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ABSTRACT

Multi-task learning architectures model multiple related tasks simultaneously by
sharing parameters across networks to exploit shared knowledge and improve per-
formance. Designing multi-task architectures is challenging due to the trade-off
between parameter efficiency and the ability to flexibly model task differences at
all network layers. We propose Multi-Task Hypernetworks, a novel multi-task
learning architecture which circumvents this trade-off, generating flexible task
networks with a minimal number of parameters per task. Our approach uses a
hypernetwork to generate different network weights for each task from small task-
specific embeddings and enable abstract knowledge transfer between tasks. Our
approach stands out from existing multi-task learning architectures by providing
the added capability to leverage task-level metadata to explicitly learn task rela-
tionships and task functions. We show empirically that Multi-Task Hypernetworks
outperform many state-of-the-art multi-task learning architectures on small tabu-
lar data problems, and leverage metadata more effectively than existing methods.

1 INTRODUCTION

Multi-Task Learning (MTL) is a machine learning paradigm where a set of related tasks are learnt
jointly to transfer knowledge between them and improve generalisation performance of all tasks.
One of the key challenges of MTL is designing network architectures to effectively transfer knowl-
edge between tasks. Architectures can be broadly categorised into hard parameter sharing and soft
parameter sharing (Ruder, 2017). Hard parameter sharing architectures transfer knowledge by shar-
ing most network parameters between all tasks. These approaches are parameter-efficient as only
a small set of model weights are learnt separately for each task, typically in deep layers (Caruana,
1997; Shui et al., 2019; Pascal et al., 2021). However, the flexibility of these models is limited as
all tasks use an identical feature representation which may not be optimal (Guo et al., 2019; Ruder
et al., 2019). Soft parameter sharing approaches instead learn unique weights for each task net-
work, constrained by some mechanism such as regularisation to transfer knowledge between tasks.
This enables the learning of flexible task networks, where distinct task-specific representations are
learnt at all layers of the network. However, these techniques are not parameter-efficient as they
require learning an entire set of model weights per task (Misra et al., 2016; Ruder et al., 2019;
Yang & Hospedales, 2017). This highlights a trade-off in multi-task learning architectures between
parameter-efficient task scaling and learning flexible task networks.

To address this trade-off, we propose Multi-Task Hypernetworks, a novel MTL architecture which
learns flexible task networks with substantially fewer parameters per task than other soft parame-
ter sharing approaches. We achieve this by learning a unique low-dimensional embedding vector
of each task, which captures task relationships. Despite using task embeddings as the only task-
specific parameters, our architecture can generate flexible task networks and enable abstract knowl-
edge transfer. In our experiments, we use only ten parameters per task.

Our approach accomplishes this by utilising hypernetworks (Ha et al., 2017) for soft parameter
knowledge transfer across tasks. Notably, this represents the first attempt within the research area
to explore this methodology. Hypernetworks are neural networks that generate the weights of an-
other neural network. Instead of directly learning the weights of a “target” network, which models
the task of interest, hypernetworks produce them dynamically based on some input. Our proposed
Multi-Task Hypernetwork uses a hypernetwork to generate a different set of weights for multiple
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Figure 1: Multi-Task Hypernetwork conceptual diagram.

target networks which each model a different task. Network weights for all target networks are gen-
erated by the same hypernetwork, but use task-specific embeddings as input to the hypernetwork to
generate entirely distinct weights (Figure 1). The use of a shared deep hypernetwork enables abstract
knowledge transfer between tasks, while the task embeddings capture task relationships. This is a
conceptual departure from previous soft parameter sharing approaches which share knowledge at the
parameter level. We additionally show experimentally that the task embeddings learn “meaningful”
task representations, in that they are predictive of task-level knowledge.

Another key benefit of Multi-Task Hypernetworks is that they can naturally integrate task-level
information into the learning process. In some MTL applications, auxiliary data describing the
tasks themselves is available. We refer to this as metadata, and argue that this complementary data
source may provide valuable knowledge of task relationships. For example, consider the application
of water quality remote sensing (Pahlevan et al., 2020; Graffeuille et al., 2022). The chlorophyll-a
concentration is estimated from water colour in multiple lakes, with each lake modelled as a different
task. Data is typically scarce due to the high cost of data collection, thus, learning these tasks jointly
can improve performance. In this application, some lake features such as depth, temperature and
rainfall are known. These features are informative, as lakes with similar features are likely to have
similar environmental mechanisms (Yang et al., 2022). When modelling each lake as a different task,
these task-level features, which we call metadata, are informative with regards to task relatedness.

Beyond parameter-efficient generation of flexible task networks, Multi-Task Hypernetworks are also
the first general MTL approach to learn task relationships and task functions explicitly from task-
level metadata, rather than implicitly by jointly optimising task performances. This is achieved
by using task metadata as input to the hypernetwork along with the task embeddings, such that
target network weights are a function of their metadata. When metadata is available, leveraging it
during training may help the model learn task relationships and when to transfer across tasks, a key
challenge in MTL (Zamir et al., 2018; Fifty et al., 2021). This may be particularly important for
small data problems where data is insufficient to accurately learn task relationships (Zheng et al.,
2019). Existing MTL algorithms are designed to learn from data at the sample level, but not from
data at the task level, and so cannot leverage metadata directly.

Experiments on a novel metadata-driven synthetic MTL dataset and three small tabular MTL
datasets with task metadata demonstrate (1) our approach outperforms state-of-the-art MTL archi-
tectures on tabular data without metadata (2) including metadata substantially improves the perfor-
mance of our approach (3) other existing approaches cannot effectively leverage this metadata.

For reproducibility, we make our code, datasets and synthetic dataset generator available online 1.
Section 2 proposes Multi-Task Hypernetworks. Section 3 covers experimental results. Section 4
explores related works in MTL and hypernetworks. Section 5 concludes the paper.

2 MULTI-TASK HYPERNETWORK

Problem formulation. In MTL, we consider a set of T related tasks {Tt}Tt=1 = {(Dt, ft)}Tt=1, such
that each task Tt has a deep learning function {ft : X 7→ Y}Tt=1 and a set of training data {Dt}Tt=1
containing nt training instances Dt = {xt

i, y
t
i}

nt
i=1 where xt

i ∈ X , yti ∈ Y . The goal of MTL is to
jointly learn each task function {ft}Tt=1 from the training data of all tasks {Dt}Tt=1.

1https://anonymous.4open.science/r/Multi-Task-Hypernetworks-922C
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Metadata. Metadata is data that describes and gives information about other data (Zheng et al.,
2019). In the context of MTL, we define metadata as task-level data, that is, data describing the tasks
themselves. For example, lake attributes in a problem where each lake is associated with a different
task, or mechanical information about robot arms when modelling each arm’s movements as a task.
Metadata may come from auxiliary datasets or domain knowledge. We note that for some MTL
applications, metadata is unavailable or undefined. Consider the learning of semantic segmentation
and surface normal of an image as a multi-task problem (Misra et al., 2016); no relationship between
these two tasks exists which can be expressed with task-level features. We observe that many tabular
datasets and databases contain task-level metadata as shown in Section 3, but that such metadata is
less common in vision problems, and hence concentrate our work on tabular data.

Problem formulation with metadata. When metadata is available, each task Tt additionally has
an associated metadata feature vector mt ∈ Rdm , such that Tt = (Dt,mt, ft). The goal of MTL
with metadata is to jointly learn the task functions {ft}Tt=1 from the task training data {Dt}Tt=1 and
metadata {mt}Tt=1. When metadata is unavailable, we use the original MTL problem formulation.

Current MTL approaches are not designed to effectively leverage metadata. A naive approach to
learn from metadata with existing techniques would be to append it as supplementary features to
training data {x̂t

i}
nt
i=1 = {(xt

i,mt)}nt
i=1. This may not be an effective way to exploit this data,

considering that these appended features would be constant for all data instances within a task.

Method overview. The foundation of our multi-task learning approach is a hypernetwork (Fig-
ure 1). The network weights θt of target function ft of task t are not trained directly. Instead, they
are generated by a shared hypernetwork h according to θt = h(et), where et is a de dimensional em-
bedding vector associated with task t. The hypernetwork generates the weights for each task’s target
network. Using task-specific embeddings allows the hypernetwork to generate different weights for
each target network. Task embeddings are low-dimensional representations of target functions learnt
by the Multi-Task Hypernetwork, which allow our model to learn task similarities and relationships.

Multi-Task Hypernetworks are parameterised by the weights θh that define h, and the T task-specific
embedding vectors {et}Tt=1. Most model parameters are shared between all tasks since |θh| ≫ Tde.
However, our approach is best classified as a soft parameter sharing approach, given that each target
network is generated with flexible weights at all network layers.

To perform inference on task t we compute the weights of ft with h then make a prediction on x with
ft. This is performed for all tasks in parallel. During training, loss gradients are backpropagated
through the target networks, then pass through the hypernetwork weights and task embeddings, such
that the entire architecture can be trained directly with any gradient optimizer. Task embeddings are
trained identically to other parameters.

Multi-Task Hypernetworks can naturally and effectively leverage metadata, by appending the task
metadata mt the task embeddings as input to the hypernetwork θt = h(et,mt). Unlike task em-
beddings, metadata are treated as constants and are frozen during training. Considering that task-
specific embeddings allow Multi-Task Hypernetworks to learn task differences and relationships,
by appending static metadata to the embeddings, the metadata acts as pre-learnt embedding priors
from an auxiliary source. Including informative metadata may therefore improve the model’s ability
to learn task relationships. Further, under the hypernetwork framework, the weights that define a
task’s target network are a function of that task’s metadata. As our model is trained with metadata
over multiple tasks, the hypernetwork will directly learn the relationship between the metadata and
the task functions. Our architecture is therefore able to leverage metadata in learning both task
relationships and task functions explicitly.

2.1 HYPERNETWORK ARCHITECTURE

The hypernetwork maps from a low-dimensional input task embedding (and optionally task meta-
data) to the weight matrices that define a task network. Our hypernetwork architecture (Figure 2)
achieves this with two components: a feature extractor and a weight generator.

As tabular problems frequently feature available metadata, we concentrate our work on tabular prob-
lems. The hypernetwork architecture described in this section thus generates linear target networks,
however we note that hypernetworks are used for efficient weight generation of various target net-
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Figure 2: Multi-Task Hypernetwork architecture for a single task. The input to the hypernetwork
(task embeddings and optionally task metadata) passes through the hypernetwork feature extractor
layers. The resulting dh dimensional latent vector passes through the hypernetwork weight generator
layers to generate the target network weights. The weight generator layers have compressed weight
tensors to reduce model parameters. The target network then makes predictions for that task.

work architectures (Ha et al., 2017; Lin et al., 2020; von Oswald et al., 2020; Ye & Ren, 2021),
indicating that our approach would be viable in diverse settings.

The hypernetwork takes as input a task embedding (and optionally task metadata) of dimension de
(or de + dm). The feature extractor is a feedforward neural network with lh linear layers of dh
neurons, allowing our model to learn abstract representations of task embeddings and metadata.
Similarly to features in a typical neural network, metadata is normalised to unit mean and variance.

The weight generator consists of linear layers mapping from the resulting dh dimensional latent
space to weight matrices which each define a layer in the target network. Let layer n of the target
network be a linear layer with dnin inputs and dnout outputs. This layer has a weight matrix of size
dnin × dnout and a bias of size dnout, for a total of (dnin + 1) × dnout parameters. For simplicity,
let dn∗in = dnin + 1, such that layer n has dn∗in × dnout parameters. To generate these parameters,
the hypernetwork requires a linear mapping from dh to dn∗in × dnout. This can be achieved with a
hypernetwork weight matrix W of size dh×dn∗in ×dnout and a bias b of size dn∗in ×dnout. However, W
contains dh times as many parameters as the target network layer, which is generally prohibitively
large.

Weight compression. To reduce the number of parameters in the hypernetwork weight generator,
we implement a simple weight compression technique for linear layers, analogous to the convolution
compression in the original hypernetwork implementation (Ha et al., 2017). Instead of learning W
directly, we learn three smaller weight matrices, WA,WB ,WC , of size dh × dn∗in , dh × dnout, d

n∗
in ×

dnout. These matrices expand into W as follows: Wijk = WA
ijW

B
ikW

C
jk. This weight compression

substantially reduces the total number of model parameters while remaining trainable via standard
backpropagation. These three matrices learn interaction terms between two of the three dimensions
of W : task features, target network layer input features and target network layer output features.

Complexity. The number of parameters in our architecture is given by:

P = (de + dm + dh(lh − 1))(dh + 1)︸ ︷︷ ︸
hypernetwork feature extractor

+

lt∑
i=1

(
2di∗ind

i
out + dhd

i∗
in + dhd

i
out

)︸ ︷︷ ︸
hypernetwork weight generator

+ Tde︸︷︷︸
task embeddings

where lt is the number of layers in the target network. Note that a single target network has∑lt
i=1 d

i∗
ind

i
out total parameters, or half of the first term representing the hypernetwork weight gen-

erator parameters. Despite having more parameters than a single target network, the hypernetwork
weights are shared for all tasks, such that our approach requires only de additional parameters per
task. This is substantially fewer than other soft parameter sharing MTL architectures, and in prac-
tice, our method has fewer parameters when modelling more than a few tasks.

We analyse the computational complexity of our method and other MTL architectures for larger
networks in Appendix A, and find that our method is suitable for training large target networks.
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3 EXPERIMENTS

We perform experiments with our approach and baseline methods on a set of tabular datasets with
and without metadata. Baseline methods include metadata naively, as described in Section 2.

Experimental setup. Experiments were repeated across 50 seeds for each combination of hyper-
parameters. Data was partitioned into training, validation, and test sets in a 60/20/20 ratio. Per-
formance on the validation set was used for hyperparameter selection and early stopping. Hyper-
parameter selection was performed independently with and without metadata. Regarding general
hyperparameters, all methods used the learning rate η ∈ {10p|p = −3,−3.5,−4,−4.5} and ran-
dom batches of size 64. All models used a network architecture of three fully connected layers of
32 neurons with ReLU activations. We empirically found that networks of this size had sufficient
representation capacity to effectively model the test datasets. Regarding Multi-Task Hypernetwork
hyperparameters, we tuned the number of layers in the hypernetwork feature extractor lh ∈ {0, 1, 2}
where each layer had 32 neurons with ReLU activations. Task embeddings each had de = 10 param-
eters and were initialised with a uniform distribution and variance 1, using identical initialisations
across tasks. We describe specific baseline hyperparameters in Appendix D. All experiments are
implemented in PyTorch (Paszke et al., 2019) with a GeForce RTX 3080 GPU.

Datasets. We use four multi-task tabular regression datasets with available metadata and limited
data instances for our experiments (Table 1). Cubic is a novel synthetic MTL dataset which we
design to have a simple and complete relationship between task metadata and the task functions.
Each task is a third order 1D polynomial with random coefficients, defined over x ∈ [−1, 1], where
the goal is to estimate y given x. Polynomial coefficients are task metadata. The Chlorophyll
dataset (Lehmann et al., 2023) aims to estimate the concentration of the chlorophyll-a pigment in a
lake given its water colour. Each task is a lake, and lake attributes are used as metadata. The Algo-
rithms dataset (Brazdil et al., 1994) aims to estimate the performance of traditional ML algorithms
on a list of datasets, given dataset summary statistics. We model each algorithm’s performance on
datasets as a task. Metadata is not from auxiliary sources but manually constructed from domain
knowledge by naively categorising algorithms across binary labels e.g. “is tree”, “is kernel”. The
Robot Arm dataset (Duka, 2014) aims to estimate robot arm joint angles given the end arm po-
sition. Each task is highly nonlinear and represents an arm with different joint lengths, which are
given as task metadata. A detailed description of the data and metadata in each dataset is included
in Appendix E .

Table 1: Summary of datasets used in experiments. N represents total training instances, D repre-
sents data dimensionality. All datasets other than Chlorophyll have equal task sizes.

Dataset N T Task represents Data features Data label Task metadata

Cubic 200 20 a cubic function x
(D = 1)

y
(D = 1)

polynomial coefficients
i.e. a,b,c,d (D = 4)

Chlorophyll 796 88 a lake multispectral lake
colour (D = 16)

concentration of
chlorophyll-a (D = 1)

features of lake
e.g. depth, weather (D = 20)

Algorithms 422 24 an ML algorithm dataset statistics
(D = 11)

performance on
dataset (D = 1)

algorithm labels
e.g. is tree, is kernel (D = 8)

Robot Arm 400 20 a robot arm arm end position
(D = 2)

arm joint angles
(D = 3)

arm joint lengths
(D = 3)

Baseline methods. We include some general MTL architectures described in Section 4, avoiding
domain-specific methods such as natural language processing (Sanh et al., 2019; Tay et al., 2021;
Ye & Ren, 2021; Lopes et al., 2023) or computer vision (Bhattacharjee et al., 2022; Liu et al., 2019;
Sun et al., 2021; Liu et al., 2022). We include: MRN (Multilinear Relational Networks) (Long et al.,
2017), Cross-stitch networks (Misra et al., 2016), Sluice networks (Ruder et al., 2019), DMTRL
(Deep Multi-Task Representation Learning) (Yang & Hospedales, 2017) and MR (Maximum Roam-
ing) (Pascal et al., 2021). Regarding traditional approaches, STL-naive is a single task learning
network with no task information. STL is a single task learning network which is given task in-
formation to learn task differences, either as metadata if available or as one-hot task embeddings
otherwise. Hard sharing is a hard parameter sharing architecture (Caruana, 1997). Despite the use
of metadata, we do not include (Zheng et al., 2019) as it is incompatible with continuous metadata
and is otherwise equivalent to Hard sharing.
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Table 2: Average task performance (RMSE) of our approach and baseline methods: with metadata,
without metadata, and improvement in performance (reduction in RMSE) from using metadata.

Method Cubic Chlorophyll Algorithms Robot Arm

No Metadata

STL-naive 0.624 ± 0.001 0.521 ± 0.007 1.950 ± 0.062 0.559 ± 0.001
STL 0.132 ± 0.007 0.512 ± 0.010 1.465 ± 0.045 0.547 ± 0.002
Hard sharing 0.040 ± 0.002 0.851 ± 0.041 1.553 ± 0.052 0.596 ± 0.004
MRN 0.053 ± 0.003 0.911 ± 0.045 1.488 ± 0.052 0.565 ± 0.003
Cross-stitch 0.057 ± 0.005 0.554 ± 0.020 1.387 ± 0.049 0.624 ± 0.001
Sluice 0.064 ± 0.007 0.534 ± 0.018 1.447 ± 0.052 0.540 ± 0.003
DMTRL 0.038 ± 0.001 0.535 ± 0.017 1.342 ± 0.044 0.625 ± 0.001
MR 0.036 ± 0.002 0.783 ± 0.042 1.505 ± 0.051 0.585 ± 0.004
MT Hypernet (ours) 0.122 ± 0.008 0.411 ± 0.004 1.397 ± 0.048 0.485 ± 0.002

Metadata

STL 0.030 ± 0.001 0.489 ± 0.008 1.607 ± 0.049 0.469 ± 0.002
Hard sharing 0.034 ± 0.001 0.973 ± 0.045 1.520 ± 0.050 0.598 ± 0.004
MRN 0.041 ± 0.003 0.938 ± 0.056 1.479 ± 0.055 0.575 ± 0.005
Cross-stitch 0.032 ± 0.001 0.543 ± 0.015 1.325 ± 0.045 0.624 ± 0.001
Sluice 0.038 ± 0.003 0.559 ± 0.020 1.403 ± 0.049 0.546 ± 0.005
DMTRL 0.034 ± 0.001 0.560 ± 0.016 1.344 ± 0.046 0.630 ± 0.001
MR 0.036 ± 0.001 0.781 ± 0.031 1.489 ± 0.048 0.589 ± 0.003
MT Hypernet (ours) 0.023 ± 0.000 0.395 ± 0.004 1.307 ± 0.046 0.467 ± 0.001

Improvement

STL 0.102 ± 0.007 0.023 ± 0.012 -0.142 ± 0.033 0.078 ± 0.002
Hard sharing 0.006 ± 0.001 -0.122 ± 0.051 0.033 ± 0.036 -0.001 ± 0.004
MRN 0.012 ± 0.002 -0.026 ± 0.065 0.009 ± 0.024 -0.010 ± 0.004
Cross-stitch 0.024 ± 0.005 0.011 ± 0.020 0.062 ± 0.021 0.000 ± 0.001
Sluice 0.027 ± 0.006 -0.026 ± 0.018 0.043 ± 0.020 -0.006 ± 0.003
DMTRL 0.004 ± 0.001 -0.025 ± 0.017 -0.002 ± 0.026 -0.005 ± 0.001
MR 0.001 ± 0.001 0.002 ± 0.049 0.015 ± 0.021 -0.004 ± 0.003
MT Hypernet (ours) 0.099 ± 0.008 0.015 ± 0.005 0.090 ± 0.028 0.019 ± 0.001
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Figure 3: Critical difference diagram for Nemenyi significance test on all datasets (a) without meta-
data and (b) with metadata. A higher score indicates better performance.

3.1 EXPERIMENTAL RESULTS

Overall performance. Results are displayed in Table 2 as mean ± standard error. To estimate
the overall difference in performance between the methods, we use a Friedman test with Nemenyi
post-hoc test on the results for all datasets, displayed in Figure 3.

Without metadata. In the traditional MTL setting without metadata, Multi-Task Hypernetworks
achieve the best performance for all datasets except Cubic. On the Robot Arm and Chlorophyll
datasets, Multi-Task Hypernetworks achieve RMSE lower than other methods by 10% and 20%
respectively. The Friedman-Nemenyi test shows that overall, our method outperforms all baseline
methods other than Sluice networks on these datasets. These results indicate that our architecture
can outperform many state-of-the-art MTL architectures on tabular problems.

With metadata. In the MTL setting where metadata is available during training, Multi-Task Hy-
pernetworks achieve the best performance for all datasets. The Friedman-Nemenyi test shows that
overall, our method substantially outperforms all baseline methods. Interestingly, STL outperforms
all multi-task learning methods but sluice networks, despite not being designed for multi-task prob-
lems. This indicates that current MTL architectures are not able to leverage metadata effectively.

Effects of metadata. To analyse the impact of metadata on model performance, we consider the
completeness, noisiness and complexity of the metadata. Regarding the Cubic dataset, we describe
the metadata as complete, as the metadata features are sufficient to entirely represent the task func-
tions. The metadata is noiseless as its features are generated without noise. The metadata is con-
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sidered simple, since features represent coefficients which are linearly related to the task function.
The positive impact of this noiseless, complete and simple metadata is reflected in the results, as
metadata improves performance of all methods except MR. With available metadata, Multi-Task
Hypernetworks outperform other methods by 25%.

Robot Arm metadata is also complete and generated noiselessly. Unlike cubic, Robot Arm metadata
is complicated, as the relationship between the robot arm lengths and the task functions is highly
nonlinear. Robot Arm metadata improves the performance of Multi-Task Hypernetworks and STL,
but not other methods. This may be because although the metadata is noiseless and complete, other
MTL approaches are not able to leverage this complicated metadata.

Chlorophyll metadata is noisy sensor data. It is incomplete as a lake chlorophyll-a concentration has
many ecological factors which cannot be entirely represented by 11 metadata features. The metadata
is also complicated, as these metadata features have abstract interactions (Yang et al., 2022). Similar
to Robot Arm, Chlorophyll metadata improves the performance of Multi-Task Hypernetworks and
STL, but not other methods. This indicates that task knowledge can be extracted even from complex
metadata, but that existing MTL techniques cannot effectively leverage it.

Algorithms metadata is manually labelled and therefore noiseless. It is simple, but incomplete as
algorithm outcomes cannot be entirely represented by high-level categorical descriptions. Despite
this, metadata improves the performance of Multi-Task Hypernetworks, Cross-stitch and Sluice.
This demonstrates that even cheaply and naively labelled metadata can enhance model performance.

3.2 ABLATION STUDY

We carry out an ablation study to provide insight into the contributions of the different components
in our architecture, displayed in Table 3.

Table 3: Ablation study of Multi-Task Hypernetworks with components removed (RMSE).

Method Cubic Chlorophyll Algorithms Robot Arm

No Metadata
MT Hypernet 0.122 ± 0.008 0.411 ± 0.004 1.421 ± 0.040 0.485 ± 0.002
without compression 0.103 ± 0.013 0.493 ± 0.007 1.555 ± 0.052 0.656 ± 0.014
without feature extractor 0.122 ± 0.008 0.413 ± 0.005 1.421 ± 0.040 0.485 ± 0.002

Metadata

MT Hypernet 0.023 ± 0.000 0.395 ± 0.004 1.322 ± 0.040 0.467 ± 0.001
without compression 0.025 ± 0.001 0.619 ± 0.024 1.935 ± 0.058 0.528 ± 0.003
without feature extractor 0.023 ± 0.000 0.470 ± 0.007 1.342 ± 0.034 0.474 ± 0.002
without embeddings 0.024 ± 0.000 0.434 ± 0.006 1.460 ± 0.046 0.467 ± 0.001
with random metadata 0.066 ± 0.004 0.406 ± 0.006 1.506 ± 0.050 0.517 ± 0.005

Weight matrix compression reduces overparameterisation. Using full-sized weight matrices
in the hypernetwork weight generator layers without the matrix compression technique described
in Section 2.1 substantially reduces performance for all datasets except Cubic without metadata.
Without compression, our architecture has many more parameters and is more flexible, indicating
that the weight matrix compression reduces overparameterisation and increases generalisability.

Feature extractor learns metadata representations. Removing the feature extractor layers from
the hypernetwork decreases performance for Chlorophyll and Robot Arm with metadata. This may
be because these datasets have complicated metadata, and so benefit from a non-linear feature ex-
tractor to learn abstract metadata representations. Datasets with simple metadata, or with learnt
task embeddings but no metadata, may not benefit from this deep learning component. An opti-
mal Multi-Task Hypernetwork architecture for each dataset can be found by tuning the depth of the
feature extractor lh, as is done in experiments in Section 3.1.

Task embeddings provide flexibility. Using only metadata as input to the hypernetwork without
task-specific embeddings decreases performance in all datasets except Robot Arm. This may be
because trainable embeddings give the hypernetwork degrees of freedom between tasks, to learn task
relationships and differences more flexibly than with only static metadata. Robot Arm has complete
metadata, which captures all task differences and may not benefit from additional flexibility.

Metadata is informative. Randomising metadata by independently shuffling each metadata feature
between tasks before training the model decreases performance in all datasets. This indicates that
our architecture is able to extract knowledge from informative metadata.
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Figure 4: Multi-Task Hypernetwork perfor-
mance vs. training instances per task
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Figure 5: Multi-Task Hypernetwork perfor-
mance vs. number of tasks.

Dataset size affects metadata performance gain. We investigate the impact of leveraging meta-
data on algorithmic performance for datasets of different sizes. We perform sensitivity analysis on
the Cubic and Robot Arm datasets as they can be generated with arbitrary dataset sizes, varying
the number of training instances in each task (Figure 4) and the number of tasks in each dataset
(Figure 5). In each case, we evaluate the performance of our approach with and without metadata.

Increasing the number of training instances per task decreases the gain in performance from lever-
aging metadata. Intuitively, as the size of each task increases, the model is better able to learn task
functions and relationships implicitly from joint optimisation without metadata. This indicates that
metadata is most useful for small datasets. Increasing the number of tasks increases the gain in
performance from leveraging metadata for Cubic with fewer than ten tasks, and for Robot Arm.
Intuitively, as the number of tasks increases, the hypernetwork has more metadata “data points” to
learn the relationship between metadata and the task functions. As Cubic has simple metadata, it
may need fewer tasks to learn this relationship and hence have constant gain in performance with
more than ten tasks. Robot Arm metadata is more complex, and so the performance gain from
metadata increases until 100 tasks.

3.3 EMBEDDING ANALYSIS

We investigate whether Multi-Task Hypernetworks learn embeddings which capture meaningful task
knowledge, by using embeddings to reconstruct metadata features unavailable during training. We
train our model with metadata using optimal hyperparameters from experiments in Section 3.1, but
completely hide one metadata feature. After training, we build a simple model which predicts the
hidden metadata feature from embedding vectors learnt for each task {et}Tt=1. We use a Random
Forest with default parameters using scikit-learn (Pedregosa et al., 2011). We evaluate performance
with 10-fold cross-validation. We repeat this process for each hidden metadata feature for each
dataset over 50 seeds. Results are displayed in Table 4. To justify that metadata feature correlations
do not cause compounding effects, we analyse these in Appendix B.

Table 4: Performance (R2) reconstructing metadata from learnt embeddings. Displayed are the
metadata feature with the best predictive performance, and the average across all metadata features.

Performance Cubic Chlorophyll Algorithms Robot Arm

Best feature 0.76 ± 0.01 0.15 ± 0.01 0.43 ± 0.05 0.53 ± 0.02
Average 0.59 ± 0.01 -0.14 ± 0.00 -0.04 ± 0.02 0.44 ± 0.02

Embeddings learnt on the Cubic and Robot Arm datasets display substantial explanatory power of
hidden task-level information. Regarding Algorithms, some metadata features are learnt, but we
find upon investigation that some features are sparse, such that there may be insufficient metadata
samples to learn these accurately. Regarding Chlorophyll, the poor reconstruction performance may
be explained by the noisiness, incompleteness and complexity of this metadata as discussed in Sec-
tion 3.1. Overall, these results demonstrates that embeddings learnt from as few as 20 tasks can
capture information which is predictive of metadata features unavailable to the model during train-
ing. This indicates that embeddings learnt by our architecture are low-dimensional representations
of the task functions which contain some meaningful task-level knowledge.
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4 RELATED WORK

Multi-task learning architectures. Hard sharing MTL architectures (Caruana, 1997; Wang et al.,
2022; Lopes et al., 2023) have been adapted to share knowledge in task specific layers using a tensor
normal distribution which learns task similarities (Long et al., 2017), to learn task differences in
hard sharing layers by learning task masks (Pascal et al., 2021), to reduce generalisation error with
an adversarial loss to encourage similar task latent distributions (Shui et al., 2019), and to use archi-
tecture search (Guo et al., 2020; Sun et al., 2020). However, hard sharing approaches have limited
flexibility. Some soft parameter sharing architectures (Lee et al., 2018; Liu et al., 2019; Sun et al.,
2021) instead transfer knowledge across tasks by linearly combining intermediate representations of
each task (Misra et al., 2016; Ruder et al., 2019), or using multiple expert networks (Ma et al., 2018;
Tang et al., 2020). However, these approaches are parameter-inefficient as they require learning of
entire network weights for each task. Transferring knowledge by factorising model weights across
tasks can improve parameter efficiency but has limited expressiveness (Yang & Hospedales, 2017).
By instead transferring knowledge through a deep hypernetwork weight generator, our approach can
learn abstract task relationships and is substantially more parameter-efficient than these architectures
as it only learns a small embedding vector for each task.

Multi-task learning with metadata. Leveraging natural language task descriptions has been ex-
plored in natural language processing (Ye & Ren, 2021; Duan et al., 2021; You et al., 2016) and
reinforcement learning (Sodhani et al., 2021; Wan et al., 2021). Only one prior study used metadata
for MTL, by clustering tasks on their metadata and then modelling task groups with hard parameter
sharing (Zheng et al., 2019). However, this unsupervised approach to learning from metadata cannot
learn metadata feature importances, interactions, or relationships with task functions. Further, it is
incompatible with continuous metadata and limited by its hard parameter sharing architecture.

Hypernetworks. Another field of neural architecture research is hypernetworks (Ha et al., 2017),
introduced as a method to compress model weights, but since applied to various domains (Littwin &
Wolf, 2019; Lorraine & Duvenaud, 2018; Shamsian et al., 2021; Beck et al., 2023). In transformer-
based architectures, hypernetworks can condition task-specific adapters (Ye & Ren, 2021; Üstün
et al., 2022; Mahabadi et al., 2021; Liu et al., 2022) and prompts (He et al., 2022) during training.

Hypernetworks can inject model-level information into deep learning systems, such as our motiva-
tion of exploiting task-level metadata. In continual learning, frozen task-specific embeddings are
a memory-efficient way to store previous task models (von Oswald et al., 2020). In MTL, hyper-
networks are used to incorporate user-defined task preferences and compute requirements in a hard
parameter sharing tree architecture search (Raychaudhuri et al., 2022). In contrast to this, our work
uses a hypernetwork as a method for soft parameter knowledge sharing between tasks.

Task embeddings. Task embeddings have been used to represent task relationships in continual
learning (von Oswald et al., 2020) few-shot learning (Lampinen & McClelland, 2020) and meta
learning (Achille et al., 2019; Lan et al., 2019). Few works learn task embeddings for MTL. In
a setting where many historical models are available, Zhang et al. (2018) use task embeddings to
select a model for a new MTL problem. Sun et al. (2021) use task embeddings to condition task-
specific decoders; while this approach is limited to image dense prediction tasks, our work is able to
condition general machine learning architectures to task embeddings by using a hypernetwork.

5 CONCLUSION

We propose Multi-Task Hypernetworks, a novel architecture for multi-task learning which generates
weights for individual task networks with a shared hypernetwork. Task-specific embeddings produce
distinct target networks from only a few parameters. Empirical results show that this architecture is
effective for multi-task learning and that learnt embeddings encode meaningful task knowledge. We
show that leveraging task-specific metadata is a valuable resource to improve performance on MTL
problems, particularly with few data samples. Uniquely, our architecture can naturally learn tasks
as a function of metadata, allowing us to leverage task-level information to learn task functions and
relationships explicitly. A limitation of our work is the current lack of understanding on evaluating
whether metadata will improve learning. Future research directions in multi-task learning include
exploring other task embedding techniques, and investigating the potential of transfer learning to
tasks with zero training instances by generating task networks from task metadata alone.
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6 REPRODUCIBILITY

For reproducibility, we make our datasets, synthetic dataset generator and code available online at
https://anonymous.4open.science/r/Multi-Task-Hypernetworks-922C.

Datasets. The sources for all datasets are included in Section 3. A comprehensive explanation of
the data sources and generation for each dataset is included in Appendix E.

Baselines. A unified implementation of all baselines for linear networks, including STL, Hard
sharing, MRN, Cross-stitch, Sluice networks, DMTRL and MR is included online.

Experimental procedure. A comprehensive description of our experimental setup is included in
Section 3. Further details covering hyperparameter combinations for each baseline method are in-
cluded in Section D.
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A COMPLEXITY ANALYSIS

In this section we investigate how the computational cost of Multi-Task Hypernetworks scales with
larger target networks. We use target networks with three linear layers of sizes ranging from 32
to 4096, such that the largest of these has more parameters than ResNet-50 (He et al., 2016). We
measure the average compute time and peak GPU memory allocated during a forward and backward
pass over a batch with each model, displayed in Figure 6. All models were trained on Cubic with 10
tasks. The hyperparameter combination with lowest compute time was selected for each model, as
there was no substantial difference between hyperparameters for any model.

Hard parameter sharing approaches are substantially faster than soft parameter sharing approaches.
All soft sharing approaches follow a similar time complexity trend, and all approaches excluding
DMTRL follow a similar memory complexity trend. Despite being classified as hard sharing, MR
has complexity similar to soft sharing approaches, likely due to the use of task-wise model masks.
We observe that our architecture has similar computational cost to other models which are commonly
used to train large networks (Misra et al., 2016; Yang & Hospedales, 2017; Ruder et al., 2019; Pascal
et al., 2021). We conclude that our architecture is computationally capable of scaling to applications
with larger network architectures.
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Figure 6: Model complexity vs. Target network size.

B EMBEDDING ANALYSIS

In this section, we expand upon the experiments in Section 3.3. Specifically, we display the predic-
tive performance of the learnt embeddings on the hidden task metadata features across all metadata
features for all datasets (Figure 5), and justify that metadata feature correlations do not cause com-
pounding effects in our tests (Figure 7).

We observe that simpler metadata features, such as d in Cubic which represents the constant poly-
nomial term, tend to be predicted more accurately. Excluding depth, Chlorophyll metadata features
are not captured by the learnt embeddings. This may be explained by the noise, incompleteness and
high complexity of this metadata discussed in Section 3.1.

Metadata feature correlations. We investigate whether correlated metadata features may be im-
pacting the performance of metadata feature reconstruction from embeddings. Specifically, the
learnt embeddings may be affected by the remaining metadata features, which are available during
training of the Multi-Task Hypernetwork and may be correlated to the hidden feature. We emphasise
that these metadata features are not available to the Random Forest model which reconstructs the
missing metadata features from the learnt embeddings.

We compute the Kendall rank correlation of metadata features, displayed in Figure 7. We find that
Cubic metadata has no strong correlations between metadata features. This indicates that the pre-
dictive capacity of the learnt embeddings is not affected by other metadata features. Robot Arm
metadata has some correlated features, specifically length 2 and length 3, although we note that
these are generated as independent random variables so this correlation is spurious. Although Algo-
rithm has correlations between is tree and is inductive tree, and is non para and is bayes, metadata
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Table 5: Performance (R2) of reconstructing missing metadata features from learnt embeddings, for
all metadata features for all datasets.

Dataset Metadata Feature

Cubic a b c d
0.35 ± 0.02 0.72 ± 0.02 0.54 ± 0.03 0.76 ± 0.01

Chlorophyll

depth water temp elevation latitude
0.15 ± 0.01 -0.09 ± 0.01 -0.23 ± 0.01 -0.09 ± 0.02
area % cropland % pasture rainfall
-0.08 ± 0.01 -0.15 ± 0.01 -0.27 ± 0.02 -0.21 ± 0.02
laketype 1 laketype 2 laketype 3
-0.23 ± 0.02 -0.23 ± 0.02 -0.33 ± 0.02

Robotarm length 1 length 2 length 3
0.33 ± 0.03 0.46 ± 0.03 0.53 ± 0.02

Algorithms

is kernel is inductive tree is rule based is NN
0.43 ± 0.05 -0.31 ± 0.04 0.01 ± 0.03 -0.27 ± 0.03
is non para is classic stats is bayes is tree
0.02 ± 0.02 0.31 ± 0.05 -0.49 ± 0.02 0.01 ± 0.03
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Figure 7: Kendall rank correlation coefficient of metadata features for each dataset.

reconstruction performance was greatest for is kernel and is classic stats, which have no strong
metadata correlations. Chlorophyll has many highly correlated metadata features, but these are in-
consequential as embeddings did not have substantial explanatory power on any of these features.
Pearson correlation coefficient and Spearman correlation coefficients produced similar results.

We conclude that the predictive capacity of the learnt embeddings is not affected by metadata fea-
tures available during training for any dataset, as these are not strongly correlated to the metadata
features which were accurately captured by the embeddings.
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C HYPERNETWORK INITIALISATION

In this section, we discuss the parameter initialisation scheme used by our hypernetwork architec-
ture. Default neural network parameter initialisation schemes such as Kaiming initialisation (He
et al., 2015) are motivated by the assumption of fixed variance of neuron activation through network
layers. One work on hypernetworks by Chang et al. (2019) show that these assumptions do not hold
for hypernetwork architectures, and instead propose their own initialisation schemes. In our work,
we experimented with the initialisation of the shared hypernetwork weights using both of these ini-
tialisation schemes and found no significant difference in model performance. For simplicity, we
used Kaiming initialisation in our experiments.

D BASELINE HYPERPARAMETERS

We list the hyperparameters tuned for each baseline method in our experiments (Table 6). Note that
STL-naive, STL, and Hard sharing are traditional neural network architectures with no algorithm-
specific hyperparameters. For Cross-stitch and Sluice networks, αinit and βinit refer to the initial-
isation schemes for the α and β model parameters respectively. For MR, p refers to the fraction of
neurons used for each task mask, and ∆ refers to the epoch frequency of mask changes. # Combina-
tions represents the total number of hyperparameter combinations tested during tuning, where each
combination was tested with 50 seeds.

Network capacity. All methods used the same network capacity: three layers of 32 neurons. Since
MR uses only a subset of the network for each task, the number of neurons in the network was
increased according to p such that the capacity of each task would be of three layers of 32 neurons.

Early stopping. All methods calculated validation loss only every 5 epochs for computation effi-
ciency. Early stopping was triggered if the validation loss increased over 20 epochs.

Table 6: Hyperparameters used in experiments for baseline methods.

Method Fixed Parameters Tuned Parameters # Combinations

All methods η ∈ {10p|p = −3,−3.5,−4,−4.5}

STL-naive 4

STL 4

Hard sharing 4

MRN λtradeoff ∈ {10p|p = −2,−3,−4,−5},
k ∈ {1, 0.1, 0.01} 48

Cross-stitch αinit = “balanced” 4

Sluice nsubspace = 2,
βinit = “imbalanced”

αinit ∈ {“balanced”, “imbalanced”},
λorth ∈ {10p|p = 0,−1,−2,−3,−4} 40

DMTRL method ∈ {“Tucker”, “TT”}, k ∈ {2, 4, 8, 16} 32

MR p ∈ {0.4, 0.6, 0.8},∆ ∈ {1, 2, 4, 8} 48

MT Hypernet de = 10 lh ∈ {1, 2, 3} 12

E DATASETS

In this section, we expand upon the dataset descriptions given in Section 3, including examples
of dataset metadata, and a comprehensive explanation of the data sources and generation for each
dataset.

Examples of Metadata. We include example metadata features from the test datasets included in
this paper, displayed in Table 7, Table 8, Table 9 and Table 10. We include metadata from four tasks
for each dataset. All datasets are also available in full online.

Cubic. The coefficients for the cubic polynomials which serve as tasks in the Cubic dataset are
generated from a uniform distribution a, b, c, d ∼ U [−1, 1]. The only feature, x, is uniformly
generated from the same domain, and the label y is computed as y = ax3 + bx2 + cx+ d.
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Table 7: Example metadata for Cubic dataset.

Cubic a b c d

0.1x3 + 0.6x2 + 0.4x + 0.2 0.106 0.580 0.366 0.225
0.4x3 + 0.7x2 − 0.4x + 0.4 0.388 0.667 -0.429 0.368
−0.9x3 − 0x2 + x + 0.8 -0.863 -0.029 0.962 0.809
−0.4x3 − 0.8x2 − 0.9x + 0.9 -0.384 -0.760 -0.872 0.862

Chlorophyll. The metadata for the Chlorophyll dataset was obtained from the LakesATLAS
dataset (Lehner et al., 2022) which contains relevant lake attributes. This auxiliary data was joined
to the GLORIA dataset (Lehmann et al., 2023) by matching the datasets at the lake level. Lakes with
less than 5 data points were discarded, as this was insufficient to model these tasks.

Table 8: Example metadata for Chlorophyll dataset.

Lake elevation water temp area log depth log precipitation water type 0 water type 1

Lake Erie 180.796 12.454 11.115 3.718 7.349 0 0
Lake Taihu 3.3 16.012 7.753 0.833 7.05 0 0
Lake Kasumigaura 142.705 7.558 5.126 1.96 7.287 0 0
Eagle Creek Reservoir 238 21.227 -1.204 1.163 6.14 1 0

Algorithms. We designed simple binary metadata features for the Algorithms dataset (Brazdil et al.,
1994) by creating categories that separated algorithms into different classes. This was done naively
without robust evaluation. We note that some Algorithm metadata features are sparse, which may
be insufficient for learning for the embedding analysis experiments as described in 3.3.

Table 9: Example metadata for Algorithms dataset.

Algorithm is kernel is tree is inductive tree is NN is non para is classic stats is bayesian is rule classifier

Ac2 0 1 0 0 0 0 0 0
IndCART 0 1 0 0 0 0 0 0
KNN 1 0 0 0 0 0 0 0
Kohonen 0 0 0 1 0 0 0 0

Robot Arm. A two-dimensional, three-arm version of the Robot Arm dataset (Duka, 2014) was
used in our experiments. This produces an ill-posed function with three labels, which is highly non-
linear and therefore difficult to learn. Robot arm lengths are generated with a uniform distribution
length 1, length 2, length 3 ∼ U(0, 1], and the arm angles are distributed θ1, θ2 ∼ U [−π, 0], θ3
∼ U [−π/2, π/2]. The end arm position (y1, y2) is computed from these parameters using trigono-
metric equations described in (Duka, 2014)

Table 10: Example metadata for Robot Arm dataset.

Robot Arm ID joint length 1 joint length 2 joint length 3

0 0.549 0.715 0.603
1 0.058 0.434 0.312
2 0.696 0.378 0.180
3 0.490 0.227 0.254

F RELATED WORK COMPARISON

In this section we illustrate the differences between our approach and existing works described in
Section 4. We display this in Table 11.

Regarding the referenced algorithms, Hard sharing approaches include the original MTL architec-
ture (Caruana, 1997), MRN (Long et al., 2017), MR (Pascal et al., 2021), AMTNN (Shui et al.,
2019). Soft sharing approaches include Cross-stitch (Misra et al., 2016), Sluice (Ruder et al., 2019),
and MMoE (Ma et al., 2018). Specific algorithms included are DMTRL (Yang & Hospedales, 2017),
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Table 11: Overview of related MTL architectures.

MTL architectures Flexible Parameter-efficient Task embeddings Hypernetwork Tabular data Metadata

Hard sharing approaches ✗ ✓ ✗ ✗ ✓ ✗
Soft sharing approaches ✓ ✗ ✗ ✗ ✓ ✗
DMTRL ✓ ✓ ✗ ✗ ✓ ✗
TSN ✗ ✓ ✓ ✗ ✗ ✗
mCMTL ✗ ✓ ✗ ✗ ✓ ✓
Transformer hypernetworks ✗ ✓ ✗ ✓ ✗ ✓
MT Hypernet (ours) ✓ ✓ ✓ ✓ ✓ ✓

TSN (Sun et al., 2021) and mCMTL (Zheng et al., 2019). Transformer hypernetworks include var-
ious works (Ye & Ren, 2021; Üstün et al., 2022; He et al., 2022; Mahabadi et al., 2021; Liu et al.,
2022)

Regarding the columns, Flexible indicates approaches which can learn task differences at every
layer of the task networks. Parameter-efficient indicates approaches which do not have to learn
weights for an entire new target network for each task. Task embeddings indicates approaches
that represent tasks by learning a task-specific embedding. Hypernetwork indicates techniques that
use a hypernetwork component. Tabular data indicates approaches that are suitable for modelling
tabular data such as the datasets used for experiments in this paper. Metadata indicates approaches
that can effectively leverage task-level metadata in the learning process. This illustrates that our
proposed architecture is substantially different to existing works.
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