 4. Given a depolarizing channel f (η)dep(ρ) = η I
d + (1− η)ρ, for η ∈ [0, 1] and α ≥ 1, we

have:
D(q)

α (f
(η)
dep(ρ) ∥ f

(η)
dep(ρ

′))

≤ max
{
0, (1− α)

η

d
+ (1− η)D(q)

α (ρ ∥ ρ′)
}

Proof. Define the operator:

U = f
(η)
dep(ρ)− αf

(η)
dep(ρ) = (1− η)(ρ− αρ′) + η(1− α)

I

d
.

Then:
D(q)

α (f
(η)
dep(ρ) ∥ f

(η)
dep(ρ

′)) = Tr[U+],

where U+ denotes the positive part of U .

Let P+ be the projector onto the positive eigenspace of U . Since D(q)
α (f

(η)
dep(ρ) ∥ f

(η)
dep(ρ

′) > 0, we
have Tr[P+] ≥ 1. Then:

Tr[U+] = Tr[P+U ]

= (1− η)Tr[P+(ρ− αρ′)] + (1− α)
η

d
Tr[P+]

≤ (1− η)D(q)
α (ρ∥ρ′) + (1− α)

η

d
,

since Tr[P+] ≥ 1 and 1− α ≤ 0.

Theorem 1 (Amplification on Failure Probability). Let A : X → P(Y) be a classical mechanism
satisfying (ε, δ)-DP where A = fpar ◦ fcdp, and let Q(η) : Y → P(Z) be a quantum mechanism in
d-dimensional Hilbert space defined as Q(η) = fmea ◦f (η)dep ◦fenc where 0 ≤ η ≤ 1 is the depolarizing
noise factor. Then, the composed mechanism Q(η) ◦A satisfies (ε′, δ′)-DP, where

ε′ = ε, δ′ =

[
η(1− eε)

d
+ (1− η)δ

]
+

.
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Proof. Let µ = A(x) and ν = A(x′) be the output distributions of the mechanism A on neighboring
inputs x and x′. We aim to bound the hockey-stick divergence

Deε(µQ
(η)∥νQ(η)).

By Lemma 1, we can decompose µ and ν using a parameter θ = Deε(µ∥ν) and define auxiliary
distributions µ′, ν′, and ω with µ′ ⊥ ν′ such that

µ = (1− θ)ω + θµ′, ν =
1− θ

eε
ω +

(
1− 1− θ

eε

)
ν′.

Additionally, define ε̃ = log
(
1 + eε−1

θ

)
. By Lemma 1, it follows that

Deε(µ∥ν) ≤ θ · Deε̃(µ
′∥ν′).

We now consider the post-processed outputs:

Deε(µQ
(η)∥νQ(η))

≤ θ · Deε̃(µ
′Q(η)∥ν′Q(η))

≤ θ · sup
y ̸=y′

Deε̃(Q
(η)(y)∥Q(η)(y′))(Lemma 2)

≤ θ · sup
y ̸=y′

D(q)

eε̃

(
f
(η)
dep ◦ fenc(y) ∥ f (η)

dep ◦ fenc(y
′)
)

(Lemma 3)

= θ · sup
ρ,ρ′

D(q)

eε̃

(
f
(η)
dep (ρ) ∥ f

(η)
dep (ρ

′)
)

≤ θ ·max

{
0,

η(1− eε̃)

d
+ (1− η) · D(q)

eε̃
(ρ∥ρ′)

}
(Lemma 4)

≤ max

{
0,

θη(1− eε̃)

d
+ θ(1− η)

}
(Because D(q)

eε̃
(ρ∥ρ′) ≤ 1)

Recall that eε̃ = 1 + eε−1
θ , we substitute this into the expression:

θη(1− eε̃)

d
=
θη

d

(
1−

(
1 +

eε − 1

θ

))
=
θη

d

(
−e

ε − 1

θ

)
=
η(1− eε)

d

Additionally, since the original mechanism A is (ε, δ)-DP, we have θ = Deε(µ∥ν) ≤ δ. Because
1− η ≥ 0, we have the final result:

Deε(µQ
(η)∥νQ(η)) ≤

[
η(1− eε)

d
+ (1− η)δ

]
+

Corollary 1. The composed mechanism Q(η) ◦ A satisfies (ε, δ′)-DP with δ′ < δ, thus strictly
amplifying the failure probability.

Proof. The goal is to show that δ′ < δ for any non-trivial case where quantum post-processing is
active (η > 0). From Theorem 1, we have:

δ′ =

[
η(1− eε)

d
+ (1− η)δ

]
+

Let the first term be C = η(1−eε)
d . Since η > 0, d ≥ 2, and ε > 0, we have C ≤ 0. Since C is

strictly negative, C + (1− η)δ < (1− η)δ ≤ δ. Thus, δ′ < δ.
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Corollary 2. The composed mechanism Q(η) ◦A is certifiably robust against adversarial perturba-
tions for an input x ∈ X if the following condition holds for the correct class k:

E[[(Q(η) ◦A)(x)]k] > e2ε max
i̸=k

E[[(Q(η) ◦A)(x)]i] + (1 + eε)δ′

Proof. Studied in (Lecuyer et al., 2019).

Lemma 5 (Advanced Joint Convexity). Let µ, µ′ be probability distributions such that

µ = (1− σ)µ0 + σµ1, µ′ = (1− σ)µ0 + σµ′
1,

for some σ ∈ [0, 1], and distributions µ0, µ1, µ
′
1. Given α ≥ 1, define α′ = 1+ σ(α− 1), β = α′

α .
Then the following inequality holds:

Dα′(µ∥µ′) ≤ (1− β)σDα(µ1∥µ0) + βσDα(µ1∥µ′
1).

Proof. Studied in (Balle et al., 2018)

Lemma 6. Let ρ be a density matrix on a D-dimensional Hilbert space, and let

ρ′ = fdep(ρ) = η
I

d
+ (1− η)ρ

be its depolarized version, where 0 ≤ η ≤ 1. Let {Ek}Kk=1 be a POVM satisfying
∑

k Ek = I . Then,
the measurement probabilities satisfy:

ζ ′(k) =
η

d
Tr(Ek) + (1− η)ζ(k),

where ζ ′ = fmea(ρ
′) and ζ = fmea(ρ) with ζ ′, ζ ∈ P(Z).

Proof. By linearity of the trace operator,

ζ ′(k) = Tr(Ekρ
′)

= Tr

(
Ek

(
η
I

d
+ (1− η)ρ

))
= ηTr

(
Ek

I

d

)
+ (1− η)Tr(Ekρ)

=
η

d
Tr(Ek) + (1− η)ζk.

Lemma 7. Given the measurement distribution of a maximally mixed state ζmix and an arbitrary
distribution z ∈ P(Z), we have:

Dα(z||ζmix) ≤ 1− αmin
k

(
Tr(Ek)

d
)

Proof. Recall the definition of the hockey-stick divergence:

Dα(z∥ζmix) =
∑
k

[z(k)− αζmix(k)]+,

where [x]+ = max{x, 0}. Since ζmix(k) =
Tr(Ek)

d ≥ φ = mink

(
Tr(Ek)

d

)
, we have

[z(k)− αζmix(k)]+ ≤ [z(k)− αφ]+.

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Summing over k yields
Dα(z∥ζmix) ≤

∑
k

[z(k)− αφ]+.

Since
∑

k z(k) = 1, it follows that∑
k

[z(k)− αφ]+ ≤ 1− αφ.

Therefore,

Dα(z∥ζmix) ≤ 1− αmin
k

(
Tr(Ek)

d

)
.

Theorem 2 (Amplification on Privacy Loss). LetA = fpar◦fcdp be (ε, δ)-DP, andQ(η) = fmea◦f (η)dep ◦
fenc be a quantum mechanism in d-dimensional Hilbert space where 0 ≤ η ≤ 1 is the depolarizing
noise factor. Then, the composition Q(η) ◦A is (ε′, δ′)-DP where ε′ = log

(
1+ (1− η)(eε − 1)

)
and

δ′ = (1− η)
(
1− eε

′−ε(1− δ)− (eε − eε
′
)φ
)

with φ = mink

(
Tr(Ek)

d

)
.

Proof. Let x, x′ ∈ X be neighboring inputs, i.e., x ≃ x′. Let µ = A(x) and ν = A(x′) denote the
output distributions of A. From the definition, we have Q(0) and Q(1) which are the mechanisms
without noise and with full noise. We can see that Q(1) is a constant mechanism because the output of
Q(1) is always the measurement of a maximally mixed state, i.e., Q(1)(y)(k) = Tr(Ek)

d with ∀y ∈ Y.
Based on Lemma 6, we have:

Q(η)(y) = ηQ(1)(y) + (1− η)Q(0)(y),∀y ∈ Y

. Thus, we can write Q(η) as a mixture of Q(0) and Q(1) where Q(η) = ηQ(1) + (1− η)Q(0).

Let the constant output of Q(1) be ζmix. Based on the advanced joint convexity theorem in (Balle
et al., 2018), given ε′ = log

(
1 + (1− η)(eε − 1)

)
, we have:

Deε
′
(
µQ(η)||νQ(η))

= Deε
′
(
ηµQ(1) + (1− η)µQ(0)||ηνQ(1) + (1− η)νQ(0))

= Deε
′
(
ηζmix + (1− η)µQ(0)||ηζmix + (1− η)νQ(0))

= (1− η)Deε
(
µQ(0)||(1− β)ζmix + βνQ(0))

(Based on the advanced joint convexity theorem, β = eε
′−ε)

≤ (1− η)

(
(1− β)Deε(µQ

(0)||ζmix) + βDeε(µQ
(0)||νQ(0))

)
We have Deε(µQ

(0)||ζmix) ≤ 1 − eε mink

(
Tr(Ek)

d

)
= 1 − eεφ and Deε(µQ

(0)||νQ(0)) ≤
Deε(µ||ν) ≤ δ. Thus, we can conclude:

Deε
′
(
µQ(η)||νQ(η))≤ (1− η)

(
1− eε

′−ε(1− δ)− (eε − eε
′
)φ
)

Corollary 3. Let {Ek}Kk=1 be the POVM used in fmea. Then, the amplified failure probability δ′

in Theorem 2 is minimized when all POVM elements have equal trace, i.e., Tr(Ek) = d
K for all

k ∈ {1, . . . ,K}.

Proof. The goal is to minimize the amplified failure probability δ′ with respect to the choice of the
POVM {Ek}Kk=1. From Theorem 2, the expression for δ′ is:

δ′ = (1− η)
(
1− eε

′−ε(1− δ)− (eε − eε
′
)φ
)

All terms in this expression are independent of the specific measurement choice except for φ =

mink

(
Tr(Ek)

d

)
.
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To analyze how δ′ depends on φ, we examine the sign of −(1− η)(eε − eε
′
). Since η ∈ [0, 1] and

ε′ ≤ ε, this coefficient is non-positive. Thus, δ′ is a monotonically decreasing function of φ.

Therefore, to minimize δ′, we must maximize φ. This is equivalent to maximizing mink(Tr(Ek))

subject to the POVM completeness constraint
∑K

k=1Ek = I . Taking the trace of the completeness
relation gives:

K∑
k=1

Tr(Ek) = Tr(I) = d

The function mink(Tr[Ek]) is maximized when all Tr[Ek] are equal. Thus, the optimal choice is to
have Tr[Ek] = d/K for all k.

Corollary 4. Given an optimal measurement such that Tr[Ek] =
d
K ∀k, the composed mechanism

Q(η) ◦A strictly improves the privacy guarantee—i.e., ε′ ≤ ε and δ′ ≤ δ—if

η ≥ 1− δ

(1− δ)(1− e−ε)− (eε − 1)/K

Proof. We find the condition on η that ensures δ′ ≤ δ under the assumption of an optimal measure-
ment, where, from Corollary 3, we have φ = 1/K. The guarantee ε′ ≤ ε holds for all η ∈ [0, 1].

We start with the inequality δ′ ≤ δ using the expression from Theorem 2:

(1− η)
(
1− eε

′−ε(1− δ)− (eε − eε
′
)φ
)
≤ δ

Substitute the identities eε
′−ε = 1− η + ηe−ε, eε − eε

′
= η(eε − 1), and φ = 1/K, we have:

(1− η)

(
1− (1− η + ηe−ε)(1− δ)− η(eε − 1)

K

)
≤ δ

The expression inside the main brackets simplifies to δ + η(1− δ)(1− e−ε)− η(eε−1)
K . Substituting

this back, expanding, and simplifying for η > 0, we have:

(1− δ)(1− e−ε)− eε − 1

K
− δ ≤ η

(
(1− δ)(1− e−ε)− eε − 1

K

)
Solving for η gives the threshold:

η ≥ (1− δ)(1− e−ε)− (eε − 1)/K − δ

(1− δ)(1− e−ε)− (eε − 1)/K

= 1− δ

(1− δ)(1− e−ε)− (eε − 1)/K

Lemma 8. The intermediate mechanism Mhalf is L∞-Lipschitz with respect to the input perturbation
κ, satisfying |Mhalf(x+ κ)−Mhalf(x)| ≤ L∞∥κ∥∞. The constant is given by:

L∞ = 2(1− η)∥Eexp∥op∥W∥∞

∑
j

∥Hj∥op


where Eexp =

∑
k kEk.

Proof. First, we prove that a Lipschitz bound for a composition of functions can be obtained as the
product of their individual Lipschitz constants. Specifically, suppose that f can be written as

f = f1 ◦ f2 ◦ · · · ◦ fh,
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where ◦ denotes function composition, and each fi admits a Lipschitz constant Li for i = 1, . . . , h.
Then, for any inputs x and a small deviation κ, it holds that

∥f(x+ κ)− f(x)∥
≤ L1 ∥f2 ◦ · · · ◦ fh(x+ κ)− f2 ◦ · · · ◦ fh(x)∥
≤ L1L2 ∥f3 ◦ · · · ◦ fh(x+ κ)− f3 ◦ · · · ◦ fh(x)∥
...

≤

(
h∏

i=1

Li

)
∥κ∥.

Since the mechanism Mhalf is expressed as a composition of fexp, fηdep, fenc, and fpar, our goal is to
determine the Lipschitz bound for each individual function.

Lipschitz bound of fpar:

The function fpar : X → Y is defined as

fpar(x) =Wx+ b,

‘Since b is a constant shift (which does not affect Lipschitz continuity), we have:

∥fpar(x+ κ)− fpar(x)∥ = ∥Wκ∥ ≤ ∥W∥∞∥κ∥∞,

Thus, fpar is ∥W∥∞-Lipschitz.

Lipschitz bound of fenc:

The function fenc : Y → H encodes a classical vector y into a density matrix fenc(y) =

Uenc(y)|0⟩⟨0|Uenc(y)
† where Uenc(y) =

∏N
j=1 e

−i(wj ·yj+bj)Hj . We need to bound the trace norm
distance fenc(y + κ)− fenc(y) in terms of ∥κ∥∞.

∥fenc(y + κ)− fenc(y)∥
= ∥Uenc(y + κ)ρ0Uenc(y + κ)† − Uenc(y)ρ0Uenc(y)

†∥
≤ 2∥Uenc(y + κ)− Uenc(y)∥

where ρ0 = |0⟩⟨0| and we used the triangle inequality and properties of the trace norm. The difference
between the unitary operators is bounded by:

∥Uenc(y + κ)− Uenc(y)∥

≤
N∑
j=1

∥e−i(yj+κj)Hj − e−iyjHj∥

≤
N∑
j=1

|κj |∥Hj∥ ≤
N∑
j=1

∥Hj∥∥κ∥∞

(Based on (Berberich et al., 2024))

Thus, fenc is 2
(∑n

j=1 ∥Hj∥
)

-Lipschitz.

Lipschitz bound of f (η)dep :

The function f (η)dep : H → H models the depolarizing noise:

f
(η)
dep (ρ) = (1− η)ρ+ η

I

d
,

where I is the identity matrix and d is the dimension of the Hilbert space.
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Since the term η I
d is constant, the difference between two outputs is:

∥f (η)dep (ρ)− f
(η)
dep (σ)∥ = (1− η)∥ρ− σ∥.

Thus, f (η)dep is (1− η)-Lipschitz.

Lipschitz bound of fexp:

The measurement function fmea : H → RK , defined by a set of POVMs {Ek}, maps a quantum state
ρ to a probability vector:

fexp(ρ) =
∑
k

kTr(Ekρ).

Given Eexp =
∑

k kEk, by trace duality and Hölder’s inequality, we have:

∥fexp(ρ)− fexp(ρ
′)∥ =

∣∣Tr(Eexp(ρ− ρ′))
∣∣ ≤ ∥Eexp∥op∥ρ− ρ′∥.

Therefore, fexp is ∥Eexp∥op-Lipschitz.

As a result, the mechanism Mhalf is L∞-Lipschitz where L∞ = 2(1 −
η)∥Eexp∥op∥W∥∞

(∑
j ∥Hj∥op

)
.

Lemma 9. The absolute difference between the expected outputs of the intermediate and clean
mechanisms is uniformly bounded by:

sup
x∈X

|Mhalf(x)−Mclean(x)| ≤ 2η∥Eexp∥

Proof. Let ρ(x) = (fenc ◦ fpar)(x) be the clean quantum state.

|Mhalf(x)−Mclean(x)|

=
∣∣∣Tr[fexp · fη

dep(ρ(x)))− Tr(fexp · ρ(x))
∣∣∣

≤ ∥Eexp∥op · ∥fη
dep(ρ(x))− ρ(x)∥ (Lipschitz property of fexp)

The trace distance term is bounded as:

∥fηdep(ρ)− ρ∥ = ∥((1− η)ρ+ η
I

d
)− ρ∥ = η

∥∥∥∥Id − ρ

∥∥∥∥
Since ρ and I/d are both valid density matrices, the trace distance between them is at most 2. Thus,
∥ I
d − ρ∥ ≤ 2. Substituting this back gives the final bound of 2η∥Eexp∥op.

Theorem 3 (Utility bound). Let the classical noise be κ ∼ N (0, σ2I) acting on an input space X
of dimension dX = dim(X). For any desired failure probability p > 0, the utility loss is bounded
probabilistically as:

Pr

(
Error ≤ L∞ · σ

√
2 ln

2dX
p

+ 2η∥Eexp∥op

)
≥ 1− p

where L∞ = 2(1− η)∥Eexp∥op∥W∥∞(
∑

j ∥Hj∥op).

Proof. We use the triangle inequality for the absolute error for a given x and classical noise κ:

|Mfull(x)−Mclean(x)|
= |Mhalf(x+ κ)−Mclean(x)|
≤ |Mhalf(x+ κ)−Mhalf(x)|+ |Mhalf(x)−Mclean(x)|

Applying our two lemmas, the first term is bounded by L∞ · ∥κ∥∞ and the second term is bounded
by 2η∥Eexp∥op.

Error ≤ L∞ · ∥κ∥∞ + 2η∥Eexp∥op
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The stochastic error depends on the magnitude of ∥κ∥∞ = maxi |κi|, where each component κi of
the noise vector is an independent draw from a Gaussian distribution, κi ∼ N (0, σ2).

To obtain a high-probability bound on the maximum of d independent Gaussian variables, we can
apply a standard union bound on their tails. For any desired failure probability p > 0, with probability
at least 1− p, the infinity norm of κ is bounded by:

∥κ∥∞ ≤ σ
√
2 ln(2dX/p)

By combining these bounds, we can state that for any p > 0, the total utility loss is bounded with
probability at least 1− p:

Error ≤ L∞ · σ

√
2 ln

2dX
p

+ 2η∥Eexp∥op

C IMPLEMENTATION

We implement all experiments with Python 3.8. Each experiment is conducted on a single GPU-
assisted compute node installed with a Linux 64-bit operating system. Our testbed resources include
72 CPU cores with 377 GB of RAM in total. Our allocated node is also provisioned with 2 GPUs
with 40GB of VRAM per GPU.

Implementation of HYPER-Q. HYPER-Q was implemented using the PennyLane QML simula-
tor (Bergholm et al., 2022). The detailed architecture implements the general mechanism proposed
and analyzed in Section 4. Specifically, each input image first passes through two convolutional layers,
each followed by batch normalization and max pooling to reduce spatial dimensions and extract
salient features. The resulting feature maps are flattened and passed through two fully connected lay-
ers to produce a low-dimensional feature vector. This vector is then encoded into a 5-qubit quantum
circuit comprising three alternating layers of single-qubit rotations (implemented via RX gates) and
entangling layers. This corresponds to the encoding function fenc, where Hermitian generators are
given by RX gates. The entangling layers employ a circular arrangement of CNOT gates, such that
each qubit i is entangled with qubit i+ 1, with the last qubit entangled with the first. A projective
measurement is applied in the computational basis to extract the quantum outputs, which are then
processed by a final fully connected layer to produce the prediction.

Dataset Image Dims. Training Testing No. of Labels Description
MNIST 28×28 60,000 10,000 10 Handwritten digits
USPS 16×16 ≈ 7,300 ≈ 2,000 10 Scanned U.S. postal envelopes

FashionMNIST 28×28 60,000 10,000 10 Clothing items
CIFAR-10 32×32× 3 50,000 10,000 10 Natural objects items

Table 1: Dataset descriptions.

Additionally, the classical and quantum noise levels are set as follows. Given a target differential
privacy budget (ε′, δ′), we first fix the quantum depolarizing noise factor η, and then calibrate the
classical Gaussian noise variance σ2 to satisfy the budget based on Theorem 1. Specifically, σ2 is
chosen so that the classical mechanism A achieves (ε, δ)-DP with

ε = ε′, δ =
δ′ − η(1−eε)

d

1− η
.

The variance σ2 is then computed using the Analytic Gaussian mechanism (Balle & Wang, 2018),
ensuring that the classical mechanism A satisfies (ε, δ)-DP and the composed mechanism Q(η) ◦A
satisfies the target (ε′, δ′)-DP.
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D DESCRIPTION OF DATASETS & BENCHMARKS

Datasets: We evaluate our approach on three image classification datasets: MNIST (Lecun et al.,
1998), FashionMNIST (Xiao et al., 2017), and USPS (Hull, 2002). Table 1 briefly describes each of
them.

Benchmarks: We compare our approach on QML with three classical ML models: Multi-Layer
Perceptron (MLP), ResNet-9, and Vision Transformer (ViT). We describe the implementations of
those benchmarks below:

• MLP: We implement an MLP with a feedforward network composed of fully connected
layers and ReLU activations. It consists of one hidden layer with 100 units and a final linear
output layer corresponding to the number of classes. It is identical to the default MLP from
the Sci-Kit Learn library 1. We implemented it without the library as it is not tailored
for GPU usage out of the box. Our from scratch version is parallelizable on GPUs.

• ResNet-9: We implement a ResNet-9 model inspired by the original in (He et al., 2016).
It is comprised of a series of convolutional layers and two residual blocks that include
skip connections. It processes inputs through increasing feature dimensions: [32, 64, 128].
We employ batch normalization and ReLU activations throughout the model following by
MaxPooling layers. The model ends with a fully-connected layer for classification.

• ViT: We implement a ViT model inspired by (Dosovitskiy et al., 2021). It splits input images
into non-overlapping patches and linearly embeds them before adding positional encodings
and a class token. Multiple self-attention layers processes each sequence before classifying
via a fully connected head applied to the class token.

E ADVERSARIAL TRAINING AND TESTING

We evaluate the adversarial robustness of HYPER-Q via an adversarial training and testing framework
inspired by the PixelDP mechanism (Lecuyer et al., 2019). Similar to PixelDP, during training, we
define a construction attack bound Lcons to represent the theoretical robustness guarantee in terms of
ℓ2 norm. Specifically, this bound establishes the maximum allowable adversarial perturbation under
which the model is certified to preserve its prediction capabilities. In our experiments, we vary this
value where Lcons = {0.1, 0.2, 0.3, 0.4}. In both HYPER-Q and classical baseline models, ℓ2-based
noise is injected directly into the input. This setup permits a fair comparison of robustness guarantees
between quantum and classical models despite their underlying architectural differences.

To evaluate empirical robustness beyond certified guarantees, we assess each model against adversarial
perturbations constrained by the ℓ∞ norm. Specifically, for every Lcons value, we experiment
against empirical attack bounds Lattk. In our experiments, we vary this value where Lattk =
{0, 0.01, 0.02, 0.03, 0.04, 0.05} while implementing two adversarial attacks: Fast Gradient Sign
Method (FGSM) and Projected Gradient Descent (PGD). With this, we are able to observe model
performance under realistic threats that may not satisfy the constraints of our certified threat model.
In addition, we adopt the randomized smoothing technique proposed by (Cohen et al., 2019) to
provide certified predictions against adversarial examples.

F ADDITIONAL EXPERIMENTS

F.1 ROBUSTNESS ANALYSIS IN QML

As in Section 5.1, we evaluate the adversarial robustness of HYPER-Q under two quantum noise
levels, η ∈ {0.1, 0.3}. We compare its performance with Basic Gaussian, Analytic Gaussian and
DP-SGD mechanisms, ensuring that all methods are evaluated under the same privacy budget and
applied to the same QML model. Figures 4, 5 and 6 present the results of the FGSM attack on the
FashionMNIST and USPS datasets, respectively with ε′ ∈ {0.25, 0.5, 0.75, 1}. In all cases, with the
exception of ε′ = 1 on USPS, HYPER-Q clearly outperforms all baseline methods. On the USPS
dataset when ε′ = 1, the Analytic Gaussian mechanism outperforms HYPER-Q at lower values of

1https://scikit-learn.org/stable/
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Figure 4: Accuracy of various noise-added mechanisms under the FGSM attack on the MNIST
dataset with different ε′ values and δ′ = 1× 10−5. For each pair of (Lattk, ε

′), the reported accuracy
is averaged over all Lcons settings. HYPER-Q is examined with η ∈ [0.1, 0.3].

Figure 5: Accuracy of various noise-added mechanisms under the FGSM attack on the FashionMNIST
dataset with different ε′ values and δ′ = 1× 10−5. For each pair of (Lattk, ε

′), the reported accuracy
is averaged over all Lcons settings. HYPER-Q is examined with η ∈ [0.1, 0.3].

Figure 6: Accuracy of various noise-added mechanisms under the FGSM attack on the USPS dataset
with different ε′ values and δ′ = 1 × 10−5. For each pair of (Lattk, ε

′), the reported accuracy is
averaged over all Lcons settings. HYPER-Q is examined with η ∈ [0.1, 0.3].

Lattk (Lattk ∈ {0, 0.01}), eventually degrading to comparable performance (Lattk ∈ {0.02, 0.03})
before beginning to underperform at higher values of Lattk (Lattk ∈ {0.04, 0.05}). Similar to
the results in Section 5.1, we observe that HYPER-Q with η = 0.3 degrades very quickly like the
Analytic Gaussian and Basic Gaussian mechanisms, even dropping below the two in most cases as
the value of ε′ increases.

Figures 7, 8, and 9 present the results of the PGD attack on HYPER-Q and our baseline methods
for MNIST, FashionMNIST, and USPS datasets, respectively. Even against the PGD attack, re-
sults are similar to the FGSM attack where HYPER-Q clearly outperforms all baselines on each
dataset with the exception of ε′ = 1 on USPS where the Analytic Gaussian mechanism varies
performance as it outperforms HYPER-Q with smaller values of Lattk (Lattk = 0) before becom-
ing comparable (Lattk ∈ {0.01, 0.02}) and eventually underperforming at higher values of Lattk

(Lattk ∈ {0.03, 0.04, 0.05}).

F.2 COMPARATIVE BENCHMARK WITH CLASSICAL MODELS

As in Section 5.2, we illustrate the performance comparison of a QML model protected by HYPER-Q
(with its empirically optimal quantum noise setting, η = 0.1) against three classical baselines: ResNet-
9, ViT, and MLP, each protected by Analytic Gaussian noise. Figures 10, 11 and 12 illustrate the
performance comparison between all models on the FashionMNIST and USPS datasets, respectively,
while under the FGSM attack. In Figure 11, we observe that the ResNet-9 model, across all values of
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Figure 7: Accuracy of various noise-added mechanisms under the PGD attack on the MNIST dataset
with different ε′ values and δ′ = 1 × 10−5. For each pair of (Lattk, ε

′), the reported accuracy is
averaged over all Lcons settings. HYPER-Q is examined with η ∈ [0.1, 0.3].

Figure 8: Accuracy of various noise-added mechanisms under the PGD attack on the FashionMNIST
dataset with different ε′ values and δ′ = 1× 10−5. For each pair of (Lattk, ε

′), the reported accuracy
is averaged over all Lcons settings. HYPER-Q is examined with η ∈ [0.1, 0.3].

Figure 9: Accuracy of various noise-added mechanisms under the PGD attack on the USPS dataset
with different ε′ values and δ′ = 1 × 10−5. For each pair of (Lattk, ε

′), the reported accuracy is
averaged over all Lcons settings. HYPER-Q is examined with η ∈ [0.1, 0.3].

ε′, outperforms HYPER-Q and the other baseline models. However, it is noted that HYPER-Q is very
comparable to the ResNet-9 model with larger values of ε′. Only at higher values of Lattk do we
observe noticeable separation between the two models. Contrarily, for the USPS dataset, HYPER-Q
dominates all other baseline models when ε′ ∈ {0.25, 0.5}. Specifically, compared to the ResNet-9
model, HYPER-Q maintains an ≈ 30% higher average accuracy when ε′ = 0.25. This value drops to
≈ 2% when ε′ = 0.5. The ResNet-9 model becomes more competitive as ε′ ∈ {0.75, 1.0}, where it is
comparable to HYPER-Q and then outperforms it by ≈ 5%, respectively. An interesting observation
is the subtle fluctuations of the MLP and quick degradation across all values of ε′. HYPER-Q and the
other baselines are much more stable across all values. The results shown in Figures 13, 14, and 15
illustrate the comparative performance of HYPER-Q and our baseline models when subjected to the
PGD attack and are virtually identical in nature to the results of the FGSM attack on all three datasets.

F.3 EMPIRICAL ANALYSIS OF DIMENSIONAL SCALABILITY

To address the practical scalability of HYPER-Q, we empirically investigated the impact of the
Hilbert space dimension d = 2n on the reduction of the required classical noise. While Theorem 1
introduces an additive term η(1−eϵ)

d that ostensibly shrinks as the system scales, our analysis reveals
that the privacy amplification stabilizes rather than vanishes.
Figure 16 presents the average percentage reduction in classical noise variance (σ2) as a function of
the number of qubits n, ranging from 1 to 29, across various quantum noise levels η ∈ [0.05, 0.4].
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The results highlight two observations. For small-scale systems, we observe a massive reduction in
the required classical noise, exceeding 90% for n < 3. In this regime, the dimension-dependent
term 1

d in Theorem 1 is dominant, providing a significant bonus to the privacy budget. On the
other hand, as the number of qubits increases and the 1/d term vanishes, the noise reduction does
not drop to zero. Instead, the curves flatten into a stable, non-zero level. This represents the
scale-independent multiplicative amplification (1− η) derived in our theoretical framework. For
instance, with η = 0.4, the mechanism maintains a consistent noise reduction of approximately 8%
even at n = 29 (where d ≈ 5× 108).

F.4 EMPIRICAL VERIFICATION OF UTILITY BOUND TIGHTNESS

To rigorously assess the tightness of the theoretical utility bound derived in Theorem 3, we con-
ducted an empirical analysis comparing the observed worst-case error against the bound.Theorem
3 characterizes the stability of the mechanism by bounding the maximum deviation Error =
supx |Mfull(x)−Mclean(x)|. The bound states that

Pr

(
Error ≤ L∞ · σ

√
2 ln

2dX
p

+ 2η∥Eexp∥op

)
≥ 1− p

where L∞ = 2(1− η)∥Eexp∥op∥W∥∞(
∑

j ∥Hj∥op).
We evaluated the tightness of our bound by measuring the ratio between the maximum empirical
error observed in simulation and the theoretical bound Bound(σ, η, p) = L∞σ

√
2 ln(2dX/p) +

2η||Eexp||op. In particular, given a sample set S, the ratio is calculated by:

Ratio =
maxx∈S |Mfull(x)−Mclean(x)|

Bound(σ, η, p)

In this experiment, we set the failure probability to p = 0.01. That ensures the theoretical bound
holds with a 99% confidence level. We computed the Ratio for each (σ, η) configuration using
a sample size of |S| = 10000, where a value approaching 1 indicates a tight bound. Figure 17
presents the resulting ratios across the parameter grid. We observe that in low-noise settings, such
as (σ, η) = (0.5, 0), the ratio reaches significant magnitudes (e.g., 0.923), confirming that the
bound effectively captures the worst-case error. While the bound becomes looser as the total noise
magnitude increases, it remains non-trivial. Notably, in the absence of classical noise (σ = 0), the
ratios remain constant across all η. This behavior is attributed to the linearity of the depolarizing
channel, where both the empirical error and the theoretical quantum term (2η∥Eexp∥op) scale linearly
with η.

F.5 SENSITIVITY ANALYSIS OF THE DEPOLARIZING NOISE PARAMETER η

To characterize the impact of the quantum noise parameter on model utility, we evaluate model
accuracy across varying levels of depolarizing noise η ∈ {0.05, 0.1, . . . , 0.4}. For each noise level
η, we measured robustness against FGSM attacks with varying strengths Lattk ∈ {0, 0.01, . . . , 0.05}.
We conducted these experiments across three datasets (MNIST, Fashion-MNIST, and USPS) under
four distinct differential privacy guarantees ε′ ∈ {0.25, 0.5, 0.75, 1}.
Figures 18,19 and 20 collectively show that the relationship between depolarizing noise η and and
model performance exhibits a remarkably consistent structure across all three datasets: MNIST,
Fashion-MNIST and USPS. Despite differences in dataset complexity, the accuracy curves share
the same unimodal shape. Specifically, performance initially increases as η moves away from 0,
reach a peak and, then declines once the quantum distortion dominates. This pattern is visible in
every privacy budget ε′ ∈ {0.25, 0.5, 0.75, 1} and across all attack bounds Lattk.
When comparing the location of the performance peaks across datasets, we observe a highly aligned
trend. Under stricter privacy budgets (ε′ ≤ 0.5), the best performance is usually achieved at η = 0.1
or η = 0.5. For example, MNIST and Fashion-MNIST peak at η = 0.1 and USPS similarly peaks
at η = 0.1− 0.15 for ε′ = 0.25. As the privacy requirement becomes more relaxed (ε′ ≥ 0.75), all
three datasets shift their peaks toward smaller noise levels, typically η = 0.05. We observe that the
optimal η consistently falls within the narrow interval 0.05-0.15. Although η is often difficult to
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Figure 10: Accuracy comparison between the QML model protected by HYPER-Q and three classical
baselines (ResNet-9, ViT, and MLP) protected by Analytic Gaussian noise under the FGSM attack
on the MNIST dataset. The HYPER-Q model is evaluated with its empirically best quantum noise
setting (η = 0.1). For each (Lattk, ε

′) pair, the reported accuracy is averaged over all Lcons settings.
δ′ = 1× 10−5 for all settings.

calibrate precisely in practice Hu et al. (2023), this stable peak range provides a robust guideline
that users can reliably calibrate η within this interval without requiring an exhaustive sweep.

F.6 PERFORMANCE ANALYSIS ON CIFAR-10
To evaluate the robustness of HYPER-Q on more complex data, we extend our experiments to
CIFAR-10, a significantly more challenging benchmark than MNIST and USPS. Unlike grayscale
datasets, CIFAR-10 consists of RGB images with higher variability and richer feature structure,
requiring a larger quantum feature map. For this setting, we employ a 10-qubit variational QML
model and compare HYPER-Q with three classical baselines under a fixed privacy budget ε′ = 1.
Figure 21 shows the test accuracy as a function of attack strength Lattk ∈ {0, 0.01, . . . , 0.05}.
Across all models, accuracy decreases as the attack strength increases, but the rate of degradation
varies significantly. HYPER-Q begins at 73.9% accuracy at Lattk = 0 and declines smoothly to
47.7% at Lattk = 0.05. This degradation profile is comparable to ResNet-9, which starts at a higher
baseline of 86.0% but similarly drops to 48.7% at the highest attack bound. In contrast, ViT and
MLP degrade much more rapidly, falling from 75.9% and 69.3% initially to only 14.2% and 10.8%
at Lattk = 0.05, respectively.
These results highlight two insights. First, even for a high-dimensional image dataset requiring
a deeper quantum representation, HYPER-Q remains competitive with classical baselines under
moderate attack strengths. Second, while classical deep models exhibit higher clean accuracy,
their robustness diminishes sharply under increasing perturbation, whereas HYPER-Q shows a
more controlled and stable decline. This demonstrates that the hybrid-noise mechanism HYPER-Q
continues to offer meaningful utility benefits in more complex, higher-qubit QML settings.

F.7 GENERAL OBSERVATIONS

We note that HYPER-Q exhibits resilience to small L∞ perturbations attributing to the nonlinear
separability and the enhanced representational capacity of quantum feature embeddings. However, we
note that as the attack strength increases, sensitivity varies. Contrarily, the classical baselines show a
much more pronounced and predictable degradation in robustness when increasing L∞ perturbations.
However, even though the identical ℓ2 certification bounds are applied to each model, architectural
differences lead to variations where quantum models may underutilize or overconservatively interpret
certification bounds due to the non-Euclidean geometry of Hilbert spaces. This further highlights the
distinct robustness characteristics of quantum-ehanced learning in adversarial settings.

G USE OF LARGE LANGUAGE MODELS

Portions of this manuscript were refined using a large language model (LLM) to improve clarity,
grammar, and readability. The use of the LLM was limited strictly to language polishing, and no
content, analysis, or results were generated by the model.
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Figure 11: Accuracy comparison between the QML model protected by HYPER-Q and three classical
baselines (ResNet-9, ViT, and MLP) protected by Analytic Gaussian noise under the FGSM attack
on the FashionMNIST dataset. The HYPER-Q model is evaluated with its empirically best quantum
noise setting (η = 0.1). For each (Lattk, ε

′) pair, the reported accuracy is averaged over all Lcons
settings. δ′ = 1× 10−5 for all settings.

Figure 12: Accuracy comparison between the QML model protected by HYPER-Q and three classical
baselines (ResNet-9, ViT, and MLP) protected by Analytic Gaussian noise under the FGSM attack
on the USPS dataset. The HYPER-Q model is evaluated with its empirically best quantum noise
setting (η = 0.1). For each (Lattk, ε

′) pair, the reported accuracy is averaged over all Lcons settings.
δ′ = 1× 10−5 for all settings.

Figure 13: Accuracy comparison between the QML model protected by HYPER-Q and three classical
baselines (ResNet-9, ViT, and MLP) protected by Analytic Gaussian noise under the PGD attack
on the MNIST dataset. The HYPER-Q model is evaluated with its empirically best quantum noise
setting (η = 0.1). For each (Lattk, ε

′) pair, the reported accuracy is averaged over all Lcons settings.
δ′ = 1× 10−5 for all settings.

Figure 14: Accuracy comparison between the QML model protected by HYPER-Q and three classical
baselines (ResNet-9, ViT, and MLP) protected by Analytic Gaussian noise under the PGD attack on
the FashionMNIST dataset. The HYPER-Q model is evaluated with its empirically best quantum
noise setting (η = 0.1). For each (Lattk, ε

′) pair, the reported accuracy is averaged over all Lcons
settings. δ′ = 1× 10−5 for all settings.
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Figure 15: Accuracy comparison between the QML model protected by HYPER-Q and three classical
baselines (ResNet-9, ViT, and MLP) protected by Analytic Gaussian noise under the PGD attack
on the USPS dataset. The HYPER-Q model is evaluated with its empirically best quantum noise
setting (η = 0.1). For each (Lattk, ε

′) pair, the reported accuracy is averaged over all Lcons settings.
δ′ = 1× 10−5 for all settings.

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
Number of Qubits (n)

0

10

20

30

40

50

60

70

80

90

100

Av
g.

 %
 R

ed
uc

tio
n 

in
 C

la
ss

ica
l N

oi
se

 
2

 = 0.05
 = 0.1
 = 0.2
 = 0.3
 = 0.4

Figure 16: Effect of Quantum Noise Level on Classical-Noise Reduction Across Scaling Qubit
Counts
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Figure 17: Heatmap of the ratio between the actual utility loss and the theoretical bound across (η, σ)
values.
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Figure 18: Impact of depolarizing noise η on model utility for the MNIST dataset. Subplots (a)-(d)
show performance under varying privacy budgets ε′ ∈ {0.25, 0.5, 0.75, 1.0}. Each curve represents
the average accuracy against FGSM attacks with varying strengths Lattk ∈ {0, . . . , 0.05}.
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Figure 19: Impact of depolarizing noise η on model utility for the Fashion-MNIST dataset. Subplots
(a)-(d) show performance under varying privacy budgets ε′ ∈ {0.25, 0.5, 0.75, 1.0}. Each curve rep-
resents the average accuracy against FGSM attacks with varying strengths Lattk ∈ {0, . . . , 0.05}.
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Figure 20: Impact of depolarizing noise η on model utility for the USPS dataset. Subplots (a)-(d)
show performance under varying privacy budgets ε′ ∈ {0.25, 0.5, 0.75, 1.0}. Each curve represents
the average accuracy against FGSM attacks with varying strengths Lattk ∈ {0, . . . , 0.05}.

Figure 21: Performance of HYPER-Q and classical baselines (ResNet-9, ViT, and MLP) on CIFAR-10
under varying attack strengths Lattk with a fixed privacy budget ε′ = 1.

43


	Introduction
	Preliminary
	Quantum Information Basics
	Differential Privacy

	Related Works
	Hybrid Noise-Added Mechanism
	Mechanism Overview
	Differential Privacy Bound
	First Analysis — Amplifying the Failure Probability
	Second Analysis — Amplifying the Privacy Loss
	Third Analysis — Generalization to Other Noise Channels

	Utility Bound

	Experimental Evaluation
	Robustness Analysis in QML
	Comparative Benchmark with Classical Models

	Conclusion
	Appendix
	Additional Background
	Quantum Neural Networks
	Adversarial Robustness
	Noise Mechanisms

	Theoretical Derivations and Proofs
	Derivation of Theorem 1
	Derivation of Theorem 2
	Derivation of Theorem 3
	Generalization to Other Quantum Noise Channels
	Key Insight Behind the Generalization
	Generalized Amplitude Damping Channel
	Generalized Dephasing Channel

	Proofs

	Implementation
	Description of Datasets & Benchmarks
	Adversarial Training and Testing
	Additional Experiments
	Robustness Analysis in QML
	Comparative Benchmark with Classical Models
	Empirical Analysis of Dimensional Scalability
	Empirical Verification of Utility Bound Tightness
	Sensitivity Analysis of the Depolarizing Noise Parameter 
	Performance Analysis on CIFAR-10
	General Observations

	Use of Large Language Models

