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ABSTRACT

In the realm of medical image analysis, the transferability of pre-trained Vision
Transformers (ViTs) to specialized medical tasks remains a significant challenge.
Previous approaches focus on adapting a single model, by introducing specialized
learnable layers to the pre-trained model. However, a single model optimized for
general tasks underperforms in domain-specific applications, while one medical
models limited by their fundamental inferior capabilities, is not robust enough
in real-world adaptation. To address this, we introduce the DynaMer Adapter, a
novel architecture designed to enable Dynamically Merge tokens from general and
medical pre-trained models, enhancing the adaptability of ViTs for medical imaging
tasks. DynaMer incorporates a Gated Mixture-of-Expert (MoE) Adapter, ensuring
that the model ingeniously prioritizes relevant features for specific medical tasks.
Additionally, we incorporate a layer-wise skipping router within the architecture,
designed to adjust the number of input tokens efficiently, thereby optimizing
inference time without compromising on model accuracy. Extensive evaluations
on the Medical Visual Task Adaptation Benchmark (Med-VTAB) demonstrate that
DynaMer achieves state-of-the-art performance, particularly excelling in patient
out-of-distribution settings and tasks with only few samples.

1 INTRODUCTION

The rapid advancement of deep learning in the field of medical image analysis has fostered some
breakthroughs, yet the challenge of effectively transferring the knowledge from pre-trained mod-
els (He et al., 2021; Xie et al., 2021; Chen et al., 2021; Oquab et al., 2023) to specialized medical
tasks persists. Vision Transformers (ViTs) (Dosovitskiy et al., 2021; Touvron et al., 2020; Liu et al.,
2021) have shown exceptional performance in general image analysis tasks, and recently, there
has been a lot of work exploring pre-training ViTs with medical images, thereby creating several
models (Zhou et al., 2023; Huang et al., 2023; Xu et al., 2024). However, these models have not been
widely adopted across different tasks as general domain pre-trained weights have. How to efficiently
adapt pre-trained ViTs to medical downstream applications has not yet been widely explored.

Historically, adaptations of pre-trained ViTs to medical tasks (Jia et al., 2022; Yoo et al., 2023;
Mo et al., 2024b) have involved the integration of specialized learnable layers or tokens. These
modifications aim to tailor the model’s focus towards features pertinent to medical images. However,
this approach often struggles when directly applied some widely used weights (e.g., CLIP (Radford
et al., 2021) or MAE (He et al., 2022)). The discrepancy arises from the fundamental differences
in image characteristics and task requirements between general and medical imaging contexts.
Another approach is to adopt ViTs pre-trained on medical images. This is also not ideal because
the fundamental capabilities of medical pre-trained models are relatively inferior due to the limited
data availability in the medical domain, making them not robust enough in real-world adaptation
tasks. Moreover, these models are likely tailored to specific types of medical images, such as retinal
images (Zhou et al., 2023) or pathology images (Xu et al., 2024). Identifying a pre-trained ViT that is
suitable for downstream applications and demonstrates effective performance is a challenging task.
This issue underscores a critical limitation: a single model often fails to deliver optimal performance
in specialized, domain-specific applications.

To address these challenges, we introduce a novel architectural solution to effectively take advantage
of pre-trained visual experts from both general and medical domains. We design an adapter to enable
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Figure 1: Illustration on the performance and computational efficiency of methods on (a) medical domain and
(b) general domain. Our DynaMer achieves the best performance with only using few tunable parameters,
demonstrating that DynaMer can effectively combine pre-trained models from general and medical domains while
not causing high computational costs, which exactly meets the requirement in medical visual task adaptation. (c)
Performance of various adapters with different amount of training data for adaptation, showing DynaMer has
great data efficiency, which is critical for addressing the data scarcity issue in the medical domain.

Dynamically Merge tokens from general and medical ViTs (DynaMer Adapter), specifically for
enhancing the adaptability of ViTs for a wide range of medical imaging tasks. DynaMer employs
sophisticated layer-wise Mixture-of-Expert (MoE) adapters with gated mechanism that regulates the
integration of tokens from general and medical domains, ensuring the model dynamically prioritizes
the most relevant features for the task at hand.Beyond effectiveness in downstream tasks, we also
notice that computational efficiency is critical for medical applications. On the one hand, since
the gated MoE adapter in DynaMer learns the merging method according to information in each
token, it is shared for both general and medical layers, thus only introducing few tunable parameters
(see Figure 1), being efficient during training. On the other hand, we further introduce a layer-wise
skipping router to strategically adjust the number of input tokens processed by the model. Together
with the MoE mechanism, DynaMer largely reduce the inference time.

We evaluated our DynaMer Adapter through comprehensive testing on the Medical Visual Task Adap-
tation Benchmark (Med-VTAB) (Mo et al., 2024b), where it has demonstrated superior performance,
setting new state-of-the-art results. Our evaluations specifically highlight the model’s prowess in
terms of both computation and data efficiency, illustrating its robustness and adaptability, as shown in
Figure 1. Overall, our contributions can be summarized into four four folds:

• We introduce the DynaMer Adapter for medical visual task adaptation, a novel architecture
that can Dynamically Merge tokens from general and medical pre-trained ViTs, to effectively
take advantage of visual experts from both sides.

• DynaMer integrates layer-wise MoE adapters with gated mechanism. The sophisticated
design enables deep merge of general and medical ViTs, making DynaMer outperforms
traditional methods on a variety of medical imaging datasets, particularly in patient out-of-
distribution scenarios and tasks with only few samples.

• DynaMer well emphasizes the critical need of reducing and managing computational costs
in the medical domain. By incorporating the MoE mechanism and layer-wise skipping
router, DynaMer achieves few costs in both training and inference time.

• Experimental results indicate that the principles underlying DynaMer, especially dynami-
cally merging tokens from two pre-trained models in adaptation, could be extended beyond
medical imaging to general domains requiring efficient and robust adaptation capabilities.

2 RELATED WORK

The development of the DynaMer Adapter is informed by several key areas of research, particularly
in medical visual transfer learning, the use of adapters in medical contexts, and Mixture-of-Experts
(MoE) models. This section outlines the seminal works and recent developments in these areas,
highlighting both the motivation behind and the distinctions of our approach.
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Medical Visual Transfer Learning. Transfer learning in medical imaging has seen significant
interest (Rasmy et al., 2020; Wang et al., 2022; Xiao et al., 2023; Yang et al., 2023; Nguyen et al.,
2023), particularly in adapting models trained on large, non-medical datasets to specific medical tasks.
The utility of pre-trained Vision Transformers (ViTs) for such tasks has been explored extensively;
however, these models often require careful tuning to overcome the domain shift between general
and medical imaging datasets. Our work builds on this foundation by integrating a novel adaptation
mechanism that leverages the strengths of Vision Transformers while addressing their limitations in
domain-specific tasks. Furthermore, DynaMer is different from visual prompt tuning methods (Jia
et al., 2022; Yoo et al., 2023; Mo et al., 2024b). DynaMer leverages a Gated Mixture-of-Experts
(MoE) Adapter to dynamically integrate tokens from both general and medical pre-trained models,
which allows the model to combine complementary knowledge from diverse domains. Unlike VPT,
GaPT, and LSPT, which process all tokens through the transformer layers, DynaMer employs a
router to skip less relevant tokens, reducing computational overhead while maintaining accuracy.
DynaMer incorporates a gating network that intelligently balances contributions from the original
and MoE-processed tokens, enhancing stability and task-specific adaptation.

Medical Adapters. Adapters (Pfeiffer et al., 2020) have become a popular method for tuning
pre-trained models to new tasks without the need for extensive retraining. In the medical domain,
adapters help mitigate the issues related to limited annotated medical data and significant domain-
specific variations. Previous works have introduced adapters at different levels of neural architectures,
focusing on efficiency and specificity. Our DynaMer extends this by incorporating a gating mechanism
that dynamically manages the contributions of domain-specific adapters, enhancing both performance
and adaptability. Compared to previous state-of-the-art methods, DynaMer introduces significant
advancements in multiple dimensions. Unlike existing methods such as MoE (Shazeer et al., 2017)
and GMoE (Mo et al., 2024a), which operate at the feature or layer level, DynaMer performs token-
level integration. This enables finer granularity in combining features from general and medical
pre-trained models, ensuring more effective task-specific adaptation. DynaMer introduces a dynamic
gating network that balances contributions from original tokens and MoE-processed tokens. This
mechanism improves stability during training and adapts to task-specific needs, especially in medical
imaging, where feature priorities vary widely. While Cambrian-1 (Tong et al., 2024a) focuses on
visual instruction tuning with LLMs, DynaMer targets medical image adaptation by combining two
domain-specific models (general and medical) based on the layer-wise skipping router.

Mixture of Experts Adapters. The concept of Mixture-of-Experts (MoE) has been applied in
various fields to improve model capacity and efficiency, primarily by routing different inputs to
different ’expert’ networks based on the input’s characteristics. In the general domain, seminal works
such as the exploration of feature mixtures and the recent study (Tong et al., 2024b) on the visual
shortcomings of multimodal LLMs (Large Language Models) have highlighted the potential and
challenges of MoE architectures. Our model adopts a similar motivational framework but diverges
significantly in methodology by integrating a layer-wise, gated MoE structure that is specifically
tailored for medical imaging tasks. This approach not only addresses the complexities inherent in
medical image analysis but also contributes to the broader discourse on efficient and scalable model
architectures. It should be emphasized that MoE experts are not trained and we are merging the
advantage of pre-trained models from both general and medical domains. DynaMer is also different
from Sparse-Gated MoE (Shazeer et al., 2017). Specifically, Sparse-Gated MoE operates at the layer
or network level, activating a sparse subset of feed-forward networks (experts) per input. In contrast,
DynaMer introduces token-level routing within each layer, enabling dynamic selection and processing
of tokens based on their relevance to the task. While Sparse-Gated MoE focuses on improving the
scalability and capacity of a single model, DynaMer is designed to fuse knowledge from two distinct
pre-trained models by dynamically merging tokens from these two sources. Sparse-Gated MoE relies
on a static gating network to determine which experts to activate. DynaMer, however, employs a
dynamic gating mechanism that adjusts the balance between the original tokens and those processed
by the MoE layer, ensuring task-specific stability and adaptability.

3 METHOD

In this section, we explore the methodology behind the DynaMer Adapter as shown in Figure 2,
which is designed to enhance the adaptability and performance of pre-trained ViTs on specialized
medical imaging tasks. We first provide preliminary concepts, followed by a detailed exposition of
our novel adapter architecture.
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Figure 2: Illustration of the proposed DynaMer Adapter framework. Our DynaMer Adapter dynamically
combines knowledge from both general and medical pre-trained models, where each layer utilizes a gated MoE
adapter that decides the contribution of each domain-specific transformer block to the final task. The right
figure shows how the gated MoE adapter processes a general token as an example. DynaMer also introduces a
layer-wise skipping router that adjusts the number of input tokens from each layer to increase model efficiency.
With these designs, DynaMer can dynamically allocate necessary capacities from diverse pre-trained experts for
downstream medical visual tasks. Meanwhile, the computational efficiency, which is critical for the medical
domain, is well addressed by DynaMer for both training and inference time.

3.1 PRELIMINARIES

Given a set of images, our target is to efficiently adapt pre-trained ViTs from medical and general
domain to downstream medical visual tasks.

Notations and Problem Setup. Let X = [x1, . . . ,xN ] ∈ RN×D denote the input embedding
tokens to a transformer, where N is the number of tokens and D is the embedding dimension. The
transformer consists of L layers, each comprising multi-headed attention (MSA) and a feed-forward
network (FFN). Let Xl−1 denote input tokens to the l-th transformer layer, so X0 = X. Consider that
there are two pre-trained ViTs, one from the general domain and another from the medical domain.
Their weights are fixed during the adaptation stage. Tokens from the general model and the medical
model are denoted by Xgen and Xmed, respectively.

Revisit Adapter. Adapters are small trainable modules inserted into pre-trained models, allowing
for efficient fine-tuning on downstream tasks. Typically, these adapters consist of a bottleneck
architecture, a down-projection followed by an up-projection, and are inserted in parallel with the
FFN in each transformer layer. Most previous adapter-based methods are designed for a single model.
Recently, Mo et al. (2024a) proposed a simple extension called MoE Adapter, making the adapter
can be used for multiple pre-trained models. MoE Adapter combines tokens from two domains as:

x̂l
i = Adapterl([xgen,i,xmed,i]). (1)

Then, X̂l are sent to the next layer instead of original tokens. Here, Adapter are MLPs, and to produce
different tokens for general and medical models, two separate MLPs are used as Adapter for the
general and medical domains. Therefore, this method introduces relatively large number of tunalble
parameters. Also, this method does not consider the specialization and dynamics for each token,
leading to insufficient mining on designs of effectively combining two models.

3.2 GATED MIXTURE-OF-EXPERTS ADAPTER

The core innovation of DynaMer is the Gated Mixture-of-Experts (MoE) Adapter, which dynamically
combines knowledge from both general and medical pre-trained models. The Gated MoE Adapter
contains two designs: the MoE adapter and the gating mechanism. MoE adapter dynamically
combines tokens from two pre-trained models according to the current token. This MoE adapter is
shared for general and medical models, keeping the tunable parameter set small even two pre-trained
models are involved during adaptation. Gating mechanism further balances the information from
tokens processed by the adapter and the original tokens based on the information in the current
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token. Each layer of the ViT incorporates a Gated MoE Adapter. For simplicity, we omit the layer
superscript in this section.

MoE Adapter. Here, multiple adaptation expert networks (AdapE1,AdapE2, . . . ,AdapEn) are
introduced, and an adaptation router network (AdapR) decided outputs of which experts should be
used. Each adaptation expert can act as an adapter layer, taking two tokens from general and medical
models, and output an integrated one. The adaptation router will take the current token as input and
make decision according to it. It activates the top-k expert networks with the largest scores. In order
to sparsely activate different experts, the number of selected experts k is fixed during training and
much smaller than the total number of experts n. Taking a token from general domain as an example,
the expert distribution of our MoE Adapter layers can be formulated as:

AdapR(xgen,i) = Softmax(KeepTopK(RA(xgen,i), k))

x̃gen,i =

k∑
j=1

AdapR(xgen,i)jAdapEj(xgen,i,xmed,i)
(2)

where AdapEj(xgen,i,xmed,i) denotes the output of the expert AdapEj when combining i-th tokens,
andRA(·) is a learnable MLP within the router AdapR. KeepTopK is an operator to select the top k
ranked elements with the largest scores from output ofRA(·), and only keep these values.

Gating Mechanism. After adding a randomly initialized adapter to each layer, we observe that the
model turns to be unstable during training. This issue comes from the value distribution shift caused
by inserting an random layer. Therefore, we further design a gating mechanism to dynamically
balance tokens processed by the adapter and the original tokens, aiming at mitigating the above issue.
Specifically, DynaMer introduce a learnable gating network G, which takes x as the input and outputs
a gating vector. Then, the gating vector is used as weights to combine the original x and the processed
x̃. The process can be formulated as:

x̂gen,i = σ(G(xgen,i)) · x̃gen,i + (1− σ(G(xgen,i))) · xgen,i (3)

where x̂gen,i is the output of the adapter, G is a trainable gating network, and σ denotes the sigmoid
function, ensuring that the gate outputs a value between 0 and 1. We use separate gating networks for
general and medical model, while keeping them lightweight and only having one fully connected
layer. The separate networks are used to capture different information propagation among layers in
different pre-trained experts, and the lightweight design is for computational efficiency.

3.3 LAYER-WISE SKIPPING ROUTER

To further enhance model efficiency, especially for inference, we introduce a layer-wise routing
mechanism that adjusts the number of input tokens which should be processed by the adapter based
on the task’s complexity and the specific medical imaging requirements. We omit the token source
subscript in this section, because here, tokens are processed in the same way regardless of its source.
The layer-wise skipping router and its usage can be formulated as:

SkipR(Xl) = TopKIndex({RS(x
l
i); i ∈ {1, · · · , N}}, k)

X̂l = [{x̂l
i; i ∈ SkipR(Xl)}, {xl

j ; j ̸∈ SkipR(Xl)}],
(4)

where RS(·) is a learnable MLP within the router SkipR. RS(·) takes every token in this layer as
input and outputs a value indicating if this token needs to be sent to the adapter or not. TopKIndex
is an operator to select the indexes of top k ranked elements with the largest scores from the norm
of feature outputs of the routerRS(·) If the token i is selected by the router from all tokens in this
layer, this token will be sent to the gated MoE adapter, generating x̂l

i. Otherwise, the token will skip
the adapter. Processed tokens and skipped tokens are concatenated together, and sent to the next
layer. Since general and medical pre-trained models may need different skipping mechanisms and
this layer-wise router introduces few parameters, we use a separate layer-wise router network for two
pre-trained experts.

At each layer, a router decides which tokens the gated MoE adapter should process, potentially
reducing the number of tokens in deeper layers. This Layer-wise Skipping Router acts as a token-wise
selection process to improve the computational efficiency for adaption tasks.This decision is based on

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Table 1: Quantitative results of visual prompt tuning of DINO v2 pre-trained vision transformers on color images.
Total Params denotes the total number of parameters for the backbone encoder ViT-B, prompt tokens or adapter
parameters, and the task heads.

Method Total HyperKvasir MESAD AMLC APTOS ISIC Kvasir LHNCBC MLLBone EyePACS
Params Polyp Prostatectomy Cell Eye Skin Polyp Cell Cell Eye

Linear 1.01X 51.67 32.16 25.63 45.72 42.36 58.85 32.17 28.65 42.37
VPT-Shallow (Jia et al., 2022) 1.01X 59.76 39.75 31.62 53.95 47.32 63.72 38.53 30.26 46.58
VPT-Deep (Jia et al., 2022) 1.04X 62.89 43.78 35.75 57.52 50.89 66.53 42.87 35.37 48.75
GaPT (Yoo et al., 2023) 1.02X 65.18 45.79 37.26 59.37 51.58 67.13 45.16 36.85 51.57
LSPT (Mo et al., 2024b) 1.05X 67.23 47.53 38.72 61.25 53.62 69.79 47.51 38.92 52.86
Adapter (Pfeiffer et al., 2020) (DINO v2) 1.17X 70.38 49.75 42.16 65.38 55.19 83.57 49.78 43.86 60.82
Adapter (Pfeiffer et al., 2020) (Medical) 1.17X 70.29 49.72 42.37 65.23 55.02 83.35 50.26 44.25 60.78
MoF-Adapter (Tong et al., 2024b) 1.24X 70.41 49.83 42.45 65.33 55.25 83.58 50.37 44.28 60.83
MoE-Adapter (Mo et al., 2024a) 1.34X 70.42 49.78 42.47 65.39 55.21 83.58 50.35 44.32 60.89
GMoE-Adapter (Mo et al., 2024a) 1.35X 70.75 50.26 42.83 65.51 55.37 83.79 50.86 44.75 61.02
DynaMer Adapter (ours) 1.21X 70.82 50.53 43.08 65.73 55.53 83.92 51.07 45.03 61.15

the relevance of the information contained in each token, as assessed by the router, thus enabling the
model to focus computational resources on the most informative parts of the input. This layer-wise
adaptability not only speeds up the inference process but also reduces the computational load, making
it feasible to deploy the model in real-time medical settings.

Summary. DynaMer’s working process is summarized as follows. Once the sequence of tokens is
produced by the previous transformer layer, the layer-wise skipping router looks into information in
every token and then picks up the most relevant ones, sending them to the gated MoE adapter. One
MoE adapter processes all tokens from both general and medical pre-trained models. This is achieved
by the adaption router, which accordingly decides which adaptation experts should be activated based
on every token. Particularly, although the i-th general token and medical token are processed together
by the expert, they may activate different experts since their token information seen by the router is
not the same. Moreover, a gating mechanism further offers balances between tokens processed by the
MoE adapter and the original ones, by learning a gating network with the corresponding token as the
input. Overall, DynaMer introduces these new learnable modules for adaptation: the shared MoE
adapter containing a router and sparsely activated experts, the gating network, and the layer-wise
skipping router. They are optimized end-to-end with the objective in adaptation tasks.

Benefits.The sophisticated and comprehensive designs in DynaMer offers several benefits for medical
visual task adaptation. (1) All newly introduced modules by DynaMer are designed to dynamically
process information according to the specific token. Such design fully considers the characteristics
of the data and the pre-trained models during the adaptation phase, enabling different models to
contribute the most relevant aspects to downstream tasks. DynaMer allows the general domain ViT to
utilize its robust feature extraction capabilities, and medical domain ViT to leverage its specialized
adaptability, boosting their ability to adapt to new, unseen medical data scenarios and culminating in
a powerful tool for medical image analysis. (2) Since the MoE adapter already considers dynamics
among data and models, we found that very lightweight adaptation experts can still achieve impressive
results. Furthermore, as the MoE adapter is shared among general and medical models, DynaMer
introduces much fewer new parameters compared to previous methods, greatly enhancing efficiency
during training. (3) The layer-wise skipping router can dynamically determine which tokens can skip
the adapter during inference, significantly reducing inference time.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Our experiments are designed to rigorously evaluate the performance of DynaMer Adapter across
a diverse set of medical imaging tasks. Below, we detail the datasets used, evaluation metrics, and
implementation specifics.

Datasets. We utilize a comprehensive array of datasets in Med-VTAB (Mo et al., 2024a) to cover a
broad spectrum of medical imaging challenges. These datasets are grouped into categories based on
the image type: color medical images, X-ray images, and other modalities, including OCT, CT, and
MRI. For color medical images, these nine datasets include images of polyps For X-ray images, these
seven datasets address a variety of organs and conditions. For OCT, CT, and MRI modalities, these
include seven datasets for the eye, chest, and brain. For the general domain, we use two widely used
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Table 2: Quantitative results of visual prompt tuning of DINO v2 pre-trained vision transformers on X-ray
images. Total Params denotes the total number of parameters for the backbone encoder ViT-B, prompt tokens or
adapter parameters, and the task heads.

Method Total Vindr CBIS COVIDx SYMH RSNA Bone CheXpert RSNA
Params Lung Breast Lung Shoulder Bone Chest Lung

Linear 1.01X 62.81 71.32 72.56 72.81 46.73 67.26 65.38
VPT-Shallow (Jia et al., 2022) 1.01X 63.56 72.23 73.83 74.35 50.21 69.73 67.69
VPT-Deep (Jia et al., 2022) 1.04X 65.73 74.61 76.18 76.86 51.72 70.85 69.25
GaPT (Yoo et al., 2023) 1.02X 66.92 75.15 77.25 77.25 52.83 71.37 70.29
LSPT (Mo et al., 2024b) 1.05X 67.87 76.23 78.33 77.96 53.51 71.92 70.86
Adapter (Pfeiffer et al., 2020) (DINO v2) 1.17X 70.35 81.26 80.72 79.52 55.35 73.61 72.93
Adapter (Pfeiffer et al., 2020) (medical) 1.17X 70.25 81.32 80.76 79.46 55.29 73.58 72.91
MoF-Adapter (Tong et al., 2024b) 1.24X 70.39 81.35 80.78 79.57 55.34 73.62 72.96
MoE-Adapter (Mo et al., 2024a) 1.34X 70.37 81.35 80.82 79.56 55.36 73.63 72.95
GMoE-Adapter (Mo et al., 2024a) 1.35X 70.62 81.67 81.15 79.78 55.47 73.68 73.05
DynaMer Adapter (ours) 1.21X 70.86 82.15 81.87 80.56 55.93 74.52 73.86

Table 3: Quantitative results of visual prompt tuning of DINO v2 pre-trained vision transformers on OCT, CT,
and MRI images. Total Params denotes the total number of parameters for the backbone encoder ViT-B, prompt
tokens or adapter parameters, and the task heads.

Method Total Heidelberg CC-CCII Mosmed COVID-C RICORD PPMI Brain-Tumor
Params Eye Chest Chest Chest Chest Brain Brain

Linear 1.01X 63.25 60.87 62.87 60.93 58.35 55.27 62.35
VPT-Shallow (Jia et al., 2022) 1.02X 64.15 60.75 63.21 61.05 59.07 56.35 62.75
VPT-Deep (Jia et al., 2022) 1.02X 64.78 61.26 63.65 61.78 59.53 56.93 63.37
GaPT (Yoo et al., 2023) 1.02X 65.06 61.37 63.69 61.95 59.71 56.97 63.52
LSPT (Mo et al., 2024b) 1.05X 65.23 61.56 63.75 62.12 59.85 57.08 63.67
Adapter (Pfeiffer et al., 2020) (DINO v2) 1.17X 67.58 66.23 65.52 66.37 64.21 61.35 67.62
Adapter (Pfeiffer et al., 2020) (medical) 1.17X 67.53 66.25 65.58 66.39 64.22 61.36 67.68
MoF-Adapter (Tong et al., 2024b) 1.24X 67.61 66.28 65.59 66.42 64.24 61.28 67.69
MoE-Adapter (Mo et al., 2024a) 1.34X 67.65 66.26 65.56 66.38 64.25 61.39 67.70
GMoE-Adapter (Mo et al., 2024a) 1.35X 67.76 66.43 65.68 66.51 64.42 61.46 67.73
DynaMer Adapter (ours) 1.21X 68.23 66.89 66.21 66.97 64.82 61.86 68.15

classification datasets, FGVC and VTAB-1K. Following the prior work (Jia et al., 2022; Yoo et al.,
2023; Mo et al., 2024b), we use the same split for training and validation.

Evaluation Metrics. To assess the effectiveness of our model, we employ a range of metrics that
reflect both the accuracy and efficiency of medical image analysis. These metrics include, but are not
limited to, classification accuracy, area under the ROC curve (AUC), and inference time.

Implementation. The DynaMer Adapter was implemented using PyTorch. Each expert within the
MoE architecture was optimized individually before the gating mechanism was trained to dynamically
combine their outputs. We fine-tuned the model on each dataset separately using Adam optimizer,
with a learning rate of 1e− 4, and used the same pre-trained model parameters as previous work (Mo
et al., 2024a). Specifically, we use DINO v2 (Oquab et al., 2023) general ViT-B/16 weights trained on
1.28 million general images and medical ViT-B/16 pre-trained weights (Nguyen et al., 2023) trained
on 1.6 million cell images.

4.2 COMPARISON TO PRIOR WORK

To comprehensively assess the capabilities of our DynaMer Adapter, we performed extensive bench-
marking against existing adaptation methods across various medical imaging modalities.

Table 1 shows our model outperforming traditional methods, particularly in complex cases like polyp
detection and skin analysis. For X-ray images, as detailed in Table 2, our adapter provides significant
improvements over existing methods, especially in distinguishing subtle features in chest and bone
x-rays. In terms of OCT, CT, and MRI modalities, Table 3 highlights superior performance in
modalities requiring high-detail orientation, such as brain tumor identification and chest CT analysis.

Our model demonstrated superior performance in adapting to diverse medical tasks, significantly
outperforming baseline models across most metrics, particularly in challenging out-of-distribution
scenarios. The results indicate that the dynamic and flexible nature of the proposed DynaMer Adapter
provides a robust solution for medical visual task adaptation, addressing the limitations observed in
previous models.
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Table 4: Ablation results of Gated Mixture-of-Experts of general and medical pre-trained vision transformers
on color images. Total Params denote the total number of parameters for the backbone encoder ViT-B, prompt
tokens, and the task heads.

General Medical Total HyperKvasir MESAD AMLC APTOS ISIC Kvasir LHNCBC MLLBone EyePACS
Gate Gate Params Polyp Prostatectomy Cell Eye Skin Polyp Cell Cell Eye

✗ ✗ 1.19X 70.38 49.82 42.56 65.32 55.28 83.65 50.52 44.36 60.86
✓ ✗ 1.20X 70.55 50.23 42.68 65.41 55.36 83.72 50.78 44.53 60.93
✗ ✓ 1.20X 70.67 50.36 42.85 65.56 55.42 83.81 50.82 44.62 60.98
✓ ✓ 1.21X 70.82 50.53 43.08 65.73 55.53 83.92 51.07 45.03 61.15

Table 5: Ablation results of gated dimension of general and medical pre-trained vision transformers on color
images. Total Params denote the total number of parameters for the backbone encoder ViT-B, adapter parameters,
and the task heads.

General Medical Total HyperKvasir MESAD AMLC APTOS ISIC Kvasir LHNCBC MLLBone EyePACS
Gate Gate Params Polyp Prostatectomy Cell Eye Skin Polyp Cell Cell Eye

0 0 1.19X 70.38 49.82 42.56 65.32 55.28 83.65 50.52 44.36 60.86
768 0 1.20X 70.55 50.23 42.68 65.41 55.36 83.72 50.78 44.53 60.93

0 768 1.20X 70.67 50.36 42.85 65.56 55.42 83.81 50.82 44.62 60.98
768 768 1.21X 70.82 50.53 43.08 65.73 55.53 83.92 51.07 45.03 61.15
384 384 1.20X 70.73 50.46 42.97 65.62 55.48 83.87 50.96 44.81 61.03
192 192 1.20X 70.62 50.33 42.81 65.52 55.39 83.78 50.79 44.58 60.95

1 1 1.19X 70.45 50.07 42.65 65.38 55.31 83.69 50.68 44.45 60.89

4.3 EXPERIMENTAL ANALYSIS

In this section, we delve deeper into the specific components and configurations of the DynaMer
Adapter to understand their impact on performance. We present an ablation study on the gating
mechanism, explore the effects of different gating dimensions and layers, and assess our model’s
performance in patient ID out-of-distribution scenarios and general domain adaptation.

Ablation on Gated Mixture-of-Experts. To evaluate the efficacy of the Gated Mixture-of-Experts
mechanism, we conducted experiments where we systematically varied the number of experts and the
complexity of the gating function. In Table 4, we compared these configurations against a baseline
model without gating, measuring their impact on model accuracy and inference time across several
medical imaging tasks. Our results indicate that the inclusion of the gating mechanism significantly
improves the adaptability of the model to specialized tasks, confirming the hypothesis that dynamic
feature routing enhances performance in domain-specific applications.

Ablation on Gating Dimension. We investigated the impact of different gating dimensions on the
performance of the DynaMer Adapter, as shown in Table 5. By adjusting the dimensionality of
the input to the gating network (dimensions tested: 768, 384, 192, 1), we assessed how this affects
the model’s ability to effectively combine the outputs of the experts. The experiments suggest an
optimal range for the gating dimension that balances computational efficiency with task performance,
providing insights into the model’s sensitivity to this parameter.

Ablation on Gating Layers. In this study, we experimented with varying the number of layers
equipped with the gating mechanism within the transformer architecture (layers tested: 12, 6, 3, 1).
Our findings in Table 6 reveal that deeper integration of gating layers tends to yield better performance,
particularly in complex imaging tasks, indicating that more extensive feature integration across layers
enhances the model’s effectiveness.

Ablation on Layer-wise Skipping Router. To further enhance model efficiency, especially for
inference, we introduced a layer-wise routing mechanism that adjusts the number of input tokens
based on the complexity of the task and the specific medical imaging requirements (ratios tested:
100%, 50%, 30%, 10%). Table 7 presents the effects of reducing the number of input tokens on
computational efficiency and task performance. Our analysis demonstrates that strategic token
reduction can significantly decrease inference time without substantially compromising performance,
highlighting an effective trade-off between efficiency and accuracy.

Patient ID Out-of-Distribution. One of the critical evaluations of our model involved testing its
performance on patient identification tasks where the test data distribution does not match the training
data distribution, following the previous work (Mo et al., 2024a). This scenario tests the robustness
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Table 6: Ablation results of gated layers of general and medical pre-trained vision transformers on color images.
Total Params denote the total number of parameters for the backbone encoder ViT-B, adapter parameters, and
the task heads.

General Medical Total HyperKvasir MESAD AMLC APTOS ISIC Kvasir LHNCBC MLLBone EyePACS
Gate Gate Params Polyp Prostatectomy Cell Eye Skin Polyp Cell Cell Eye

0 0 1.19X 70.38 49.82 42.56 65.32 55.28 83.65 50.52 44.36 60.86
12 0 1.20X 70.55 50.23 42.68 65.41 55.36 83.72 50.78 44.53 60.93
0 12 1.20X 70.67 50.36 42.85 65.56 55.42 83.81 50.82 44.62 60.98
12 12 1.21X 70.82 50.53 43.08 65.73 55.53 83.92 51.07 45.03 61.15
6 6 1.20X 70.76 50.47 42.96 65.67 55.47 83.86 50.98 44.83 61.08
3 3 1.195X 70.71 50.42 42.91 65.59 55.43 83.81 50.85 44.69 61.02
1 1 1.192X 70.58 50.25 42.75 65.47 55.39 83.75 50.82 44.61 60.98

Table 7: Ablation results of Layer-wise Mixture-of-Experts tokens of general and medical pre-trained vision
transformers on color images. Total Params denote the total number of parameters for the backbone encoder
ViT-B, prompt tokens, and the task heads.

# Infer Time (s) Total HyperKvasir MESAD AMLC APTOS ISIC Kvasir LHNCBC MLLBone EyePACS
MoT tokens per Batch Params Polyp Prostatectomy Cell Eye Skin Polyp Cell Cell Eye

100% 0.165 1.21X 70.82 50.53 43.08 65.73 55.53 83.92 51.07 45.03 61.15
50% 0.086 1.22X 70.85 50.56 43.15 65.79 55.62 83.96 51.16 45.11 61.23
30% 0.057 1.22X 70.63 50.28 42.76 65.52 55.38 83.79 50.78 44.59 60.96
10% 0.017 1.22X 70.15 49.65 42.32 65.16 55.07 83.42 50.36 44.15 60.58

Figure 3: Qualitative visualization of attention maps learned by medical and general blocks in the proposed
DynaMer Adapter.

of the model in real-world applications. Our DynaMer Adapter significantly outperformed traditional
and other state-of-the-art methods, underscoring its robustness in handling out-of-distribution data, as
detailed in Tables 8 and 9.

General Domain Adaptation. Furthermore, we assessed the capability of our model to adapt to
general imaging tasks beyond the medical domain, employing the FGVC and VTAB-1K benchmarks,
as shown in Table 10. This analysis helps us understand the versatility and broader applicability of
the DynaMer Adapter. Despite its focus on medical imaging, preliminary results show promising
adaptability, suggesting that the techniques developed could be extended to other domains of visual
representation learning.

Qualitative Visualization. We also provide qualitative visualizations that illustrate how our model
solves spatial and prompt forgetting problems typical of previous methods, as illustrated in Figure 3.
For the task of using pathological slices to determine whether to transfer, the attention of previous
methods in Figure 1 is sparse in the later layers, and the bright places may not correspond to cells.
The attention of our method, however, can still accurately capture the position of cells, with bright
spots that align well with cell locations, indicating active cell regions (empty signifies no cells;
there is no attention). This contrast is significant as it highlights our DynaMer adapter’s advanced
capability of maintaining a focused and relevant feature representation across different layers of the
transformer model. These visualizations not only demonstrate the efficacy of the DynaMer Adapter
in maintaining focus on medically relevant features but also underscore its ability to enhance the
interpretability of Vision Transformer models in medical applications.
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Table 8: Patient ID Out-Of-Distribution results of our adapter vs. visual prompt tuning of non-medical pre-trained
vision transformers on 160 patients. Total Params denote the total number of parameters for the ViT-B backbone,
prompt tokens or adapter parameters, and the task heads.

Method Total Params 160 Seen 100 Seen 60 Unseen 80 Seen 80 Unseen 60 Seen 100 Unseen

VPT-Shallow (Jia et al., 2022) 1.01X 38.53 38.42 38.35 38.37 38.29 38.25 38.13
VPT-Deep (Jia et al., 2022) 1.04X 42.87 42.76 42.62 42.68 42.56 42.53 42.25
GaPT (Yoo et al., 2023) 1.02X 45.16 45.06 44.92 44.95 44.82 44.76 44.32
LSPT (Mo et al., 2024b) 1.08X 47.51 47.35 47.19 47.26 47.09 47.02 46.53
Adapter (Pfeiffer et al., 2020) (DINO v2) 1.17X 49.78 49.56 49.63 49.47 49.68 49.38 49.57
Adapter (Pfeiffer et al., 2020) (medical) 1.17X 50.26 50.16 50.21 50.08 50.23 49.95 50.16
MoF-Adapter (Tong et al., 2024b) 1.24X 50.37 50.23 50.26 50.16 50.29 50.02 50.20
MoE-Adapter (Mo et al., 2024a) 1.34X 50.35 50.21 50.23 50.12 50.26 50.01 50.17
GMoE-Adapter (Mo et al., 2024a) 1.35X 50.86 50.53 50.58 50.36 50.62 50.21 50.42
DynaMer Adapter (ours) 1.21X 51.07 50.89 50.93 50.78 50.97 50.72 50.95

Table 9: Patient ID Out-Of-Distribution results of our adapter vs. visual prompt tuning of non-medical pre-trained
vision transformers on (a) 80 patients seen in the training set and (b) 20 patients unseen in the training set.
Total Params denote the total number of parameters for the backbone encoder ViT-B, prompt tokens or adapter
parameters, and the task heads.

Method Total # Seen # Unseen
Params 80 80 60 40 20

VPT-Shallow (Jia et al., 2022) 1.01X 38.37 38.29 38.25 38.21 38.27
VPT-Deep (Jia et al., 2022) 1.04X 42.68 42.56 42.53 42.49 42.55
GaPT (Yoo et al., 2023) 1.02X 44.95 44.82 44.78 44.73 44.79
LSPT (Mo et al., 2024b) 1.08X 47.26 47.09 47.02 47.05 47.12
Adapter (Pfeiffer et al., 2020) (DINO v2) 1.17X 49.47 49.68 49.72 49.69 49.75
Adapter (Pfeiffer et al., 2020) (medical) 1.17X 50.08 50.23 50.28 50.23 50.32
MoF-Adapter (Tong et al., 2024b) 1.24X 50.16 50.29 50.32 50.27 50.33
MoE-Adapter (Mo et al., 2024a) 1.34X 50.12 50.26 50.23 50.25 50.28
GMoE-Adapter (Mo et al., 2024a) 1.35X 50.36 50.62 50.56 50.59 50.63
GL-MoE Adapter (ours) 1.21X 50.78 50.97 51.03 50.98 51.06

(a) 80 patients seen in the training set.

Method Total # Seen
Params 140 120 100 80 60

VPT-Shallow (Jia et al., 2022) 1.01X 38.06 38.19 38.32 38.27 38.13
VPT-Deep (Jia et al., 2022) 1.04X 42.15 42.47 42.63 42.55 42.49
GaPT (Yoo et al., 2023) 1.02X 44.51 44.73 44.87 44.79 44.63
LSPT (Mo et al., 2024b) 1.08X 46.73 46.95 47.19 47.12 47.01
Adapter (Pfeiffer et al., 2020) (DINO v2) 1.17X 49.18 49.42 49.63 49.75 49.58
Adapter (Pfeiffer et al., 2020) (medical) 1.17X 49.27 49.52 50.13 50.32 50.16
MoF-Adapter (Tong et al., 2024b) 1.24X 49.75 49.96 50.12 50.33 50.21
MoE-Adapter (Mo et al., 2024a) 1.34X 49.59 49.83 50.07 50.28 50.15
GMoE-Adapter (Mo et al., 2024a) 1.35X 49.93 50.21 50.37 50.63 50.42
GL-MoE Adapter (ours) 1.21X 50.52 50.65 50.91 51.06 50.97

(b) 20 patients unseen in the training set.

Table 10: Quantitative results of DINO v2 pre-trained vision transformers on FGVC and VTAB-1k datasets.
Total Params denotes the total number of parameters for the backbone encoder ViT-B, prompt tokens or adapter
parameters, and the task heads.

Method Total Params CUB Flowers Cars Dogs NABirds Nature Specialized Structured

VPT-Shallow (Jia et al., 2022) 1.01X 79.65 90.86 72.63 82.52 93.51 67.92 81.53 30.72
VPT-Deep (Jia et al., 2022) 1.04X 83.02 94.85 79.56 83.71 76.35 70.64 83.26 42.65
GaPT (Yoo et al., 2023) 1.02X 83.25 94.37 79.31 83.72 76.38 74.35 83.52 49.18
LSPT (Mo et al., 2024b) 1.08X 84.37 95.23 80.28 84.37 77.28 77.32 85.82 52.93
Adapter (Pfeiffer et al., 2020) (DINO v2) 1.17X 86.25 96.02 82.15 85.26 79.12 78.23 87.25 53.68
Adapter (Pfeiffer et al., 2020) (CLIP) 1.17X 86.17 96.08 82.16 85.31 79.16 78.28 87.23 53.65
MoF-Adapter (Tong et al., 2024b) 1.24X 86.29 96.12 82.21 85.32 79.19 78.33 87.26 53.69
MoE-Adapter (Mo et al., 2024a) 1.34X 86.45 96.37 82.35 85.46 79.24 78.42 87.35 53.76
GMoE-Adapter (Mo et al., 2024a) 1.35X 86.51 96.42 82.38 85.49 79.28 78.46 87.41 53.82
DynaMer Adapter (ours) 1.21X 86.79 96.58 82.57 85.68 79.53 78.72 87.83 54.35

5 CONCLUSION

In this work, we present DynaMer Adapter, a novel Gated Layer-wise Mixture-of-Experts Adapter
designed to enhance the adaptability and efficiency of pre-trained Vision Transformers (ViTs) for
medical imaging tasks. Our approach addresses the significant challenge of transferring general visual
learning to domain-specific tasks, particularly within the medical field where traditional transfer
learning methods often fall short. The DynaMer Adapter integrates a sophisticated gated mechanism
with a Mixture-of-Experts framework, allowing for dynamic adaptation based on the input data
characteristics. This architecture not only tailors the processing pathways to specific tasks but also
efficiently manages computational resources by adjusting the number of input tokens at each layer.
Through extensive experimentation on a variety of medical datasets, our model demonstrated superior
performance, especially in handling out-of-distribution data and patient identification tasks, setting
new state-of-the-art benchmarks on the Medical Visual Task Adaptation Benchmark (Med-VTAB).
Our work contributes to the ongoing discussions in the fields of medical visual transfer learning,
adapter-based architectures, and Mixture-of-Experts models, highlighting the benefits and potential
of our approach. Extensive empirical experiments and qualitative visualizations showcase the broader
applicability of our methods to general domain adaptation, suggesting that the principles underlying
the DynaMer Adapter could be extended beyond medical imaging.
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ETHICS STATEMENT

In accordance with the ICLR Code of Ethics, our research adheres strictly to ethical research standards.
This study solely utilizes publicly available datasets within the medical imaging research community,
ensuring that our work does not involve any private or personally identifiable information that could
compromise individual privacy. While our DynaMer demonstrates significant potential for improving
medical imaging analysis, we recognize the dual-use nature of AI technologies and the potential for
misuse. We strongly advocate for the responsible application of our findings and encourage ongoing
monitoring and regulation of AI applications in medical settings to prevent adverse outcomes. We are
committed to engaging in discussions and receiving feedback to promote ethical usage and continuous
improvement in AI-driven medical applications.

REPRODUCIBILITY STATEMENT

We have detailed every aspect of our methodology to facilitate replication and verification by the
broader research community. This includes an exhaustive description of experiments in Section ??
and comprehensive algorithmic details provided in Appendix B. For each experiment presented, we
meticulously document the configurations, hyperparameters, and specific versions of the software
used, which are detailed in Appendix C. Furthermore, to support the community in validating and
building upon our work, we commit to making our codebase publicly available upon publication.
This repository will include all necessary scripts, pre-trained models, and a step-by-step guide to re-
running the experiments. By providing these resources, we aim to foster transparency and encourage
future innovations inspired by our work.
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APPENDIX

In this appendix, we provide the following material:

• addition implementation and datasets details in Section A,
• algorithm for our DynaMer Adapter in Section B,
• additional experimental analyses in Section C,
• additional qualitative visualization results in Section D,
• additional discussions on limitations and broader impact in Section E.

A IMPLEMENTATION & DATASET DETAILS

In this section, we provide detailed information on the implementation specifics and the diverse
datasets incorporated into the Med-VTAB benchmark. These datasets cover a wide range of imaging
modalities, including Color Images, X-ray, Optical Coherence Tomography (OCT), Computed
Tomography (CT), and Magnetic Resonance Imaging (MRI). Each dataset is specifically chosen to
reflect the diversity and complexity of medical visual tasks, facilitating robust and comprehensive
model evaluation.

A.1 COLOR IMAGES

Here, we detail datasets involving color images, each serving distinct medical applications, outlined
with their respective number of images, unique characteristics, and medical relevance:

• HyperKvasir (Borgli et al., 2020): contains 110,079 images capturing polyps and other
anatomical landmarks and pathological findings across 23 different classes.

• MESAD Prostatectomy (Bawa et al., 2021): comprises 29,454 images from prostatectomy
procedures, with 21 different action classes for action classification in surgery.

• AMLC (Matek et al., 2019): includes 18,365 images of peripheral blood smears across 15
different morphological classes.

• APTOS (Aptos 2019 blindness detection): consists of 3,662 images rated for the severity of
diabetic retinopathy on a scale from 0 to 4, across 5 classes.

• ISIC (Skin lesion images for melanoma classification): consists of 25,331 dermoscopic
images for skin cancer classification across 9 diagnostic categories.

• Kvasir (Kvasirv2): contains 6,000 images for gastrointestinal cancer detection across 8
classes.

• LHNCBC Malaria (Lhncbc malaria): includes 27,560 images for malaria screening with
12 classes of cell annotations.

• MLLBone (Matek et al., 2021): consists of 171,374 images of blood cells across 21 different
classes.

• EyePACS (Kaggle dr dataset (eyepacs)): contains 88,702 images for diabetic retinopathy
classification into 5 severity levels.

A.2 X-RAY

In this subsection, we outline X-ray datasets used in the benchmark, detailing the medical conditions
addressed and the data volume:

• Vindr (Nguyen et al., 2022): contains 18,000 chest X-ray (CXR) scans identifying 14
critical findings.

• CBIS-DDSM (Lee et al., 2017): includes 10,239 mammographic images for breast cancer
screening, categorized into normal, benign, and malignant findings.

• COVIDx (Wang et al., 2020): Comprises 194,922 images for COVID-19 detection, catego-
rized into 4 classes.
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• SYMH (Shoulder X-ray Classification): consists of 1,049 shoulder X-ray images across 4
categories.

• RSNA Bone (Halabi et al., 2019): contains 12,611 images for bone age assessment, spanning
228 age classes.

• CheXpert (Irvin et al., 2019): includes 224,316 chest radiographs for identifying conditions
such as atelectasis, cardiomegaly, consolidation, edema, and pleural effusion.

• RSNA (Shih et al., 2019): consists of 29,684 chest radiographs, categorized into normal and
pneumothorax positive.

A.3 OCT, CT & MRI

We detail OCT, CT, and MRI datasets highlighting their specific applications and volume:

• Heidelberg OCT (Kermany et al., 2018): contains 84,495 OCT images across 4 categories
related to eye diseases.

• CC-CCII (Zhang et al., 2020): includes 617,775 CT images focusing on COVID-19
pneumonia.

• Mosmed (Morozov et al., 2020): comprises 1,110 CT scans documenting COVID-19
pneumonia cases.

• COVID-C (Rahimzadeh et al., 2021): consists of 349 CT images for COVID-19 pneumonia
detection.

• RICORD (Tsai et al., 2021): contains 120 CT images also focused on COVID-19 pneumo-
nia.

• PPMI (Marek et al., 2011): includes 480 MRI scans related to Parkinson’s disease.

• Brain-Tumor (Brain Tumor MRI Dataset): consists of 7,023 MRI images for brain tumor
detection and segmentation.

For the general domain, we use two widely used classification datasets, FGVC and VTAB-1K. FGVC
benchmark consists of 5 fine-grained classification tasks: CUB-200-2011 (Wah et al., 2011), Oxford
Flowers (Nilsback & Zisserman, 2008), Stanford Cars (Gebru et al., 2017), Stanford Dogs (Khosla
et al., 2011), and NABirds (Van Horn et al., 2015). Following the prior work (Jia et al., 2022; Yoo
et al., 2023; Mo et al., 2024b), we use the same split for training and validation. VTAB-1K (Zhai et al.,
2019) dataset includes 19 diverse visual classification tasks and three groups: Natural images obtained
from standard cameras, Specialized images captured using specific equipment, and Structured images
for object counting. Each task contains 1000 training samples, and we use the same split in (Jia et al.,
2022; Yoo et al., 2023; Mo et al., 2024b) to run the final training and evaluation.

B ALGORITHM FOR DYNAMER ADAPTER

In this part, we outline the algorithm of the DynaMer Adapter, detailing the gating mechanism and
how the layer-wise routing and mixture-of-experts are implemented to adapt to the input features
dynamically. The DynaMer Adapter integrates a gating mechanism and multiple expert networks
within the architecture of a Vision Transformer (ViT) to dynamically adapt to specific medical
imaging tasks. Below, we describe the step-by-step operation of the adapter within a ViT layer.

Algorithm 1 integrates the DynaMer Adapter into each transformer layer. The adapter employs
two expert networks, one tailored for general visual tasks (Eg) and the other for medical-specific
tasks (Em), each trained with their respective domain-specific pre-trained weights (Wg and Wm).
The gating network (GateNetwork) dynamically computes gating values for each token based on its
embedded representation, controlling the contribution of each expert’s output to the final layer output.
The gating mechanism ensures that the model dynamically prioritizes relevant features for the task at
hand, enhancing both specificity and adaptability.
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Algorithm 1 Algorithm for DynaMer Adapter

1: Input: Input token embeddings X ∈ RN×D, where N is the number of tokens and D is the
embedding dimension.

2: Output: Adapted output tokens Y ∈ RN×D

3: Initialization:
4: Load pre-trained general domain weights Wg

5: Load pre-trained medical domain weights Wm

6: for each layer l in ViT do
7: Compute initial forward pass:
8: X ′ ← MSA(X) +X ▷ Multi-headed Self-Attention (MSA)
9: X ′′ ← FFN(X ′) +X ′ ▷ Feed-Forward Network (FFN)

10: Initialize routerR and gating network G
11: Initialize experts E1, E2, ..., En
12: for each token xi in X ′′ do
13: Eg[i]← ExpertGeneral(xi,Wg)
14: Em[i]← ExpertMedical(xi,Wm)
15: Compute gating values:
16: gi ← σ(G(xi)) ▷ Sigmoid function σ for gating
17: Combine expert outputs:
18: yi ← gi · Eg[i] + (1− gi) · Em[i]

19: Apply layer-wise routing to adjust input tokens:
20: X ← LayerwiseRouter(Y,R,m) ▷ Select top m tokens for next layer
21: Y ← Concatenate(y1, y2, . . . , yN )

22: return Y

C ADDITIONAL EXPERIMENTAL ANALYSES

In this section, we provide further experimental analyses on patient ID out-of-distribution (OOD).
One of the most rigorous tests for any model developed for medical applications is its performance
on OOD data, particularly in scenarios where patient identification accuracy is crucial. This test is
essential for assessing the robustness of the model under conditions that diverge from those seen
during training. Our experiments on OOD performance were structured to evaluate how well the
model could identify patient data it had either seen but under different conditions or had never seen
before. We utilized a split of 160 patients, some of whom were part of the training dataset and others
completely unseen during the training phase. This setup was designed to closely mimic real-world
situations in which a model must generalize well beyond its training examples. As reported in
Tables 8 and 9, the DynaMer Adapter outperforms both traditional methods and other state-of-the-art
adapters in scenarios involving both seen and unseen patients. Specifically, our adapter demonstrates
a notable increase in identification accuracy across all splits compared to baseline models and even
other advanced adapters.

For the setting with 160 seen patients in Table 8, the DynaMer Adapter achieved an accuracy of
51.07%, which is significantly higher than the LSPT model (Mo et al., 2024b) and even outperforms
other advanced adapters like GMoE-Adapter (Mo et al., 2024a). Furthermore, when it comes to
more challenging settings with fewer seen patients (100 and 60 unseen), our model consistently
showed less drop in performance, indicating robust feature extraction and generalization capabilities.
Regarding 80 seen patients in Table 9, our model maintains high accuracy (50.78%) when 40 patients
are unseen, which is an improvement over methods like VPT-Shallow and GaPT, illustrating the
efficacy of our gating mechanism in handling OOD data. Even in the most challenging scenario
where only 20 patients are seen, the DynaMer Adapter manages to outperform all other methods with
accuracies above 50%, demonstrating the model’s ability to leverage both general and domain-specific
knowledge effectively. These results suggest that the gating mechanism within the DynaMer Adapter
plays a crucial role in dynamically adjusting the contributions of the general and medical expert
networks based on the input data. This dynamic adjustment is critical in OOD scenarios, as it allows
the model to handle better the variability and unpredictability associated with unseen patient data.
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Figure 4: Qualitative visualization of attention maps learned by medical blocks in the proposed DynaMer
Adapter.

Figure 5: Qualitative visualization of attention maps learned by general blocks in the proposed DynaMer Adapter.

Figure 6: Qualitative visualization of attention maps learned by general blocks in the proposed DynaMer Adapter.

The superior performance of the DynaMer Adapter in OOD patient identification tasks underscores
its potential for real-world medical applications. By effectively managing discrepancies between
training and test distributions, our model ensures reliable performance, making it a valuable tool for
scenarios where robustness to OOD data is paramount. This adaptability is particularly crucial in
medical settings, where encountering unseen variations is common. To further enhance the OOD
robustness, future work could explore more sophisticated routing mechanisms or deeper integration of
domain-specific knowledge, potentially through semi-supervised learning techniques or unsupervised
domain adaptation strategies to better capture and generalize across diverse patient data.

D ADDITIONAL QUALITATIVE VISUALIZATIONS

In this section, we include more qualitative visualizations to demonstrate the effectiveness of the
DynaMer Adapter in handling complex visual tasks in medical imaging. These visualizations in
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Figure 7: Qualitative visualization of attention maps learned by general blocks in the proposed DynaMer Adapter.

Figure 8: Qualitative visualization of attention maps learned by medical blocks in the proposed DynaMer
Adapter.

Figure 9: Qualitative visualization of attention maps learned by medical blocks in the proposed DynaMer
Adapter.

Figure 10: Qualitative visualization of attention maps learned by medical blocks in the proposed DynaMer
Adapter.
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Figure 4 illustrate how the model maintains focus on relevant features, addressing challenges such as
spatial and prompt forgetting.

In addition to providing a robust solution to the problem of attention drift, where traditional methods
lose focus on the relevant features in deeper layers or more complex scenarios, our visualizations show
that the DynaMer Adapter effectively manages this issue. This is achieved by dynamically adjusting
the influence of general and medical expert networks through our innovative gating mechanism. The
adapter ensures that the model’s attention mechanism remains relevant to the medical task at hand,
irrespective of the inherent complexities or the variability of the medical images.

These visualizations in Figures 5, 6, and 7 alongside Figures 8, 9, and 10 demonstrate the distinctive
characteristics of the attention maps in the general and medical blocks, validating the motivation and
potential of our DynaMer Adapter. Particularly, the attention in the middle layers (layers 5-8) reveals
differences in the properties of the attention maps between the two types of blocks. In the general
block, the attention often focuses on the edges of tissue, possibly reflecting interactions with shapes
and edges. Conversely, in the medical block, the attention frequently centers on cellular regions,
especially areas with dense nuclei, likely due to the medical block’s focus on tissue cell characteristics.
This suggests that the dynamic adjustment and integration through the gating mechanism might be a
plausible reason for the effectiveness of the DynaMer Adapter in handling complex visual tasks in
medical imaging.

E MORE DISCUSSIONS

E.1 LIMITATIONS

While the DynaMer Adapter showcases innovative advancements in adapting pre-trained Vision
Transformers (ViTs) for specialized medical imaging tasks, it is important to acknowledge several
inherent limitations:

• Scalability Challenges: While the DynaMer Adapter performs well on structured bench-
marks, its scalability to extremely varied medical conditions without considerable customiza-
tion remains untested. The computational demands may also escalate with the increase in
the number of experts, potentially limiting its applicability in resource-constrained settings.

• Generalization across Diverse Medical Tasks: Although the adapter is designed to
be adaptable, its performance may still depend on the similarity between the training
scenarios and the target tasks. Variations in medical imaging data, such as differences in
imaging techniques or pathology characteristics, could affect the model’s ability to generalize
effectively across tasks not seen during training.

• Dependency on High-Quality Annotations: The performance of the DynaMer Adapter is
contingent on the availability of high-quality, annotated datasets. In medical imaging, where
annotations require expert medical knowledge, the scarcity of detailed annotations can limit
the training effectiveness and accuracy of the model.

E.2 BROADER IMPACT

The development of the DynaMer Adapter has implications that extend beyond the field of medical
imaging, influencing both societal norms and technological advancements:

• Enhancement in Healthcare Quality: By improving diagnostic accuracy and efficiency,
the DynaMer Adapter has the potential to enhance patient care quality significantly. Faster
and more accurate diagnostics can lead to better patient outcomes, particularly in conditions
where early detection is crucial.

• Economic Impact: More efficient diagnostics could reduce the cost burden on healthcare
systems by decreasing the need for repeat tests and speeding up the diagnosis process.
However, the high costs associated with developing and implementing such advanced AI
systems could also widen the gap in medical services between high and low-resource
settings.
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• Ethical and Privacy Concerns: The integration of AI in medical diagnostics raises sub-
stantial ethical and privacy concerns, especially regarding data handling, patient consent,
and the potential biases in AI models. Ensuring that these technologies are developed and
implemented responsibly is crucial to maintaining public trust.

• Potential for Broader Applications: The underlying principles of the DynaMer Adapter,
including dynamic adaptation and efficient computational resource management, are appli-
cable in other domains that deal with large-scale data and require robust, adaptable solutions.
This includes areas like climate modeling, autonomous driving, and personalized education,
where similar challenges in handling diverse, high-dimensional data are present.

Addressing both the limitations and recognizing the broader impacts are essential for guiding the
future development and deployment of the DynaMer Adapter, ensuring it brings benefits while
mitigating potential risks.
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