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A B S T R A C T

Adversarial robustness of machine learning models has attracted considerable
attention over recent years. Adversarial attacks undermine the reliability of and
trust in machine learning models, but the construction of more robust models
hinges on a rigorous understanding of adversarial robustness as a property of a
given model. Point-wise measures for specific threat models are currently the most
popular tool for comparing the robustness of classifiers and are used in most recent
publications on adversarial robustness. In this work, we use robustness curves to
show that point-wise measures fail to capture important global properties that are
essential to reliably compare the robustness of different classifiers. We introduce
new ways in which robustness curves can be used to systematically uncover these
properties and provide concrete recommendations for researchers and practitioners
when assessing and comparing the robustness of trained models. Furthermore,
we characterize scale as a way to distinguish small and large perturbations, and
relate it to inherent properties of data sets, demonstrating that robustness thresholds
must be chosen accordingly. We hope that our work contributes to a shift of focus
away from point-wise measures of robustness and towards a discussion of the
question what kind of robustness could and should reasonably be expected. We
release code to reproduce all experiments presented in this paper, which includes a
Python module to calculate robustness curves for arbitrary data sets and classifiers,
supporting a number of frameworks, including TensorFlow, PyTorch and JAX.

1 I N T R O D U C T I O N

Despite their astonishing success in a wide range of classification tasks, deep neural networks can be
lead to incorrectly classify inputs altered with specially crafted adversarial perturbations (Szegedy
et al. 2014; Goodfellow et al. 2015). These perturbations can be so small that they remain almost
imperceptible to human observers (J. P. Göpfert et al. 2020). Adversarial robustness describes a
model’s ability to behave correctly under such small perturbations crafted with the intent to mislead
the model. The study of adversarial robustness – with its definitions, their implications, attacks, and
defenses – has attracted considerable research interest. This is due to both the practical importance
of trustworthy models as well as the intellectual interest in the differences between decisions of
machine learning models and our human perception. A crucial starting point for any such analysis is
the definition of what exactly a small input perturbation is – requiring (a) the choice of a distance
function to measure perturbation size, and (b) the choice of a particular scale to distinguish small and
large perturbations. Together, these two choices determine a threat model that defines exactly under
which perturbations a model is required to be robust.

The most popular choice of distance function is the class of distances induced by `p norms (Szegedy
et al. 2014; Goodfellow et al. 2015; Carlini, Athalye, et al. 2019), in particular `1, `2 and `∞,
although other choices such as Wasserstein distance have been explored as well (Wong, Schmidt,
et al. 2019). Regarding scale, the current default is to pick some perturbation threshold ε without
providing concrete reasons for the exact choice. Analysis then focuses on the robust error of the
model, the proportion of test inputs for which the model behaves incorrectly under some perturbation
up to size ε. This means that the scale is defined as a binary distinction between small and large
perturbations based on the perturbation threshold. A set of canonical thresholds have emerged in
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the literature. For example, in the publications referenced in this section, the MNIST data set is
typically evaluated at a perturbation threshold ε ∈ {0.1, 0.3} for the `∞ norm, while CIFAR-10
is evaluated at ε ∈ {2/255, 4/255, 8/255}, stemming from the three 8-bit color channels used to
represent images.

Based on these established threat models, researchers have developed specialized methods to minimize
the robust error during training, which results in more robust models. Popular approaches include
specific data augmentation, sometimes used under the umbrella term adversarial training (Guo et al.
2017; Madry et al. 2018; Carmon et al. 2019; Hendrycks et al. 2019), training under regularization
that encourages large margins and smooth decision boundaries in the learned model (Hein and
Andriushchenko 2017; Wong and Kolter 2018; Croce, Andriushchenko, and Hein 2019; Croce and
Hein 2020), and post-hoc processing or randomized smoothing of predictions in a learned model
(Lecuyer et al. 2019; Cohen et al. 2019).

In order to show the superiority of a new method, robust accuracies of differently trained models are
typically compared for a handful of threat models and data sets, eg., `∞(ε = 0.1) and `2(ε = 0.3)
for MNIST. Out of 22 publications on adversarial robustness published at NeurIPS 2019, ICLR 2020,
and ICML 2020, 12 publications contain results for only a single perturbation threshold. In five
publications, robust errors are calculated for at least two different perturbation thresholds, but still,
only an arbitrary number of thresholds is considered. Only in five out of the total 22 publications
do we find extensive considerations of different perturbation thresholds and the respective robust
errors. Out of these five, three are analyses of randomized smoothing, which naturally gives rise to
certification radii (B. Li et al. 2019; Carmon et al. 2019; Pinot et al. 2019). Najafi et al. (2019) follow
a learning-theoretical motivation, which results in an error bound as a function of the perturbation
threshold. Only Maini et al. (2020) do not rely on randomization and still provide a complete,
empirical analysis of robust error for varying perturbation thresholds1.

Our contributions: In this work, we demonstrate that point-wise measures of `p robustness are not
sufficient to reliably and meaningfully compare the robustness of different classifiers. We show that,
both in theory and practice, results of model comparisons based on point-wise measures may fail to
generalize to threat models with even slightly larger or smaller ε and that robustness curves avoid this
pitfall by design. Furthermore, we show that point-wise measures are insufficient to meaningfully
compare the efficacy of different defense techniques when distance functions are varied, and that
robustness curves, again, are able to reliably detect and visualize this property. Finally, we analyze
how scale depends on the underlying data space, choice of distance function, and distribution. Based
on our findings we suggest that robustness curves should become the standard tool when comparing
adversarial robustness of classifiers, and that the perturbation threshold of threat models should be
selected carefully in order to be meaningful, considering inherent characteristics of the data set. We
release code to reproduce all experiments presented in this paper2, which includes a Python module
with an easily accessible interface (similar to Foolbox, Rauber et al. (2017)) to calculate robustness
curves for arbitrary data sets and classifiers. The module supports classifiers written in most of the
popular machine learning frameworks, such as TensorFlow, PyTorch and JAX.

2 M E T H O D S

An adversarial perturbation for a classifier f and input-output pair (x, y) is a small perturbation δ
with f(x + δ) 6= y. Because the perturbation δ is small, it is assumed that the label y would still
be the correct prediction for x+ δ. The resulting point x+ δ is called an adversarial example. The
points vulnerable to adversarial perturbations are the points that are either already misclassified when
unperturbed, or those that lie close to a decision boundary.

One tool to visualize and study the robustness behavior of a classifier are robustness curves, first
used by Wong and Kolter (2018) and later formalized by C. Göpfert et al. (2020). A robustness curve

1Single thresholds: (Mao et al. 2019; Tramer and Boneh 2019; Alayrac et al. 2019; Brendel et al. 2019; Qin
et al. 2019; Wang et al. 2020; Song et al. 2020; Croce and Hein 2020; Xie and Yuille 2020; Rice et al. 2020;
Zhang et al. 2020; Singla and Feizi 2020), multiple thresholds: (Lee et al. 2019; Mahloujifar et al. 2019;
Hendrycks et al. 2019; Wong, Rice, et al. 2020; Boopathy et al. 2020), full analysis: (Pinot et al. 2019; Carmon
et al. 2019; B. Li et al. 2019; Najafi et al. 2019; Maini et al. 2020).

2The full code is available at https://github.com/Anonymous23984902384/how-to-
compare-adversarial-robustness-of-classifiers-from-a-global-perspective.
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Figure 1: Excerpt of a toy data set with two decision boundaries (left) and respective robustness
curves (right). The data is separated perfectly by one smooth boundary (blue robustness curve), and
one squiggly boundary (orange robustness curve). We indicate margins around the boundaries at
distances ε and 2ε. Selecting a single perturbation threshold is not sufficient to decide which classifier
is more robust.

captures the distribution of shortest distances between a set of points and the decision boundaries of a
classifier:

Definition 1. Given an input space X and label set Y , distance function d on X × X , and classifier
f : X → Y . Assume (x, y) ∼i.i.d. P for some distribution P on X × Y . Then the d-robustness curve
for f is the graph of the function

Rf
d(ε) := P ({(x, y) s.t. ∃ x′ : d(x, x′) 6 ε ∧ f(x′) 6= y})

A model’s robustness curve shows how data points are distributed in relation to the decision bound-
aries of the model, essentially visualizing simultaneously an extremely large number of point-wise
measures. This allows us to take a step back from robustness regarding a specific perturbation thresh-
old and instead compare global robustness for different classifiers, distributions and distance functions.
To see why this is relevant, consider Figure 1, which shows toy data along with two possible classifiers
that perfectly separate the data. For a perturbation threshold of ε, the blue classifier has robust error
0.5, while the orange classifier is perfectly robust. However, for a perturbation threshold of 2ε, the
orange classifier has robust error 1, while the blue classifier remains at 0.5. By freely choosing a
single perturbation threshold for comparison, it is therefore possible to make either classifier appear
to be much better than the other, and no single threshold can capture the whole picture. In fact, for
any two disjoint sets of perturbation thresholds, it is possible to construct a data distribution and two
classifiers f , f ′, such that the robust error of f is lower than that of f ′ for all perturbation thresholds
in the first set, and that of f ′ is lower than that of f for all perturbation thresholds in the second
set. See Appendix A for a constructive proof. This shows that even computing multiple point-wise
measures to compare two models may give misleading results.

3 E X P E R I M E N T S

In the following, we empirically evaluate the robustness of a number of recently published models,
and demonstrate that the weaknesses of point-wise measures described above are not limited to toy
examples, but occur for real-world data and models.

3 . 1 E X P E R I M E N TA L S E T U P

We evaluate and compare the robustness of models obtained using the following training methods:

1. Standard training (ST), i. e., training without specific robustness considerations.
2. Adversarial training (AT) (Madry et al. 2018).
3. Training with robust loss (KW) (Wong and Kolter 2018).
4. Maximum margin regularization for a single `p norm together with adversarial training

(MMR+AT) (Croce, Andriushchenko, and Hein 2019).
5. Maximum margin regularization simultaneously for `∞ and `1 margins (MMR-UNIV) (Croce

and Hein 2020).
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Table 1: Three point-wise measures for different threat models. All threat models use the `∞ distance
function, but differ in choice of perturbation threshold (denoted by ε). Each row contains the robust
test errors for one point-wise measure. Each column contains the robust test errors for one model,
trained with a specific training method (marked by column title). The lower the number, the better
the robustness for the specific threat model. Each point-wise measure results in a different relative
ordering of the classifiers based on the errors. The order is visualized by different tones of gray in the
background of the cells.

ε ST AT KW MMR+AT MMR-UNIV

1/255 0.60 0.38 0.43 0.42 0.54
4/255 0.99 0.68 0.57 0.63 0.74
8/255 1.00 0.92 0.73 0.84 0.91

Together with each training method, we state the threat model the trained model is optimized to
defend against, eg., `∞(ε = 0.1) for perturbations in `∞ norm with perturbation threshold ε = 0.1,
if any. The trained models are those made publicly available by Croce, Andriushchenko, and
Hein (2019)3 and Croce and Hein (2020)4. The network architecture is a convolutional network
with two convolutional layers, two fully connected layers and ReLU activation functions. The
evaluation is based on six real-world datasets: MNIST, Fashion-MNIST (FMNIST) (Xiao et al. 2017),
German Traffic Signs (GTS) (Houben et al. 2013), CIFAR-10 (Krizhevsky 2009), Tiny-Imagenet-
200 (TINY-IMG) (F.-F. Li et al. 2016), and Human Activity Recognition (HAR) (Anguita et al. 2013).
For specifics on model training (hyperparameters, architecture details), refer to Appendix C. Models
are generally trained on the full training set for the corresponding data set, and robustness curves
evaluated on the full test set, unless stated otherwise.

For complex models, calculating the exact distance of a point to the closest decision boundary,
and thus estimating the true robustness curve, is computationally very intensive, if not intractable.
Therefore we bound the true robustness curve from below using strong adversarial attacks, which is
consistent with the literature on empirical evaluation of adversarial robustness and also applicable
to many different types of classifiers. We base our selection of attacks on the recommendations by
Carlini, Athalye, et al. (2019). Specifically, we use the `2-attack proposed by (Carlini and Wagner
2017) for `2 robustness curves and PGD (Madry et al. 2018) for `∞ robustness curves. For both
attacks, we use the implementations of Foolbox (Rauber et al. 2017). See Appendix C for information
on adversarial attack hyperparameters. In the following, “robustness curve” refers to this empirical
approximation of the true robustness curve.

3 . 2 T H E W E A K N E S S E S O F P O I N T- W I S E M E A S U R E S

Point-wise measures are used to quantify robustness of classifiers by measuring the robust test error
for a specific distance function and a perturbation threshold (eg., `∞(ε = 4/255)). In Table 1 we
show three point-wise measures to compare the robustness of five different classifiers on CIFAR-10.
If we compare the robustness of the four robust training methods (latter four columns of the table)
based on the first point-wise threat model `∞(ε = 1/255) (first row of the table), we can see that the
classifier trained with AT is the most robust, followed by MMR+AT, followed by KW, and MMR-UNIV
results in the least robust classifier. However, if we increase the ε of our threat model to ε = 4/255
(second row of the table), KW is more robust than AT. For a even larger ε (third row of the table),
we would conclude that MMR-UNIV is preferable over AT, and that AT results in the least robust
classifier. All three statements are true for the particular perturbation threshold (ε), and the magnitude
of all perturbation thresholds is reasonable: publications on adversarial robustness typically evaluate
CIFAR-10 on perturbation thresholds 6 10/255 for `∞ perturbations. Meaningful conclusions on
the robustness of the classifiers relative to each other can not be made without taking all possible ε
into account. In other words, a global perspective is needed.

3The models trained with ST, KW, AT and MMR+AT are avaible at
www.github.com/max-andr/provable-robustness-max-linear-regions.

4The models trained with MMR-UNIV are avaible at www.github.com/fra31/mmr-universal.
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Figure 2: `∞ robustness curves (left plot) and `2 robustness curves (right plot) resulting from different
training methods (indicated by label), optimized for different threat models (indicated by label). The
dashed vertical lines visualize the three point-wise measures from Table 1. The models are trained
and evaluated on the full training-/test sets of CIFAR-10. The curves allow us to reliably compare
the robustness of the classifiers, unbiased by choice of perturbation threshold.

3 . 2 . 1 A G L O B A L P E R S P E C T I V E

Figure 2 shows the robustness of different classifiers for the `∞ (right plot) and `2 (left plot) distance
functions from a global perspective using robustness curves. The plot reveals why the three point-
wise measures (marked by vertical black dashed lines in the left plot) lead to different results in the
relative ranking of robustness of the classifiers. Both for the classifiers trained to be robust against
attacks in `∞ distance (left plot) and `2 distance (right plot), we can observe multiple intersections of
robustness curves, corresponding to changes in the relative ranking of the robustness of the compared
classifiers. The robustness curves allow us to reliably compare the robustness of classifiers for all
possible perturbation thresholds. Furthermore, the curves clearly show the perturbation threshold
intervals with strong and weak robustness for each classifier, and are not biased by an arbitrarily
chosen perturbation threshold.

3 . 2 . 2 OV E R F I T T I N G T O S P E C I F I C P E R T U R B AT I O N T H R E S H O L D S

In addition to the problem of robustness curve intersection, relying on point-wise robustness mea-
sures to evaluate adversarial robustness is prone to overfitting when designing training procedures.
Figure 3 shows `∞ robustness curves for MMR+AT with `∞ threat model as provided by Croce, An-
driushchenko, and Hein (2019). The models trained on MNIST and FMNIST both show a change in
slope, which could be a sign of overfitting to the specific threat models for which the classifiers were
optimized for, since the change of slope occurs approximately at the chosen perturbation threshold ε.
This showcases a potential problem with the use of point-wise measures during training. The binary
separation of “small” and “large” perturbations based on the perturbation threshold is not sufficient to
capture the intricacies of human perception under perturbations, but a simplification based on the
idea that perturbations below the perturbation threshold should almost certainly not lead to a change
in classification. If a training procedure moves decision boundaries so that data points lie just beyond
this threshold, it may achieve a low robust error, without furthering the actual goals of adversarial
robustness research. Using robustness curves for evaluation cannot prevent this effect, but can be
used to detect it.

3 . 2 . 3 T R A N S F E R O F R O B U S T N E S S A C R O S S D I S TA N C E F U N C T I O N S

In the following, we analyze to which extent properties of robustness curves transfer across different
choices of distance functions. If properties transfer, it may not be necessary to individually analyze
robustness for each distance function.

In Figure 4 we compare the robustness of different models for the `∞ (left plot) and `2 (right plot)
distance functions. The difference to Figure 2 is that the models (indicated by colour) are the same
models in the left plot and in the right plot. We find that for MMR+AT, the `∞ threat model leads to
better robustness than the `2 threat model both for `∞ and `2 robustness curves. In fact, MMR+AT
with the `∞ threat model even leads to better `∞ and `2 robustness curves than MMR-UNIV, which is
specifically designed to improve robustness for all `p norms. Overall, the plots are visually similar.
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Figure 3: `∞ robustness curves for multiple data sets. Each curve is calculated for a different model
and a different test data set. The data sets are indicated by the labels. The models are trained with
MMR+AT, Threat Models: MNIST: `∞(ε = 0.1), FMNIST: `∞(ε = 0.1), GTS: `∞(ε = 4/255),
CIFAR-10: `∞(ε = 2/255). The curves for MNIST and FMNIST both show a change in slope,
which can not be captured with point-wise measures and could be a sign of overfitting to the specific
threat models for which the classifiers were optimized for.
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Figure 4: `∞ robustness curves (left plot) and `2 robustness curves (right plot) resulting from different
training methods (indicated by color and label), optimized for different threat models (indicated by
label). The models are trained and evaluated on the full training-/test sets of CIFAR-10. The curves
allow us to reliably compare the transfer of robustness of the classifiers across distance functions,
unbiased by choice of threat model.

However, since both plots contain multiple robustness curve intersections, the ranking of methods
remains sensitive to the choice of perturbation threshold. For example, a perturbation threshold of
ε = 3/255 (vertical black dashed line) for the `∞ distance function (left subplot) shows that the
classifier trained with MMR+AT (`2(ε = 0.1)) is approximately as robust as the classifier trained with
MMR-UNIV. The same perturbation threshold for the `2 distance function (right subplot) shows that
the classifier trained with MMR+AT is more robust than the classifier trained with MMR-UNIV for `2
threat models. Using typical perturbation thresholds from the literature for each distance function
does not alleviate this issue: At perturbation threshold ε = 2/255 for `∞ distance, the classifier
trained with MMR+AT (`2(ε = 0.1)) is more robust than the one trained with MMR-UNIV, while
at perturbation threshold ε = 0.1 for `2 distance, the opposite is true. This shows that even when
robustness curves across various distance functions are qualitatively similar, this may be obscured by
the choice of threat model(s) to compare on.

We also emphasize that in general, robustness curves across various distance functions may be
qualitatively dissimilar. In particular:

1. For linear classifiers, the shape of a robustness curve is identical for distances induced by
different `p norms. This follows from Theorem 2 in Appendix B, which is an extension of a
weaker result in C. Göpfert et al. (2020). For non-linear classifiers, different `p norms may
induce different robustness curve shapes. See C. Göpfert et al. (2020) for an example.

2. Even for linear classifiers, robustness curve intersections do not transfer between distances
induced by different `p norms. That is, for two linear classifiers, there may exist p, p′ such
that the robustness curves for the `p distance intersect, but not the robustness curves for the
`p′ distance. See Appendix A for an example.
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Figure 5: Minimum inter-class distances of all data sets considered in this work, measured in `∞
(left), `2 (middle), and `1 (right) norm. See Table 2 for size and dimensionality. The shapes of the
curves and the threshold from which any classifier must necessarily trade of between accuracy and
robustness differ strongly between data sets.

3 . 3 O N T H E R E L AT I O N S H I P B E T W E E N S C A L E A N D D ATA

As the previous sections show, robustness curves can be used to reveal properties of robust models
that may be obscured by point-wise measures. However, some concept of scale, that is, some way to
judge whether a perturbation is small or large, remains necessary. Especially when robustness curves
intersect, it is crucial to be able to judge how critical it is for a model to be stable under the given
perturbations. For many pairs of distance function and data set, canonical perturbation thresholds
have emerged in the literature, but to the best of our knowledge, no reasons for these choices are
given.

Since the assumption behind adversarial examples is that small perturbations should not affect
classification behavior, the question of scale cannot be answered independently of the data distribution.
In order to understand how to interpret different perturbation sizes, it can be helpful to understand
how strongly the data point would need to be perturbed to actually change the correct classification.
We call this the inter-class distance and analyze the distribution of inter-class distances for several
popular data sets.

In Figure 5 we compare the inter-class distance distributions in `∞, `2, and `1 norm for all data
sets considered in this work. We observe that for the `1 and `2 norms, the shape of the curves is
similar across data sets, but their extent is determined by the dimensionality of the data space. In the
`∞ norm, vastly different curves emerge for the different data sets. We hypothesize that, because
the inter-class distance distributions vary more strongly for `∞ distances than for `1 distances, the
results of robustifying a model w. r. t. `∞ distances may depend more strongly on the underlying data
distribution than the results of robustifying w. r. t. `1 distances. This is an interesting avenue for future
work.

When we look at the smallest inter-class distances in the `∞ norm (where all distances lie in the
interval [0, 1]), we can make several observations. Because the smallest inter-class distance for
MNIST in the `∞ norm is around 0.9, we can see that transforming an input from one class to one
from a different class almost always requires completely flipping at least one pixel from almost-black
to almost-white or vice versa. For the other datasets, the inter-class distance distributions are more
spread out than the inter-class distance distribution of MNIST. We observe that for CIFAR-10 with
`∞ perturbations of size > 0.25, it becomes possible to transform samples from different classes into
each other, so starting from this threshold, any classifier must necessarily trade off between accuracy
and robustness. The shapes of the curves and the threshold from which any classifier must necessarily
trade of between accuracy and robustness differ strongly between data sets – refer to Table 2 for exact
values for the threshold.

In Table 2, we summarize the smallest and largest inter-class distances in different norms together
with additional information about the size, number of classes, and dimensionality of the all the data
sets we consider in this work. The values correspond directly to Figure 5, but even in this simplified
view, we can quickly make out key differences between the data sets. Compare, for example, MNIST
and GTS: While it appears reasonable to expect `∞ robustness of 0.3 for MNIST, the same threshold
for GTS is not possible. Relating Table 2 and Figure 3, we find entirely plausible the strong robustness
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Table 2: Smallest and largest inter-class distances for subsets of several data sets, measured in l∞,
l2, and l1 norm, together with basic contextual information about the data sets. All data has been
been normalized to lie within the interval [0, 1], and duplicates and corrupted data points have been
removed. Apart from HAR, all data sets contain images – the dimensionality reported specifies their
sizes and number of channels.

Inter-class Distance
Smallest Largest

Dataset Samples Classes Dimensionality l∞ l2 l1 l∞ l2 l1

MNIST 10 000 10 28× 28× 1 0.88 3.03 19.16 1.00 10.18 132.38
TINY-IMG 98 139 200 64× 64× 3 0.27 5.24 369.29 0.71 47.49 4184.37
FMNIST 10 000 10 28× 28× 1 0.36 2.00 24.87 1.00 10.70 194.29
GTS 10 000 43 32× 32× 3 0.07 0.90 31.46 0.62 19.54 833.22
CIFAR-10 10 000 10 32× 32× 3 0.27 3.61 130.77 0.70 18.57 831.44
HAR 2947 6 561 0.26 1.26 12.95 0.87 4.29 73.19

results for MNIST, and the small perturbation threshold for GTS. Based on inter-class distances we
also expect less `∞ robustness for CIFAR-10 than for FMNIST, but not as seen in Figure 3. In any
case, it is safe to say that, when judging the robustness of a model by a certain threshold, that number
must be set with respect to the distribution the model operates on.

Overall, the strong dependence of robustness curves on the data set and the chosen norm, emphasizes
the necessity of informed and conscious decisions regarding robustness thresholds. We provide an
easily accessible reference in the form of Table 2, that should prove useful while judging scales in a
threat model.

4 D I S C U S S I O N

We have demonstrated that comparisons of robustness of different classifiers using point-wise
measures can be heavily biased by the choice of perturbation threshold and distance function of the
threat model, and that conclusions about rankings of classifiers with regards to their robustness based
on point-wise measures therefore only provide a narrow view of the actual robustness behavior of the
classifiers. Further, we have demonstrated different ways of using robustness curves to overcome
the shortcomings of point-wise measures, and therefore recommend using them as the standard tool
for comparing the robustness of classifiers. Finally, we have demonstrated how suitable perturbation
thresholds necessarily depend on the data they pertain to.

It is our hope that practitioners and researchers alike will use the methodology proposed in this work,
especially when developing and comparing adversarial defenses, and carefully motivate any concrete
threat models they might choose, taking into account all available context.

Limitations: Computing approximate robustness curves for state-of-the-art classifiers and large data
sets is computationally very intensive, due to the need of computing approximate minimal adversarial
perturbations with strong adversarial attacks. Developing adversarial attacks which are both strong
and fast is an ongoing challenge in the field of adversarial robustness.

One way to reduce the computational cost is to approximate the robustness curves by computing a set
of point-wise measures. However, since robustness curves may intersect at arbitrarily many points,
this may give misleading results. It would be interesting to investigate how closely robustness curves
need to be approximated in order to estimate the number of intersections, if any, and their location,
with high certainty.

Another limitation of our work is the focus on a small group of distance functions (mainly `∞ and
`2 norms). Even though it does intuitively make sense that models should at least be robust against
these types of perturbations, a more general evaluation able to consider more distance functions
simultaneously could be advantageous.
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Figure 6: Example of a data distribution and two linear classifiers such that the `2 robustness curves
intersect, but not the `∞ robustness curves.
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A R O B U S T N E S S C U RV E S W I T H A R B I T R A RY I N T E R S E C T I O N S

Theorem 1. Let T1, T2 ⊂ R>0 be two disjoint finite sets. Then there exists a distribution P on
R × {0, 1} and two classifiers c1, c2 : R → {0, 1} such that Rc1

|·|(t) < Rc2
|·|(t) for all t ∈ T1 and

Rc1
|·|(t) > Rc2

|·|(t) for all t ∈ T2.

Proof. Without loss of generality, assume that T1 = {t1, . . . , tn} and T2 = {t′1, . . . , t′n} with
ti < t′i < ti+1 for i ∈ {1, . . . , n}. We will construct c1, c2 such that the robustness curves
Rc1
|·|(·), R

c2
|·|(·) intersect at exactly the points (ti + t′i)/2 and (ti + t′i+1)/2 on the interval (t1, t′n]. Let

d = t′n and

P

(
−d−

ti + t′i+1

2
, 0

)
= P

(
d+

ti + t′i
2

, 1

)
=

2

4n+ 1

and

P

(
−d− t1

2
, 0

)
=

1

4n+ 1
.

Let c1(x) = 1x>−d and c2(x) = 1x>d. Both classifiers have perfect accuracy on P , meaning that
Rci
|·|(0) = 0. The closest point to the decision boundary of c1 is −d − t1

2 with weight 1
4n+1 , so

Rc1
|·|(

t1
2 ) =

1
4n+1 . The second-closest point is−d− t1+t′2

2 with weight 2
4n+1 , so Rc1

|·|(
t1+t′2

2 ) = 3
4n+1 ,

and so on. Meanwhile, the closest point to the decision boundary of c2 is d+ t1+t′1
2 with weight 2

4n+1 ,

soRc2
|·|(

t1+t′1
2 ) = 2

4n+1 , the second-closest point is d t2+t′2
2 with weight 2

4n+1 , soRc2
|·|(

t2+t′2
2 ) = 4

4n+1 ,
and so on.

Example 1. To see that robustness curve intersections do not transfer between different `p norms,
consider the example in Figure 6. The blue and orange linear classifiers both perfectly separate
the displayed data. The `∞ robustness curves of the classifiers do not intersect, meaning that the
robust error of the blue classifier is always better than that of the orange classifier. In `2 distance, the
robustness curves intersect, so that there is a range of perturbation sizes where the orange classifier
has better robust error than the blue classifier.

11



Under review as a conference paper at ICLR 2021

B R O B U S T N E S S C U RV E D E P E N D E N C E O F S H A P E O N D I S TA N C E
F U N C T I O N

Theorem 2. Let f(x) = sgn(wTx+ b) be a linear classifier. Then the shape of the robustness curve
for f regarding an `p norm-induced distance does not depend on the choice of p. It holds that

Rf
`p1

(ε) = Rf
`p2

(c · ε) ∀ ε for c =
‖w‖q1
‖w‖q2

, qi =
pi

pi − 1
. (1)

Lemma 1. Let x ∈ Rm with wTx + b 6= 0. Let p ∈ [1,∞] and q such that 1
p + 1

q = 1, where we
take 1

∞ = 0. Then

min{‖δ‖p : sgn(wT (x+ δ) + b) 6= sgn(wTx+ b)} = |w
T + b|
‖w‖q

(2)

and the minimum is attained by

δ =

{
−wT x−b
‖w‖∞ sgn(wj)ej , j = argmaxi |wi| p = 1
−wT x−b
‖w‖qq (sgn(wi)|wi|

1
p−1 )di=1 p ∈ (1,∞] .

(3)

where x
1
∞−1 = x0 = 1 and ej is the j-th unit vector.

Proof of Theorem 2. By Hölder’s inequality, for any δ,
m∑
i=1

|wiδi| 6 ‖δ‖p‖w‖q . (4)

For δ such that sgn(wT (x+ δ) + b) 6= sgn(wTx+ b) it follows that

‖δ‖p >

∑m
i=1 |wiδi|
‖w‖q

>
|
∑m

i=1 wiδi|
‖w‖q

>
|wTx+ b|
‖w‖q

. (5)

Using the identity q = p
p−1 , it is easy to check that for every p ∈ [1,∞], with δ as defined in

Equation (3),

1. wT δ = −wTx− b, so that wT (x+ δ) + b = 0, and

2. ‖δ‖p = |wT x+b|
‖w‖q .

Item 1 shows that δ is a feasible point, while Item 2 in combination with Equation (5) shows that
‖δ‖p is minimal.

Using Lemma 1, we are ready to prove Theorem 2.

Proof. By definition,

Rf
`p1

(ε) = P ({(x, y) s.t. ∃ δ : ‖δ‖p1
6 ε ∧ f(x+ δ) 6= y}︸ ︷︷ ︸

Rp1
(ε)

) . (6)

We can splitRp1
(ε) into the disjoint sets

{(x, y) : f(x) 6= y}︸ ︷︷ ︸
=M

(7)

∪̇ (8)
{(x, y) s.t. ∃ δ : ‖δ‖p1 6 ε ∧ y = f(x) 6= f(x+ δ)}︸ ︷︷ ︸

=Bp1 (ε)

. (9)
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Choose q1, q2 such that 1
pi

+ 1
qi

= 1. By Lemma 1, and using that f(x) = sgn(wTx+ b),

Bp1(ε) = {(x, y) : sgn(wTx+ b) = y ∧ |w
Tx+ b|
‖w‖q1

6 ε} (10)

= {(x, y) : sgn(wTx+ b) = y ∧ |w
Tx+ b|
‖w‖q2

6
‖w‖q1
‖w‖q2

ε}) (11)

= Bp2

(
‖w‖q1
‖w‖q2

ε

)
. (12)

This shows that

Rf
`p1

(ε) = P (M) + P (Bp1(ε)) (13)

= P (M) + P

(
Bp2

(
‖w‖q1
‖w‖q2

ε

))
(14)

= Rf
`p2

(
‖w‖q1
‖w‖q2

ε

)
. (15)

C E X P E R I M E N TA L D E TA I L S

C . 1 M O D E L T R A I N I N G

We use the same model architecture as Croce, Andriushchenko, and Hein (2019) and Wong and Kolter
(2018). Unless explicitly stated otherwise, the trained models are taken from Croce, Andriushchenko,
and Hein (2019). The exact architecture of the model is: Convolutional layer (number of filters: 16,
size: 4x4, stride: 2), ReLu activation function, convolutional layer (number of filters: 32, size: 4x4,
stride: 2), ReLu activation function, fully connected layer (number of units: 100), ReLu activation
function, output layer (number of units depends on the number of classes). All models are trained
with Adam Optimizer (Kingma and Ba 2014) for 100 epochs, with batch size 128 and a default
learning rate of 0.001. More information on the training can be found in the experimental details
section of the appendix of Croce, Andriushchenko, and Hein (2019). The trained models are those
made publicly available by Croce, Andriushchenko, and Hein (2019)5and Croce and Hein (2020)6.

C . 2 A P P R O X I M AT E D R O B U S T N E S S C U RV E S

We use state-of-the-art adversarial attacks to approximate the true minimal distances of input data-
points to the decision boundary of a classifier for our adversarial robustness curves (see Definition 1).
We base our selection of attacks on the recommendations of Carlini, Athalye, et al. (2019). Specifi-
cally, we use the following attacks: For `2 robustness curves we use the `2-attack proposed by Carlini
and Wagner (2017) and for `∞ robustness curves we use PGD (Madry et al. 2018). For both attacks,
we use the implementations of Foolbox (Version 2.4) (Rauber et al. 2017). For the `∞ attack, the
implementation of Foolbox automatically performs a hyperparameter search over different epsilon
and uses the smallest resulting adversarial perturbation. For the rest of the hyperparameters, we use
the standard values of the Foolbox implementation. For the `2 attack, we increase the number of
binary search steps that are used to find the optimal tradeoff-constant between distance and confidence
from 5 to 10, which we found empirically to improve the results. For the rest of the hyperparameters,
we again use the standard values of the Foolbox implementation.

C . 3 C O M P U TAT I O N A L A R C H I T E C T U R E

We executed all programs on an architecture with 2 x Intel Xeon(R) CPU E5-2640 v4 @ 2.4 GHz, 2
x Nvidia GeForce GTX 1080 TI 12G and 128 GB RAM.

5The models trained with ST, KW, AT and MMR+AT are avaible at
www.github.com/max-andr/provable-robustness-max-linear-regions.

6The models trained with MMR-UNIV are available at www.github.com/fra31/mmr-universal.
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Figure 7: Visualization of four images from CIFAR-10 (top row), together with adversarial examples
(bottom row), calculated with PGD (Madry et al. 2018) for a model trained with MMR+AT, Threat
Model: `∞(ε = 2/255). The resulting perturbation sizes of the adversarial examples are (from left
to right) 17/255, 18/255, 18/255, 18/255. Even for perturbation sizes far greater than popular choices
of point-wise measures, adversarial examples can be very hard to detect for humans.
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Figure 8: `∞ robustness curves for two state-of-the-art robust models with a large architecture
(WideResNet-28-10). The labels indicate the training method (Sehwag2020Hydra: (Sehwag et
al. 2020), Wu20Adversarial: (Wu et al. 2020)). The trained models are taken from Croce, An-
driushchenko, Sehwag, et al. (2020). The models are trained on the full training set of CIFAR-10,
and robustness curves are based on a sample of 1000 points from the test set.

D V I S U A L I Z AT I O N O F A D V E R S A R I A L E X A M P L E S

As we pointed out in Section 1, adversarial robustness of classifiers trained on CIFAR-10 is usually
evaluated at a perturbation threshold ε ∈ {2/255, 4/255, 8/255} for the `∞ norm. Robustness
curves allow us to investigate robustness of classifiers for perturbation thresholds beyond those
which are used in the literature. It should not be necessary for the model to be invariant under large
perturbations, if these perturbations are clearly perceptible or change the “correct” classification of
the input. However, the thresholds that models are currently optimized for are small enough that even
larger perturbations may not be perceptible. Figure 7 shows four images of CIFAR-10 (top row),
together with adversarial examples (bottom row). With perturbation sizes ε ∈ {17/255, 18/255},
the perturbations are more than two times larger than the biggest perturbation threshold used in the
literature, and still almost imperceptible for untrained humans.

E R O B U S T N E S S C U RV E S F O R L A R G E R M O D E L S

In Section 3, we demonstrate the usefulness of robustness curves on a small convolutional network
architecture used by Croce, Andriushchenko, and Hein (2019). The choice of a small architecture
allows us to compute robustness curves for a large number of different defensive strategies with
limited computational resources. Figure 8 shows approximate robustness curves for two state-of-the-
art robust models with a large network architecture (WideResNet-28-10), computed for a sample of
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1000 data points from CIFAR-10. Due to the small number of points used, the approximation may
be rough, so the following observations should be taken with a grain of salt.

1. Both robust models are indeed much more robust than the model obtained by standard
training even for perturbation thresholds that are significantly larger than the threshold of
8/255 that the models are optimized for. This observation may help decide whether it is
worthwhile to stop using a conventionally trained model, sacrificing accuracy for robustness.

2. Wu et al. (2020) has slightly worse accuracy than Sehwag et al. (2020) roughly up to
perturbation size 1/255. This is a trade-off for better accuracy between perturbation sizes
4/255 and 0.1. From perturbation size 0.1 onward, Sehwag et al. (2020) appears to have
slightly better accuracy than Wu et al. (2020). This observation may help decide which of
the two robust models is preferable, based on the robustness requirements of a concrete
application.

3. The gap between the performance of Wu et al. (2020) and Sehwag et al. (2020) is even wider
at perturbation size 0.04 than 8/255, but overall, the robustness curves of the robust models
are quite similar. This observation may help decide whether it is worthwhile to switch from
one model to the other, if one of the models is already in use or preferable for other reasons.
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