

000 001 002 003 004 005 GUARANTEEING PRIVACY IN HYBRID QUANTUM 006 LEARNING THROUGH THEORETICAL MECHANISMS 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026

ABSTRACT

027 Quantum Machine Learning (QML) is becoming increasingly prevalent due to its
028 potential to enhance classical machine learning (ML) tasks, such as classification.
029 Although quantum noise is often viewed as a major challenge in quantum comput-
030 ing, it also offers a unique opportunity to enhance privacy. In particular, intrinsic
031 quantum noise provides a natural stochastic resource that, when rigorously ana-
032 lyzed within the differential privacy (DP) framework and composed with classical
033 mechanisms, can satisfy formal (ε, δ) -DP guarantees. This enables a reduction
034 in the required classical perturbation without compromising the privacy budget,
035 potentially improving model utility. However, the integration of classical and quan-
036 tum noise for privacy preservation remains unexplored. In this work, we propose a
037 hybrid noise-added mechanism, HYPER-Q, that combines classical and quantum
038 noise to protect the privacy of QML models. We provide a comprehensive analysis
039 of its privacy guarantees and establish theoretical bounds on its utility. Empiri-
040 cally, we demonstrate that HYPER-Q outperforms existing classical noise-based
041 mechanisms in terms of adversarial robustness across multiple real-world datasets.
042
043

1 INTRODUCTION

044 Quantum Machine Learning (QML) has emerged as a compelling paradigm that integrates the
045 computational advantages of quantum systems with the modeling power of machine learning (ML). A
046 fundamental feature of quantum systems is quantum noise, the inherent randomness and decoherence
047 that arise due to interactions with the environment. Although quantum noise is typically considered
048 to be a barrier to achieving fault-tolerant quantum computing, it provides an opportunity to serve as a
049 natural and intrinsic source of randomness for privacy-preservation.
050

051 In classical ML, Differential Privacy (DP) (Dwork, 2006) has become the standard framework for
052 providing formal privacy guarantees. DP ensures that the output of an algorithm does not change
053 significantly when a single individual's data is added or removed from the input dataset, thereby
054 protecting individual privacy. Beyond its role in privacy preservation, DP has also been extended to
055 certify the robustness of ML models against adversarial attacks (Lecuyer et al., 2019; Cohen et al.,
056 2019). Privacy in DP is typically achieved by injecting carefully calibrated random noise, such as
057 Gaussian or Laplacian, into the learning process (Geng & Viswanath, 2012; Balle & Wang, 2018; Ji &
058 Li, 2024). Furthermore, the overall privacy guarantee can be amplified through additional stochastic
059 techniques such as subsampling (Balle et al., 2018), iterative composition (Feldman et al., 2018), and
060 diffusion-based mechanisms (Balle et al., 2019a). Nevertheless, theoretical privacy amplification is
061 not guaranteed under arbitrary combinations of stochastic techniques.
062

063 Recent studies extend the notion of DP to the quantum domain, leading to Quantum Differential
064 Privacy (QDP) (Du et al., 2021b; Hirche et al., 2023). However, several key challenges remain
065 unaddressed. First, existing efforts primarily focus on defining privacy guarantees for quantum data.
066 However, most practical, near-term QML applications are hybrid models that operate on classical data
067 and use the quantum circuit only as an intermediate processing component. This hybrid architecture
068 presents a critical privacy challenge: a DP guarantee applied only to the intermediate quantum layer
069 does not ensure end-to-end privacy for the full model, especially if the preceding classical components
070 are sensitive. Second, the interaction between classical noise (e.g., Gaussian, Laplacian) and intrinsic
071 quantum noise has not yet been investigated. This research gap is critical because certain types of
072 quantum noise, such as depolarizing noise, can naturally inject randomness into the learning process
073
074

without significantly degrading the performance of models (Du et al., 2021b). This raises a crucial open question: can this intrinsic quantum randomness be formally utilized as a stochastic technique to amplify the privacy guarantee originating from a preceding classical mechanism? To date, no work has theoretically established how to compose the privacy guarantees of classical and quantum noise sources within these hybrid models. In addition, understanding this relationship is crucial to control the preset privacy budget, especially considering that quantum noise in physical devices is inherently dynamic and difficult to precisely control.

Contributions. The key contributions and insights of this work can be highlighted as follows:

1. **Hybrid Privacy-Preserving Mechanism.** We propose HYPER-Q, a **HY**brid **P**rivacy-**E**rving mechanism for **Q**uantum Neural Networks (QNNs). To the best of our knowledge, this is the first work to investigate the joint effect of classical and quantum noise in amplifying DP within quantum hybrid models. Specifically, HYPER-Q composes a classical input perturbation (e.g., Gaussian noise) with the intrinsic depolarizing noise of a quantum circuit, forming a dual-noise framework compatible with a broad class of QNNs.
2. **Privacy Guarantee Analysis.** We provide a rigorous analysis of HYPER-Q’s DP guarantees. Our mechanism is a composition $Q^{(\eta)} \circ A$ where A is a classical mechanism satisfying an original (ε, δ) -DP and $Q^{(\eta)}$ is the quantum post-processing operation with the depolarizing noise factor of η . We analyze how this composition achieves new amplified privacy parameters (ε', δ') . We provide three main analytical results:
 - First (Theorem 1): We show that quantum post-processing in a d -dimensional Hilbert space acts as a privacy amplifier by strictly reducing the failure probability (achieving $\delta' = \left[\frac{\eta(1-\varepsilon)}{d} + (1-\eta)\delta \right]_+ < \delta$), while the privacy loss remains fixed ($\varepsilon' = \varepsilon$). This result directly implies stricter certifiable adversarial robustness.
 - Second (Theorem 2): We demonstrate that under a certain condition, it is possible to simultaneously amplify both parameters, ε' and δ' . This analysis yields two crucial insights. First, we show how to select Positive Operator-Valued Measures (POVMs) to maximize the privacy gain: the bound on δ' is minimized (i.e., the guarantee is strongest) when all POVM elements have equal trace. Second, we derive the explicit threshold that the quantum noise η must exceed to guarantee the strict amplification of both privacy parameters.
 - Third (Theorems 1.1 and 1.2): We generalize the privacy amplification framework to asymmetric noise channels by identifying trace distance contraction as the core mechanism. We derive strict privacy amplification for Generalized Amplitude Damping (GAD) based on thermal relaxation ($\delta' = (2\sqrt{\eta} - \eta)\delta$) and for Generalized Dephasing (GD) under the assumption of product equatorial encoding, where the suppression of phase coherences scales the failure probability to $\delta' = |1 - 2\eta|\delta$.
3. **Utility Analysis.** We derive a formal utility bound (Theorem 3) that quantifies the model’s performance. Specifically, we characterize the total error as a high-probability trade-off between the classical noise variance (σ) and the quantum depolarization probability (η).
4. **Empirical Experiments.** We empirically demonstrate that, under a fixed end-to-end privacy budget, HYPER-Q achieves significantly greater adversarial robustness than standard classical-only DP mechanisms across multiple datasets. These results indicate that replacing classical noise with quantum depolarizing noise can yield higher performance without weakening the privacy guarantee.

2 PRELIMINARY

2.1 QUANTUM INFORMATION BASICS

Qubits and States. Quantum computing systems operate on quantum bits (*qubits*). Unlike classical bits, qubits can exist in superpositions of 0 and 1. An n -qubit system resides in a 2^n -dimensional Hilbert space \mathcal{H} . While ideal (pure) states are represented by vectors $|\psi\rangle$, general (possibly noisy) states are described by density matrices ρ : $d \times d$ positive semi-definite matrices with a trace of one (i.e., $\text{Tr}[\rho] = 1$).

108 **Quantum Channels.** The evolution of a quantum state, including noise effects, is modeled by a
 109 quantum channel. For example, the depolarizing channel, denoted as $f_{\text{dep}}^{(\eta)}$, replaces the state ρ with
 110 the maximally mixed state $\frac{I}{d}$ with probability η and leaves it unchanged with probability $1 - \eta$:
 111

$$112 \quad f_{\text{dep}}^{(\eta)}(\rho) = (1 - \eta)\rho + \eta \frac{I}{d}$$

113 where $\eta \in [0, 1]$ is the probability, I is the identity matrix and d is the dimension of the Hilbert space.
 114

115 Classical information is extracted from a quantum state via measurement. A general measurement is
 116 defined by a set of operators E_k forming a Positive Operator-Valued Measure (POVM). For a state ρ ,
 117 the probability of observing the outcome k is:
 118

$$119 \quad \Pr(\text{outcome} = k) = \text{Tr}[E_k \rho].$$

121 2.2 DIFFERENTIAL PRIVACY

123 Differential Privacy (DP) provides a formal guarantee that the presence or absence of any individual
 124 sample in a dataset has limited impact on the output (Dwork, 2006). More formally:

125 **Definition 1** $((\varepsilon, \delta)$ -Differential Privacy). A randomized mechanism $\mathcal{M} : \mathcal{D} \rightarrow \mathcal{R}$ satisfies (ε, δ) -
 126 differential privacy if for any two adjacent datasets D_1 and D_2 that differs by a single element, , and
 127 for any subset of outputs $S \subseteq \mathcal{R}$, the following inequality holds:

$$128 \quad \Pr[\mathcal{M}(D_1) \in S] \leq e^\varepsilon \Pr[\mathcal{M}(D_2) \in S] + \delta$$

130 ,

131 Here, $\varepsilon \geq 0$ is the privacy loss parameter while $\delta \in [0, 1]$ is the failure probability. The smaller ε or
 132 the smaller δ implies stronger privacy.

134 An equivalent characterization of DP can be formulated using the **hockey-stick divergence**. For two
 135 distributions P and Q , the hockey-stick divergence is defined as:

$$136 \quad D_{e^\varepsilon}(P\|Q) = \int \max(0, P(x) - e^\varepsilon Q(x)) dx$$

139 A mechanism \mathcal{M} satisfies (ε, δ) -DP if and only if $D_{e^\varepsilon}(\mathcal{M}(D_1)\|\mathcal{M}(D_2)) \leq \delta$ for all adjacent
 140 D_1, D_2 .

141 This framework extends to the quantum setting (Hirche et al., 2023), where the quantum hockey-stick
 142 divergence for states ρ, ρ' is defined as:

$$144 \quad D_{e^\varepsilon}^{(q)}(\rho\|\rho') = \text{Tr}[(\rho - e^\varepsilon \rho')_+]$$

146 A quantum mechanism \mathcal{E} satisfies (ε, δ) -quantum DP if for any adjacent states ρ, ρ' , the divergence is
 147 bounded by δ where $D_{e^\varepsilon}^{(q)}(\mathcal{E}(\rho)\|\mathcal{E}(\rho')) \leq \delta$.

148 **Noise-added Mechanisms.** A standard way to achieve DP is by adding noise proportional to the
 149 sensitivity of a function, which is the maximum output change from altering one data point. The
 150 Gaussian mechanism adds noise $\eta_{\text{cdp}} \sim \mathcal{N}(0, \sigma^2 I)$ to a function $f : \mathcal{D} \rightarrow \mathbb{R}$ based on the function's
 151 L_2 sensitivity:

$$152 \quad \Delta_2(f) = \max_{D_1, D_2} \|f(D_1) - f(D_2)\|_2$$

153 This mechanism outputs $f(x) + \eta_{\text{cdp}}$. For appropriate choices of σ , this mechanism satisfies (ε, δ) -DP.
 154 Additional background on hybrid quantum machine learning, the connection between differential
 155 privacy and adversarial robustness, and classical noise mechanisms for achieving DP is provided in
 156 Appendix A.

158 3 RELATED WORKS

161 **Differential Privacy in Classical Machine Learning.** Differential Privacy (DP) has been established
 162 as a leading framework for protecting data in ML workflows. DP provides formal guarantees (Dwork

et al., 2006) that ensure that the inclusion or exclusion of a single data point has a limited impact on the output of an algorithm, thus minimizing the risk of information leakage. In machine learning, the most common way to achieve DP in practice is by injecting calibrated random noise into the learning process. This noise can be introduced at various stages, such as perturbing the input data (Lecuyer et al., 2019; Phan et al., 2019; Cohen et al., 2019), the gradients during optimization (Abadi et al., 2016; Ghazi et al., 2025), or the final model parameters (Yuan et al., 2023).

Input perturbation is particularly effective for providing instance-level privacy and is a key technique for certifying the adversarial robustness of a model’s predictions (Lecuyer et al., 2019; Cohen et al., 2019). Standard mechanisms, such as the Gaussian or Laplacian mechanism, add noise scaled to the function’s sensitivity to provide (ε, δ) -DP guarantee (Dwork & Roth, 2014). To mitigate the degradation in model performance which is often caused by noise injection, a crucial line of research focuses on privacy amplification. The core idea is that certain stochastic processes can strengthen the final privacy guarantee without requiring additional initial noise. Privacy amplification can also be achieved through established techniques such as subsampling (Bun et al., 2015; Balle et al., 2018; Wang et al., 2019; Koga et al., 2022), shuffling (Cheu et al., 2018; Erlingsson et al., 2019; Balle et al., 2019b), iterative composition (Feldman et al., 2018), and specialized forms of post-processing (Balle et al., 2019a; Ye & Shokri, 2022). In particular, post-processing is fundamental: while standard post-processing can never weaken a privacy guarantee (Dwork, 2006), certain stochastic transformations can actively enhance it. However, not all combinations of stochastic sources yield amplification. For example, post-processing a Gaussian mechanism with an additional Gaussian transformation can amplify privacy, whereas composing a Gaussian mechanism with a Laplacian transformation does not yield such an effect.

Differential Privacy in Quantum Settings. The notion of DP has recently been extended to quantum settings, reflecting the growing interest of privacy-preserving quantum computing and quantum machine learning (QML). The foundational concept was introduced by (Zhou & Ying, 2017), who proposed a definition of QDP that is a direct quantum analogue of classical DP. Building on this, (Du et al., 2021a) demonstrated a practical application for QML by showing that inherent quantum noise could be leveraged to achieve QDP in quantum classifiers. Specifically, they analyzed the depolarizing noise channel as a privacy-preserving mechanism and derived the mathematical relationship between the noise strength and the resulting (ε, δ) -QDP guarantee. They also proved that this privacy mechanism simultaneously enhances the model’s adversarial robustness. Later, (Hirche et al., 2023) developed a comprehensive theoretical framework for QDP. Using tools such as quantum relative entropy, their work provides a more general and rigorous foundation for QDP. More recent works(Bai et al., 2024; Watkins et al., 2023; Song et al., 2025) have examined how various quantum noise sources, such as depolarizing, bit-flip, and phase-flip channels, affect the QDP budget.

Despite this progress in defining privacy for either purely quantum or purely classical systems, a critical gap remains for the hybrid quantum-classical architectures that are essential for near-term quantum advantage. These models are paramount for applying quantum computation to real-world problems. However, to date, no work has theoretically established how to compose the privacy guarantees of classical and quantum noise sources within hybrid quantum models. This significant gap highlights the importance of our proposed HYPER-Q and the need for further exploration of hybrid approaches that combine traditional DP mechanisms with the privacy properties innate to quantum systems.

4 HYBRID NOISE-ADDED MECHANISM

In this section, we present our privacy-preserving mechanism that integrates classical and quantum noise to achieve differential privacy (DP) in QNN models. We first describe the structure of the hybrid mechanism, then analyze its DP guarantees, and finally provide a utility bound that characterizes the impact of noise on model performance.

4.1 MECHANISM OVERVIEW

The proposed mechanism is designed to mitigate privacy leakage at two levels. First, classical data can be vulnerable to reconstruction attacks before it enters the quantum circuit. To prevent such exposure, we introduce classical noise mechanisms to perturb the input. Second, we leverage inherent

Figure 1: Overview of the proposed hybrid noise-added mechanism, HYPER-Q.

quantum depolarizing noise to enhance privacy after encoding. This noise has been shown to preserve utility in the ideal case of infinite measurements (Du et al., 2021b). By combining classical and quantum noise, our dual-layer approach reduces reliance on excessive classical noise, achieving stronger privacy with minimal utility loss.

We formally describe each stage of the mechanism using a modular function-based representation (see an overview in Figure 1):

Classical Noise Function $f_{\text{cdp}} : \mathbb{X} \rightarrow \mathbb{X}$. This function adds calibrated classical noise to the input, providing an initial DP guarantee.

$$f_{\text{cdp}}(x) = x + \eta_{\text{cdp}}, \quad \text{where } \eta_{\text{cdp}} \sim \mathcal{N}(0, \sigma^2 I)$$

Here, the noise η_{cdp} is drawn from a multivariate Gaussian distribution with covariance $\sigma^2 I$.

Parameterized Linear Transformation $f_{\text{par}} : \mathbb{X} \rightarrow \mathbb{Y}$. This function serves as a learnable classical layer, transforming the input data into a feature space. The weights W and biases b are learnt during model training.

$$f_{\text{par}}(x') = Wx' + b = y$$

Quantum Encoding Function $f_{\text{enc}} : \mathbb{Y} \rightarrow \mathcal{H}$. This function encodes the classical feature vector y into a quantum state ρ within a d -dimensional Hilbert space \mathcal{H} composed of n qubits ($d = 2^n$). Let $|\psi_y\rangle = \prod_{j=1}^n e^{-iy_j H_j} |0\rangle^{\otimes n}$ be the encoded pure state vector, where H_j are Hermitian operators. The function's output is the corresponding density matrix:

$$f_{\text{enc}}(y) = |\psi_y\rangle\langle\psi_y| = \rho$$

Depolarizing Noise Channel $f_{\text{dep}}^{(\eta)} : \mathcal{H} \rightarrow \mathcal{H}$. This quantum channel adds a second layer of randomness by applying noise directly to the encoded state ρ . This process will be shown to amplify the initial privacy guarantee from the classical noise layer in the subsequent analysis.

$$f_{\text{dep}}^{(\eta)}(\rho) = (1 - \eta)\rho + \eta \frac{I}{d} = \tilde{\rho}$$

Here, $\eta \in [0, 1]$ is the depolarization probability, and I is the identity operator on \mathcal{H} .

Measurement Function $f_{\text{mea}} : \mathcal{H} \rightarrow \mathbb{Z}$. This final stage maps the noisy quantum state $\tilde{\rho}$ to a single classical class label z from the output space $\mathbb{Z} = \{0, 1, \dots, K - 1\}$. This mapping is inherently stochastic and is formally defined as:

$$\Pr(f_{\text{mea}}(\tilde{\rho}) = k) = \text{Tr}[E_k \tilde{\rho}], \quad \forall k$$

This hybrid approach allows independent tuning of classical and quantum noise for flexible privacy-utility trade-offs. Its modular design also supports theoretical analysis of privacy guarantees and performance impact, as detailed below.

4.2 DIFFERENTIAL PRIVACY BOUND

We now define the concepts used in our DP analysis. Specifically, our proposed mechanism can be expressed as the composition $Q^{(\eta)} \circ A$, where $A = f_{\text{par}} \circ f_{\text{cdp}}$ is a classical mechanism satisfying

270 (ε, δ)-DP, and $Q^{(\eta)} = f_{\text{meas}} \circ f_{\text{dep}}^{(\eta)} \circ f_{\text{enc}}$ is a quantum post-processing operation controlled by
 271 a noise parameter η . Assuming the random process f_{cdp} satisfies (ε, δ) -DP, it follows from the
 272 post-processing theorem (Dwork, 2006) that the mechanism A also satisfies (ε, δ) -DP.
 273

274 Our goal is to analyze how the composed mechanism $Q^{(\eta)} \circ A$ achieves new privacy parameters
 275 (ε', δ') , and how these parameters amplify the original guarantees (ε, δ) . Specifically, we provide
 276 two analytical results for the proposed mechanism. In the first analysis, we show that $Q^{(\eta)} \circ A$ can
 277 improve the failure probability by establishing that $\varepsilon' = \varepsilon$ and $\delta' < \delta$. In the second analysis, we
 278 demonstrate that under certain conditions, $Q^{(\eta)} \circ A$ can amplify both the privacy loss and the failure
 279 probability, achieving $\varepsilon' < \varepsilon$ and $\delta' < \delta$. All proofs are presented in Appendix B.

280 281 4.2.1 FIRST ANALYSIS — AMPLIFYING THE FAILURE PROBABILITY

282 We investigate how the failure probability is amplified under quantum post-processing, assuming a
 283 fixed privacy loss parameter ε . Theorem 1 formalizes this by establishing a new bound on the failure
 284 probability δ' of the composed mechanism $Q^{(\eta)} \circ A$, while keeping the privacy loss fixed at $\varepsilon' = \varepsilon$.
 285 The proof for this theorem bridges the classical and quantum divergence measures by involving
 286 two key steps: (1) establishing that the classical hockey-stick divergence of the final, measured
 287 probabilities is upper-bounded by the quantum hockey-stick divergence of the quantum states before
 288 measurement, and (2) proving that this quantum divergence contracts under the depolarizing channel
 289 $f_{\text{dep}}^{(\eta)}$ by a factor of $(1 - \eta)$. The detailed derivation of Theorem 1, along with its corresponding proofs,
 290 is provided in Appendix B.

291 **Theorem 1** (Amplification on Failure Probability). *Let $A : \mathbb{X} \rightarrow \mathcal{P}(\mathbb{Y})$ be a classical mechanism
 292 satisfying (ε, δ) -DP where $A = f_{\text{par}} \circ f_{\text{cdp}}$, and let $Q^{(\eta)} : \mathbb{Y} \rightarrow \mathcal{P}(\mathbb{Z})$ be a quantum mechanism in a
 293 d -dimensional Hilbert space defined as $Q^{(\eta)} = f_{\text{mea}} \circ f_{\text{dep}}^{(\eta)} \circ f_{\text{enc}}$ where $0 \leq \eta \leq 1$ is the depolarizing
 294 noise factor. Then, the composed mechanism $Q^{(\eta)} \circ A$ satisfies (ε', δ') -DP, where*

$$296 \quad \varepsilon' = \varepsilon, \quad \delta' = \left[\frac{\eta(1 - e^\varepsilon)}{d} + (1 - \eta)\delta \right]_+$$

299 From the final bound, it follows that for $\varepsilon \in [0, 1]$, we have $\delta' \leq \delta$. Therefore, the failure probability
 300 is strictly reduced, resulting in a privacy amplification effect, as formally stated in Corollary 1.
 301

302 **Corollary 1.** *The composed mechanism $Q^{(\eta)} \circ A$ satisfies (ε, δ') -DP with $\delta' < \delta$, thus strictly
 303 amplifying the overall failure probability.*

304 Based on (Lecuyer et al., 2019), we derive an explicit condition for certifiable adversarial robustness
 305 of the composed mechanism $Q^{(\eta)} \circ A$ in Corollary 2. This condition defines a robustness threshold that
 306 the model’s expected confidence scores must exceed. Notably, due to the privacy amplification effect
 307 formalized in Corollary 1, the robustness threshold under the composed mechanism (parameterized
 308 by δ') is strictly lower than that of the original classical mechanism (parameterized by δ). As a result,
 309 quantum post-processing provably enlarges the set of inputs for which adversarial robustness can be
 310 guaranteed. For further details on adversarial robustness, we refer readers to Appendix A.

311 **Corollary 2.** *The composed mechanism $Q^{(\eta)} \circ A$ is certifiably robust against adversarial perturba-
 312 tions for an input $x \in \mathbb{X}$ if the following condition holds for the correct class k :*

$$313 \quad \mathbb{E}[(Q^{(\eta)} \circ A)(x)]_k > e^{2\varepsilon} \max_{i \neq k} \mathbb{E}[(Q^{(\eta)} \circ A)(x)]_i + (1 + e^\varepsilon)\delta'$$

316 317 4.2.2 SECOND ANALYSIS — AMPLIFYING THE PRIVACY LOSS

318 We investigate how the composed mechanism $Q^{(\eta)} \circ A$ can simultaneously amplify both the privacy
 319 loss ε and the failure probability δ . The result is formalized in Theorem 2 which provides new (ε', δ')
 320 bound. The proof (detailed in Appendix B) relies on the *Advanced Joint Convexity* theory, originally
 321 introduced in (Balle et al., 2018). The key insight is that the depolarizing channel transforms the
 322 final output distribution into a convex combination of the original (noiseless) distribution and the
 323 distribution of a maximally mixed state. This explicit mixture structure allows the joint convexity
 theorem to be applied, yielding a new DP bound on both privacy loss and failure probability.

Theorem 2 reveals that the amplified failure probability δ' depends on the choice of POVMs. In particular, δ' becomes tighter as $\varphi = \min_k \left(\frac{\text{Tr}(E_k)}{d} \right)$ increases. This insight leads to Corollary 3, highlighting that δ' is minimized when all POVM elements E_k have equal trace (i.e., $\text{Tr}(E_k) = \frac{1}{K}$).

Contrarily, $\varepsilon' \leq \varepsilon$ for all $\eta \in [0, 1]$, the privacy loss in terms of ε is always reduced. However, the bound on δ is only improved (i.e., $\delta' \leq \delta$) when the noise level η exceeds the threshold given in Corollary 4. This condition highlights that a sufficient level of quantum noise is required to achieve strict amplification of the privacy guarantee in both parameters.

Theorem 2 (Amplification on Privacy Loss). *Let $A = f_{\text{par}} \circ f_{\text{cdp}}$ be (ε, δ) -DP, and $Q^{(\eta)} = f_{\text{mea}} \circ f_{\text{dep}}^{(\eta)} \circ f_{\text{enc}}$ be a quantum mechanism in a d -dimensional Hilbert space where $0 \leq \eta \leq 1$ is the depolarizing noise factor. Then, the composition $Q^{(\eta)} \circ A$ is (ε', δ') -DP where $\varepsilon' = \log(1 + (1 - \eta)(e^\varepsilon - 1))$ and $\delta' = (1 - \eta)(1 - e^{\varepsilon' - \varepsilon}(1 - \delta) - (e^\varepsilon - e^{\varepsilon'})\varphi)$ with $\varphi = \min_k \left(\frac{\text{Tr}(E_k)}{d} \right)$.*

Corollary 3. *Let $\{E_k\}_{k=1}^K$ be the POVM used in f_{mea} . Then, the amplified failure probability δ' in Theorem 2 is minimized when all POVM elements have equal trace (i.e., $\text{Tr}[E_k] = \frac{d}{K}$ for all $k \in \{1, \dots, K\}$).*

Corollary 4. *Given an optimal measurement such that $\text{Tr}[E_k] = \frac{d}{K} \forall k$, the composed mechanism $Q^{(\eta)} \circ A$ strictly improves the privacy guarantee (i.e., $\varepsilon' \leq \varepsilon$ and $\delta' \leq \delta$) if*

$$\eta \geq 1 - \frac{\delta}{(1 - \delta)(1 - e^{-\varepsilon}) - (e^\varepsilon - 1)/K}$$

4.2.3 THIRD ANALYSIS — GENERALIZATION TO OTHER NOISE CHANNELS

While our first analysis focuses on depolarizing noise, the underlying mechanism responsible for privacy amplification extends naturally to a broader class of quantum channels. The central insight is whenever a quantum noise channel induces a non-trivial contraction of the quantum hockey-stick divergence, it will inherently lead to privacy amplification. In this subsection, we show how this principle generalizes our analysis to two widely studied asymmetric noise models: Generalized Amplitude Damping (GAD) and Generalized Dephasing (GD).

Amplification Under Generalized Amplitude Damping. GAD channel is inherently asymmetric and non-unital. Despite this, we show that it contracts trace distance by a factor of at most $(2\sqrt{\eta} - \eta)$, where η is the damping strength. Substituting this contraction into the proof framework for Theorem 1 yields the following amplification bound.

Theorem 1.1 (Amplification Under Generalized Amplitude Damping Noise). *Let $A : \mathbb{X} \rightarrow \mathcal{P}(\mathbb{Y})$ be a classical mechanism satisfying (ε, δ) -DP where $A = f_{\text{par}} \circ f_{\text{cdp}}$, and let $Q^{(p, \eta)} : \mathbb{Y} \rightarrow \mathcal{P}(\mathbb{Z})$ be a quantum mechanism in d -dimensional Hilbert space defined as $Q^{(p, \eta)} = f_{\text{mea}} \circ f_{\text{GAD}}^{(p, \eta)} \circ f_{\text{enc}}$. Then, the composed mechanism $Q^{(p, \eta)} \circ A$ satisfies (ε', δ') -DP, where*

$$\varepsilon' = \varepsilon, \quad \delta' = (2\sqrt{\eta} - \eta)\delta.$$

Generalized Dephasing Under Equatorial Encoding. Dephasing noise preserves classical populations but suppresses quantum coherences. Although its worst-case contraction coefficient is 1, we show that for many QML encoding schemes, including angle-based encoders, the encoded states lie in the equatorial plane of the Bloch sphere. Under this structure, all distinguishability is encoded in coherence terms directly affected by GD noise, enabling nontrivial contraction.

Assumption 1 (Product Equatorial Encoding on All Qubits). *For each input $y \in \mathbb{Y}$, the encoder prepares a product state*

$$\rho_y = f_{\text{enc}}(y) = \bigotimes_{j=1}^n \rho_y^{(j)},$$

where each single-qubit factor $\rho_y^{(j)}$ is an equatorial state on the Bloch sphere, i.e.,

$$\rho_y^{(j)} = \frac{1}{2} \left(I + \cos \phi_y^{(j)} X + \sin \phi_y^{(j)} Y \right),$$

378
379 for some angle $\phi_y^{(j)} \in \mathbb{R}$ and with no Z -component.
380
381 Under this assumption, the GD channel contracts all relevant coherence terms by a factor of $|1 - 2\eta|$,
382 leading to the following privacy guarantee.
383

Theorem 1.2. *Let $A : \mathbb{X} \rightarrow \mathcal{P}(\mathbb{Y})$ be a classical mechanism satisfying (ε, δ) -DP, and let*

$$384 \quad Q^{(\eta)} := f_{\text{mea}} \circ f_{\text{GD}}^{(\eta)} \circ f_{\text{enc}} \\ 385$$

386 be an n -qubit quantum mechanism where $f_{\text{GD}}^{(\eta)}$ is the n -qubit GD channel defined above and f_{enc}
387 satisfies Assumption 1. Then the composed mechanism $Q^{(\eta)} \circ A$ satisfies (ε', δ') -DP with
388

$$389 \quad \varepsilon' = \varepsilon, \quad \delta' = |1 - 2\eta| \cdot \delta.$$

390 The full proofs and derivations of Theorem 1.1 and 1.2 are provided in Appendix B.4.
391
392

4.3 UTILITY BOUND

394 We finally establish a rigorous framework to study the utility loss, defined as the absolute error
395 between the noisy and noise-free versions of our mechanism. The final output of the mechanism
396 is stochastic, due to the sampling-based measurement process. Thus, we analyze the difference
397 between the expected values of their output. The expected value represents the average behavior of a
398 mechanism and provides a deterministic quantity that we can use to measure utility loss.
399

400 Formally, we define the expectation measurement function $f_{\text{exp}} : \mathcal{H} \rightarrow \mathbb{R}$ as:

$$401 \quad f_{\text{exp}}(\rho) = \sum_k k \text{Tr}[E_k \rho] = \text{Tr} \left[\left(\sum_k k E_k \right) \rho \right] = \text{Tr}[E_{\text{exp}} \rho] \\ 402 \\ 403$$

404 where $E_{\text{exp}} = \sum_k k E_k$ is the expectation value observable.
405

406 Using this function, we define our deterministic expectation mechanisms. The **full mechanism**,
407 including classical and quantum noise, is $\mathcal{M}_{\text{full}}(x) = (f_{\text{exp}} \circ f_{\text{dep}}^{(\eta)} \circ f_{\text{enc}} \circ f_{\text{par}} \circ f_{\text{cdp}})(x)$. On the other
408 hand, the **noise-free mechanism (clean)** is $\mathcal{M}_{\text{clean}}(x) = (f_{\text{exp}} \circ f_{\text{enc}} \circ f_{\text{par}})(x)$. The total utility loss
409 is the worst-case absolute error between their expected outputs:
410

$$411 \quad \text{Error} = \sup_{x \in \mathbb{X}} |\mathcal{M}_{\text{full}}(x) - \mathcal{M}_{\text{clean}}(x)|$$

412 **Theorem 3 (Utility Bound).** *Let the classical noise be $\kappa \sim \mathcal{N}(0, \sigma^2 I)$ acting on an input space \mathbb{X}
413 of dimension $d_X = \dim(\mathbb{X})$. For any desired failure probability $p > 0$, the utility loss is bounded
414 probabilistically as:*

$$415 \quad \text{Pr} \left(\text{Error} \leq L_\infty \cdot \sigma \sqrt{2 \ln \frac{2d_X}{p}} + 2\eta \|E_{\text{exp}}\|_{\text{op}} \right) \geq 1 - p \\ 416 \\ 417$$

418 where $L_\infty = 2(1 - \eta) \|E_{\text{exp}}\|_{\text{op}} \|W\|_\infty \left(\sum_j \|H_j\|_{\text{op}} \right)$.
419

420 Theorem 3 provides a utility bound that quantifies the trade-off between privacy and performance. The
421 proof (detailed in Appendix B) utilizes an **intermediate mechanism (half)** that includes only quantum
422 noise as $\mathcal{M}_{\text{half}}(x) = (f_{\text{exp}} \circ f_{\text{dep}}^{(\eta)} \circ f_{\text{enc}} \circ f_{\text{par}})(x)$. Specifically, first, we bound the error introduced
423 by the quantum noise ($|\mathcal{M}_{\text{half}} - \mathcal{M}_{\text{clean}}|$), which is shown to be proportional to the quantum noise
424 level η . Second, we bound the error from the classical noise by establishing a Lipschitz constant
425 L_∞ for the quantum-only mechanism. As the classical noise is unbounded, the final guarantee is a
426 high-probability statement relating the utility loss to the classical (σ) and quantum (η) noise levels.
427

428 5 EXPERIMENTAL EVALUATION

429 We empirically evaluate HYPER- \mathcal{Q} , focusing on adversarial robustness, a direct outcome of the
430 Differential Privacy (DP) guarantees in Corollary 2. Specifically, we aim to show that for a fixed
431

432 privacy budget (ε', δ') , the hybrid noise strategy of HYPER-Q yields higher model utility than the
 433 purely classical mechanisms including Basic Gaussian, Analytic Gaussian (Balle & Wang, 2018) and
 434 DP-SGD Abadi et al. (2016); Watkins et al. (2023) (more details can be found in Appendix A). We
 435 note that the first two mechanisms apply noise at the input level, whereas DP-SGD performs noise
 436 injection at the gradient level. We first evaluate HYPER-Q across various quantum noise settings and
 437 compare its performance to that of the classical mechanisms on a quantum machine learning (QML)
 438 model. We then benchmark the performance of the HYPER-Q-equipped QML model against various
 439 classical learning models protected by the Analytic Gaussian mechanism. Each experiment reports
 440 the averaged accuracy over 10 runs.

441 **Implementation Details.** We implement a QML model designed to incorporate HYPER-Q. The
 442 model architecture follows the mechanism proposed and analyzed in Section 4. The implementation
 443 uses the PennyLane library (Bergholm et al., 2022), with quantum circuits executed on simulators,
 444 which is a standard practice for prototyping and evaluating quantum applications (Cicero et al., 2025).
 445 To ensure DP, Gaussian noise is added directly to the input and depolarizing noise is applied as a
 446 layer in the quantum circuit. Specifically, given a target privacy budget (ε', δ') , the depolarizing noise
 447 level η is fixed, while the Gaussian noise level σ^2 is computed according to Theorem 1. Additional
 448 details are provided in Appendix C.

449 **Datasets & Benchmark Models.** We evaluate our approach on three standard image classification
 450 datasets: MNIST (Lecun et al., 1998), FashionMNIST (Xiao et al., 2017), and USPS (Hull, 2002).
 451 To assess the practical viability of HYPER-Q, we compare its robustness against three standard deep
 452 learning architectures: a Multi-Layer Perceptron (MLP), a ResNet-9-based Convolutional Neural
 453 Network (CNN) (He et al., 2016), and a Vision Transformer (ViT) (Dosovitskiy et al., 2021). Each
 454 of these classical models is protected by the Analytic Gaussian mechanism with identical privacy
 455 budgets. Specific descriptions of each dataset and benchmark are provided in Appendix D.

456 **Adversarial Robustness Settings.** We use a certified defense framework (Lecuyer et al., 2019) that
 457 trains models with noise layers calibrated by a DP budget (ε', δ') and a construction attack bound
 458 L_{cons} . We then evaluate robustness by measuring the model’s accuracy against FGSM (Goodfellow
 459 et al., 2015) and PGD (Madry et al., 2018) attacks, whose strength is defined by the empirical attack
 460 bound L_{attk} . More details are provided in Appendix E.

461 5.1 ROBUSTNESS ANALYSIS IN QML

464 In this experiment, we illustrate that under the same privacy budget, HYPER-Q preserves adversarial
 465 robustness more efficiently than classical mechanisms in QML. We evaluate the adversarial robustness
 466 of HYPER-Q under two quantum noise settings, $\eta \in \{0.1, 0.3\}$. We compare its performance with
 467 Basic Gaussian, Analytic Gaussian and DP-SGD mechanisms. For fair comparisons, we ensure that
 468 all methods are evaluated under the same privacy budget and applied to the same QML model.

469 Figure 2 presents the average accuracy on the MNIST, FashionMNIST, and USPS datasets under
 470 both FGSM and PGD attacks for four distinct privacy budgets $\varepsilon' \in \{0.25, 0.5, 0.75, 1\}$. We observe
 471 that HYPER-Q with $\eta = 0.1$ consistently outperforms all baseline methods, both in the absence of
 472 attack ($L_{\text{attk}} = 0$) and under attack ($L_{\text{attk}} > 0$). As the ε' increases, the performance gap becomes
 473 more pronounced. Specifically, HYPER-Q surpasses the second-best method, Analytic Gaussian, by
 474 an average of 16.54%, 5.37%, 6.44%, and 5.20% in accuracy across the four respective ε' values.
 475 This demonstrates that replacing a reasonable amount of classical noise with quantum noise can
 476 significantly enhance adversarial accuracy. In addition, we observe that while HYPER-Q with $\eta = 0.3$
 477 performs better than classical mechanisms at $\varepsilon' = 0.25$, its relative efficiency decreases at higher
 478 settings of ε' where the amount of classical noise added diminishes. This suggests that when quantum
 479 noise outweighs classical noise, the overall performance degrades. Therefore, selecting an appropriate
 480 value of η is crucial. For a detailed analysis of η , we refer readers to Appendix F.5.

481 5.2 COMPARATIVE BENCHMARK WITH CLASSICAL MODELS

483 HYPER-Q is intrinsically designed for QML models. This raises a critical question of practical
 484 viability: *Can a QML model protected by HYPER-Q compare to or outperform classical models that
 485 are protected by their own conventional privacy mechanisms?* Figure 3 illustrates the performance
 486 comparison of a QML model protected by HYPER-Q (with its empirically best quantum noise

Figure 2: Average accuracy of noise-added mechanisms under FGSM and PGD attacks on MNIST, FashionMNIST, and USPS. Accuracy is averaged over all L_{cons} settings for each $(L_{\text{attk}}, \epsilon')$. HYPER-Q is evaluated with $\eta \in [0.1, 0.3]$ and $\delta' = 1 \times 10^{-5}$.

Figure 3: Average accuracy of the QML model with HYPER-Q protection versus three classical baselines (ResNet-9, ViT, and MLP) with Analytic Gaussian protection, averaged over FGSM and PGD attacks and across MNIST, FashionMNIST, and USPS. The HYPER-Q model is evaluated with its empirically best quantum noise setting ($\eta = 0.1$). For each $(L_{\text{attk}}, \epsilon')$ pair, the reported accuracy is averaged over all L_{cons} settings. $\delta' = 1 \times 10^{-5}$ for all settings.

setting, $\eta = 0.1$) against three classical baselines protected by Analytic Gaussian noise. We observe that for smaller privacy parameters, $\epsilon' \in \{0.25, 0.5\}$, HYPER-Q outperforms the best classical baseline (ResNet-9) by 20.44% and 3.41% in average accuracy, respectively. This indicates that a large amount of Gaussian noise can significantly degrade model performance, and in such cases, substituting classical noise with quantum noise can result in better utility. However, for larger ϵ' values, HYPER-Q performs comparably (at $\epsilon' = 0.75$) and worse (at $\epsilon' = 1$) than ResNet-9. This suggests that when only a small amount of classical noise is needed to preserve the utility of a classical model, QML may not yet offer a performance advantage due to current limitations in quantum systems compared to their classical counterparts.

For a complete performance evaluation, including results on each dataset (MNIST, FashionMNIST, and USPS) and robustness against each attack (FGSM and PGD), we refer the reader to Appendix F. In Appendix F, we also provide analysis of dimensional scalability, verification of utility bound tightness, sensitivity analysis of η and analysis of performance on CIFAR-10.

6 CONCLUSION

In this work we have presented HYPER-Q as a hybrid privacy-preserving mechanism for quantum systems. Through extensive experimental analyses across three real-world datasets subjected to the FGSM and PGD attacks, we demonstrate that the combination of quantum and classical noise is both robust and scalable, while yielding significant improvements in privacy preservation and model utility. Classical components ensure stable training and feasibility in interpretation, while quantum noise introduces natural randomness that enhances privacy without heavily degrading model utility. As quantum hardware matures, we expect frameworks like HYPER-Q to be essential in shaping the future of privacy-preserving ML. An important direction for future work is to investigate the behavior of hybrid DP mechanisms on larger variational circuits deployed on actual quantum hardware.

540 REPRODUCIBILITY STATEMENT
541

542 All datasets used in this work are publicly available for download. We include the model architecture
543 of the proposed method, HYPER-Q, in Appendix C along with resources used to implement our work.
544 Furthermore, we include descriptions of the benchmarks along with their respective citations for
545 reproducibility in Appendix D. We also describe our specific hyperparameters to replicate our results.
546 A repository to our code will be made publicly available upon acceptance.

548 REFERENCES
549

550 Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal Talwar, and
551 Li Zhang. Deep learning with differential privacy. In *Proceedings of the 2016 ACM SIGSAC
552 conference on computer and communications security*, pp. 308–318, 2016.

553 Ya-Ru Bai, Yuan-Hong Tao, Shu-Hui Wu, Hui Zhang, and Shao-Ming Fei. Quantum differential
554 privacy under noise channels. *Physica Scripta*, 99(3):035119, 2024.

555 Borja Balle and Yu-Xiang Wang. Improving the Gaussian mechanism for differential privacy:
556 Analytical calibration and optimal denoising. In Jennifer Dy and Andreas Krause (eds.), *Pro-
557 ceedings of the 35th International Conference on Machine Learning*, volume 80 of *Proceed-
558 ings of Machine Learning Research*, pp. 394–403. PMLR, 10–15 Jul 2018. URL <https://proceedings.mlr.press/v80/balle18a.html>.

559 Borja Balle, Gilles Barthe, and Marco Gaboardi. Privacy amplification by subsampling: tight analyses
560 via couplings and divergences. In *Proceedings of the 32nd International Conference on Neural
561 Information Processing Systems*, NIPS’18, pp. 6280–6290, Red Hook, NY, USA, 2018. Curran
562 Associates Inc.

563 Borja Balle, Gilles Barthe, Marco Gaboardi, and Joseph Geumlek. Privacy amplification by mixing
564 and diffusion mechanisms. In *Neural Information Processing Systems*, 2019a. URL <https://api.semanticscholar.org/CorpusID:168170121>.

565 Borja Balle, James Bell, Adrià Gascón, and Kobbi Nissim. The privacy blanket of the shuffle model. In
566 *Advances in Cryptology – CRYPTO 2019: 39th Annual International Cryptology Conference, Santa
567 Barbara, CA, USA, August 18–22, 2019, Proceedings, Part II*, pp. 638–667, Berlin, Heidelberg,
568 2019b. Springer-Verlag. ISBN 978-3-030-26950-0. doi: 10.1007/978-3-030-26951-7_22. URL
569 https://doi.org/10.1007/978-3-030-26951-7_22.

570 Julian Berberich, Daniel Fink, and Christian Holm. Robustness of quantum algorithms against
571 coherent control errors. *Phys. Rev. A*, 109:012417, Jan 2024. doi: 10.1103/PhysRevA.109.012417.
572 URL <https://link.aps.org/doi/10.1103/PhysRevA.109.012417>.

573 Ville Bergholm, Josh Izaac, Maria Schuld, Christian Gogolin, Shahnawaz Ahmed, Vishnu Ajith,
574 M. Sohaib Alam, Guillermo Alonso-Linaje, B. AkashNarayanan, Ali Asadi, Juan Miguel Arrazola,
575 Utkarsh Azad, Sam Banning, Carsten Blank, Thomas R Bromley, Benjamin A. Cordier, Jack
576 Ceroni, Alain Delgado, Olivia Di Matteo, Amintor Dusko, Tanya Garg, Diego Guala, Anthony
577 Hayes, Ryan Hill, Aroosa Ijaz, Theodor Isacsson, David Ittah, Soran Jahangiri, Prateek Jain,
578 Edward Jiang, Ankit Khandelwal, Korbinian Kottmann, Robert A. Lang, Christina Lee, Thomas
579 Loke, Angus Lowe, Keri McKiernan, Johannes Jakob Meyer, J. A. Montañez-Barrera, Romain
580 Moyard, Zeyue Niu, Lee James O’Riordan, Steven Oud, Ashish Panigrahi, Chae-Yeon Park,
581 Daniel Polatajko, Nicolás Quesada, Chase Roberts, Nahum Sá, Isidor Schoch, Borun Shi, Shuli
582 Shu, Sukin Sim, Arshpreet Singh, Ingrid Strandberg, Jay Soni, Antal Száva, Slimane Thabet,
583 Rodrigo A. Vargas-Hernández, Trevor Vincent, Nicola Vitucci, Maurice Weber, David Wierichs,
584 Roeland Wiersema, Moritz Willmann, Vincent Wong, Shaoming Zhang, and Nathan Killoran.
585 PennyLane: Automatic differentiation of hybrid quantum-classical computations, 2022. URL
586 <https://arxiv.org/abs/1811.04968>.

587 Mark Bun, Kobbi Nissim, Uri Stemmer, and Salil P. Vadhan. Differentially private release and
588 learning of threshold functions. *2015 IEEE 56th Annual Symposium on Foundations of Computer
589 Science*, pp. 634–649, 2015. URL <https://api.semanticscholar.org/CorpusID:3338015>.

594 Albert Cheu, Adam D. Smith, Jonathan Ullman, David Zeber, and Maxim Zhilyaev. Distributed
 595 differential privacy via shuffling. *IACR Cryptol. ePrint Arch.*, 2019:245, 2018. URL <https://api.semanticscholar.org/CorpusID:54464170>.
 596

597 Alessio Cicero, Mohammad Ali Maleki, Muhammad Waqar Azhar, Anton Frisk Kockum, and
 598 Pedro Trancoso. Simulation of quantum computers: Review and acceleration opportunities.
 599 *ACM Transactions on Quantum Computing*, September 2025. doi: 10.1145/3762672. URL
 600 <https://doi.org/10.1145/3762672>. Just Accepted.
 601

602 Jeremy Cohen, Elan Rosenfeld, and Zico Kolter. Certified adversarial robustness via randomized
 603 smoothing. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), *Proceedings of the 36th*
 604 *International Conference on Machine Learning*, volume 97 of *Proceedings of Machine Learning*
 605 *Research*, pp. 1310–1320. PMLR, 09–15 Jun 2019. URL <https://proceedings.mlr.press/v97/cohen19c.html>.
 606

607 Andrew C. Cullen, Paul Montague, Shijie Liu, Sarah M. Erfani, and Benjamin I. P. Rubinstein. It’s
 608 Simplex! Disaggregating Measures to Improve Certified Robustness . In *2024 IEEE Symposium on*
 609 *Security and Privacy (SP)*, pp. 2886–2900, Los Alamitos, CA, USA, May 2024. IEEE Computer
 610 Society. doi: 10.1109/SP54263.2024.00065. URL <https://doi.ieee.org/10.1109/SP54263.2024.00065>.
 611

612 Jinshuo Dong, Aaron Roth, and Weijie J Su. Gaussian differential privacy. *Journal of the Royal*
 613 *Statistical Society Series B: Statistical Methodology*, 84(1):3–37, 2022.
 614

615 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
 616 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image
 617 is worth 16x16 words: Transformers for image recognition at scale. In *International Conference*
 618 *on Learning Representations*, 2021.

619 Yuxuan Du, Min-Hsiu Hsieh, Tongliang Liu, Dacheng Tao, and Nana Liu. Quantum noise protects
 620 quantum classifiers against adversaries. *Phys. Rev. Res.*, 3:023153, May 2021a.
 621

622 Yuxuan Du, Min-Hsiu Hsieh, Tongliang Liu, Dacheng Tao, and Nana Liu. Quantum noise
 623 protects quantum classifiers against adversaries. *Phys. Rev. Res.*, 3:023153, May 2021b.
 624 doi: 10.1103/PhysRevResearch.3.023153. URL <https://link.aps.org/doi/10.1103/PhysRevResearch.3.023153>.
 625

626 Cynthia Dwork. Differential privacy. In *International Colloquium on Automata, Languages and Pro-*
 627 *gramming*, 2006. URL <https://api.semanticscholar.org/CorpusID:2565493>.
 628

629 Cynthia Dwork and Aaron Roth. The algorithmic foundations of differential privacy. *Found. Trends*
 630 *Theor. Comput. Sci.*, 9(3–4):211–407, August 2014. ISSN 1551-305X. doi: 10.1561/0400000042.
 631 URL <https://doi.org/10.1561/0400000042>.
 632

633 Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sensitivity in
 634 private data analysis. In *Theory of cryptography conference*, pp. 265–284. Springer, 2006.
 635

636 Úlfar Erlingsson, Vitaly Feldman, Ilya Mironov, Ananth Raghunathan, Kunal Talwar, and Abhradeep
 637 Thakurta. Amplification by shuffling: from local to central differential privacy via anonymity. In
 638 *Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms*, SODA ’19,
 639 pp. 2468–2479, USA, 2019. Society for Industrial and Applied Mathematics.
 640

641 Vitaly Feldman, Ilya Mironov, Kunal Talwar, and Abhradeep Thakurta. Privacy amplification by
 642 iteration. *2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS)*, pp.
 643 521–532, 2018. URL <https://api.semanticscholar.org/CorpusID:52055752>.
 644

645 K. A. G. Fisher, A. Broadbent, L. K. Shalm, Z. Yan, J. Lavoie, R. Prevedel, T. Jennewein, and
 646 K. J. Resch. Quantum computing on encrypted data. *Nature Communications*, 5(1):3074, Jan
 647 2014. ISSN 2041-1723. doi: 10.1038/ncomms4074. URL <https://doi.org/10.1038/ncomms4074>.
 648

649 Quan Geng and Pramod Viswanath. The optimal noise-adding mechanism in differential pri-
 650 vacy. *IEEE Transactions on Information Theory*, 62:925–951, 2012. URL <https://api.semanticscholar.org/CorpusID:8989005>.
 651

648 Badih Ghazi, Cristóbal Guzmán, Pritish Kamath, Ravi Kumar, and Pasin Manurangsi. Differentially
 649 private optimization with sparse gradients. In *Proceedings of the 38th International Conference on*
 650 *Neural Information Processing Systems*, NIPS '24, Red Hook, NY, USA, 2025. Curran Associates
 651 Inc. ISBN 9798331314385.

652 Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
 653 examples. *International Conference on Learning Representations*, 2015.

654 Kan Hatakeyama-Sato, Yasuhiko Igarashi, Takahiro Kashikawa, Koichi Kimura, and Kenichi Oyaizu.
 655 Quantum circuit learning as a potential algorithm to predict experimental chemical properties.
 656 *Digital Discovery*, 2:165–176, 2023. doi: 10.1039/D2DD00090C. URL <http://dx.doi.org/10.1039/D2DD00090C>.

657 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
 658 recognition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*,
 659 pp. 770–778, 2016.

660 Christoph Hirche. Quantum doeblin coefficients: A simple upper bound on contraction coefficients.
 661 In *2024 IEEE International Symposium on Information Theory (ISIT)*, pp. 557–562, 2024. doi:
 662 10.1109/ISIT57864.2024.10619667.

663 Christoph Hirche, Cambyse Rouzé, and Daniel Stilck França. Quantum differential privacy: An
 664 information theory perspective. *IEEE Transactions on Information Theory*, 69(9):5771–5787,
 665 2023. doi: 10.1109/TIT.2023.3272904.

666 Zhirui Hu, Robert Wolle, Mingzhen Tian, Qiang Guan, Travis Humble, and Weiwen Jiang. Toward
 667 consistent high-fidelity quantum learning on unstable devices via efficient in-situ calibration. In
 668 Hausi Muller, Yuri Alexev, Andrea Delgado, and Greg Byrd (eds.), *Proceedings - 2023 IEEE*
 669 *International Conference on Quantum Computing and Engineering, QCE 2023*, *Proceedings - 2023*
 670 *IEEE International Conference on Quantum Computing and Engineering, QCE 2023*, pp. 848–858.
 671 Institute of Electrical and Electronics Engineers Inc., 2023. doi: 10.1109/QCE57702.2023.00099.
 672 Publisher Copyright: © 2023 IEEE.; 4th IEEE International Conference on Quantum Computing
 673 and Engineering, QCE 2023 ; Conference date: 17-09-2023 Through 22-09-2023.

674 Jonathan J. Hull. A database for handwritten text recognition research. *IEEE Transactions on pattern*
 675 *analysis and machine intelligence*, 16(5):550–554, 2002.

676 Tianxi Ji and Pan Li. Less is more: revisiting the gaussian mechanism for differential privacy.
 677 In *Proceedings of the 33rd USENIX Conference on Security Symposium*, SEC '24, USA, 2024.
 678 USENIX Association. ISBN 978-1-939133-44-1.

679 Tatsuki Koga, Casey Meehan, and Kamalika Chaudhuri. Privacy amplification by subsampling in
 680 time domain. In Gustau Camps-Valls, Francisco J. R. Ruiz, and Isabel Valera (eds.), *Proceedings*
 681 *of The 25th International Conference on Artificial Intelligence and Statistics*, volume 151 of
 682 *Proceedings of Machine Learning Research*, pp. 4055–4069. PMLR, 28–30 Mar 2022. URL
 683 <https://proceedings.mlr.press/v151/koga22a.html>.

684 Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
 685 recognition. *Proceedings of the IEEE*, 86(11):2278–2324, 1998. doi: 10.1109/5.726791.

686 Mathias Lecuyer, Vaggelis Atlidakis, Roxana Geambasu, Daniel Hsu, and Suman Jana. Certified
 687 robustness to adversarial examples with differential privacy. In *2019 IEEE Symposium on Security*
 688 *and Privacy (SP)*, pp. 656–672, 2019. doi: 10.1109/SP.2019.00044.

689 Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
 690 Towards deep learning models resistant to adversarial attacks. In *International Conference on*
 691 *Learning Representations*, 2018.

692 Michael A. Nielsen and Isaac L. Chuang. *Quantum Computation and Quantum Information: 10th*
 693 *Anniversary Edition*. Cambridge University Press, 2010.

694 Adrián Pérez-Salinas, Alba Cervera-Lierta, Elies Gil-Fuster, and José I. Latorre. Data re-uploading
 695 for a universal quantum classifier. *Quantum*, 4:226, February 2020. ISSN 2521-327X. doi: 10.
 696 22331/q-2020-02-06-226. URL <https://doi.org/10.22331/q-2020-02-06-226>.

702 HaiNhat Phan, My T. Thai, Han Hu, Ruoming Jin, Tong Sun, and Dejing Dou. Scalable dif-
 703 ferential privacy with certified robustness in adversarial learning. In *International Conference*
 704 *on Machine Learning*, 2019. URL [https://api.semanticscholar.org/CorpusID:
 705 219558337](https://api.semanticscholar.org/CorpusID:219558337).

706 Maria Schuld and Nathan Killoran. Quantum machine learning in feature hilbert spaces. *Phys. Rev.*
 707 *Lett.*, 122:040504, Feb 2019. doi: 10.1103/PhysRevLett.122.040504. URL <https://link.aps.org/doi/10.1103/PhysRevLett.122.040504>.

709 Baobao Song, Shiva Raj Pokhrel, Athanasios V Vasilakos, Tianqing Zhu, and Gang Li. Towards a
 710 hybrid quantum differential privacy. *IEEE Journal on Selected Areas in Communications*, 2025.

712 Yu-Xiang Wang, Borja Balle, and Shiva Prasad Kasiviswanathan. Subsampled rényi differential
 713 privacy and analytical moments accountant. In *The 22nd international conference on artificial*
 714 *intelligence and statistics*, pp. 1226–1235. PMLR, 2019.

715 William M Watkins, Samuel Yen-Chi Chen, and Shinjae Yoo. Quantum machine learning with
 716 differential privacy. *Scientific Reports*, 13(1):2453, 2023.

718 Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmarking
 719 machine learning algorithms. *arXiv preprint arXiv:1708.07747*, 2017.

720 Xing Xiao, Yao Yao, Lei-Ming Zhou, and Xiaoguang Wang. Distribution of quantum fisher informa-
 721 tion in asymmetric cloning machines. *Scientific Reports*, 4(1):7361, Dec 2014. ISSN 2045-2322.
 722 doi: 10.1038/srep07361. URL <https://doi.org/10.1038/srep07361>.

724 Jiayuan Ye and Reza Shokri. Differentially private learning needs hidden state (or much faster
 725 convergence). In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.),
 726 *Advances in Neural Information Processing Systems*, volume 35, pp. 703–715. Curran Asso-
 727 ciates, Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/04b42392f9a3a16aea012395359b8148-Paper-Conference.pdf.

729 Xin Yuan, Wei Ni, Ming Ding, Kang Wei, Jun Li, and H. Vincent Poor. Amplitude-varying pertur-
 730 bation for balancing privacy and utility in federated learning. *IEEE Transactions on Information*
 731 *Forensics and Security*, 18:1884–1897, 2023. doi: 10.1109/TIFS.2023.3258255.

732 Li Zhou and Mingsheng Ying. Differential privacy in quantum computation. In *2017 IEEE 30th*
 733 *Computer Security Foundations Symposium (CSF)*, pp. 249–262, 2017. doi: 10.1109/CSF.2017.23.

735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755

APPENDIX

A ADDITIONAL BACKGROUND

A.1 QUANTUM NEURAL NETWORKS

Quantum neural networks (QNNs) are a class of quantum machine learning models that employ parameterized quantum circuits to learn from classical or quantum data. In this work, we focus on QNNs designed for classical input. In a supervised learning context, a QNN aims to approximate an unknown function $K : \mathbb{X} \rightarrow \mathbb{Y}$ by training on a dataset $S = \{(x_i, y_i)\}_{i=1}^N$, where each $x_i \in \mathbb{R}^d$ is an input data vector and y_i is the associated label.

QNN models use parameterized quantum circuits to process data. The workflow for a typical QNN involves:

- **Data Encoding:** Classical data is mapped into the quantum state of qubits using a parameterized "encoder" circuit. This step is crucial, as it can be trained to find powerful data representations and can introduce quantum features like entanglement to increase the model's capacity.
- **Model Circuit:** A sequence of parameterized quantum gates, analogous to the layers of a classical neural network, processes the encoded quantum state.
- **Measurement:** A measurement is performed on the final state to extract a classical output, which serves as the model's prediction.

Training a QNN is a hybrid quantum-classical process. The quantum computer executes the circuit and performs the measurement. A classical computer then calculates a loss function (e.g., Mean Squared Error) to quantify the error between the prediction and the true label. Given a differentiable loss function $f(\cdot)$, the objective is to minimize:

$$\mathcal{L}(\theta) = \sum_{i=1}^N f(\ell_i(\theta; y_i), y_i).$$

Finally, the classical computer uses gradient-based optimization to update the circuit's parameters, θ . This process is repeated iteratively until the model converges. The goal is to find the optimal parameters θ^* that minimize the loss:

$$\theta^* = \arg \min_{\theta} \mathcal{L}(\theta).$$

A.2 ADVERSARIAL ROBUSTNESS

A model is considered *adversarially robust* if it can consistently make correct predictions even when its inputs are slightly altered by malicious perturbations. These altered inputs are known as *adversarial samples*. Formally, we define a model $f : \mathbb{X} \rightarrow \mathbb{Y}$, which maps an input in the space \mathbb{X} to an output distribution over labels $y = \{y_1, y_2, \dots, y_k\} \in \mathbb{Y}$. The model f is considered adversarially robust if its prediction for an input x is unchanged when a small perturbation α is added to x . This can be stated as:

$$\max_{i \in [1, k]} [f(x)]_i = \max_{i \in [1, k]} [f(x + \alpha)]_i, \quad \forall \alpha \in B_p(L),$$

where $B_p(L_{\text{cons}})$ represents the p -norm ball of radius L_{cons} , that restricts the perturbation size to $\|\alpha\|_p \leq L_{\text{cons}}$. We also call L_{cons} as the construction bound.

Recently, Differential Privacy (DP) has emerged as a promising approach to enhance model robustness. Originally developed to protect individual data in statistical databases, DP ensures that the output of an algorithm does not significantly change when a single individual's data is added or removed. This is typically achieved by injecting carefully calibrated randomness into the algorithm's computation. This property of prediction stability forms the foundation of the connection between DP and adversarial robustness, as explored in (Lecuyer et al., 2019). By design, models trained with DP noise are

810 inherently less sensitive to small input perturbations, thereby improving their resistance to adversarial
 811 attacks.

812 Formally, given a model f which is (ε, δ) differentially private under a p -norm metric, it is guaranteed
 813 to be robust against adversarial perturbations α of size $\|\alpha\|_p \leq 1$ if the following condition
 814 holds Lecuyer et al. (2019):
 815

$$816 \quad 817 \quad 818 \quad E([f(x)]_k) > e^{2\varepsilon} \max_{i:i \neq k} E([f(x)]_i) + (1 + e^\varepsilon)\delta, \exists k \in K,$$

819 where $E([f(x)]_k)$ is the expected confidence score for the correct label k , and $E([f(x)]_i)$ is the
 820 expected confidence score for other labels.

821 This condition certifies that any input satisfying the inequality is immune to adversarial attacks within
 822 the defined perturbation size. A stronger DP guarantee, meaning smaller values for ε and δ , expands
 823 the set of inputs for which this robustness holds. In this work, our goal is to explore how quantum
 824 noise can amplify the DP guarantee, thereby significantly enhancing the model's overall robustness.
 825

826 A.3 NOISE MECHANISMS

827 Noise injection is a simple, yet, useful technique that can achieve DP guarantees by perturbing inputs,
 828 gradients, or outputs. In this work, we focus on input-perturbation mechanisms that satisfy (ε, δ) -DP.
 829 For adversarial robustness, the amount of noise added is determined by three factors: the desired
 830 privacy budget (ε, δ) , the sensitivity Δ of the function, and the construction bound L_{cons} . Because
 831 we add noise directly into the input, we have the trivial sensitivity $\Delta = 1$ (Lecuyer et al., 2019).
 832 Thus, we can omit it in the following analysis. Below, we summarize three common noise-added
 833 mechanisms:

834 **Basic Gaussian.** The Gaussian mechanism is a standard approach for providing (ε, δ) -DP. The
 835 Gaussian mechanism introduces noise from a normal distribution with zero mean and a variance
 836 calibrated to predefined privacy parameters (Dong et al., 2022). It's well-suited for functions whose
 837 sensitivity is measured using the ℓ_2 norm. Given a function f with a construction bound L_{cons}
 838 measured in ℓ_2 norm, the mechanism achieves (ε, δ) -DP by adding noise $\mathcal{N}(0, \sigma^2 I)$ with σ is
 839 computed as:

$$840 \quad 841 \quad 842 \quad \sigma = \sqrt{2 \ln\left(\frac{1.25}{\delta}\right)} L_{\text{cons}} / \varepsilon$$

843 **Analytic Gaussian.** The analytic Gaussian mechanism improves on the basic Gaussian approach by
 844 exploiting tighter bounds derived from the privacy loss distribution (Balle & Wang, 2018). Specifically,
 845 we can implicitly characterize the privacy loss as (Cullen et al., 2024):

$$846 \quad 847 \quad \delta(\varepsilon) = \Phi\left(-\frac{L_{\text{cons}}}{2\sigma} + \frac{\varepsilon\sigma}{L_{\text{cons}}}\right) - e^\varepsilon \cdot \Phi\left(-\frac{L_{\text{cons}}}{2\sigma} - \frac{\varepsilon\sigma}{L_{\text{cons}}}\right)$$

848 where $\Phi(\cdot)$ is the cumulative distribution function of the standard Gaussian distribution. This
 849 formulation allows us to numerically solve for the minimum σ required to satisfy a target (ε, δ) .
 850

851 **Laplacian.** The Laplace mechanism introduces noise based on the Laplace distribution and centered
 852 at zero with scale proportional to defined sensitivity (Dwork et al., 2006). It is typically used in
 853 settings that call for ϵ -DP. The noise introduced is proportional to the sensitivity of the function being
 854 analyzed, ensuring that small adjustments to input data produce statistically similar outputs. In this
 855 work, we focus on flexible mechanisms which are able to achieve (ε, δ) -DP, so we do not consider
 856 Laplacian for our comparison.
 857

858 **DP-SGD.** The Differentially Private Stochastic Gradient Descent (DP-SGD) algorithm achieves
 859 privacy by clipping per-sample gradients and adding calibrated Gaussian noise during each
 860 optimization step Abadi et al. (2016). As a gradient-perturbation mechanism, DP-SGD is designed
 861 to provide (ε, δ) -DP while maintaining compatibility with large-scale deep learning. The privacy
 862 guarantee arises from controlling the sensitivity of gradient updates and injecting noise proportional
 863

864
865
866
867
868
869
870
871

to this sensitivity. Although DP-SGD is a well-established baseline in classical machine learning, its behavior in QML settings remains largely unexplored. Beyond a direct application presented in Watkins et al. (2023), the interplay between DP-SGD’s gradient noise and quantum gradient estimation has not been systematically examined. For completeness, we include DP-SGD in our comparison as a representative gradient-level classical mechanism.

872
873

B THEORETICAL DERIVATIONS AND PROOFS

874
875

B.1 DERIVATION OF THEOREM 1

876
877
878
879
880

We investigate how the failure probability is amplified under quantum post-processing, assuming a fixed privacy loss parameter ε . Specifically, we aim to upper bound the quantity:

$$\sup_{x, x'} D_{e^\varepsilon} \left(Q^{(\eta)} \circ A(x) \| Q^{(\eta)} \circ A(x') \right) \quad (1)$$

881
882
883

Lemma 1. *Let μ and ν be probability distributions such that $D_{e^\varepsilon}(\mu\|\nu) \leq \delta$, and define $\theta = D_{e^\varepsilon}(\mu\|\nu)$. Then, there exist distributions μ' , ν' , and ω , along with a parameter $\tilde{\varepsilon} := \log(1 + \frac{e^\varepsilon - 1}{\theta})$ such that:*

884
885
886
887

$$\mu = (1 - \theta)\omega + \theta\mu', \quad \nu = \frac{1 - \theta}{e^\varepsilon}\omega + \left(1 - \frac{1 - \theta}{e^\varepsilon}\right)\nu',$$

888
889
890
891
892

with disjoint distributions: $\mu' \perp \nu'$. Then, the following bound holds:

$$D_{e^\varepsilon}(\mu\|\nu) = \theta \cdot D_{e^\varepsilon}(\mu'\|\nu')$$

893
894
895
896
897
898
899
900
901
902

Let the output distributions of A be denoted by $\mu = A(x)$ and $\nu = A(x')$, where $\mu, \nu \in \mathcal{P}(\mathbb{Y})$. Lemma 1, originally studied in (Balle et al., 2019a), establishes a decomposition of two distributions μ and ν based on their divergence $\theta = D_{e^\varepsilon}(\mu\|\nu)$. Specifically, μ is decomposed into a mixture of an overlapping component ω and a residual component μ' , while ν is similarly decomposed into ω and a residual ν' . The shared component ω is defined via the density $p_\omega = \frac{\min(p_\mu, e^\varepsilon p_\nu)}{1 - \theta}$. The remaining distributions μ' and ν' correspond to the non-overlapping parts of μ and ν , and it is shown that they have disjoint support (i.e., $\mu' \perp \nu'$). Lemma 1 also yields a transformation of the divergence between μ and ν in terms of the divergence between their respective components μ' and ν' , specifically $D_{e^\varepsilon}(\mu\|\nu) = \theta \cdot D_{e^\varepsilon}(\mu'\|\nu')$. Because the quantum process Q is a linear map (Nielsen & Chuang, 2010), it preserves convex combinations of input distributions. Consequently, we obtain

903
904

$$D_{e^\varepsilon}(\mu Q\|\nu Q) = \theta \cdot D_{e^\varepsilon}(\mu' Q\|\nu' Q) \quad (2)$$

905
906
907

In addition, the orthogonality of μ' and ν' plays a crucial role in analyzing the contraction behavior of post-processing mechanisms, as will be demonstrated in the following lemma.

908
909
910
911

Lemma 2. *Given a post-process mechanism Q , we have:*

$$\sup_{\mu \perp \nu} D_{e^\varepsilon}(\mu Q\|\nu Q) \leq \sup_{y \neq y'} D_{e^\varepsilon}(Q(y)\|Q(y'))$$

912
913
914
915
916
917

Lemma 2 establishes an upper bound on the divergence between two orthogonal distributions after applying a post-processing mechanism. Let τ_y denote the point mass distribution at y , i.e., $\tau_y(\tilde{y}) = 1$ if $\tilde{y} = y$ and $\tau_y(\tilde{y}) = 0$ otherwise. Then, $\mu = \sum_{y \in \text{supp}(\mu)} \mu(y) \tau_y$ and similarly for ν . By convexity of D_{e^ε} and linearity of Q , we have:

$$D_{e^\varepsilon}(\mu Q\|\nu Q) \leq \sup_{y \neq y'} D_{e^\varepsilon}(\tau_y Q\|\tau_{y'} Q) \leq \sup_{y \neq y'} D_{e^\varepsilon}(Q(y)\|Q(y'))$$

Together, Lemmas 1 and 2 clarify how the divergence between the outputs of A transforms under post-processing. It remains to analyze the divergence induced solely by $Q^{(\eta)}$, allowing us to focus on bounding:

$$\sup_{y \neq y'} D_{e^\varepsilon}(Q^{(\eta)}(y) \| Q^{(\eta)}(y')) \quad (3)$$

Lemma 3. *Given a measurement $E = \{E_i\}$ with $\sum_i E_i = I$, and two quantum states ρ and ρ' , the classical hockey-stick divergence of the resulting probability distributions is less than or equal to the quantum hockey-stick divergence between the states.*

$$D_\alpha(P \| P') \leq D_\alpha^{(q)}(\rho \| \rho')$$

Lemma 3 establishes the dependence between classical and quantum hockey-stick divergences under a fixed measurement. As a consequence, we can eliminate the explicit measurement map f_{mea} from the post-processing pipeline. Specifically, we have:

$$D_\alpha(Q^{(\eta)}(y) \| Q^{(\eta)}(y')) \leq D_\alpha^{(q)}(f_{\text{dep}}^{(\eta)} \circ f_{\text{enc}}(y) \| f_{\text{dep}}^{(\eta)} \circ f_{\text{enc}}(y')) \quad (4)$$

Lemma 4. *Given a depolarizing channel $f_{\text{dep}}^{(\eta)}(\rho) = \eta \frac{I}{d} + (1 - \eta)\rho$, for $\eta \in [0, 1]$ and $\alpha \geq 1$, we have:*

$$D_\alpha^{(q)}(f_{\text{dep}}^{(\eta)}(\rho) \| f_{\text{dep}}^{(\eta)}(\rho')) \leq \max \left\{ 0, (1 - \alpha) \frac{\eta}{d} + (1 - \eta) D_\alpha^{(q)}(\rho \| \rho') \right\}$$

Lemma 4 establishes that the quantum hockey-stick divergence contracts under a depolarizing channel by a factor of $(1 - \eta)$, with an additive term depending on α and the dimension d . Applying this result with $\rho = f_{\text{enc}}(y)$ and $\rho' = f_{\text{enc}}(y')$ yields an upper bound on the right-hand side of Equation 4, which in turn provides a bound for Equation 3.

Theorem 1 (Amplification on Failure Probability). *Let $A : \mathbb{X} \rightarrow \mathcal{P}(\mathbb{Y})$ be a classical mechanism satisfying (ε, δ) -DP where $A = f_{\text{par}} \circ f_{\text{cdp}}$, and let $Q^{(\eta)} : \mathbb{Y} \rightarrow \mathcal{P}(\mathbb{Z})$ be a quantum mechanism in a d -dimensional Hilbert space defined as $Q^{(\eta)} = f_{\text{mea}} \circ f_{\text{dep}}^{(\eta)} \circ f_{\text{enc}}$ where $0 \leq \eta \leq 1$ is the depolarizing noise factor. Then, the composed mechanism $Q^{(\eta)} \circ A$ satisfies (ε', δ') -DP, where*

$$\varepsilon' = \varepsilon, \quad \delta' = \left[\frac{\eta(1 - e^\varepsilon)}{d} + (1 - \eta)\delta \right]_+$$

Theorem 1 establishes a bound on the failure probability δ' of the composed mechanism $Q^{(\eta)} \circ A$, while keeping the privacy loss fixed at $\varepsilon' = \varepsilon$. This result is derived by sequentially applying Lemmas 2, 3, and 4 to Equation 2. From the final bound, it follows that for $\varepsilon \in [0, 1]$, we have $\delta' \leq \delta$. Therefore, the failure probability is strictly reduced, resulting in a privacy amplification effect, as formally stated in Corollary 1.

Based on (Lecuyer et al., 2019), we derive an explicit condition for certifiable adversarial robustness of the composed mechanism $Q^{(\eta)} \circ A$ in Corollary 2. This condition defines a robustness threshold that the model's expected confidence scores must exceed. Notably, due to the privacy amplification effect formalized in Corollary 1, the robustness threshold under the composed mechanism (parameterized by δ') is strictly lower than that of the original classical mechanism (parameterized by δ). As a result, quantum post-processing provably enlarges the set of inputs for which adversarial robustness can be guaranteed. For further details on adversarial robustness, we refer readers to Appendix A.

Corollary 1. *The composed mechanism $Q^{(\eta)} \circ A$ satisfies (ε, δ') -DP with $\delta' < \delta$, thus strictly amplifying the overall failure probability.*

Corollary 2. *The composed mechanism $Q^{(\eta)} \circ A$ is certifiably robust against adversarial perturbations for an input $x \in \mathbb{X}$ if the following condition holds for the correct class k :*

$$\mathbb{E}[[Q^{(\eta)} \circ A](x)]_k > e^{2\varepsilon} \max_{i \neq k} \mathbb{E}[[Q^{(\eta)} \circ A](x)]_i + (1 + e^\varepsilon)\delta'$$

972 B.2 DERIVATION OF THEOREM 2
973

974 We investigate how the composed mechanism $Q^{(\eta)} \circ A$ can simultaneously amplify both the privacy
975 loss ε and the failure probability δ . Our approach relies on the *Advanced Joint Convexity* theory,
976 originally introduced in (Balle et al., 2018). We restate the theory below as Lemma 5.

977 **Lemma 5** (Advanced Joint Convexity). *Let μ, μ' be probability distributions such that*

$$978 \quad \mu = (1 - \sigma)\mu_0 + \sigma\mu_1, \quad \mu' = (1 - \sigma)\mu_0 + \sigma\mu'_1,$$

980 for some $\sigma \in [0, 1]$, and distributions μ_0, μ_1, μ'_1 . Given $\alpha \geq 1$, define $\alpha' = 1 + \sigma(\alpha - 1)$, $\beta = \frac{\alpha'}{\alpha}$.
981 Then the following inequality holds:

$$982 \quad D_{\alpha'}(\mu\|\mu') \leq (1 - \beta)\sigma D_\alpha(\mu_1\|\mu_0) + \beta\sigma D_\alpha(\mu_1\|\mu'_1)$$

984 Lemma 5 provides an upper bound on the divergence $D_{\alpha'}(\mu\|\mu')$ in terms of D_α divergences between
985 the component distributions μ_0, μ_1 , and μ'_1 . The bound becomes tighter as the contribution of the
986 shared (overlapping) distribution μ_0 , controlled by the mixing parameter σ , increases. Returning
987 to our analysis, given $\mu = A(x)$ and $\nu = A(x')$ for adjacent inputs $x \sim x'$, and a tighter privacy
988 loss $\varepsilon' = \log[1 + \sigma(e^\varepsilon - 1)]$ we are able to bound $D_{e^{\varepsilon'}}(\mu Q^{(\eta)}\|\nu Q^{(\eta)})$ by identifying the shared
989 component between the distributions $\mu Q^{(\eta)}$ and $\nu Q^{(\eta)}$ as illustrated in Lemma 6.

990 **Lemma 6.** *Let ρ be a density matrix on a d -dimensional Hilbert space, and let*

$$992 \quad \rho' = f_{dep}(\rho) = \eta \frac{I}{d} + (1 - \eta)\rho$$

994 be its depolarized version, where $0 \leq \eta \leq 1$. Let $\{E_k\}_{k=1}^K$ be a POVM satisfying $\sum_k E_k = I$. Then,
995 the measurement probabilities satisfy:

$$996 \quad \zeta'(k) = \frac{\eta}{d} \text{Tr}(E_k) + (1 - \eta)\zeta(k),$$

998 where $\zeta' = f_{mea}(\rho')$ and $\zeta = f_{mea}(\rho)$ with $\zeta', \zeta \in \mathcal{P}(\mathbb{Z})$.

1000 Lemma 6 establishes how depolarizing noise in the quantum system \mathcal{H} affects the resulting classical
1001 output distribution over \mathbb{Z} . Specifically, it shows that the measurement distribution under depolariza-
1002 tion becomes a convex combination of the original (noiseless) distribution and that of a maximally
1003 mixed state, with the noise strength η controlling the mixing ratio.

1004 Based on Lemma 6, we can decompose the output distributions $\mu Q^{(\eta)}$ and $\nu Q^{(\eta)}$ accordingly.
1005 By definition, the quantum mechanism $Q^{(\eta)}$ can be expressed as a convex combination of two
1006 mechanisms: $Q^{(0)}$ (applies no noise) and $Q^{(1)}$ (applies full depolarizing noise). The mechanism $Q^{(1)}$
1007 is constant, as it always outputs the measurement distribution of a maximally mixed state. That is,
1008 for all $y \in \mathbb{Y}$, we have $Q^{(1)}(y)(k) = \frac{\text{Tr}(E_k)}{d}$, where E_k is the k -th POVM element and $d = \dim(\mathcal{H})$.
1009 We denote this constant output distribution as ζ_{mix} . On the other hand, $Q^{(0)}(y)$ corresponds to the
1010 noiseless distribution ζ , and $Q^{(\eta)}(y)$ corresponds to the distribution ζ' defined in Lemma 6. Using
1011 the decomposition given by the lemma, we have

$$1012 \quad Q^{(\eta)}(y) = \eta Q^{(1)}(y) + (1 - \eta)Q^{(0)}(y), \quad \forall y \in \mathbb{Y}$$

1014 Using the linearity of $Q^{(\eta)}$ and the representations $\mu = \sum_{y \in \text{supp}(\mu)} \mu(y)\tau_y$ and $\nu =$
1015 $\sum_{y \in \text{supp}(\nu)} \nu(y)\tau_y$, we obtain $\mu Q^{(\eta)} = \eta\zeta_{\text{mix}} + (1 - \eta)\mu Q^{(0)}$, and $\nu Q^{(\eta)} = \eta\zeta_{\text{mix}} + (1 - \eta)\nu Q^{(0)}$.

1017 By applying the *Advanced Joint Convexity* theory (Lemma 5) on $\mu Q^{(\eta)}$ and $\nu Q^{(\eta)}$ with $\varepsilon' =$
1018 $\log(1 + (1 - \eta)(e^\varepsilon - 1))$ and $\beta = e^{\varepsilon' - \varepsilon}$, we have:

$$1020 \quad D_{e^{\varepsilon'}}(\mu Q^{(\eta)}\|\nu Q^{(\eta)}) \leq (1 - \eta) \left((1 - \beta)D_{e^\varepsilon}(\mu Q^{(0)}\|\zeta_{\text{mix}}) + \beta D_{e^\varepsilon}(\mu Q^{(0)}\|\nu Q^{(0)}) \right) \quad (5)$$

1022 **Lemma 7.** *Given the measurement distribution of a maximally mixed state ζ_{mix} and an arbitrary
1023 distribution $z \in \mathcal{P}(\mathbb{Z})$, we have:*

$$1024 \quad D_\alpha(z\|\zeta_{\text{mix}}) \leq 1 - \alpha \min_k \left(\frac{\text{Tr}(E_k)}{d} \right)$$

1026 Based on Lemma 7, we can derive an upper bound on $D_{e^\varepsilon}(\mu Q^{(0)} \| \zeta_{\text{mix}})$ in terms of the trace values
 1027 of the POVM elements. Additionally, from the data-processing inequality for the hockey-stick
 1028 divergence, we have $D_{e^\varepsilon}(\mu Q^{(0)} \| \nu Q^{(0)}) \leq D_{e^\varepsilon}(\mu \| \nu) \leq \delta$. Combining these results, we obtain an
 1029 improved bound for Equation 5:

$$1030 \quad 1031 \quad D_{e^{\varepsilon'}}(\mu Q^{(\eta)} \| \nu Q^{(\eta)}) \leq (1 - \eta) \left(1 - e^{\varepsilon' - \varepsilon}(1 - \delta) - (e^\varepsilon - e^{\varepsilon'})\varphi \right)$$

1032 , where $\varphi = \min_k \left(\frac{\text{Tr}(E_k)}{d} \right)$. This result is formalized in Theorem 2, which characterizes
 1033 how depolarizing noise amplifies the privacy guarantees of the composed mechanism $Q^{(\eta)} \circ A$.
 1034 Specifically, the mechanism satisfies (ε', δ') -DP, where $\varepsilon' = \log(1 + (1 - \eta)(e^\varepsilon - 1))$ and $\delta' =$
 1035 $(1 - \eta) \left[1 - e^{\varepsilon' - \varepsilon}(1 - \delta) - (e^\varepsilon - e^{\varepsilon'})\varphi \right]$.
 1036

1037 Theorem 2 reveals that the amplified failure probability δ' depends on the choice of POVMs. In
 1038 particular, δ' becomes tighter as $\varphi = \min_k \left(\frac{\text{Tr}(E_k)}{d} \right)$ increases. This insight leads to Corollary 3,
 1039 highlighting that δ' is minimized when all POVM elements E_k have equal trace (i.e., $\text{Tr}(E_k) = \frac{1}{K}$).
 1040

1041 Contrarily, $\varepsilon' \leq \varepsilon$ for all $\eta \in [0, 1]$, the privacy loss in terms of ε is always reduced. However, the
 1042 bound on δ is only improved (i.e., $\delta' \leq \delta$) when the noise level η exceeds the threshold given in
 1043 Corollary 4. This condition highlights that a sufficient level of quantum noise is required to achieve
 1044 strict amplification of the privacy guarantee in both parameters.

1045 **Theorem 2** (Amplification on Privacy Loss). *Let $A = f_{\text{par}} \circ f_{\text{cdp}}$ be (ε, δ) -DP, and $Q^{(\eta)} = f_{\text{mea}} \circ f_{\text{dep}}^{(\eta)} \circ$
 1046 f_{enc} be a quantum mechanism in a d -dimensional Hilbert space where $0 \leq \eta \leq 1$ is the depolarizing
 1047 noise factor. Then, the composition $Q^{(\eta)} \circ A$ is (ε', δ') -DP where $\varepsilon' = \log(1 + (1 - \eta)(e^\varepsilon - 1))$ and
 1048 $\delta' = (1 - \eta) \left(1 - e^{\varepsilon' - \varepsilon}(1 - \delta) - (e^\varepsilon - e^{\varepsilon'})\varphi \right)$ with $\varphi = \min_k \left(\frac{\text{Tr}(E_k)}{d} \right)$.*

1049 **Corollary 3.** *Let $\{E_k\}_{k=1}^K$ be the POVM used in f_{mea} . Then, the amplified failure probability δ'
 1050 in Theorem 2 is minimized when all POVM elements have equal trace (i.e., $\text{Tr}[E_k] = \frac{d}{K}$ for all
 1051 $k \in \{1, \dots, K\}$).*

1052 **Corollary 4.** *Given an optimal measurement such that $\text{Tr}[E_k] = \frac{d}{K} \forall k$, the composed mechanism
 1053 $Q^{(\eta)} \circ A$ strictly improves the privacy guarantee (i.e., $\varepsilon' \leq \varepsilon$ and $\delta' \leq \delta$) if*

$$1054 \quad 1055 \quad \eta \geq 1 - \frac{\delta}{(1 - \delta)(1 - e^{-\varepsilon}) - (e^\varepsilon - 1)/K}$$

1060 B.3 DERIVATION OF THEOREM 3

1061 Here, we establish a rigorous framework to study the utility loss, defined as the absolute error between
 1062 the noisy and noise-free versions of our mechanism. The final output of the mechanism is stochastic
 1063 due to the sampling-based measurement process. Thus, we analyze the difference between the
 1064 expected values of their output. The expected value represents the average behavior of a mechanism
 1065 and provides a deterministic quantity that we can use to measure utility loss.

1066 Formally, we define the expectation measurement function $f_{\text{exp}} : \mathcal{H} \rightarrow \mathbb{R}$ as:

$$1067 \quad 1068 \quad f_{\text{exp}}(\rho) = \sum_k k \text{Tr}[E_k \rho] = \text{Tr} \left[\left(\sum_k k E_k \right) \rho \right] = \text{Tr}[E_{\text{exp}} \rho]$$

1069 where $E_{\text{exp}} = \sum_k k E_k$ is the expectation value observable.

1070 Using this function, we define our deterministic expectation mechanisms. The **full mechanism**,
 1071 including classical and quantum noise, is $\mathcal{M}_{\text{full}}(x) = (f_{\text{exp}} \circ f_{\text{dep}}^{(\eta)} \circ f_{\text{enc}} \circ f_{\text{par}} \circ f_{\text{cdp}})(x)$. On the other
 1072 hand, the **noise-free mechanism (clean)** is $\mathcal{M}_{\text{clean}}(x) = (f_{\text{exp}} \circ f_{\text{enc}} \circ f_{\text{par}})(x)$. The total utility loss
 1073 is the worst-case absolute error between their expected outputs:

$$1074 \quad 1075 \quad \text{Error} = \sup_{x \in \mathbb{X}} |\mathcal{M}_{\text{full}}(x) - \mathcal{M}_{\text{clean}}(x)|$$

1076 To analyze this error, we introduce an **intermediate mechanism (half)** that includes only quantum
 1077 noise as $\mathcal{M}_{\text{half}}(x) = (f_{\text{exp}} \circ f_{\text{dep}}^{(\eta)} \circ f_{\text{enc}} \circ f_{\text{par}})(x)$.
 1078

1080
1081 **Lemma 8.** *The intermediate mechanism $\mathcal{M}_{\text{half}}$ is L_∞ -Lipschitz with respect to the input perturbation
1082 κ , satisfying $|\mathcal{M}_{\text{half}}(x + \kappa) - \mathcal{M}_{\text{half}}(x)| \leq L_\infty \|\kappa\|_\infty$. L_∞ is given by:*
1083
1084
1085

$$L_\infty = 2(1 - \eta) \|E_{\text{exp}}\|_{\text{op}} \|W\|_\infty \left(\sum_j \|H_j\|_{\text{op}} \right)$$

1086
1087 Lemma 8 establishes a bound on the sensitivity of $\mathcal{M}_{\text{half}}$ with respect to perturbations in its classical
1088 input. We use $\|\cdot\|_p$ to denote the p -norm, and $\|\cdot\|_{\text{op}}$ to denote the operator norm. The proof
1089 leverages the chain rule for Lipschitz continuity, where the overall Lipschitz constant L_∞ is given by
1090 the product of the individual constants associated with each component function in the composition,
1091 namely, f_{exp} , f_{dep} , f_{enc} , and f_{par} . In addition, we observe that if $\kappa \sim \mathcal{N}(0, \sigma^2 I)$, then $\mathcal{M}_{\text{half}}(x + \kappa)$ is
1092 equivalent in distribution to $\mathcal{M}_{\text{full}}(x)$. Thus, this lemma results in a bound on the difference between
1093 these two mechanisms.

1094 **Lemma 9.** *The absolute difference between the expected outputs of the intermediate and noise-free
1095 mechanisms is uniformly bounded by:*

$$|\mathcal{M}_{\text{half}}(x) - \mathcal{M}_{\text{clean}}(x)| \leq 2\eta \|E_{\text{exp}}\|_{\text{op}}$$

1100 Lemma 9 directly bounds the difference between $\mathcal{M}_{\text{half}}$ and $\mathcal{M}_{\text{clean}}$. The proof leverages the Lipschitz
1101 property of the function f_{exp} and the fundamental property that the trace norm difference between
1102 any two density matrices is at most 2. Along with the result in Lemma 8, we can establish the bound
1103 on the absolute error.

1104 **Theorem 3** (Utility Bound). *Let the classical noise be $\kappa \sim \mathcal{N}(0, \sigma^2 I)$ acting on an input space \mathbb{X}
1105 of dimension $d_X = \dim(\mathbb{X})$. For any desired failure probability $p > 0$, the utility loss is bounded
1106 probabilistically as:*

$$\Pr \left(\text{Error} \leq L_\infty \cdot \sigma \sqrt{2 \ln \frac{2d_X}{p}} + 2\eta \|E_{\text{exp}}\|_{\text{op}} \right) \geq 1 - p$$

1110
1111 where $L_\infty = 2(1 - \eta) \|E_{\text{exp}}\|_{\text{op}} \|W\|_\infty \left(\sum_j \|H_j\|_{\text{op}} \right)$.
1112

1113 Theorem 3 combines the previous results to provide a single utility guarantee. The proof exploits the
1114 triangle inequality to additively combine the bounds from Lemmas 8 and 9. As the classical noise is
1115 unbounded, the final guarantee is a high-probability statement showing the trade-off between utility
1116 loss and the classical (σ) and quantum (η) noise level.

B.4 GENERALIZATION TO OTHER QUANTUM NOISE CHANNELS

In this section, we show how the privacy amplification result of Theorem 1 can be extended to a broad class of quantum noise channels beyond depolarizing noise. First, we identify the essential mechanism responsible for privacy amplification. Then, we illustrate the generalization by analyzing two asymmetric and physically relevant noise processes: the Generalized Amplitude Damping (GAD) channel and the Generalized Dephasing (GD) channel.

B.4.1 KEY INSIGHT BEHIND THE GENERALIZATION

Here, first we review the proof trajectory of Theorem 1 presented in Appendix B.1. The analysis begins by decomposing the output distributions of the mechanism on neighboring inputs using Lemma 1 (Lemma 1). It then reduces the divergence analysis to the worst-case pair of orthogonal inputs via Lemma 2 (Lemma 2). Crucially, Lemma 3 (Lemma 3) establishes that the classical hockey-stick divergence of the measurement outcomes is upper-bounded by the quantum hockey-stick divergence of the evolved quantum states.

We can see that in Theorem 1, the privacy amplification is derived from Lemma 4, which establishes the contraction of the quantum hockey-stick divergence $D_\alpha^{(q)}$ under the depolarizing channel. While Theorem 1 utilizes the specific form of $D_{e^\epsilon}^{(q)}$, we discuss that even if we relax the bound to the

1134

standard trace distance $D_1^{(q)}$, the privacy guarantee still holds. Specifically, for any privacy parameter $\alpha \geq 1$ (where $\alpha = e^{\tilde{\varepsilon}}$ in our context), the quantum hockey-stick divergence is upper-bounded by the trace distance divergence:

$$1138 \quad D_{\alpha}^{(q)}(\rho\|\sigma) = \text{Tr}[(\rho - \alpha\sigma)_+] \leq \text{Tr}[(\rho - \sigma)_+] = D_1^{(q)}(\rho\|\sigma).$$

1140 This inequality holds because subtracting a larger multiple of σ (since $\alpha \geq 1$) reduces the positive
1141 part of the operator difference.

1142 Then, the insight is that to generalize Theorem 1 to an arbitrary noise channel \mathcal{E} , we need to identify
1143 its contraction coefficient under the trace distance (or D_1 divergence). If a channel \mathcal{E} satisfies a
1144 contraction bound $\kappa(\mathcal{E})$ such that:

$$1145 \quad \sup_{\rho \neq \sigma} \frac{D_1(\mathcal{E}(\rho)\|\mathcal{E}(\sigma))}{D_1(\rho\|\sigma)} \leq \kappa(\mathcal{E}),$$

1147 then the composed mechanism naturally satisfies a privacy amplification where the failure probability
1148 δ is scaled by $\kappa(\mathcal{E})$. In the following subsections, we apply this insight to two asymmetric noise
1149 channels.

1150 B.4.2 GENERALIZED AMPLITUDE DAMPING CHANNEL

1152 Generalized Amplitude Damping (GAD) channel is a noise process describing energy exchange
1153 between a qubit and its thermal environment. Unlike depolarizing, GAD is inherently asymmetric
1154 because it drives the qubit toward a temperature-dependent equilibrium state while simultaneously
1155 suppressing quantum coherence. The channel is parameterized by a damping strength $\eta \in [0, 1]$ and
1156 an excitation probability $p \in [0, 1]$, where $p = 0$ corresponds to relaxation toward $|0\rangle$, $p = 1$ toward
1157 $|1\rangle$, and intermediate values represent nonzero-temperature behavior. This asymmetry makes GAD
1158 a realistic noise model for superconducting and trapped-ion devices. To formalize this, we consider
1159 the n -qubit channel acting on a single designated qubit:

$$1160 \quad f_{\text{GAD}}^{(p,\eta)} = I_{2^{n-1}} \otimes A_{\text{GAD}}^{(p,\eta)}.$$

1161 Despite its non-unital nature, the GAD channel contracts distinguishability between quantum states.
1162 Differences in excitation probabilities shrink because all states relax toward the same thermal fixed
1163 point, while differences in coherence decay due to energy dissipation. In Lemma 4.1, we construct
1164 the contraction coefficient of $f_{\text{GAD}}^{(p,\eta)}$.

1166 **Lemma 4.1.** *Let $A_{\text{GAD}}^{(p,\eta)}$ be the generalized amplitude damping (GAD) channel on a single qubit,
1167 with damping parameter $\eta \in [0, 1]$ and excitation parameter $p \in [0, 1]$. Define the n -qubit channel*

$$1168 \quad f_{\text{GAD}}^{(p,\eta)} := I_{2^{n-1}} \otimes A_{\text{GAD}}^{(p,\eta)},$$

1170 *Then the contraction coefficient of $f_{\text{GAD}}^{(p,\eta)}$ satisfies*

$$1172 \quad \kappa(f_{\text{GAD}}^{(p,\eta)}) := \sup_{\rho \neq \sigma} \frac{D_1(f_{\text{GAD}}^{(p,\eta)}(\rho) \parallel f_{\text{GAD}}^{(p,\eta)}(\sigma))}{D_1(\rho\|\sigma)} \leq 2\sqrt{\eta} - \eta$$

1175 *Proof.* By definition $D_1(\rho\|\sigma) = \frac{1}{2}\|\rho - \sigma\|_1$, so $\kappa(f_{\text{GAD}}^{(p,\eta)})$ is the trace-distance contraction coefficient
1176 of the channel $f_{\text{GAD}}^{(p,\eta)} = I_{2^{n-1}} \otimes A_{\text{GAD}}^{(p,\eta)}$:

$$1179 \quad \kappa(f_{\text{GAD}}^{(p,\eta)}) = \sup_{\rho \neq \sigma} \frac{\|f_{\text{GAD}}^{(p,\eta)}(\rho) - f_{\text{GAD}}^{(p,\eta)}(\sigma)\|_1}{\|\rho - \sigma\|_1}.$$

1181 The supremum is over all n -qubit states ρ, σ , which may be entangled across the ancilla system and
1182 the noisy qubit.

1183 Based on Hirche (2024), this is upper-bounded by the complete trace-distance contraction coefficient
1184 of the single-qubit channel $A_{\text{GAD}}^{(p,\eta)}$, defined as

$$1186 \quad \eta_{Tr}^c(A_{\text{GAD}}^{(p,\eta)}) := \sup_{k \geq 1} \sup_{\rho \neq \sigma} \frac{\|(I_k \otimes A_{\text{GAD}}^{(p,\eta)})(\rho) - (I_k \otimes A_{\text{GAD}}^{(p,\eta)})(\sigma)\|_1}{\|\rho - \sigma\|_1}.$$

1188

1189 Since $f_{\text{GAD}}^{(p,\eta)}$ is exactly $I_{2^{n-1}} \otimes A_{\text{GAD}}^{(p,\eta)}$ for one particular ancilla dimension, we have

1190

1191
$$\kappa(f_{\text{GAD}}^{(p,\eta)}) \leq \eta_{Tr}^c(A_{\text{GAD}}^{(p,\eta)}).$$

1192

1193 Based on the Lemma 9 and Proposition 28 in Hirche (2024), we have:

1194

1195
$$\begin{aligned} \kappa(f_{\text{GAD}}^{(p,\eta)}) &= \eta_{Tr}^c(A_{\text{GAD}}^{(p,\eta)}) \\ 1196 &\leq 1 - \alpha(A_{\text{GAD}}^{(p,\eta)}) \\ 1197 &= 1 - (1 - \sqrt{\eta})^2 \\ 1198 &= 1 - (1 - 2\sqrt{\eta} + \eta) \\ 1199 &= 2\sqrt{\eta} - \eta. \end{aligned}$$

1200

1201

1202 Based on Lemma 4.1, we now derive a privacy amplification result for the GAD channel in
1203 Theorem 1.1.

1204

1205 **Theorem 1.1** (Amplification Under Generalized Amplitude Damping Noise). *Let $A : \mathbb{X} \rightarrow \mathcal{P}(\mathbb{Y})$*
1206 *be a classical mechanism satisfying (ε, δ) -DP where $A = f_{\text{par}} \circ f_{\text{cdp}}$, and let $Q^{(p,\eta)} : \mathbb{Y} \rightarrow \mathcal{P}(\mathbb{Z})$*
1207 *be a quantum mechanism in d -dimensional Hilbert space defined as $Q^{(p,\eta)} = f_{\text{mea}} \circ f_{\text{GAD}}^{(p,\eta)} \circ f_{\text{enc}}$.*
1208 *Then, the composed mechanism $Q^{(p,\eta)} \circ A$ satisfies (ε', δ') -DP, where*

1209

1210
$$\varepsilon' = \varepsilon, \quad \delta' = (2\sqrt{\eta} - \eta)\delta.$$

1211

1212 *Proof.* Let $\mu = A(x)$ and $\nu = A(x')$ be the output distributions of the mechanism A on neighboring
1213 inputs x and x' . We aim to bound the hockey-stick divergence

1214

1215
$$D_{e^\varepsilon}(\mu Q^{(p,\eta)} \| \nu Q^{(p,\eta)}).$$

1216

1217 By Lemma 1, we can decompose μ and ν using a parameter $\theta = D_{e^\varepsilon}(\mu \| \nu)$ and define auxiliary
1218 distributions μ', ν' , and ω with $\mu' \perp \nu'$ such that

1219

1220
$$\mu = (1 - \theta)\omega + \theta\mu', \quad \nu = \frac{1 - \theta}{e^\varepsilon}\omega + \left(1 - \frac{1 - \theta}{e^\varepsilon}\right)\nu'.$$

1221

1222 Additionally, define $\tilde{\varepsilon} = \log(1 + \frac{e^\varepsilon - 1}{\theta})$.

1223 We now consider the post-processed outputs:

1224

1225
$$\begin{aligned} D_{e^\varepsilon}(\mu Q^{(p,\eta)} \| \nu Q^{(p,\eta)}) &\leq \theta \cdot D_{e^\varepsilon}(\mu' Q^{(p,\eta)} \| \nu' Q^{(p,\eta)}) && \text{(Lemma 1)} \\ 1226 &\leq \theta \cdot \sup_{y \neq y'} D_{e^{\tilde{\varepsilon}}}(Q^{(p,\eta)}(y) \| Q^{(p,\eta)}(y')) && \text{(Lemma 2)} \\ 1227 &\leq \theta \cdot \sup_{y \neq y'} D_{e^{\tilde{\varepsilon}}}^{(q)}(f_{\text{GAD}}^{(p,\eta)} \circ f_{\text{enc}}(y) \| f_{\text{GAD}}^{(p,\eta)} \circ f_{\text{enc}}(y')) && \text{(Lemma 3)} \\ 1228 &= \theta \cdot \sup_{\rho, \rho'} D_{e^{\tilde{\varepsilon}}}^{(q)}(f_{\text{GAD}}^{(p,\eta)}(\rho) \| f_{\text{GAD}}^{(p,\eta)}(\rho')) && \text{(where } \rho, \rho' \text{ are pure)} \\ 1229 &\leq \theta \cdot \sup_{\rho, \rho'} D_1^{(q)}(f_{\text{GAD}}^{(p,\eta)}(\rho) \| f_{\text{GAD}}^{(p,\eta)}(\rho')) && (e^{\tilde{\varepsilon}} \geq 1) \\ 1230 &\leq \theta \cdot \sup_{\rho, \rho'} \left((2\sqrt{\eta} - \eta) \cdot D_1^{(q)}(\rho \| \rho') \right) && \text{(Lemma 4.1)} \\ 1231 &\leq \theta \cdot (2\sqrt{\eta} - \eta) \cdot 1 && \text{(Because } D_{e^{\tilde{\varepsilon}}}^{(q)}(\rho \| \rho') \leq 1) \end{aligned}$$

1232

1233 Since the original mechanism A is (ε, δ) -DP, we have $\theta = D_{e^\varepsilon}(\mu \| \nu) \leq \delta$. We substitute this into
1234 the final bound:

1235

1236
$$D_{e^\varepsilon}(\mu Q^{(p,\eta)} \| \nu Q^{(p,\eta)}) \leq (2\sqrt{\eta} - \eta) \cdot \delta.$$

1237

1238 This yields the advertised DP parameters. \square

1242

B.4.3 GENERALIZED DEPHASING CHANNEL

Generalized Dephasing (GD) channel is one of the most fundamental and widely studied noise processes in quantum information. It suppresses quantum coherence while leaving classical populations unchanged. Specifically, this channel is formulated as:

$$1247 \quad A_{\text{GD}}^{(\eta)}(\rho) = (1 - \eta)\rho + \eta Z\rho Z$$

1249 where $\eta \in [0, 1]$ is the dephasing parameter and Z is the Pauli-Z operator. From Proposition
1250 33 in Hirche (2024), the complete trace-distance contraction coefficient of a single-qubit GD
1251 channel is exactly 1 (i.e., $\eta_{Tr}^c(A_{\text{GD}}^{(\eta)}) = 1$). This implies that no worst-case privacy amplification
1252 can be guaranteed under dephasing noise. In other words, for some input states, the noise does not
1253 reduce distinguishability at all. However, this worst case is only attained for states distinguished
1254 solely through diagonal differences. In many common QML architectures such as those using
1255 angle encoding, the encoded data occupies families of states where all information is carried in the
1256 off-diagonal components (coherences). In this setting, GD noise does provide nontrivial contraction,
1257 and thus we obtain privacy amplification. One instance of this setting is formally presented in
1258 Assumption 1.

1258 **Assumption 1** (Product Equatorial Encoding on All Qubits). *For each input $y \in \mathbb{Y}$, the encoder
1259 prepares a product state*

$$1260 \quad \rho_y = f_{\text{enc}}(y) = \bigotimes_{j=1}^n \rho_y^{(j)},$$

1263 where each single-qubit factor $\rho_y^{(j)}$ is an equatorial state on the Bloch sphere, i.e.,

$$1265 \quad \rho_y^{(j)} = \frac{1}{2} \left(I + \cos \phi_y^{(j)} X + \sin \phi_y^{(j)} Y \right),$$

1266 for some angle $\phi_y^{(j)} \in \mathbb{R}$ and with no Z -component.

1268 This equatorial-state assumption is satisfied by common QML encoders where data are mapped
1269 into phases and superpositions via single-qubit rotations and Hadamard-type preparation such as
1270 circuits of the form $H \rightarrow R_Z(\phi_y^{(j)})$ on each qubit Schuld & Killoran (2019); Pérez-Salinas et al.
1271 (2020); Hatakeyama-Sato et al. (2023). Beyond QML, equatorial states also play a central role
1272 in quantum communication and quantum key distribution (QKD), where they are used for phase
1273 encoding and coherence-based information transfer Fisher et al. (2014); Xiao et al. (2014). Thus,
1274 analyzing privacy amplification of GD channel under this assumption is both realistic and practically
1275 meaningful.

1276 We consider the n -qubit GD channel acting independently on every qubit as follow:

$$1277 \quad f_{\text{GD}}^{(\eta)} = \bigotimes_{j=1}^n A_{\text{GD}}^{(\eta)},$$

1280 We now establish a contraction bound for $f_{\text{GD}}^{(\eta)}$ under Assumption 1 in Lemma 4.2.

1281 **Lemma 4.2.** *Let $f_{\text{GD}}^{(\eta)}$ be the n -qubit GD channel defined above, and assume the encoder f_{enc}
1282 satisfies Assumption 1. Then the trace-distance contraction coefficient of $f_{\text{GD}}^{(\eta)}$ over the encoder
1283 family $\{\rho_y\}_{y \in \mathbb{Y}}$ satisfies*

$$1285 \quad \kappa(f_{\text{GD}}^{(\eta)}) := \sup_{y \neq y'} \frac{D_1(f_{\text{GD}}^{(\eta)}(\rho_y) \| f_{\text{GD}}^{(\eta)}(\rho_{y'}))}{D_1(\rho_y \| \rho_{y'})} \leq |1 - 2\eta|.$$

1288 *Proof.* For each y , we have

$$1289 \quad \rho_y = \bigotimes_{j=1}^n \rho_y^{(j)}, \quad \rho_y^{(j)} = \frac{1}{2} \left(I + \cos \phi_y^{(j)} X + \sin \phi_y^{(j)} Y \right).$$

1292 Let $\Delta = \rho_y - \rho_{y'}$ for two distinct inputs $y \neq y'$. Expanding Δ in the n -qubit Pauli basis, we have:

$$1294 \quad \Delta = \sum_{P \in \mathcal{P}_n} c_P P,$$

1296

where $\mathcal{P}_n = \{I, X, Y, Z\}^{\otimes n}$ is the n -qubit Pauli group, and $c_P \in \mathbb{R}$ since Δ is Hermitian.

1297

Because each single-qubit factor $\rho_y^{(j)}$ contains only I , X , and Y components and no Z component, any product state $\rho_y = \bigotimes_j \rho_y^{(j)}$ expands only in Pauli strings whose single-qubit factors are in $\{I, X, Y\}$. The same holds for $\rho_{y'}$, and therefore their difference $\Delta = \rho_y - \rho_{y'}$ has no support on any string consisting solely of I 's and Z 's. In particular,

1298

$$c_P = 0 \quad \text{for all } P \in \mathcal{P}_n \text{ such that } P \in \{I, Z\}^{\otimes n}.$$

1299

Equivalently, every nonzero coefficient c_P corresponds to a Pauli string P that contains at least one factor X or Y .

1300

The n -qubit GD channel acts diagonally in the Pauli basis:

1301

$$f_{\text{GD}}^{(\eta)}(P) = \lambda_P P,$$

1302

where

1303

$$\lambda_P = \prod_{j=1}^n \lambda_{P_j}, \quad \lambda_I = \lambda_Z = 1, \quad \lambda_X = \lambda_Y = 1 - 2\eta,$$

1304

and $P = P_1 \otimes \dots \otimes P_n$ with $P_j \in \{I, X, Y, Z\}$. Thus, for any Pauli string P that contains at least one X or Y , we have

1305

$$\lambda_P = (1 - 2\eta)^k$$

1306

for $k \geq 1$. As a result, we have:

1307

$$|\lambda_P| \leq |1 - 2\eta|.$$

1308

It implies that:

1309

$$f_{\text{GD}}^{(\eta)}(\Delta) = \sum_{P \in \mathcal{P}_n} c_P \lambda_P P,$$

1310

with each nonzero coefficient satisfying $|\lambda_P| \leq |1 - 2\eta|$. As a linear map on the subspace spanned by Pauli strings with at least one X or Y , $f_{\text{GD}}^{(\eta)}$ is diagonal in an orthonormal operator basis with eigenvalues bounded in modulus by $|1 - 2\eta|$. Thus, its operator norm on any unitarily invariant norm, in particular the trace norm, is at most $|1 - 2\eta|$ on this subspace. Concretely,

1311

$$\|f_{\text{GD}}^{(\eta)}(\Delta)\|_1 \leq |1 - 2\eta| \|\Delta\|_1.$$

1312

Since $D_1(\rho\|\sigma) = \frac{1}{2}\|\rho - \sigma\|_1$, we conclude that for all $y \neq y'$,

1313

$$\frac{D_1(f_{\text{GD}}^{(\eta)}(\rho_y) \| f_{\text{GD}}^{(\eta)}(\rho_{y'}))}{D_1(\rho_y \| \rho_{y'})} = \frac{\frac{1}{2}\|f_{\text{GD}}^{(\eta)}(\Delta)\|_1}{\frac{1}{2}\|\Delta\|_1} \leq |1 - 2\eta|.$$

1314

Taking the supremum over all $y \neq y'$ gives the desired bound. \square

1315

Finally, similar to the amplification analysis for depolarizing noise and GAD noise, we now derive a privacy amplification theorem for the GD channel acting on all qubits. The result follows immediately by combining the contraction bound in Lemma 4.2 with the classical post-processing and distribution-decomposition tools used earlier.

1316

Theorem 1.2. *Let $A : \mathbb{X} \rightarrow \mathcal{P}(\mathbb{Y})$ be a classical mechanism satisfying (ε, δ) -DP, and let*

1317

$$Q^{(\eta)} := f_{\text{mea}} \circ f_{\text{GD}}^{(\eta)} \circ f_{\text{enc}}$$

1318

be an n -qubit quantum mechanism where $f_{\text{GD}}^{(\eta)}$ is the n -qubit GD channel defined above and f_{enc} satisfies Assumption 1. Then the composed mechanism $Q^{(\eta)} \circ A$ satisfies (ε', δ') -DP with

1319

$$\varepsilon' = \varepsilon, \quad \delta' = |1 - 2\eta| \cdot \delta.$$

1320

Proof. Let $\mu = A(x)$ and $\nu = A(x')$ be the output distributions of A on neighboring inputs x, x' . As in Theorem 1.1, we apply Lemma 1 to decompose μ, ν with parameter $\theta = D_{e^\varepsilon}(\mu\|\nu) \leq \delta$ and reduce the analysis to the worst-case pair of orthogonal inputs. Using Lemma 2 and Lemma 3, we can bound

1321

$$D_{e^\varepsilon}(\mu Q^{(\eta)} \| \nu Q^{(\eta)}) \leq \theta \cdot \sup_{\rho \neq \rho'} D_1(f_{\text{GD}}^{(\eta)}(\rho) \| f_{\text{GD}}^{(\eta)}(\rho')),$$

1322

1323

1350

where the supremum is taken over encoded states ρ, ρ' in the image of f_{enc} .
By Lemma 4.2,

1353
1354

$$D_1(f_{\text{GD}}^{(\eta)}(\rho) \| f_{\text{GD}}^{(\eta)}(\rho')) \leq |1 - 2\eta| D_1(\rho \| \rho') \leq |1 - 2\eta|.$$

1355

Therefore,

1356

$$D_{e^\varepsilon}(\mu Q^{(\eta)} \| \nu Q^{(\eta)}) \leq \theta |1 - 2\eta| \leq |1 - 2\eta| \delta,$$

1357

which yields the claimed privacy parameters $\varepsilon' = \varepsilon$ and $\delta' = |1 - 2\eta| \delta$. \square

1358

1359

B.5 PROOFS

1360

1361

Lemma 1. *Let μ and ν be probability distributions such that $D_{e^\varepsilon}(\mu \| \nu) \leq \delta$, and define $\theta = D_{e^\varepsilon}(\mu \| \nu)$. Then, there exist distributions μ', ν' , and ω , along with a parameter $\tilde{\varepsilon} := \log(1 + \frac{e^\varepsilon - 1}{\theta})$ such that:*

1362

1363

1364

1365

1366

1367

$$\mu = (1 - \theta)\omega + \theta\mu', \quad \nu = \frac{1 - \theta}{e^\varepsilon}\omega + \left(1 - \frac{1 - \theta}{e^\varepsilon}\right)\nu',$$

1368

1369

with disjoint distributions: $\mu' \perp \nu'$. Then, the following bound holds:

1370

1371

1372

1373

1374

1375

Proof. Studied in (Balle et al., 2019a) \square

1376

1377

Lemma 2. *Given a post-process mechanism Q , we have:*

1378

1379

1380

1381

1382

Proof. Studied in (Balle et al., 2019a) \square

1383

1384

1385

1386

Lemma 3. *Given a measurement $E = \{E_i\}$ with $\sum_i E_i = I$, and two quantum states ρ and ρ' , the classical hockey-stick divergence of the resulting probability distributions is less than or equal to the quantum hockey-stick divergence between the states.*

1387

1388

1389

1390

1391

Proof. The quantum hockey-stick divergence is defined as:

1392

1393

1394

$$D_\alpha^{(q)}(\rho \| \rho') = \text{Tr}[(\rho - \alpha\rho')_+],$$

1395

where A_+ denotes the positive part of a Hermitian operator A . Let us define the operator $A = \rho - \alpha\rho'$.

1396

Applying measurement E to ρ and ρ' yields probability distributions with elements:

1397

1398

1399

1400

$$P(i) = \text{Tr}(E_i\rho), \quad P'(i) = \text{Tr}(E_i\rho').$$

1401

1402

1403

The classical hockey-stick divergence is defined as:

1404

1405

1406

$$D_\alpha(P \| P') = \sum_i [P(i) - \alpha P'(i)]_+,$$

where $[x]_+ = \max(x, 0)$.

1404 We begin the proof from the definition of the classical divergence:
 1405

$$\begin{aligned}
 1406 \quad D_\alpha(P \parallel P') &= \sum_i \max(0, \text{Tr}(E_i \rho) - \alpha \text{Tr}(E_i \rho')) \\
 1407 &= \sum_i \max(0, \text{Tr}(E_i(\rho - \alpha \rho')) \\
 1408 &= \sum_i \max(0, \text{Tr}(E_i A)) \\
 1409 & \\
 1410 & \\
 1411 &
 \end{aligned}$$

1412 For any positive semi-definite operator E_i and any Hermitian operator A , it holds that $\text{Tr}(E_i A) \leq$
 1413 $\text{Tr}(E_i A_+)$. Since A_+ is a positive semi-definite operator, $\text{Tr}(E_i A_+)$ is non-negative. Therefore, we
 1414 can conclude that $\max(0, \text{Tr}(E_i A)) \leq \text{Tr}(E_i A_+)$.
 1415

1416 Applying this inequality to our expression, we get:
 1417

$$\begin{aligned}
 1417 \quad D_\alpha(P \parallel P') &\leq \sum_i \text{Tr}(E_i A_+) \\
 1418 &= \text{Tr}\left(\sum_i E_i A_+\right) \\
 1419 &= \text{Tr}\left(\left(\sum_i E_i\right) A_+\right) \\
 1420 &= \text{Tr}(I \cdot A_+) \\
 1421 &= D_\alpha^{(q)}(\rho \parallel \rho'). \\
 1422 & \\
 1423 & \\
 1424 & \\
 1425 & \\
 1426 & \\
 1427 &
 \end{aligned}$$

□

1428 **Lemma 4.** Given a depolarizing channel $f_{dep}^{(\eta)}(\rho) = \eta \frac{I}{d} + (1 - \eta)\rho$, for $\eta \in [0, 1]$ and $\alpha \geq 1$, we
 1429 have:
 1430

$$\begin{aligned}
 1431 \quad D_\alpha^{(q)}(f_{dep}^{(\eta)}(\rho) \parallel f_{dep}^{(\eta)}(\rho')) \\
 1432 &\leq \max\left\{0, (1 - \alpha)\frac{\eta}{d} + (1 - \eta)D_\alpha^{(q)}(\rho \parallel \rho')\right\} \\
 1433 & \\
 1434 &
 \end{aligned}$$

1435 *Proof.* Define the operator:
 1436

$$U = f_{dep}^{(\eta)}(\rho) - \alpha f_{dep}^{(\eta)}(\rho) = (1 - \eta)(\rho - \alpha \rho') + \eta(1 - \alpha)\frac{I}{d}.$$

1437 Then:
 1438

$$D_\alpha^{(q)}(f_{dep}^{(\eta)}(\rho) \parallel f_{dep}^{(\eta)}(\rho')) = \text{Tr}[U_+],$$

1439 where U_+ denotes the positive part of U .
 1440

1441 Let P_+ be the projector onto the positive eigenspace of U . Since $D_\alpha^{(q)}(f_{dep}^{(\eta)}(\rho) \parallel f_{dep}^{(\eta)}(\rho') > 0$, we
 1442 have $\text{Tr}[P_+] \geq 1$. Then:
 1443

$$\begin{aligned}
 1444 \quad \text{Tr}[U_+] &= \text{Tr}[P_+ U] \\
 1445 &= (1 - \eta)\text{Tr}[P_+(\rho - \alpha \rho')] + (1 - \alpha)\frac{\eta}{d}\text{Tr}[P_+] \\
 1446 &\leq (1 - \eta)D_\alpha^{(q)}(\rho \parallel \rho') + (1 - \alpha)\frac{\eta}{d}, \\
 1447 & \\
 1448 & \\
 1449 &
 \end{aligned}$$

1450 since $\text{Tr}[P_+] \geq 1$ and $1 - \alpha \leq 0$.
 1451

□

1452 **Theorem 1** (Amplification on Failure Probability). Let $A : \mathbb{X} \rightarrow \mathcal{P}(\mathbb{Y})$ be a classical mechanism
 1453 satisfying (ε, δ) -DP where $A = f_{par} \circ f_{cdp}$, and let $Q^{(\eta)} : \mathbb{Y} \rightarrow \mathcal{P}(\mathbb{Z})$ be a quantum mechanism in
 1454 d -dimensional Hilbert space defined as $Q^{(\eta)} = f_{mea} \circ f_{dep}^{(\eta)} \circ f_{enc}$ where $0 \leq \eta \leq 1$ is the depolarizing
 1455 noise factor. Then, the composed mechanism $Q^{(\eta)} \circ A$ satisfies (ε', δ') -DP, where

$$\varepsilon' = \varepsilon, \quad \delta' = \left[\frac{\eta(1 - e^\varepsilon)}{d} + (1 - \eta)\delta \right]_+.$$

1458 *Proof.* Let $\mu = A(x)$ and $\nu = A(x')$ be the output distributions of the mechanism A on neighboring
 1459 inputs x and x' . We aim to bound the hockey-stick divergence
 1460

$$1461 \quad D_{e^\varepsilon}(\mu Q^{(\eta)} \| \nu Q^{(\eta)}).$$

1462 By Lemma 1, we can decompose μ and ν using a parameter $\theta = D_{e^\varepsilon}(\mu \| \nu)$ and define auxiliary
 1463 distributions μ', ν' , and ω with $\mu' \perp \nu'$ such that
 1464

$$1465 \quad \mu = (1 - \theta)\omega + \theta\mu', \quad \nu = \frac{1 - \theta}{e^\varepsilon}\omega + \left(1 - \frac{1 - \theta}{e^\varepsilon}\right)\nu'. \\ 1466$$

1467 Additionally, define $\tilde{\varepsilon} = \log(1 + \frac{e^\varepsilon - 1}{\theta})$. By Lemma 1, it follows that
 1468

$$1469 \quad D_{e^\varepsilon}(\mu \| \nu) \leq \theta \cdot D_{e^\varepsilon}(\mu' \| \nu').$$

1470 We now consider the post-processed outputs:
 1471

$$\begin{aligned} 1472 \quad & D_{e^\varepsilon}(\mu Q^{(\eta)} \| \nu Q^{(\eta)}) \\ 1473 \quad & \leq \theta \cdot D_{e^\varepsilon}(\mu' Q^{(\eta)} \| \nu' Q^{(\eta)}) \\ 1474 \quad & \leq \theta \cdot \sup_{y \neq y'} D_{e^\varepsilon}(Q^{(\eta)}(y) \| Q^{(\eta)}(y')) \text{ (Lemma 2)} \\ 1475 \quad & \leq \theta \cdot \sup_{y \neq y'} D_{e^{\tilde{\varepsilon}}}^{(q)}(f_{\text{dep}}^{(\eta)} \circ f_{\text{enc}}(y) \| f_{\text{dep}}^{(\eta)} \circ f_{\text{enc}}(y')) \text{ (Lemma 3)} \\ 1476 \quad & = \theta \cdot \sup_{\rho, \rho'} D_{e^{\tilde{\varepsilon}}}^{(q)}(f_{\text{dep}}^{(\eta)}(\rho) \| f_{\text{dep}}^{(\eta)}(\rho')) \\ 1477 \quad & \leq \theta \cdot \max \left\{ 0, \frac{\eta(1 - e^{\tilde{\varepsilon}})}{d} + (1 - \eta) \cdot D_{e^{\tilde{\varepsilon}}}^{(q)}(\rho \| \rho') \right\} \text{ (Lemma 4)} \\ 1478 \quad & \leq \max \left\{ 0, \frac{\theta\eta(1 - e^{\tilde{\varepsilon}})}{d} + \theta(1 - \eta) \right\} \text{ (Because } D_{e^{\tilde{\varepsilon}}}^{(q)}(\rho \| \rho') \leq 1) \\ 1479 \end{aligned}$$

1480 Recall that $e^{\tilde{\varepsilon}} = 1 + \frac{e^\varepsilon - 1}{\theta}$, we substitute this into the expression:
 1481

$$\begin{aligned} 1482 \quad \frac{\theta\eta(1 - e^{\tilde{\varepsilon}})}{d} &= \frac{\theta\eta}{d} \left(1 - \left(1 + \frac{e^\varepsilon - 1}{\theta} \right) \right) \\ 1483 \quad &= \frac{\theta\eta}{d} \left(-\frac{e^\varepsilon - 1}{\theta} \right) \\ 1484 \quad &= \frac{\eta(1 - e^\varepsilon)}{d} \\ 1485 \end{aligned}$$

1486 Additionally, since the original mechanism A is (ε, δ) -DP, we have $\theta = D_{e^\varepsilon}(\mu \| \nu) \leq \delta$. Because
 1487 $1 - \eta \geq 0$, we have the final result:
 1488

$$1489 \quad D_{e^\varepsilon}(\mu Q^{(\eta)} \| \nu Q^{(\eta)}) \leq \left[\frac{\eta(1 - e^\varepsilon)}{d} + (1 - \eta)\delta \right]_+$$

1490 \square

1491 **Corollary 1.** *The composed mechanism $Q^{(\eta)} \circ A$ satisfies (ε, δ') -DP with $\delta' < \delta$, thus strictly
 1492 amplifying the failure probability.*
 1493

1494 *Proof.* The goal is to show that $\delta' < \delta$ for any non-trivial case where quantum post-processing is
 1495 active ($\eta > 0$). From Theorem 1, we have:
 1496

$$1497 \quad \delta' = \left[\frac{\eta(1 - e^\varepsilon)}{d} + (1 - \eta)\delta \right]_+$$

1498 Let the first term be $C = \frac{\eta(1 - e^\varepsilon)}{d}$. Since $\eta > 0$, $d \geq 2$, and $\varepsilon > 0$, we have $C \leq 0$. Since C is
 1499 strictly negative, $C + (1 - \eta)\delta < (1 - \eta)\delta \leq \delta$. Thus, $\delta' < \delta$.
 1500 \square

1512 **Corollary 2.** *The composed mechanism $Q^{(\eta)} \circ A$ is certifiably robust against adversarial perturba-*
 1513 *tions for an input $x \in \mathbb{X}$ if the following condition holds for the correct class k :*

$$1515 \quad \mathbb{E}[(Q^{(\eta)} \circ A)(x)]_k > e^{2\epsilon} \max_{i \neq k} \mathbb{E}[(Q^{(\eta)} \circ A)(x)]_i + (1 + e^\epsilon) \delta'$$

1518 *Proof.* Studied in (Lecuyer et al., 2019). □

1520 **Lemma 5** (Advanced Joint Convexity). *Let μ, μ' be probability distributions such that*

$$1522 \quad \mu = (1 - \sigma)\mu_0 + \sigma\mu_1, \quad \mu' = (1 - \sigma)\mu_0 + \sigma\mu'_1,$$

1523 *for some $\sigma \in [0, 1]$, and distributions μ_0, μ_1, μ'_1 . Given $\alpha \geq 1$, define $\alpha' = 1 + \sigma(\alpha - 1)$, $\beta = \frac{\alpha'}{\alpha}$.*
 1524 *Then the following inequality holds:*

$$1525 \quad D_{\alpha'}(\mu \parallel \mu') \leq (1 - \beta)\sigma D_\alpha(\mu_1 \parallel \mu_0) + \beta\sigma D_\alpha(\mu_1 \parallel \mu'_1).$$

1529 *Proof.* Studied in (Balle et al., 2018) □

1531 **Lemma 6.** *Let ρ be a density matrix on a D -dimensional Hilbert space, and let*

$$1533 \quad \rho' = f_{dep}(\rho) = \eta \frac{I}{d} + (1 - \eta)\rho$$

1535 *be its depolarized version, where $0 \leq \eta \leq 1$. Let $\{E_k\}_{k=1}^K$ be a POVM satisfying $\sum_k E_k = I$. Then,*
 1536 *the measurement probabilities satisfy:*

$$1537 \quad \zeta'(k) = \frac{\eta}{d} \text{Tr}(E_k) + (1 - \eta)\zeta(k),$$

1539 *where $\zeta' = f_{mea}(\rho')$ and $\zeta = f_{mea}(\rho)$ with $\zeta', \zeta \in \mathcal{P}(\mathbb{Z})$.*

1541 *Proof.* By linearity of the trace operator,

$$\begin{aligned} 1543 \quad \zeta'(k) &= \text{Tr}(E_k \rho') \\ 1544 \quad &= \text{Tr} \left(E_k \left(\eta \frac{I}{d} + (1 - \eta)\rho \right) \right) \\ 1545 \quad &= \eta \text{Tr} \left(E_k \frac{I}{d} \right) + (1 - \eta) \text{Tr}(E_k \rho) \\ 1546 \quad &= \frac{\eta}{d} \text{Tr}(E_k) + (1 - \eta)\zeta_k. \end{aligned}$$

1551 □

1552 **Lemma 7.** *Given the measurement distribution of a maximally mixed state ζ_{mix} and an arbitrary*
 1553 *distribution $z \in \mathcal{P}(\mathbb{Z})$, we have:*

$$1555 \quad D_\alpha(z \parallel \zeta_{mix}) \leq 1 - \alpha \min_k \left(\frac{\text{Tr}(E_k)}{d} \right)$$

1559 *Proof.* Recall the definition of the hockey-stick divergence:

$$1561 \quad D_\alpha(z \parallel \zeta_{mix}) = \sum_k [z(k) - \alpha\zeta_{mix}(k)]_+,$$

1563 *where $[x]_+ = \max\{x, 0\}$. Since $\zeta_{mix}(k) = \frac{\text{Tr}(E_k)}{d} \geq \varphi = \min_k \left(\frac{\text{Tr}(E_k)}{d} \right)$, we have*

$$1565 \quad [z(k) - \alpha\zeta_{mix}(k)]_+ \leq [z(k) - \alpha\varphi]_+.$$

1566 Summing over k yields

$$1567 \quad D_\alpha(z\|\zeta_{\text{mix}}) \leq \sum_k [z(k) - \alpha\varphi]_+.$$

1568 Since $\sum_k z(k) = 1$, it follows that

$$1571 \quad \sum_k [z(k) - \alpha\varphi]_+ \leq 1 - \alpha\varphi.$$

1572 Therefore,

$$1573 \quad D_\alpha(z\|\zeta_{\text{mix}}) \leq 1 - \alpha \min_k \left(\frac{\text{Tr}(E_k)}{d} \right).$$

1574 \square

1575 **Theorem 2** (Amplification on Privacy Loss). *Let $A = f_{\text{par}} \circ f_{\text{cdp}}$ be (ε, δ) -DP, and $Q^{(\eta)} = f_{\text{mea}} \circ f_{\text{dep}}^{(\eta)} \circ f_{\text{enc}}$ be a quantum mechanism in d -dimensional Hilbert space where $0 \leq \eta \leq 1$ is the depolarizing noise factor. Then, the composition $Q^{(\eta)} \circ A$ is (ε', δ') -DP where $\varepsilon' = \log(1 + (1 - \eta)(e^\varepsilon - 1))$ and $\delta' = (1 - \eta)(1 - e^{\varepsilon' - \varepsilon}(1 - \delta) - (e^\varepsilon - e^{\varepsilon'})\varphi)$ with $\varphi = \min_k \left(\frac{\text{Tr}(E_k)}{d} \right)$.*

1576 *Proof.* Let $x, x' \in \mathbb{X}$ be neighboring inputs, i.e., $x \simeq x'$. Let $\mu = A(x)$ and $\nu = A(x')$ denote the output distributions of A . From the definition, we have $Q^{(0)}$ and $Q^{(1)}$ which are the mechanisms without noise and with full noise. We can see that $Q^{(1)}$ is a constant mechanism because the output of $Q^{(1)}$ is always the measurement of a maximally mixed state, i.e., $Q^{(1)}(y)(k) = \frac{\text{Tr}(E_k)}{d}$ with $\forall y \in \mathbb{Y}$. Based on Lemma 6, we have:

$$1589 \quad Q^{(\eta)}(y) = \eta Q^{(1)}(y) + (1 - \eta)Q^{(0)}(y), \forall y \in \mathbb{Y}$$

1590 . Thus, we can write $Q^{(\eta)}$ as a mixture of $Q^{(0)}$ and $Q^{(1)}$ where $Q^{(\eta)} = \eta Q^{(1)} + (1 - \eta)Q^{(0)}$.

1591 Let the constant output of $Q^{(1)}$ be ζ_{mix} . Based on the advanced joint convexity theorem in (Balle et al., 2018), given $\varepsilon' = \log(1 + (1 - \eta)(e^\varepsilon - 1))$, we have:

$$\begin{aligned} 1595 \quad & D_{e^{\varepsilon'}}(\mu Q^{(\eta)} || \nu Q^{(\eta)}) \\ 1596 \quad &= D_{e^{\varepsilon'}}(\eta \mu Q^{(1)} + (1 - \eta) \mu Q^{(0)} || \eta \nu Q^{(1)} + (1 - \eta) \nu Q^{(0)}) \\ 1597 \quad &= D_{e^{\varepsilon'}}(\eta \zeta_{\text{mix}} + (1 - \eta) \mu Q^{(0)} || \eta \zeta_{\text{mix}} + (1 - \eta) \nu Q^{(0)}) \\ 1598 \quad &= (1 - \eta) D_{e^{\varepsilon}}(\mu Q^{(0)} || (1 - \beta) \zeta_{\text{mix}} + \beta \nu Q^{(0)}) \\ 1599 \quad & \quad (\text{Based on the advanced joint convexity theorem, } \beta = e^{\varepsilon' - \varepsilon}) \\ 1600 \quad & \leq (1 - \eta) \left((1 - \beta) D_{e^{\varepsilon}}(\mu Q^{(0)} || \zeta_{\text{mix}}) + \beta D_{e^{\varepsilon}}(\mu Q^{(0)} || \nu Q^{(0)}) \right) \end{aligned}$$

1601 We have $D_{e^{\varepsilon}}(\mu Q^{(0)} || \zeta_{\text{mix}}) \leq 1 - e^\varepsilon \min_k \left(\frac{\text{Tr}(E_k)}{d} \right) = 1 - e^\varepsilon \varphi$ and $D_{e^{\varepsilon}}(\mu Q^{(0)} || \nu Q^{(0)}) \leq 1602 D_{e^{\varepsilon}}(\mu || \nu) \leq \delta$. Thus, we can conclude:

$$1603 \quad D_{e^{\varepsilon'}}(\mu Q^{(\eta)} || \nu Q^{(\eta)}) \leq (1 - \eta)(1 - e^{\varepsilon' - \varepsilon}(1 - \delta) - (e^\varepsilon - e^{\varepsilon'})\varphi)$$

1604 \square

1605 **Corollary 3.** *Let $\{E_k\}_{k=1}^K$ be the POVM used in f_{mea} . Then, the amplified failure probability δ' in Theorem 2 is minimized when all POVM elements have equal trace, i.e., $\text{Tr}(E_k) = \frac{d}{K}$ for all $k \in \{1, \dots, K\}$.*

1606 *Proof.* The goal is to minimize the amplified failure probability δ' with respect to the choice of the POVM $\{E_k\}_{k=1}^K$. From Theorem 2, the expression for δ' is:

$$1607 \quad \delta' = (1 - \eta)(1 - e^{\varepsilon' - \varepsilon}(1 - \delta) - (e^\varepsilon - e^{\varepsilon'})\varphi)$$

1608 All terms in this expression are independent of the specific measurement choice except for $\varphi = 1609 \min_k \left(\frac{\text{Tr}(E_k)}{d} \right)$.

1620 To analyze how δ' depends on φ , we examine the sign of $-(1 - \eta)(e^\varepsilon - e^{\varepsilon'})$. Since $\eta \in [0, 1]$ and
 1621 $\varepsilon' \leq \varepsilon$, this coefficient is non-positive. Thus, δ' is a monotonically decreasing function of φ .

1622 Therefore, to minimize δ' , we must maximize φ . This is equivalent to maximizing $\min_k(\text{Tr}(E_k))$
 1623 subject to the POVM completeness constraint $\sum_{k=1}^K E_k = I$. Taking the trace of the completeness
 1624 relation gives:

$$1626 \quad \sum_{k=1}^K \text{Tr}(E_k) = \text{Tr}(I) = d$$

1627 The function $\min_k(\text{Tr}[E_k])$ is maximized when all $\text{Tr}[E_k]$ are equal. Thus, the optimal choice is to
 1628 have $\text{Tr}[E_k] = d/K$ for all k . \square

1629 **Corollary 4.** *Given an optimal measurement such that $\text{Tr}[E_k] = \frac{d}{K} \forall k$, the composed mechanism
 1630 $Q^{(\eta)} \circ A$ strictly improves the privacy guarantee—i.e., $\varepsilon' \leq \varepsilon$ and $\delta' \leq \delta$ —if*

$$1631 \quad \eta \geq 1 - \frac{\delta}{(1 - \delta)(1 - e^{-\varepsilon}) - (e^\varepsilon - 1)/K}$$

1632 *Proof.* We find the condition on η that ensures $\delta' \leq \delta$ under the assumption of an optimal measurement,
 1633 where, from Corollary 3, we have $\varphi = 1/K$. The guarantee $\varepsilon' \leq \varepsilon$ holds for all $\eta \in [0, 1]$.

1634 We start with the inequality $\delta' \leq \delta$ using the expression from Theorem 2:

$$1635 \quad (1 - \eta)(1 - e^{\varepsilon' - \varepsilon}(1 - \delta) - (e^\varepsilon - e^{\varepsilon'})\varphi) \leq \delta$$

1636 Substitute the identities $e^{\varepsilon' - \varepsilon} = 1 - \eta + \eta e^{-\varepsilon}$, $e^\varepsilon - e^{\varepsilon'} = \eta(e^\varepsilon - 1)$, and $\varphi = 1/K$, we have:

$$1637 \quad (1 - \eta) \left(1 - (1 - \eta + \eta e^{-\varepsilon})(1 - \delta) - \frac{\eta(e^\varepsilon - 1)}{K} \right) \leq \delta$$

1638 The expression inside the main brackets simplifies to $\delta + \eta(1 - \delta)(1 - e^{-\varepsilon}) - \frac{\eta(e^\varepsilon - 1)}{K}$. Substituting
 1639 this back, expanding, and simplifying for $\eta > 0$, we have:

$$1640 \quad (1 - \delta)(1 - e^{-\varepsilon}) - \frac{e^\varepsilon - 1}{K} - \delta \leq \eta \left((1 - \delta)(1 - e^{-\varepsilon}) - \frac{e^\varepsilon - 1}{K} \right)$$

1641 Solving for η gives the threshold:

$$1642 \quad \eta \geq \frac{(1 - \delta)(1 - e^{-\varepsilon}) - (e^\varepsilon - 1)/K - \delta}{(1 - \delta)(1 - e^{-\varepsilon}) - (e^\varepsilon - 1)/K}$$

$$1643 \quad = 1 - \frac{\delta}{(1 - \delta)(1 - e^{-\varepsilon}) - (e^\varepsilon - 1)/K}$$

1644 \square

1645 **Lemma 8.** *The intermediate mechanism $\mathcal{M}_{\text{half}}$ is L_∞ -Lipschitz with respect to the input perturbation
 1646 κ , satisfying $|\mathcal{M}_{\text{half}}(x + \kappa) - \mathcal{M}_{\text{half}}(x)| \leq L_\infty \|\kappa\|_\infty$. The constant is given by:*

$$1647 \quad L_\infty = 2(1 - \eta) \|E_{\text{exp}}\|_{\text{op}} \|W\|_\infty \left(\sum_j \|H_j\|_{\text{op}} \right)$$

1648 where $E_{\text{exp}} = \sum_k k E_k$.

1649 *Proof.* First, we prove that a Lipschitz bound for a composition of functions can be obtained as the
 1650 product of their individual Lipschitz constants. Specifically, suppose that f can be written as
 1651

$$1652 \quad f = f_1 \circ f_2 \circ \cdots \circ f_h,$$

1674 where \circ denotes function composition, and each f_i admits a Lipschitz constant L_i for $i = 1, \dots, h$.
 1675 Then, for any inputs x and a small deviation κ , it holds that

$$\begin{aligned} & \|f(x + \kappa) - f(x)\| \\ & \leq L_1 \|f_2 \circ \dots \circ f_h(x + \kappa) - f_2 \circ \dots \circ f_h(x)\| \\ & \leq L_1 L_2 \|f_3 \circ \dots \circ f_h(x + \kappa) - f_3 \circ \dots \circ f_h(x)\| \\ & \quad \vdots \\ & \leq \left(\prod_{i=1}^h L_i \right) \|\kappa\|. \end{aligned}$$

1685 Since the mechanism $\mathcal{M}_{\text{half}}$ is expressed as a composition of f_{exp} , f_{dep}^η , f_{enc} , and f_{par} , our goal is to
 1686 determine the Lipschitz bound for each individual function.
 1687

1688 **Lipschitz bound of f_{par} :**

1689 The function $f_{\text{par}} : \mathbb{X} \rightarrow \mathbb{Y}$ is defined as

$$1691 \quad f_{\text{par}}(x) = Wx + b,$$

1693 ‘Since b is a constant shift (which does not affect Lipschitz continuity), we have:

$$1694 \quad \|f_{\text{par}}(x + \kappa) - f_{\text{par}}(x)\| = \|W\kappa\| \leq \|W\|_\infty \|\kappa\|_\infty,$$

1696 Thus, f_{par} is $\|W\|_\infty$ -Lipschitz.

1698 **Lipschitz bound of f_{enc} :**

1699 The function $f_{\text{enc}} : \mathbb{Y} \rightarrow \mathcal{H}$ encodes a classical vector y into a density matrix $f_{\text{enc}}(y) =$
 1700 $U_{\text{enc}}(y)|0\rangle\langle 0|U_{\text{enc}}(y)^\dagger$ where $U_{\text{enc}}(y) = \prod_{j=1}^N e^{-i(\mathbf{w}_j \cdot y_j + b_j)H_j}$. We need to bound the trace norm
 1701 distance $f_{\text{enc}}(y + \kappa) - f_{\text{enc}}(y)$ in terms of $\|\kappa\|_\infty$.
 1702

$$\begin{aligned} & \|f_{\text{enc}}(y + \kappa) - f_{\text{enc}}(y)\| \\ & = \|U_{\text{enc}}(y + \kappa)\rho_0 U_{\text{enc}}(y + \kappa)^\dagger - U_{\text{enc}}(y)\rho_0 U_{\text{enc}}(y)^\dagger\| \\ & \leq 2\|U_{\text{enc}}(y + \kappa) - U_{\text{enc}}(y)\| \end{aligned}$$

1703 where $\rho_0 = |0\rangle\langle 0|$ and we used the triangle inequality and properties of the trace norm. The difference
 1704 between the unitary operators is bounded by:
 1705

$$\begin{aligned} & \|U_{\text{enc}}(y + \kappa) - U_{\text{enc}}(y)\| \\ & \leq \sum_{j=1}^N \|e^{-i(y_j + \kappa_j)H_j} - e^{-iy_j H_j}\| \\ & \leq \sum_{j=1}^N |\kappa_j| \|H_j\| \leq \sum_{j=1}^N \|H_j\| \|\kappa\|_\infty \end{aligned}$$

1706 (Based on (Berberich et al., 2024))

1707 Thus, f_{enc} is $2 \left(\sum_{j=1}^n \|H_j\| \right)$ -Lipschitz.
 1708

1722 **Lipschitz bound of $f_{\text{dep}}^{(\eta)}$:**

1723 The function $f_{\text{dep}}^{(\eta)} : \mathcal{H} \rightarrow \mathcal{H}$ models the depolarizing noise:
 1724

$$1725 \quad f_{\text{dep}}^{(\eta)}(\rho) = (1 - \eta)\rho + \eta \frac{I}{d},$$

1726 where I is the identity matrix and d is the dimension of the Hilbert space.
 1727

1728 Since the term $\eta \frac{I}{d}$ is constant, the difference between two outputs is:
 1729

$$1730 \|f_{\text{dep}}^{(\eta)}(\rho) - f_{\text{dep}}^{(\eta)}(\sigma)\| = (1 - \eta)\|\rho - \sigma\|. \\ 1731$$

1732 Thus, $f_{\text{dep}}^{(\eta)}$ is $(1 - \eta)$ -Lipschitz.
 1733

1734 **Lipschitz bound of f_{exp} :**

1735 The measurement function $f_{\text{mea}} : \mathcal{H} \rightarrow \mathbb{R}^K$, defined by a set of POVMs $\{E_k\}$, maps a quantum state
 1736 ρ to a probability vector:

$$1737 f_{\text{exp}}(\rho) = \sum_k k \text{Tr}(E_k \rho). \\ 1738$$

1739 Given $E_{\text{exp}} = \sum_k k E_k$, by trace duality and Hölder's inequality, we have:
 1740

$$1741 \|f_{\text{exp}}(\rho) - f_{\text{exp}}(\rho')\| = |\text{Tr}(E_{\text{exp}}(\rho - \rho'))| \leq \|E_{\text{exp}}\|_{\text{op}} \|\rho - \rho'\|. \\ 1742$$

1743 Therefore, f_{exp} is $\|E_{\text{exp}}\|_{\text{op}}$ -Lipschitz.
 1744

1744 As a result, the mechanism $\mathcal{M}_{\text{half}}$ is L_{∞} -Lipschitz where $L_{\infty} = 2(1 - \eta)\|E_{\text{exp}}\|_{\text{op}}\|W\|_{\infty} \left(\sum_j \|H_j\|_{\text{op}} \right)$.
 1745

1746 \square

1747 **Lemma 9.** *The absolute difference between the expected outputs of the intermediate and clean
 1748 mechanisms is uniformly bounded by:*

$$1750 \sup_{x \in \mathbb{X}} |\mathcal{M}_{\text{half}}(x) - \mathcal{M}_{\text{clean}}(x)| \leq 2\eta\|E_{\text{exp}}\| \\ 1751$$

1752 *Proof.* Let $\rho(x) = (f_{\text{enc}} \circ f_{\text{par}})(x)$ be the clean quantum state.
 1753

$$1754 |\mathcal{M}_{\text{half}}(x) - \mathcal{M}_{\text{clean}}(x)| \\ 1755 = |\text{Tr}[f_{\text{exp}} \cdot f_{\text{dep}}^{\eta}(\rho(x))] - \text{Tr}(f_{\text{exp}} \cdot \rho(x))| \\ 1756 \leq \|E_{\text{exp}}\|_{\text{op}} \cdot \|f_{\text{dep}}^{\eta}(\rho(x)) - \rho(x)\| \quad (\text{Lipschitz property of } f_{\text{exp}}) \\ 1757$$

1758 The trace distance term is bounded as:
 1759

$$1760 \|f_{\text{dep}}^{\eta}(\rho) - \rho\| = \|((1 - \eta)\rho + \eta \frac{I}{d}) - \rho\| = \eta \left\| \frac{I}{d} - \rho \right\| \\ 1761$$

1762 Since ρ and I/d are both valid density matrices, the trace distance between them is at most 2. Thus,
 1763 $\|\frac{I}{d} - \rho\| \leq 2$. Substituting this back gives the final bound of $2\eta\|E_{\text{exp}}\|_{\text{op}}$.
 1764 \square

1765 **Theorem 3 (Utility bound).** *Let the classical noise be $\kappa \sim \mathcal{N}(0, \sigma^2 I)$ acting on an input space \mathbb{X}
 1766 of dimension $d_X = \dim(\mathbb{X})$. For any desired failure probability $p > 0$, the utility loss is bounded
 1767 probabilistically as:*

$$1768 \Pr \left(\text{Error} \leq L_{\infty} \cdot \sigma \sqrt{2 \ln \frac{2d_X}{p}} + 2\eta\|E_{\text{exp}}\|_{\text{op}} \right) \geq 1 - p \\ 1769$$

1770 where $L_{\infty} = 2(1 - \eta)\|E_{\text{exp}}\|_{\text{op}}\|W\|_{\infty} \left(\sum_j \|H_j\|_{\text{op}} \right)$.
 1771

1772 *Proof.* We use the triangle inequality for the absolute error for a given x and classical noise κ :
 1773

$$1774 |\mathcal{M}_{\text{full}}(x) - \mathcal{M}_{\text{clean}}(x)| \\ 1775 = |\mathcal{M}_{\text{half}}(x + \kappa) - \mathcal{M}_{\text{clean}}(x)| \\ 1776 \leq |\mathcal{M}_{\text{half}}(x + \kappa) - \mathcal{M}_{\text{half}}(x)| + |\mathcal{M}_{\text{half}}(x) - \mathcal{M}_{\text{clean}}(x)| \\ 1777$$

1778 Applying our two lemmas, the first term is bounded by $L_{\infty} \cdot \|\kappa\|_{\infty}$ and the second term is bounded
 1779 by $2\eta\|E_{\text{exp}}\|_{\text{op}}$.

$$1780 \text{Error} \leq L_{\infty} \cdot \|\kappa\|_{\infty} + 2\eta\|E_{\text{exp}}\|_{\text{op}} \\ 1781$$

1782 The stochastic error depends on the magnitude of $\|\kappa\|_\infty = \max_i |\kappa_i|$, where each component κ_i of
 1783 the noise vector is an independent draw from a Gaussian distribution, $\kappa_i \sim \mathcal{N}(0, \sigma^2)$.
 1784

1785 To obtain a high-probability bound on the maximum of d independent Gaussian variables, we can
 1786 apply a standard union bound on their tails. For any desired failure probability $p > 0$, with probability
 1787 at least $1 - p$, the infinity norm of κ is bounded by:
 1788

$$\|\kappa\|_\infty \leq \sigma \sqrt{2 \ln(2d_X/p)}$$

1790 By combining these bounds, we can state that for any $p > 0$, the total utility loss is bounded with
 1791 probability at least $1 - p$:
 1792

$$\text{Error} \leq L_\infty \cdot \sigma \sqrt{2 \ln \frac{2d_X}{p} + 2\eta \|E_{\text{exp}}\|_{op}}$$

□

1800 C IMPLEMENTATION

1802 We implement all experiments with Python 3.8. Each experiment is conducted on a single GPU-
 1803 assisted compute node installed with a Linux 64-bit operating system. Our testbed resources include
 1804 72 CPU cores with 377 GB of RAM in total. Our allocated node is also provisioned with 2 GPUs
 1805 with 40GB of VRAM per GPU.

1806 **Implementation of HYPER-Q.** HYPER-Q was implemented using the PennyLane QML simulator
 1807 (Bergholm et al., 2022). The detailed architecture implements the general mechanism proposed
 1808 and analyzed in Section 4. Specifically, each input image first passes through two convolutional layers,
 1809 each followed by batch normalization and max pooling to reduce spatial dimensions and extract
 1810 salient features. The resulting feature maps are flattened and passed through two fully connected lay-
 1811 ers to produce a low-dimensional feature vector. This vector is then encoded into a 5-qubit quantum
 1812 circuit comprising three alternating layers of single-qubit rotations (implemented via RX gates) and
 1813 entangling layers. This corresponds to the encoding function f_{enc} , where Hermitian generators are
 1814 given by RX gates. The entangling layers employ a circular arrangement of CNOT gates, such that
 1815 each qubit i is entangled with qubit $i + 1$, with the last qubit entangled with the first. A projective
 1816 measurement is applied in the computational basis to extract the quantum outputs, which are then
 1817 processed by a final fully connected layer to produce the prediction.

Dataset	Image Dims.	Training	Testing	No. of Labels	Description
MNIST	28×28	60,000	10,000	10	Handwritten digits
USPS	16×16	$\approx 7,300$	$\approx 2,000$	10	Scanned U.S. postal envelopes
FashionMNIST	28×28	60,000	10,000	10	Clothing items
CIFAR-10	$32 \times 32 \times 3$	50,000	10,000	10	Natural objects items

1824 Table 1: Dataset descriptions.
 1825

1826 Additionally, the classical and quantum noise levels are set as follows. Given a target differential
 1827 privacy budget (ϵ', δ') , we first fix the quantum depolarizing noise factor η , and then calibrate the
 1828 classical Gaussian noise variance σ^2 to satisfy the budget based on Theorem 1. Specifically, σ^2 is
 1829 chosen so that the classical mechanism A achieves (ϵ, δ) -DP with

$$\epsilon = \epsilon', \quad \delta = \frac{\delta' - \frac{\eta(1-e^\epsilon)}{d}}{1 - \eta}.$$

1830
 1831
 1832
 1833 The variance σ^2 is then computed using the Analytic Gaussian mechanism (Balle & Wang, 2018),
 1834 ensuring that the classical mechanism A satisfies (ϵ, δ) -DP and the composed mechanism $Q^{(\eta)} \circ A$
 1835 satisfies the target (ϵ', δ') -DP.

1836 **D DESCRIPTION OF DATASETS & BENCHMARKS**
18371838 **Datasets:** We evaluate our approach on three image classification datasets: MNIST (Lecun et al.,
1839 FashionMNIST (Xiao et al., 2017), and USPS (Hull, 2002). Table 1 briefly describes each of
1840 them.1841 **Benchmarks:** We compare our approach on QML with three classical ML models: Multi-Layer
1842 Perceptron (MLP), ResNet-9, and Vision Transformer (ViT). We describe the implementations of
1843 those benchmarks below:
1844

- 1845 • **MLP:** We implement an MLP with a feedforward network composed of fully connected
1846 layers and ReLU activations. It consists of one hidden layer with 100 units and a final linear
1847 output layer corresponding to the number of classes. It is identical to the default MLP from
1848 the Sci-Kit Learn library ¹. We implemented it without the library as it is not tailored
1849 for GPU usage out of the box. Our *from scratch* version is parallelizable on GPUs.
- 1850 • **ResNet-9:** We implement a ResNet-9 model inspired by the original in (He et al., 2016).
1851 It is comprised of a series of convolutional layers and two residual blocks that include
1852 skip connections. It processes inputs through increasing feature dimensions: [32, 64, 128].
1853 We employ batch normalization and ReLU activations throughout the model following by
1854 MaxPooling layers. The model ends with a fully-connected layer for classification.
- 1855 • **ViT:** We implement a ViT model inspired by (Dosovitskiy et al., 2021). It splits input images
1856 into non-overlapping patches and linearly embeds them before adding positional encodings
1857 and a class token. Multiple self-attention layers processes each sequence before classifying
1858 via a fully connected head applied to the class token.

1860 **E ADVERSARIAL TRAINING AND TESTING**
18611862 We evaluate the adversarial robustness of HYPER-Q via an adversarial training and testing framework
1863 inspired by the PixelDP mechanism (Lecuyer et al., 2019). Similar to PixelDP, during training, we
1864 define a *construction attack bound* L_{cons} to represent the theoretical robustness guarantee in terms of
1865 ℓ_2 norm. Specifically, this bound establishes the maximum allowable adversarial perturbation under
1866 which the model is certified to preserve its prediction capabilities. In our experiments, we vary this
1867 value where $L_{cons} = \{0.1, 0.2, 0.3, 0.4\}$. In both HYPER-Q and classical baseline models, ℓ_2 -based
1868 noise is injected directly into the input. This setup permits a fair comparison of robustness guarantees
1869 between quantum and classical models despite their underlying architectural differences.1870 To evaluate empirical robustness beyond certified guarantees, we assess each model against adversarial
1871 perturbations constrained by the ℓ_∞ norm. Specifically, for every L_{cons} value, we experiment
1872 against empirical attack bounds L_{attk} . In our experiments, we vary this value where $L_{attk} =$
1873 $\{0, 0.01, 0.02, 0.03, 0.04, 0.05\}$ while implementing two adversarial attacks: Fast Gradient Sign
1874 Method (FGSM) and Projected Gradient Descent (PGD). With this, we are able to observe model
1875 performance under realistic threats that may not satisfy the constraints of our certified threat model.
1876 In addition, we adopt the randomized smoothing technique proposed by (Cohen et al., 2019) to
1877 provide certified predictions against adversarial examples.1878 **F ADDITIONAL EXPERIMENTS**
18791880 **F.1 ROBUSTNESS ANALYSIS IN QML**
18811882 As in Section 5.1, we evaluate the adversarial robustness of HYPER-Q under two quantum noise
1883 levels, $\eta \in \{0.1, 0.3\}$. We compare its performance with Basic Gaussian, Analytic Gaussian and
1884 **DP-SGD** mechanisms, ensuring that all methods are evaluated under the same privacy budget and
1885 applied to the same QML model. Figures 4, 5 and 6 present the results of the FGSM attack on the
1886 FashionMNIST and USPS datasets, respectively with $\epsilon' \in \{0.25, 0.5, 0.75, 1\}$. In all cases, with the
1887 exception of $\epsilon' = 1$ on USPS, HYPER-Q clearly outperforms all baseline methods. On the USPS
1888 dataset when $\epsilon' = 1$, the Analytic Gaussian mechanism outperforms HYPER-Q at lower values of
1889

¹<https://scikit-learn.org/stable/>

Figure 4: Accuracy of various noise-added mechanisms under the FGSM attack on the MNIST dataset with different ϵ' values and $\delta' = 1 \times 10^{-5}$. For each pair of $(L_{\text{attk}}, \epsilon')$, the reported accuracy is averaged over all L_{cons} settings. HYPER-Q is examined with $\eta \in [0.1, 0.3]$.

Figure 5: Accuracy of various noise-added mechanisms under the FGSM attack on the FashionMNIST dataset with different ϵ' values and $\delta' = 1 \times 10^{-5}$. For each pair of $(L_{\text{attk}}, \epsilon')$, the reported accuracy is averaged over all L_{cons} settings. HYPER-Q is examined with $\eta \in [0.1, 0.3]$.

Figure 6: Accuracy of various noise-added mechanisms under the FGSM attack on the USPS dataset with different ϵ' values and $\delta' = 1 \times 10^{-5}$. For each pair of $(L_{\text{attk}}, \epsilon')$, the reported accuracy is averaged over all L_{cons} settings. HYPER-Q is examined with $\eta \in [0.1, 0.3]$.

L_{attk} ($L_{\text{attk}} \in \{0, 0.01\}$), eventually degrading to comparable performance ($L_{\text{attk}} \in \{0.02, 0.03\}$) before beginning to underperform at higher values of L_{attk} ($L_{\text{attk}} \in \{0.04, 0.05\}$). Similar to the results in Section 5.1, we observe that HYPER-Q with $\eta = 0.3$ degrades very quickly like the Analytic Gaussian and Basic Gaussian mechanisms, even dropping below the two in most cases as the value of ϵ' increases.

Figures 7, 8, and 9 present the results of the PGD attack on HYPER-Q and our baseline methods for MNIST, FashionMNIST, and USPS datasets, respectively. Even against the PGD attack, results are similar to the FGSM attack where HYPER-Q clearly outperforms all baselines on each dataset with the exception of $\epsilon' = 1$ on USPS where the Analytic Gaussian mechanism varies performance as it outperforms HYPER-Q with smaller values of L_{attk} ($L_{\text{attk}} = 0$) before becoming comparable ($L_{\text{attk}} \in \{0.01, 0.02\}$) and eventually underperforming at higher values of L_{attk} ($L_{\text{attk}} \in \{0.03, 0.04, 0.05\}$).

F.2 COMPARATIVE BENCHMARK WITH CLASSICAL MODELS

As in Section 5.2, we illustrate the performance comparison of a QML model protected by HYPER-Q (with its empirically optimal quantum noise setting, $\eta = 0.1$) against three classical baselines: ResNet-9, ViT, and MLP, each protected by Analytic Gaussian noise. Figures 10, 11 and 12 illustrate the performance comparison between all models on the FashionMNIST and USPS datasets, respectively, while under the FGSM attack. In Figure 11, we observe that the ResNet-9 model, across all values of

Figure 7: Accuracy of various noise-added mechanisms under the PGD attack on the MNIST dataset with different ϵ' values and $\delta' = 1 \times 10^{-5}$. For each pair of $(L_{\text{attk}}, \epsilon')$, the reported accuracy is averaged over all L_{cons} settings. HYPER-Q is examined with $\eta \in [0.1, 0.3]$.

Figure 8: Accuracy of various noise-added mechanisms under the PGD attack on the FashionMNIST dataset with different ϵ' values and $\delta' = 1 \times 10^{-5}$. For each pair of $(L_{\text{attk}}, \epsilon')$, the reported accuracy is averaged over all L_{cons} settings. HYPER-Q is examined with $\eta \in [0.1, 0.3]$.

Figure 9: Accuracy of various noise-added mechanisms under the PGD attack on the USPS dataset with different ϵ' values and $\delta' = 1 \times 10^{-5}$. For each pair of $(L_{\text{attk}}, \epsilon')$, the reported accuracy is averaged over all L_{cons} settings. HYPER-Q is examined with $\eta \in [0.1, 0.3]$.

ϵ' , outperforms HYPER-Q and the other baseline models. However, it is noted that HYPER-Q is very comparable to the ResNet-9 model with larger values of ϵ' . Only at higher values of L_{attk} do we observe noticeable separation between the two models. Contrarily, for the USPS dataset, HYPER-Q dominates all other baseline models when $\epsilon' \in \{0.25, 0.5\}$. Specifically, compared to the ResNet-9 model, HYPER-Q maintains an $\approx 30\%$ higher average accuracy when $\epsilon' = 0.25$. This value drops to $\approx 2\%$ when $\epsilon' = 0.5$. The ResNet-9 model becomes more competitive as $\epsilon' \in \{0.75, 1.0\}$, where it is comparable to HYPER-Q and then outperforms it by $\approx 5\%$, respectively. An interesting observation is the subtle fluctuations of the MLP and quick degradation across all values of ϵ' . HYPER-Q and the other baselines are much more stable across all values. The results shown in Figures 13, 14, and 15 illustrate the comparative performance of HYPER-Q and our baseline models when subjected to the PGD attack and are virtually identical in nature to the results of the FGSM attack on all three datasets.

F.3 EMPIRICAL ANALYSIS OF DIMENSIONAL SCALABILITY

To address the practical scalability of HYPER-Q, we empirically investigated the impact of the Hilbert space dimension $d = 2^n$ on the reduction of the required classical noise. While Theorem 1 introduces an additive term $\frac{\eta(1-e^\epsilon)}{d}$ that ostensibly shrinks as the system scales, our analysis reveals that the privacy amplification stabilizes rather than vanishes.

Figure 16 presents the average percentage reduction in classical noise variance (σ^2) as a function of the number of qubits n , ranging from 1 to 29, across various quantum noise levels $\eta \in [0.05, 0.4]$.

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

The results highlight two observations. For small-scale systems, we observe a massive reduction in the required classical noise, exceeding 90% for $n < 3$. In this regime, the dimension-dependent term $\frac{1}{d}$ in Theorem 1 is dominant, providing a significant bonus to the privacy budget. On the other hand, as the number of qubits increases and the $1/d$ term vanishes, the noise reduction does not drop to zero. Instead, the curves flatten into a stable, non-zero level. This represents the scale-independent multiplicative amplification $(1 - \eta)$ derived in our theoretical framework. For instance, with $\eta = 0.4$, the mechanism maintains a consistent noise reduction of approximately 8% even at $n = 29$ (where $d \approx 5 \times 10^8$).

F.4 EMPIRICAL VERIFICATION OF UTILITY BOUND TIGHTNESS

To rigorously assess the tightness of the theoretical utility bound derived in Theorem 3, we conducted an empirical analysis comparing the observed worst-case error against the bound. Theorem 3 characterizes the stability of the mechanism by bounding the maximum deviation $\text{Error} = \sup_x |\mathcal{M}_{\text{full}}(x) - \mathcal{M}_{\text{clean}}(x)|$. The bound states that

$$\Pr \left(\text{Error} \leq L_\infty \cdot \sigma \sqrt{2 \ln \frac{2d_X}{p}} + 2\eta \|E_{\text{exp}}\|_{\text{op}} \right) \geq 1 - p$$

where $L_\infty = 2(1 - \eta) \|E_{\text{exp}}\|_{\text{op}} \|W\|_\infty (\sum_j \|H_j\|_{\text{op}})$.

We evaluated the tightness of our bound by measuring the ratio between the maximum empirical error observed in simulation and the theoretical bound $\text{Bound}(\sigma, \eta, p) = L_\infty \sigma \sqrt{2 \ln(2d_X/p)} + 2\eta \|E_{\text{exp}}\|_{\text{op}}$. In particular, given a sample set S , the ratio is calculated by:

$$\text{Ratio} = \frac{\max_{x \in S} |\mathcal{M}_{\text{full}}(x) - \mathcal{M}_{\text{clean}}(x)|}{\text{Bound}(\sigma, \eta, p)}$$

In this experiment, we set the failure probability to $p = 0.01$. That ensures the theoretical bound holds with a 99% confidence level. We computed the Ratio for each (σ, η) configuration using a sample size of $|S| = 10000$, where a value approaching 1 indicates a tight bound. Figure 17 presents the resulting ratios across the parameter grid. We observe that in low-noise settings, such as $(\sigma, \eta) = (0.5, 0)$, the ratio reaches significant magnitudes (e.g., 0.923), confirming that the bound effectively captures the worst-case error. While the bound becomes looser as the total noise magnitude increases, it remains non-trivial. Notably, in the absence of classical noise ($\sigma = 0$), the ratios remain constant across all η . This behavior is attributed to the linearity of the depolarizing channel, where both the empirical error and the theoretical quantum term $(2\eta \|E_{\text{exp}}\|_{\text{op}})$ scale linearly with η .

F.5 SENSITIVITY ANALYSIS OF THE DEPOLARIZING NOISE PARAMETER η

To characterize the impact of the quantum noise parameter on model utility, we evaluate model accuracy across varying levels of depolarizing noise $\eta \in \{0.05, 0.1, \dots, 0.4\}$. For each noise level η , we measured robustness against FGSM attacks with varying strengths $L_{\text{attk}} \in \{0, 0.01, \dots, 0.05\}$. We conducted these experiments across three datasets (MNIST, Fashion-MNIST, and USPS) under four distinct differential privacy guarantees $\varepsilon' \in \{0.25, 0.5, 0.75, 1\}$.

Figures 18, 19 and 20 collectively show that the relationship between depolarizing noise η and model performance exhibits a remarkably consistent structure across all three datasets: MNIST, Fashion-MNIST and USPS. Despite differences in dataset complexity, the accuracy curves share the same unimodal shape. Specifically, performance initially increases as η moves away from 0, reaches a peak and, then declines once the quantum distortion dominates. This pattern is visible in every privacy budget $\varepsilon' \in \{0.25, 0.5, 0.75, 1\}$ and across all attack bounds L_{attk} .

When comparing the location of the performance peaks across datasets, we observe a highly aligned trend. Under stricter privacy budgets ($\varepsilon' \leq 0.5$), the best performance is usually achieved at $\eta = 0.1$ or $\eta = 0.5$. For example, MNIST and Fashion-MNIST peak at $\eta = 0.1$ and USPS similarly peaks at $\eta = 0.1 - 0.15$ for $\varepsilon' = 0.25$. As the privacy requirement becomes more relaxed ($\varepsilon' \geq 0.75$), all three datasets shift their peaks toward smaller noise levels, typically $\eta = 0.05$. We observe that the optimal η consistently falls within the narrow interval 0.05-0.15. Although η is often difficult to

Figure 10: Accuracy comparison between the QML model protected by HYPER-Q and three classical baselines (ResNet-9, ViT, and MLP) protected by Analytic Gaussian noise under the FGSM attack on the MNIST dataset. The HYPER-Q model is evaluated with its empirically best quantum noise setting ($\eta = 0.1$). For each $(L_{\text{attk}}, \varepsilon')$ pair, the reported accuracy is averaged over all L_{cons} settings. $\delta' = 1 \times 10^{-5}$ for all settings.

calibrate precisely in practice Hu et al. (2023), this stable peak range provides a robust guideline that users can reliably calibrate η within this interval without requiring an exhaustive sweep.

F.6 PERFORMANCE ANALYSIS ON CIFAR-10

To evaluate the robustness of HYPER-Q on more complex data, we extend our experiments to CIFAR-10, a significantly more challenging benchmark than MNIST and USPS. Unlike grayscale datasets, CIFAR-10 consists of RGB images with higher variability and richer feature structure, requiring a larger quantum feature map. For this setting, we employ a 10-qubit variational QML model and compare HYPER-Q with three classical baselines under a fixed privacy budget $\varepsilon' = 1$. Figure 21 shows the test accuracy as a function of attack strength $L_{\text{attk}} \in \{0, 0.01, \dots, 0.05\}$. Across all models, accuracy decreases as the attack strength increases, but the rate of degradation varies significantly. HYPER-Q begins at 73.9% accuracy at $L_{\text{attk}} = 0$ and declines smoothly to 47.7% at $L_{\text{attk}} = 0.05$. This degradation profile is comparable to ResNet-9, which starts at a higher baseline of 86.0% but similarly drops to 48.7% at the highest attack bound. In contrast, ViT and MLP degrade much more rapidly, falling from 75.9% and 69.3% initially to only 14.2% and 10.8% at $L_{\text{attk}} = 0.05$, respectively.

These results highlight two insights. First, even for a high-dimensional image dataset requiring a deeper quantum representation, HYPER-Q remains competitive with classical baselines under moderate attack strengths. Second, while classical deep models exhibit higher clean accuracy, their robustness diminishes sharply under increasing perturbation, whereas HYPER-Q shows a more controlled and stable decline. This demonstrates that the hybrid-noise mechanism HYPER-Q continues to offer meaningful utility benefits in more complex, higher-qubit QML settings.

F.7 GENERAL OBSERVATIONS

We note that HYPER-Q exhibits resilience to small L_{∞} perturbations attributing to the nonlinear separability and the enhanced representational capacity of quantum feature embeddings. However, we note that as the attack strength increases, sensitivity varies. Contrarily, the classical baselines show a much more pronounced and predictable degradation in robustness when increasing L_{∞} perturbations. However, even though the identical ℓ_2 certification bounds are applied to each model, architectural differences lead to variations where quantum models may underutilize or overconservatively interpret certification bounds due to the non-Euclidean geometry of Hilbert spaces. This further highlights the distinct robustness characteristics of quantum-enhanced learning in adversarial settings.

G USE OF LARGE LANGUAGE MODELS

Portions of this manuscript were refined using a large language model (LLM) to improve clarity, grammar, and readability. The use of the LLM was limited strictly to language polishing, and no content, analysis, or results were generated by the model.

Figure 11: Accuracy comparison between the QML model protected by HYPER-Q and three classical baselines (ResNet-9, ViT, and MLP) protected by Analytic Gaussian noise under the FGSM attack on the FashionMNIST dataset. The HYPER-Q model is evaluated with its empirically best quantum noise setting ($\eta = 0.1$). For each $(L_{\text{attk}}, \varepsilon')$ pair, the reported accuracy is averaged over all L_{cons} settings. $\delta' = 1 \times 10^{-5}$ for all settings.

Figure 12: Accuracy comparison between the QML model protected by HYPER-Q and three classical baselines (ResNet-9, ViT, and MLP) protected by Analytic Gaussian noise under the FGSM attack on the USPS dataset. The HYPER-Q model is evaluated with its empirically best quantum noise setting ($\eta = 0.1$). For each $(L_{\text{attk}}, \varepsilon')$ pair, the reported accuracy is averaged over all L_{cons} settings. $\delta' = 1 \times 10^{-5}$ for all settings.

Figure 13: Accuracy comparison between the QML model protected by HYPER-Q and three classical baselines (ResNet-9, ViT, and MLP) protected by Analytic Gaussian noise under the PGD attack on the MNIST dataset. The HYPER-Q model is evaluated with its empirically best quantum noise setting ($\eta = 0.1$). For each $(L_{\text{attk}}, \varepsilon')$ pair, the reported accuracy is averaged over all L_{cons} settings. $\delta' = 1 \times 10^{-5}$ for all settings.

Figure 14: Accuracy comparison between the QML model protected by HYPER-Q and three classical baselines (ResNet-9, ViT, and MLP) protected by Analytic Gaussian noise under the PGD attack on the FashionMNIST dataset. The HYPER-Q model is evaluated with its empirically best quantum noise setting ($\eta = 0.1$). For each $(L_{\text{attk}}, \varepsilon')$ pair, the reported accuracy is averaged over all L_{cons} settings. $\delta' = 1 \times 10^{-5}$ for all settings.

Figure 15: Accuracy comparison between the QML model protected by HYPER-Q and three classical baselines (ResNet-9, ViT, and MLP) protected by Analytic Gaussian noise under the PGD attack on the USPS dataset. The HYPER-Q model is evaluated with its empirically best quantum noise setting ($\eta = 0.1$). For each $(L_{\text{attk}}, \epsilon')$ pair, the reported accuracy is averaged over all L_{cons} settings. $\delta' = 1 \times 10^{-5}$ for all settings.

Figure 16: Effect of Quantum Noise Level on Classical-Noise Reduction Across Scaling Qubit Counts

Figure 17: Heatmap of the ratio between the actual utility loss and the theoretical bound across (η, σ) values.

Figure 18: Impact of depolarizing noise η on model utility for the MNIST dataset. Subplots (a)-(d) show performance under varying privacy budgets $\epsilon' \in \{0.25, 0.5, 0.75, 1.0\}$. Each curve represents the average accuracy against FGSM attacks with varying strengths $L_{\text{attk}} \in \{0, \dots, 0.05\}$.

Figure 19: Impact of depolarizing noise η on model utility for the Fashion-MNIST dataset. Subplots (a)-(d) show performance under varying privacy budgets $\epsilon' \in \{0.25, 0.5, 0.75, 1.0\}$. Each curve represents the average accuracy against FGSM attacks with varying strengths $L_{\text{attk}} \in \{0, \dots, 0.05\}$.

