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ABSTRACT

We extend conformal prediction to control the expected value of any monotone
loss function. The algorithm generalizes split conformal prediction together with
its coverage guarantee. Like conformal prediction, the conformal risk control
procedure is tight up to an O(1/n) factor. We also introduce extensions of the idea
to distribution shift, quantile risk control, multiple and adversarial risk control, and
expectations of U-statistics. Worked examples from computer vision and natural
language processing demonstrate the usage of our algorithm to bound the false
negative rate, graph distance, and token-level F1-score.

1 INTRODUCTION

We seek to endow some pre-trained machine learning model with guarantees on its performance as
to ensure its safe deployment. Suppose we have a base model f that is a function mapping inputs
x ∈ X to values in some other space, such as a probability distribution over classes. Our job is to
design a procedure that post-processes the output of f to give it a statistical safety property.

Split conformal prediction (Vovk et al., 2005; Papadopoulos et al., 2002), which we will refer to sim-
ply as “conformal prediction”, has been useful in areas such as computer vision (Angelopoulos et al.,
2021b) and natural language processing (Fisch et al., 2021) to provide such a guarantee. By measur-
ing the model’s performance on a calibration dataset

{
(Xi, Yi)

}n
i=1

of feature-response pairs, con-
formal prediction post-processes the model to construct prediction sets that bound the miscoverage,

P
(
Yn+1 /∈ C(Xn+1)

)
≤ α, (1)

where (Xn+1, Yn+1) is a new test point, α is a user-specified error rate (e.g., 10%), and C is a
function of the model and calibration data that outputs a prediction set. Note that C is formed using
the first n data points, and the probability in (1) is over the randomness in all n+ 1 data points (i.e.,
the draw of both the calibration points 1, . . . , n and the test point n+ 1).

In this work, we extend conformal prediction to prediction tasks where the natural notion of er-
ror is not simply miscoverage. In particular, our main result is that a generalization of conformal
prediction provides guarantees of the form

E
[
ℓ
(
Cλ(Xn+1), Yn+1

)]
≤ α, (2)

for any bounded loss function ℓ that shrinks as Cλ(Xn+1) grows, and λ is an input parameter that
controls the growth of Cλ(Xn+1). We call this conformal risk control. Note that (2) recovers the
conformal miscoverage guarantee in (1) when using the miscoverage loss, ℓ

(
Cλ(Xn+1), Yn+1) =

1 {Yn+1 /∈ Cλ(Xn+1)}. However, our algorithm also extends conformal prediction to situations
where other loss functions, such as the false negative rate (FNR), are more appropriate.

As an example, consider multilabel classification, where the Yi ⊆ {1, ...,K} are sets comprising
a subset of K classes. Creating sets that contain all the classes may be too conservative if K is
massive; instead, given a trained multilabel classifier f : X → [0, 1]K , we want to output sets
that include a large fraction of the true classes in Yi. To that end, we post-process the model’s raw
outputs into the set of classes with sufficiently high scores, Cλ(x) = {k : f(X)k ≥ 1 − λ}, where
the main parameter of the algorithm λ ∈ [0, 1] is a threshold. Note that as the threshold λ grows,
we include more classes in Cλ(x)—i.e., it becomes more conservative. In this case, conformal risk
control finds a threshold value λ̂ that controls the fraction of missed classes, i.e., the expected value
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of ℓ
(
Cλ̂(Xn+1), Yn+1

)
= 1 − |Yn+1 ∩ Cλ(Xn+1)|/|Yn+1|. Setting α = 0.1 would ensure that our

algorithm produces sets Cλ̂(Xn+1) containing ≥ 90% of the true classes in Yn+1 on average.

1.1 ALGORITHM AND PREVIEW OF MAIN RESULTS

Formally, we will consider post-processing the predictions of the model f to create a function
Cλ(·). The function has a parameter λ that encodes its conservativeness: larger λ values yield more
conservative outputs (e.g., larger prediction sets). To measure the quality of Cλ, we consider a loss
function ℓ(Cλ(x), y) ∈ (−∞, B] for some B < ∞.1 We require this loss to be non-increasing in λ.
Our goal is to choose λ̂ based on the observed data {(Xi, Yi)}ni=1 so that risk control as in (2) holds.

We now rewrite this same task in a more notationally convenient and abstract form. Consider
an exchangeable collection of non-increasing, bounded, random functions Li : Λ → (−∞, B],
i = 1, . . . , n + 1, where Λ is the space of all inputs (e.g., ‘thresholds’) to the function Li(λ).
Throughout the paper, we assume λmax := supΛ ∈ Λ, so that Li(λmax) is well-defined and
satisfies Li(λmax) ≤ α for any α by design (i.e., α is achievable). We seek to use the first n
functions to choose a value of the parameter, λ̂, so that the risk on the unseen function is controlled:

E
[
Ln+1

(
λ̂
)]

≤ α. (3)

We are primarily motivated by the case where Li(λ) = ℓ(Cλ(Xi), Yi), in which case the guarantee
in (3) coincides with risk control as in (2).

Now we describe the algorithm. Let R̂n(λ) = (L1(λ) + . . . + Ln(λ))/n. Given any desired risk
level upper bound α ∈ (−∞, B), define

λ̂ = inf

{
λ :

n

n+ 1
R̂n(λ) +

B

n+ 1
≤ α

}
= inf

{
λ : R̂n(λ) ≤ α− B − α

n

}
. (4)

Since R̂n(λ) is monotone, we can efficiently search for λ̂ using binary search to arbitrary precision.
When the set is empty, we define λ̂ = λmax. Our proposed conformal risk control algorithm
is to deploy λ̂ on the forthcoming test point. Our main result is that this algorithm satisfies (3).
Intuitively, we can see that this algorithm reduces to searching for a value of λ that results in a
slightly conservative empirical risk—that gets less conservative when the difference between the
worst-case risk (B) and the desired risk (α) is smaller, or the calibration set size (n) is larger.

Moreover, when the Li are i.i.d. from a continuous distribution, we can show that the algorithm
satisfies a tight lower bound saying it is not too conservative,

E
[
Ln+1

(
λ̂
)]

≥ α− 2B

n+ 1
.

We show the reduction from conformal risk control to conformal prediction in Appendix A. Fur-
thermore, if the risk is non-monotone, then this algorithm does not control the risk; we discuss
this in Section 2.3. Finally, we provide both practical examples using real-world data and several
theoretical extensions of our procedure in Sections 3 and 4, respectively.

1.2 RELATED WORK

Conformal prediction was developed by Vladimir Vovk and collaborators beginning in the late
1990s (Vovk et al., 1999; 2005), and has recently become a popular uncertainty estimation tool in the
machine learning community, due to its favorable model-agnostic, distribution-free, finite-sample
guarantees. See Angelopoulos & Bates (2021) for a modern introduction to the area or Shafer &
Vovk (2008) for a more classical alternative. As previously discussed, in this paper we primarily
build on split conformal prediction (Papadopoulos et al., 2002); statistical properties of this algo-
rithm including the coverage upper bound were studied in Lei et al. (2018). Recently there have
been many extensions of the conformal algorithm, mainly targeting deviations from exchangeabil-
ity (Tibshirani et al., 2019; Gibbs & Candes, 2021; Barber et al., 2022; Fannjiang et al., 2022) and

1Note that any unbounded loss can be transformed to a bounded loss. For example, any unbounded loss
ℓ(λ) on the positive reals can be transformed by taking the inverse tangent, i.e., ℓ′(λ) = arctan (ℓ(λ)). As
long as the transformation is monotone, a loss of α on the original loss corresponds exactly to a loss of α′ on
the new loss; controlling this transformed risk may be enough in practice.
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improved conditional coverage (Barber et al., 2020; Romano et al., 2019; Guan, 2020; Romano
et al., 2020; Angelopoulos et al., 2021b). Most relevant to us is recent work on risk control in high
probability (Vovk, 2012; Bates et al., 2021; Angelopoulos et al., 2021a) and its applications (Park
et al., 2020; Fisch et al., 2022; Schuster et al., 2021; 2022; Sankaranarayanan et al., 2022; An-
gelopoulos et al., 2022a;b, inter alia). However, while Bates et al. (2021) and Angelopoulos et al.
(2021a) operate in similar mathematical settings and we reuse much of their notation, the algorithm
presented herein differs greatly. It is far more sample-efficient, simpler, and provides a guarantee
in expectation versus a guarantee in probability. Our algorithm is entirely different—no existing
algorithm gives guarantees in expectation for risk control—and its validity proof is mathematically
unrelated to these previous works. See Appendix B for a detailed discussion and comparison of
these algorithms, including experiments.

To further elaborate on the difference between our work and the broader existing literature, first con-
sider conformal prediction. The purpose of conformal prediction is to provide coverage guarantees
of the form in (1). The guarantee available through conformal risk control, (3), strictly subsumes that
of conformal prediction; it is generally impossible to recast risk control as coverage control. As a
second question, one might ask whether (3) can be achieved through standard statistical machinery,
such as uniform concentration inequalities. Though it is possible to integrate a uniform concentration
inequality to get a bound in expectation, this strategy tends to be excessively loose both in theory and
in practice (see, e.g., the bound of Anthony & Shawe-Taylor (1993)). The technique herein avoids
these complications; it is simpler than concentration-based approaches, practical to implement, and
tight up to a factor of 1/n, which is comparatively faster than concentration would allow.

2 THEORY

In this section, we establish the core theoretical properties of conformal risk control. All proofs,
unless otherwise specified, are deferred to Appendix E.

2.1 RISK CONTROL

We first show that the proposed algorithm leads to risk control when the loss is monotone.
Theorem 1. Consider a sequence of exchangeable random loss functions, {Li(λ)}n+1

i=1 , where Li :
Λ → R which are non-increasing in λ, right-continuous, and for λmax = supΛ ∈ Λ, satisfy

Li(λmax) ≤ α, sup
λ

Li(λ) ≤ B < ∞ almost surely. (5)

Then
E[Ln+1(λ̂)] ≤ α.

Proof. Let R̂n+1(λ) = (L1(λ) + . . .+ Ln+1(λ))/(n+ 1) and

λ̂′ = inf
{
λ ∈ Λ : R̂n+1(λ) ≤ α

}
.

Since infλ Li(λ) = Li(λmax) ≤ α, λ̂′ is well-defined almost surely. Since Ln+1(λ) ≤ B, we know
R̂n+1(λ) =

n
n+1 R̂n(λ) +

Ln+1(λ)
n+1 ≤ n

n+1 R̂n(λ) +
B

n+1 . Thus,

n

n+ 1
R̂n(λ) +

B

n+ 1
≤ α =⇒ R̂n+1(λ) ≤ α.

This implies λ̂′ ≤ λ̂ when the LHS holds for some λ ∈ Λ. When the LHS is above α for all λ ∈ Λ,
by definition, λ̂ = λmax ≥ λ̂′. Thus, λ̂′ ≤ λ̂ almost surely. Since Li(λ) is non-increasing in λ,

E
[
Ln+1

(
λ̂
)]

≤ E
[
Ln+1

(
λ̂′)]. (6)

Let E be the multiset of loss functions {L1, . . . , Ln+1}. Then λ̂′ is a function of E, or, equiva-
lently, λ̂′ is a constant conditional on E. Additionally, Ln+1(λ)|E ∼ Uniform({L1, ..., Ln+1}) by
exchangeability. These facts combined with the right-continuity of Li imply

E
[
Ln+1(λ̂

′) | E
]
=

1

n+ 1

n+1∑
i=1

Li(λ̂
′) ≤ α.

The proof is completed by the law of total expectation and (6).
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2.2 A TIGHT RISK LOWER BOUND

Next we show that the conformal risk control procedure is tight up to a factor 2B/(n+1) that cannot
be improved in general. The proof will rely on a form of continuity that generalizes the assumption
of continuous non-conformity scores used for the standard conformal proof. Define the jump func-
tion, which quantifies the size of the discontinuity in a right-continuous input function l at point λ, a
J(l, λ) = limϵ→0+ l(λ− ϵ)− l(λ). If the probability that Li has a discontinuity at any pre-specified
λ is P(J(Li, λ) > 0) = 0, then the conformal risk control procedure is not too conservative.
Theorem 2. In the setting of Theorem 1, further assume that the Li are i.i.d., Li ≥ 0, and for any
λ, P (J(Li, λ) > 0) = 0. Then

E
[
Ln+1

(
λ̂
)]

≥ α− 2B

n+ 1
.

This bound is tight for general monotone loss functions, as we show next.
Proposition 1. In the setting of Theorem 2, for any ϵ > 0, there exists a loss function and α ∈ (0, 1)
such that

E
[
Ln+1

(
λ̂
)]

≤ α− 2B − ϵ

n+ 1
.

Since we can take ϵ arbitrarily close to zero, the factor 2B/(n+ 1) in Theorem 2 is required. Con-
formal prediction—both the algorithm and the guarantee—is exactly equivalent to conformal risk
control when the loss function is an indicator, including the tighter lower bound (see Appendix A).

2.3 CONTROLLING GENERAL LOSS FUNCTIONS

We next show that the conformal risk control algorithm does not control the risk if the Li are not
assumed to be monotone. In particular, (3) does not hold. We show this by example.
Proposition 2. For any ϵ, there exists a non-monotone loss function such that

E
[
Ln+1

(
λ̂
)]

≥ B − ϵ.

Notice that for any desired level α, the expectation in (3) can be arbitrarily close to B. Since
the function values here are in [0, B], this means that even for bounded random variables, risk
control can be violated by an arbitrary amount—unless further assumptions are placed on the Li.
However, the algorithms developed may still be appropriate for near-monotone loss functions.
Simply ‘monotonizing’ all loss functions Li and running conformal risk control will guarantee (3),
but this strategy will only be powerful (i.e., not conservative) if the loss is near-monotone. For
concreteness, we describe this procedure below as a corollary of Theorem 1.
Corollary 1. Allow Li(λ) to be any (possibly non-monotone) function of λ satisfying 5. Take

L̃i(λ) = sup
λ′≥λ

Li(λ
′), R̃n(λ) =

1

n

n∑
i=1

L̃i(λ) and λ̃ = inf

{
λ :

n

n+ 1
R̃n(λ) +

B

n+ 1
≤ α

}
.

Then,
E
[
Ln+1

(
λ̃
)]

≤ α.

If the loss function is already monotone, then λ̃ reduces to λ̂. We propose a further algorithm for
picking λ in Appendix C that provides an asymptotic risk-control guarantee for non-monotone
loss functions. However, this algorithm again is only powerful when the risk E[Ln+1(λ)] is near-
monotone and reduces to the standard conformal risk control algorithm when the loss is monotone.

3 EXAMPLES

To demonstrate the flexibility and empirical effectiveness of the proposed algorithm, we apply it to
four tasks across computer vision and natural language processing. All four loss functions are non-
binary, monotone losses bounded by 1. They are commonly used within their respective application
domains. Our results validate that the procedure bounds the risk as desired and gives useful outputs
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Figure 1: FNR control in tumor segmentation. The top figure shows examples of our procedure
with correct pixels in white, false positives in blue, and false negatives in red. The bottom plots
report FNR and set size over 1000 independent random data splits. The dashed gray line marks α.
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Figure 2: FNR control on MS COCO. The top figure shows examples of our procedure with correct
classes in black, false positives in blue, and false negatives in red. The bottom plots report FNR and
set size over 1000 independent random data splits. The dashed gray line marks α.

to the end-user. We note that the choices of Cλ used herein are only for the purposes of illustration;
any nested family of sets will work. For each example use case, for a representative α (details
provided for each task) we provide both qualitative results and quantitative histograms of the risk
and set sizes over 1000 random data splits that demonstrate valid risk control (i.e., with mean ≤ α).

3.1 FNR CONTROL IN TUMOR SEGMENTATION

In tumor segmentation, our input is a d × d image and our label is a set of pixels Yi ∈
℘ ({(1, 1), (1, 2), ..., (d, d)}), with ℘ the power set. We use an image segmentation model f : X →
[0, 1]d×d outputting a probability for each pixel and measure loss as the fraction of false negatives,

LFNR
i (λ) = 1− |Yi ∩ Cλ(Xi)|

|Yi|
, where Cλ(Xi) = {y : f(Xi)y ≥ 1− λ} . (7)

The expected value of LFNR
i is the FNR. Since LFNR

i is monotone, so is the FNR. Thus, we use the
technique in Section 2.1 to pick λ̂ by (4) that controls the FNR on a new point, which guarantees:

E
[
LFNR
n+1 (λ̂)

]
≤ α. (8)

For evaluating the proposed procedure we pool data from several online open-source gut polyp
segmentation datasets: Kvasir, Hyper-Kvasir, CVC-ColonDB, CVC-ClinicDB, and ETIS-Larib. We
choose a PraNet (Fan et al., 2020) as our base model f and used n = 1000, and evaluated risk
control with the 781 remaining validation data points. We report results with α = 0.1 in Figure 1.
The mean and standard deviation of the risk over 1000 trials are 0.0987 and 0.0114, respectively.
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Figure 3: Control of graph distance on hierarchical ImageNet. The top figure shows examples
of our procedure with correct classes in black, false positives in blue, and false negatives in red.
The bottom plots report our minimum hierarchical distance loss and set size over 1000 independent
random data splits. The dashed gray line marks α.

3.2 FNR CONTROL IN MULTILABEL CLASSIFICATION

In the multilabel classification setting, our input Xi is an image and our label is a set of classes
Yi ⊂ {1, . . . ,K} for some number of classes K. Using a multiclass classification model f : X →
[0, 1]K , we form prediction sets and calculate the number of false positives exactly as in (7). By
Theorem 1, picking λ̂ as in (4) again yields the FNR-control guarantee in (8). We evaluate on the
Microsoft Common Objects in Context (MS COCO) dataset (Lin et al., 2014), a large-scale 80-class
multiclass classification task commonly used in computer vision. We choose a TResNet (Ridnik
et al., 2020) as our model f and used n = 4000, and evaluated risk control with 1000 validation
data points. We report results with α = 0.1 in Figure 2. The mean and standard deviation of the
risk over 1000 trials are 0.0996 and 0.0052, respectively. The results indicate that the risk is almost
exactly controlled, the spread is not too wide, and the set sizes are reasonable, not overly inflated.

3.3 CONTROL OF GRAPH DISTANCE IN HIERARCHICAL IMAGE CLASSIFICATION

In the K-class hierarchical classification setting, our input Xi is an image and our label is a leaf
node Yi ∈ {1, ...,K} on a tree with nodes V and edges E . Using a single-class classification model
f : X → ∆K , we calibrate a loss in graph distance between the interior node we select and the
closest ancestor of the true class. For any x ∈ X , let ŷ(x) = argmaxk f(x)k be the class with the
highest estimated probability. Further, let d : V × V → Z be the function that returns the length of
the shortest path between two nodes, let A : V → 2V be the function that returns the ancestors of its
argument, and let P : V → 2V be the function that returns the set of leaf nodes that are descendants
of its argument. We also let g(v, x) =

∑
k∈P(v)f(x)k be the sum of scores of leaves descended

from v. Further, define a hierarchical distance

dH(v, u) = inf
a∈A(v)

{d(a, u)}.

For a set of nodes Cλ ∈ 2V , we then define the set-valued loss

LGraph
i (λ) = inf

s∈Cλ(Xi)
{dH(y, s)}/D, where Cλ(x) =

⋂
{a∈A(ŷ(x)) : g(a,x)≥−λ}

P(a).

This loss returns zero if y is a child of any element in Cλ, and otherwise returns the minimum
distance between any element of Cλ and any ancestor of y, scaled by the depth D. Thus, it is a
monotone loss function and can be controlled by choosing λ̂ as in (4) to achieve the guarantee

E
[
LGraph
n+1 (λ̂)

]
≤ α.
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Figure 4: F1-score control on Natural Questions. The top figure shows examples of our procedure
with fully correct answers in green, partially correct answers in blue, and false positives in gray.
Note that answers that are technically correct may still be down-graded if they do not match the
reference. We treat this as part of the randomness in the task. The bottom plots report the F1 risk
and average set size over 1000 independent random data splits. The dashed gray line marks α.

We use the ImageNet dataset (Deng et al., 2009), which comes with an existing label hierarchy,
WordNet, of maximum depth D = 14. We choose a ResNet152 (He et al., 2016) for f and
n = 30000, and evaluate risk with the remaining 20000. We report results with α = 0.05 in Figure 3.
The mean and standard deviation of the risk over 1000 trials are 0.0499 and 0.0011, respectively. The
results indicate that the risk is almost exactly controlled, and that the adaptively chosen resolution
of the prediction appropriately encodes the model uncertainty (it is almost always a leaf node).

3.4 F1-SCORE CONTROL IN OPEN-DOMAIN QUESTION ANSWERING

In the open-domain question answering setting, our input Xi is a question and our label Yi is a set
of (possibly non-unique) correct answers. For example, the input

Xn+1 = “Where was Barack Obama Born?”
could have the answer set

Yn+1 = {“Hawaii”, “Honolulu, Hawaii”, “Kapo’olani Medical Center”}
Formally, here we treat all questions and answers as being composed of sequences (up to size m) of
tokens in a vocabulary V—i.e., assuming k valid answers, we have Xi ∈ Z and Yi ∈ Zk, where
Z := Vm. Using an open-domain question answering model that individually scores candidate
output answers f : Z × Z → R, we calibrate the best token-based F1-score of the prediction set,
taken over all pairs of predictions and answers:
LF1
i (λ) = 1−max

{
F1(a, c) : c ∈ Cλ(Xi), a ∈ Yi

}
, where Cλ(Xi) = {y ∈ Vm : f(Xi, y) ≥ λ} .

We define the F1-score following popular QA evaluation metrics (Rajpurkar et al., 2016), where we
treat predictions and ground truth answers as bags of tokens and compute the geometric average of
their precision and recall (while ignoring punctuation and articles {“a”, “an”, “the”}). Since LF1

i ,
as defined in this way, is monotone and upper bounded by 1, it can be controlled by choosing λ̂ as
in Section 2.1 to achieve the following guarantee:

E
[
LF1
n+1(λ̂)

]
≤ α.

We use the Natural Questions (NQ) dataset (Kwiatkowski et al., 2019), a popular open-domain ques-
tion answering baseline, to evaluate our method. We use the splits distributed as part of the Dense
Passage Retrieval (DPR) package (Karpukhin et al., 2020). Our base model is the DPR Retriever-
Reader model (Karpukhin et al., 2020), which retrieves passages from Wikipedia that might contain
the answer to the given query, and then uses a reader model to extract text sub-spans from the
retrieved passages that serve as candidate answers. Instead of enumerating all possible answers to
a given question, we retrieve the top several hundred candidate answers, extracted from the top 100
passages. We use n = 2500 calibration points, and evaluate risk control with the remaining 1110.
We use α = 0.3 (chosen empirically as the lowest F1 score which reliably results in approximately
correct answers by manual validation) in Figure 4. The mean and standard deviation of the risk over
1000 trials are 0.2996 and 0.0150, respectively. The results indicate that the risk is almost exactly
controlled, and that the sets are reasonably sized, scaling appropriately with question difficulty.
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4 EXTENSIONS

We now discuss several extensions of conformal risk control to different settings and risks.

4.1 RISK CONTROL UNDER DISTRIBUTIONAL SHIFT

Under a distribution shift, the goal in (3) can be redefined as

E(X1,Y1),...,(Xn,Yn)∼Ptrain, (Xn+1,Yn+1)∼Ptest

[
Ln+1

(
λ̂
)]

≤ α. (9)

Assuming that Ptest is absolutely continuous with respect to Ptrain and defining w(x, y) =
dPtest(x,y)
dPtrain(x,y)

, the weighted objective (9) can be rewritten as

E(X1,Y1),...,(Xn+1,Yn+1)∼Ptrain

[
w(Xn+1, Yn+1)Ln+1

(
λ̂
)]

≤ α. (10)

When w is known and bounded, we can apply our procedure on the loss function
L̃n+1(λ) = w(Xn+1, Yn+1)Ln+1(λ), which is non-decreasing, bounded, and right-continuous in
λ whenever Ln+1 is. Thus, Theorem 1 guarantees that the resulting λ̂ satisfies (10). For example,

in the covariate shift setting, w(Xn+1, Yn+1) = w(Xn+1)
△
= dPtest(Xn+1)

dPtrain(Xn+1)
. In this case, we can

achieve risk control even when w is unbounded. In particular, assuming Li ∈ [0, B], for any
potential value x of the covariate, we define

λ̂(x) = inf

{
λ :

∑n
i=1 w(Xi)Li(λ) + w(x)B∑n

i=1 w(Xi) + w(x)
≤ α

}
.

Proposition 3. In the setting of Theorem 1, with λ̂ as above,

E(X1,Y1),...,(Xn,Yn)∼Ptrain,(Xn+1,Yn+1)∼Ptest
[Ln+1(λ̂(Xn+1))] ≤ α.

This is an exact generalization of the procedure of Tibshirani et al. (2019) beyond indicator losses.
As proposed therein, when unlabeled data in the test domain is available, w can be estimated by
the probabilistic classification algorithm; this gives good practical results (see also our experiment
in Appendix D). For arbitrary distribution shifts, we give a total variation bound analogous to that
of Barber et al. (2022) for independent data (see their Section 4.1), though the proof is different.
Here we will use the notation Zi = (Xi, Yi), and λ̂(Z1, . . . , Zn) to refer to that chosen in (4).
Proposition 4. Let Z = (Z1, . . . , Zn+1) be a sequence of random variables. Then, under the

conditions in Theorem 1, E
[
Ln+1(λ̂)

]
≤ α + B

∑n
i=1 TV(Zi, Zn+1). If further the assumptions

of Theorem 2 hold, E
[
Ln+1(λ̂)

]
≥ α−B

(
2

n+1 +
∑n

i=1 TV(Zi, Zn+1)
)
.

4.2 QUANTILE RISK CONTROL

Snell et al. (2022) generalizes Bates et al. (2021) to control the quantile of a monotone loss function
conditional on (Xi, Yi)

n
i=1 with probability 1− δ over the calibration dataset for any user-specified

tolerance parameter δ. In some applications, it may be sufficient to control the unconditional quantile
of the loss function, which alleviates the burden of the user to choose the tolerance parameter δ.

For any random variable X , let Quantileβ(X) = inf{x : P(X ≤ x) ≥ β}. Analogous to (3), we
want to find λ̂ based on (Xi, Yi)

n
i=1 such that

Quantileβ

(
Ln+1(λ̂β)

)
≤ α. (11)

By definition, Quantileβ

(
Ln+1(λ̂β)

)
≤ α ⇐⇒ E

[
1

{
Ln+1(λ̂β) > α

}]
≤ 1 − β. As a

consequence, quantile risk control is equivalent to expected risk control (3) with loss function
L̃i(λ) = 1 {Li(λ) > α}. Let λ̂β = inf

{
λ ∈ Λ : 1

n+1

∑n
i=1 1 {Li(λ) > α}+ 1

n+1 ≤ 1− β
}
.

Proposition 5. In the setting of Theorem 1, with λ̂ as above, (11) is achieved.

It is unclear whether the wider class of quantile-based risks considered by Snell et al. (2022) (e.g.
the CVaR) can be controlled unconditionally.
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4.3 CONTROLLING MULTIPLE RISKS

Let Li(λ; γ) be a family of loss functions indexed by γ ∈ Γ for some domain Γ that may have
infinitely many elements. A researcher may want to control E[Li(λ; γ)] at level α(γ). Equivalently,
we need to find an λ̂ based on (Xi, Yi)

n
i=1 such that

supγ∈Γ E
[
Li(λ̂;γ)
α(γ)

]
≤ 1. (12)

Though the above worst-case risk is not an expectation, it can still be controlled. Towards this end,
we define λ̂ = supγ∈Γ λ̂γ , where λ̂γ = inf{λ : 1

n+1

∑n
i=1 Li(λ; γ) +

B
n+1 ≤ α(γ)}.

Proposition 6. In the setting of Theorem 1, with λ̂ as above, (12) is satisfied.

4.4 ADVERSARIAL RISKS

We next show how to control risks defined by adversarial perturbations. We adopt the same notation
as Section 4.3. Bates et al. (2021) (Section 6.3) discusses the adversarial risk where Γ parametrizes
a class of perturbations of Xn+1, e.g., Li(λ; γ) = L(Xi + γ, Yi) and Γ = {γ : ∥γ∥∞ ≤ ϵ}. A
researcher may want to find an λ̂ based on (Xi, Yi)

n
i=1 such that

E[supγ∈Γ Li(λ; γ)] ≤ α. (13)

This can be recast as a conformal risk control problem by taking L̃i(λ) = supγ∈Γ Li(λ; γ). Then,
the following choice of λ leads to risk control: λ̂ = inf{λ : 1

n+1

∑n
i=1 L̃i(λ) +

B
n+1 ≤ α}.

Proposition 7. In the setting of Theorem 1, with λ̂ as above, (13) is satisfied.

4.5 U-RISK CONTROL

For ranking and metric learning, Bates et al. (2021) considered loss functions that depend on two
test points. In general, for any k > 1 and subset S ⊂ {1, . . . , n + k} with |S| = k, let LS(λ) be a
loss function. Our goal is to find λ̂k based on (Xi, Yi)

n
i=1 such that

E
[
L{n+1,...,n+k}(λ̂k)

]
≤ α. (14)

We call the LHS a U-risk since, for any fixed λ̂k, it is the expectation of an order-k U-statistic. As a
natural extension, we can define

λ̂k = inf
{
λ : k!n!

(n+k)!

∑
S⊂{1,...,n},|S|=k LS(λ) +B

(
1− (n!)2

(n+k)!(n−k)!

)
≤ α

}
. (15)

Again, we define λ̂k = λmax when the RHS is empty. Then we can prove the following result.

Proposition 8. Assume that LS(λ) is non-increasing in λ, right-continuous, and LS(λmax) ≤
α, supλ LS(λ) ≤ B < ∞ almost surely. Then (14) is achieved with λ̂ as above.

5 CONCLUSION

This generalization of conformal prediction broadens its scope to new applications, as shown in
Section 3. Still, two primary limitations of our technique remain: firstly, the requirement of a
monotone loss is difficult to lift. Secondly, extensions to non-exchangeable data require knowledge
about the form of the shift. This issue affects most statistical methods, including standard conformal
prediction, and ours is no different in this regard. Finally, the mathematical tools developed in
Sections 2 and 4 may be of independent technical interest, as they provide a new, and more general,
language for studying conformal prediction, along with new results about its validity.

REPRODUCIBILITY STATEMENT

Code to reproduce our examples is available at https://github.com/aangelopoulos/
conformal-risk.
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A CONFORMAL PREDICTION REDUCES TO RISK CONTROL

Conformal prediction can be thought of as controlling the expectation of an indicator loss function.
Recall that the risk upper bound (2) specializes to the conformal coverage guarantee in (1) when
the loss function is the indicator of a miscoverage event. The conformal risk control procedure
specializes to conformal prediction under this loss function as well. However, the risk lower bound
in Theorem 2 has a slightly worse constant than the usual conformal guarantee. We now describe
these correspondences.

First, we show the equivalence of the algorithms. In conformal prediction, we have conformal
scores s(Xi, Yi) for some score function s : X × Y → R. Based on this score function, we create
prediction sets for the test point Xn+1 as Cλ̂(Xn+1) =

{
y : s(Xn+1, y) ≤ λ̂

}
, where λ̂ is the

conformal quantile, a parameter that is set based on the calibration data. In particular, conformal
prediction chooses λ̂ to be the ⌈(n+1)(1−α)⌉/n sample quantile of {s(Xi, Yi)}ni=1. To formulate

this in the language of risk control, we consider a miscoverage loss LCvg
i (λ) = 1

{
Yi /∈ Ĉλ(Xi)

}
=

1 {s(Xi, Yi) > λ}. Direct calculation of λ̂ from (4) then shows the equivalence of the proposed
procedure to conformal prediction:

λ̂ = inf

{
λ :

1

n+ 1

n∑
i=1

1 {s(Xi, Yi) > λ}+ 1

n+ 1
≤ α

}
=

inf

{
λ :

1

n

n∑
i=1

1 {s(Xi, Yi) ≤ λ} ≥ ⌈(n+ 1)(1− α)⌉
n

}
︸ ︷︷ ︸

conformal prediction algorithm

.

Next, we discuss how the risk lower bound relates to its conformal prediction equivalent. In the
setting of conformal prediction, Lei et al. (2018) proves that P(Yn+1 /∈ Cλ̂(Xn+1)) ≥ α − 1/(n +
1) when the conformal score function follows a continuous distribution. Theorem 2 recovers this
guarantee with a slightly worse constant: P(Yn+1 /∈ Cλ̂(Xn+1)) ≥ α−2/(n+1). First, note that our
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assumption in Theorem 2 about the distribution of discontinuities specializes to the continuity of the
score function when the miscoverage loss is used: P

(
J
(
LCvg
i , λ

)
> 0
)
= 0 ⇐⇒ P(s(Xi, Yi) =

λ) = 0. However, the bound for the conformal case is better than the bound for the general case in
Theorem 2 by a factor of two, which cannot be improved according to Proposition 1. This difference
is an interesting oddity of the binary loss, but is not practically important.

B COMPARISON WITH RCPS/LTT

The setting of conformal risk control resembles the setting of previous works in high-probability
risk control Bates et al. (2021); Angelopoulos et al. (2021a) (RCPS/LTT); however, the algorithms,
guarantees, and proof strategies are entirely different.

To summarize, the main differences are as follows:

1. Conformal risk control is substantially more sample-efficient than RCPS/LTT. On the scale
of the risk, RCPS/LTT are far more conservative, converging to α at a 1√

n
rate, while

conformal risk control converges at a 1
n rate.

2. RCPS/LTT are high probability bounds of the form

P(E[ℓ(Yn+1, Cλ̂(Xn+1)) | {Xi, Yi}ni=1] ≤ α) ≥ 1− δ

Conformal risk control gives an expectation bound of the form

E[ℓ(Yn+1, Cλ̂(Xn+1))] ≤ α.

The former bound provides high-probability control over the sampling of the calibration
data, which can be attractive if one needs to be below α with high probability, as opposed
to centered at α as in the latter. However, the former bound is more difficult to interpret
for nonstatisticians and requires the selection of two parameters—α and δ—which can
introduce complexity.

3. RCPS/LTT are substantially more complicated procedures than conformal risk control—
especially LTT, which requires careful discretization and bespoke multiple testing correc-
tion. This careful construction is required because the LTT procedure allows for the high-
probability control of non-monotone risks, while conformal risk control only applies to
monotone ones.

4. The theory of conformal risk control is a basic advancement to the core theory of conformal
prediction and exchangeability-based arguments, extending them to a broader mathemati-
cal setting. Meanwhile, LTT/RCPS use well-established concentration bounds, which are
mathematically unrelated to conformal prediction.

To underscore these points, we perform a careful evaluation against these procedures on the polyp
segmentation dataset in Figure 5. We compare against two versions of LTT/RCPS: Baseline 1 has
δ = 0.5, Baseline 2 integrates the tail bound of LTT/RCPS to achieve a bound in expectation. The
former strategy is not statistically valid for the goal of expectation control, and the latter strategy is
essentially only possible using fixed-width bounds such as Hoeffding’s inequality, and is described
in the below Appendix B.1. We use the same risk level α = 0.1 for all procedures and make plots
with n = {25, 50, 100, 200, 300}.

The takeaways are as follows: The statistical efficiency gains of conformal risk control are massive.
On the scale of the risk gap, |E[R(λ̂)]− α|, conformal risk control is 50% closer to the desired risk
than Baseline 1, and orders of magnitude closer than Baseline 2. This is expected given the theo-
retical convergence rate is quadratically faster than both approaches. The computational efficiency
of conformal risk control is substantially better than all baselines. For example, it is 14x faster than
Baseline 1 and 19% faster than Baseline 2. It is also substantially easier to implement than Baseline
1, only requiring 5 lines of code. Baseline 2 is equally easy to implement, although far less flexible.

B.1 RECOVERING EXPECTATION BOUNDS FROM RCPS

We introduce a technique for deriving bounds in expectation using RCPS Bates et al.
(2021)/LTT Angelopoulos et al. (2021a). This technique was not described in the original papers;
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Figure 5: Comparison of RCPS/LTT with conformal risk control on the polyp dataset.

we only derive it here for the purpose of the above comparison (i.e., to show that this approach
should essentially never be used for monotone losses).

Consider a pointwise upper-bound on the empirical risk, as constructed in RCPS Bates et al. (2021):

P(R(λ)− R̂n(λ) > ϵ) < δ(ϵ, λ),

for all ϵ ∈ [0, B]. The next proposition says that if the bound has equal width everywhere, like
in the case of Hoeffding’s inequality, then it can be integrated to control the risk. Unfortunately,
this strategy is not possible for general concentration inequalities, such as that of Bentkus (2004)
or Waudby-Smith & Ramdas (2020), as it would require knowing δ(ϵ, λ∗) (for an oracle λ∗ defined
in the proof below).
Proposition B.1. Let Li(λ) be right-continuous, monotone, i.i.d. functions in [0, B] satisfying
P(J(Li, λ) > 0) = 0. Furthermore, define δ+(ϵ) = supλ δ(ϵ, λ) and

λ̂ = inf
{
λ : R̂(λ) ≤ α−

}
,

where α− satisfies α− ≤ α−
∫ B−α−

0
δ+(ϵ)dϵ. Then,

R(λ̂) ≤ α.

Proof. Let λ∗ = inf{λ : R(λ) ≤ α− + ϵ}. By monotonicity and the definition of λ̂,

λ̂ ≥ λ∗ =⇒ R̂n(λ
∗) ≤ α−.

But also, by the bounded jump assumption, R(λ∗) = α− + ϵ. Therefore, on the event λ̂ ≥ λ∗, we
have that

R(λ∗)− R̂n(λ
∗) ≥ α− − α− + ϵ = ϵ. (16)

Since the event in (16) happens with probability at most δ+(ϵ), we have that P(λ̂ ≥ λ∗) ≤ δ+(ϵ),
so

P(R(λ̂) ≥ α− + ϵ) ≤ δ+(ϵ).

Finally, we have that

E[R(λ̂)] =

∫ B

0

P(R(λ̂) > r)dr

≤ α− +

∫ B

α−
P(R(λ̂) > α− + ϵ)dϵ

≤ α− +

∫ B−α−

0

δ+(ϵ)dϵ

≤ α.

This can be applied to Hoeffding’s inequality, giving the aforementioned Baseline 2.
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Corollary 2. In the setting of Proposition B.1, let α− = α−
√
πB erf(

√
2n/B)

2
√
2n

. Then, R(λ̂) ≤ α.

Proof. Applying Hoeffding’s inequality we have δ+(ϵ) = e−2nϵ2 , and then

α−
∫ 1−α−

0

e−
2nϵ2

B2 dϵ ≥ α−
∫ 1

0

e−
2nϵ2

B2 dϵ = α−
√
πB erf(

√
2n/B)

2
√
2n

= α−,

as required.

C MONOTONIZING NON-MONOTONE RISKS

We next show that the proposed algorithm leads to asymptotic risk control for non-monotone risk
functions when applied to a monotonized version of the empirical risk. We set the monotonized
empirical risk to be

R̂↑
n(λ) = sup

t≥λ
R̂n(t),

then define
λ̂↑
n = inf

{
λ : R̂↑

n(λ) ≤ α
}
.

Theorem C.1. Let the Li(λ) be right-continuous, i.i.d., bounded (both above and below) functions
satisfying (5). Then,

lim
n→∞

E
[
Ln+1

(
λ̂↑
n

)]
≤ α.

Theorem C.1 implies that an analogous procedure to 4 also controls the risk asymptotically. In
particular, taking

λ̃↑ = inf

{
λ : R̂↑

n(λ) +
B

n+ 1
≤ α

}
also results in asymptotic risk control (to see this, plug λ̃↑ into Theorem C.1 and see that the risk
level is bounded above by α − B

n+1 ). Note that in the case of a monotone loss function, λ̃↑ = λ̂.
However, the counterexample in Proposition 2 does not apply to λ̃↑, and it is currently unknown
whether this procedure does or does not provide finite-sample risk control.

D EXPERIMENTS ON COVARIATE SHIFT

To validate the covariate shift extension from Section 4, we perform an experiment on a synthetic
regression under covariate shift. The model is as follows:

Xi ∼ N (0, 1)

Yi = 2Xi +N (0, 0.5|Xi|)
Xtest ∼ N (0, 2)

Ytest = 2Xtest +N (0, 0.5|Xtest|).

The model used for prediction was a standard linear regression pre-trained on 1000 data points
independent and identically distributed with the calibration data. We estimated the likelihood ratio
using a logistic regression model by solving a classification problem to classify between all the
available training/calibration covariates and batch of 1000 unlabeled test datapoints from the shifted
distribution. The probits from the logistic regression were then transformed to likelihood ratios via
the function h(x) = x/1 − x. We took n = 100 and α = 0.1, controlling the clipped projective
distance of y onto the set C:

ℓ(y, C) = min(projC(y), B),

where B = 2. The set construction is the standard

Cλ(x) =
[
Ŷ (x)± λ

]
.

Figure 6 shows results.
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Figure 6: Risk control results on a synthetic covariate shift dataset. Running standard conformal
risk control does not control the risk, while running the covariate shift algorithm from Section 4
does—even though the likelihood ratios are estimated by a logistic regression model. We also com-
puted the risk with the true likelihood ratios, and it overlaps entirely with the histogram for estimated
likelihood ratios, so we do not show it here.

E PROOFS

The proof of Theorem 2 uses the following lemma on the approximate continuity of the empirical
risk.

Lemma 1 (Jump Lemma). In the setting of Theorem 2, any jumps in the empirical risk are bounded,
i.e.,

sup
λ

J
(
R̂n, λ

) a.s.
≤ B

n
.

Proof of Jump Lemma, Lemma 1. By boundedness, the maximum contribution of any single point
to the jump is B

n , so

∃λ : J
(
R̂n, λ

)
>

B

n
=⇒ ∃λ : J(Li, λ) > 0 and J(Lj , λ) > 0 for some i ̸= j.

Call Di = {λ : J(Li, λ) > 0} the sets of discontinuities in Li. Since Li is bounded monotone, Di

has countably many points. The union bound then implies that

P
(
∃λ : J(R̂n, λ) >

B

n

)
≤
∑
i ̸=j

P(Di ∩ Dj ̸= ∅)

Rewriting each term of the right-hand side using tower property and law of total probability gives

P (Di ∩ Dj ̸= ∅) = E
[
P
(
Di ∩ Dj ̸= ∅

∣∣Dj

)]
≤ E

∑
λ∈Dj

P
(
λ ∈ Di

∣∣∣ Dj

) = E

∑
λ∈Dj

P (λ ∈ Di)

 ,

Where the second inequality is because the union of the events λ ∈ Dj is the entire sample space,
but they are not disjoint, and the third equality is due to the independence between Di and Dj .
Rewriting in terms of the jump function and applying the assumption P (J(Li, λ) > 0) = 0,

E

∑
λ∈Dj

P (λ ∈ Di)

 = E

∑
λ∈Dj

P (J(Li, λ) > 0)

 = 0.
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Chaining the above inequalities yields P
(
∃λ : J(R̂n, λ) >

B
n

)
≤ 0, so

P
(
∃λ : J(R̂n, λ) >

B
n

)
= 0.

Proof of Theorem 2. If Li(λmax) ≥ α−2B/(n+1), then E[Ln+1(λ̂)] ≥ α−2B/(n+1). Through-
out the rest of the proof, we assume that Li(λmax) < α− 2B/(n+ 1). Define the quantity

λ̂′′ = inf

{
λ : R̂n+1(λ) +

B

n+ 1
≤ α

}
.

Since Li(λmax) < α − 2B/(n+ 1) < α − B/(n+ 1), λ̂′′ exists almost surely. Deterministically,
n

n+1 R̂n(λ) ≤ R̂n+1(λ), which yields λ̂ ≤ λ̂′′. Again since Li(λ) is non-increasing in λ,

E
[
Ln+1

(
λ̂′′)] ≤ E

[
Ln+1

(
λ̂
)]

By exchangeability and the fact that λ̂′′ is a symmetric function of L1, . . . , Ln+1,

E
[
Ln+1

(
λ̂′′)] = E

[
R̂n+1

(
λ̂′′)]

For the remainder of the proof we focus on lower-bounding R̂n+1

(
λ̂′′). We begin with the following

identity:

α = R̂n+1

(
λ̂′′)+ B

n+ 1
−
(
R̂n+1

(
λ̂′′)+ B

n+ 1
− α

)
.

Rearranging the identity,

R̂n+1

(
λ̂′′) = α− B

n+ 1
+
(
R̂n+1

(
λ̂′′)+ B

n+ 1
− α

)
.

Using the Jump Lemma to bound
(
R̂n+1

(
λ̂′′)+ B

n+1 − α
)

below by − B
n+1 gives

R̂n+1

(
λ̂′′) ≥ α− 2B

n+ 1
.

Finally, chaining together the above inequalities,

E
[
Ln+1(λ̂)

]
≥ E

[
R̂n+1(λ̂

′′)

]
≥ α− 2B

n+ 1
.

Proof of Proposition 1. Without loss of generality, assume B = 1. Fix any ϵ′ > 0. Consider the
following loss functions, which satisfy the conditions in Theorem 2:

Li(λ)
i.i.d.∼


1 λ ∈ [0, Zi)
k

k+1 λ ∈ [Zi,Wi)

0 else
,

where k ∈ N, the Zi
i.i.d.∼ Uniform(0, 0.5), the Wi

i.i.d.∼ Uniform(0.5, 1) for i ∈ {1, ..., n+ 1} and
α = k+1−ϵ′

n+1 . Then, by the definition of λ̂, we know

R̂n

(
λ̂
)
≤ k − ϵ′

n
. (17)

If n > k + 1, R̂(λ) ≥ k
k+1 > k

n whenever λ ≤ 1
2 . Thus, we must have λ̂ > 1

2 . Since k is an
integer and by (17), we know that

∣∣{i ∈ {1, ..., n} : Li

(
λ̂
)
> 0}

∣∣ ≤ ⌊(k+1)(k− ϵ′)/k⌋ ≤ k. This
immediately implies that

λ̂ ≥ W(n−k+1),

17
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where W(j) denotes the j-th order statistic. Notice that for all λ > 1
2 ,

R(λ) = E [Li(λ)] =
k

k + 1
P
(
Wi > λ

)
=

k

k + 1
· 2(1− λ),

so R
(
λ̂
)
≤ k

k+1 · 2(1−W(n−k+1)). Let U(k) be the k-th smallest order statistic of n i.i.d. uniform

random variables on (0, 1). Then, by symmetry and rescaling, 2(1−W(n−k+1))
d
= U(k),

R
(
λ̂
)
⪯ k

k + 1
U(k),

where ⪯ denotes the stochastic dominance. It is well-known that U(k) ∼ Beta(k, n + 1 − k) and
hence

E[R
(
λ̂
)
] ≤ k

k + 1
· k

n+ 1
.

Thus,

α− E
[
R
(
λ̂
)]

≥ k + 1− ϵ

n+ 1
− k2

(n+ 1)(k + 1)
=

1

n+ 1
· (2− ϵ′)k + 1− ϵ′

k + 1
.

For any given ϵ > 0, let ϵ′ = ϵ/2 and k = ⌈ 2
ϵ − 1⌉. Then

(2− ϵ′)k + 1− ϵ′

k + 1
≥ 2− ϵ,

implying that

α− E
[
R
(
λ̂
)]

≥ 2− ϵ

n+ 1
.

Proof of Proposition 2. Without loss of generality, we assume B = 1. Assume λ̂ takes values in
[0, 1] and α ∈ (1/(n + 1), 1). Let p ∈ (0, 1), N be any positive integer, and Li(λ) be i.i.d. right-
continuous piecewise constant (random) functions with

Li(N/N) = 0, (Li(0/N), Li(1/N), . . . , Li((N − 1)/N))
i.i.d.∼ Ber(p).

By definition, λ̂ is independent of Ln+1. Thus, for any j = 0, 1, . . . , N − 1,{
Ln+1(λ̂) | λ̂ = j/N

}
∼ Ber(p),

{
Ln+1(λ̂) | λ̂ = 1

}
∼ δ0.

Then,
E
[
Ln+1

(
λ̂
)]

= p · P(λ̂ ̸= 1)

Note that

λ̂ ̸= 1 ⇐⇒ min
j∈{0,...,N−1}

1

n+ 1

n∑
i=1

Li(j/N) ≤ α− 1

n+ 1
.

Since α > 1/(n+ 1),

P(λ̂ ̸= 1) = 1− P(λ̂ = 1) = 1− P

(
for all j, we have

1

n+ 1

n∑
i=1

Li(j/N) > α− 1

n+ 1

)

= 1−

 n∑
k=⌈(n+1)α⌉

(
n

k

)
pk(1− p)(n−k)

N

= 1−
(
1− BinoCDF

(
n, p, ⌈(n+ 1)α⌉ − 1

))N
As a result,

E
[
Ln+1

(
λ̂
)]

= p

(
1−

(
1− BinoCDF

(
n, p, ⌈(n+ 1)α⌉ − 1

))N )
.

18



Published as a conference paper at ICLR 2024

Now let N be sufficiently large such that(
1−

(
1− BinoCDF

(
n, p, ⌈(n+ 1)α⌉ − 1

))N )
> p.

Then
E
[
Ln+1

(
λ̂
)]

> p2

For any α > 0, we can take p close enough to 1 to render the claim false.

Proof of Theorem C.1. Define the monotonized population risk as

R↑(λ) = sup
t≥λ

E
[
Ln+1(t)

]
Note that the independence of Ln+1 and λ̂↑

n implies that for all n,

E
[
Ln+1

(
λ̂↑
n

)]
≤ E

[
R↑(λ̂↑

n

)]
.

Since R↑ is bounded, monotone, and one-dimensional, a generalization of the Glivenko-Cantelli
Theorem given in Lemma 2 gives that uniformly over λ,

lim
n→∞

sup
λ

|R̂n(λ)−R(λ)| a.s.→ 0.

As a result,
lim
n→∞

sup
λ

|R̂↑
n(λ)−R↑(λ)| a.s.→ 0,

which implies that
lim
n→∞

|R̂↑
n(λ̂

↑)−R↑(λ̂↑)| a.s.→ 0.

By definition, R̂↑(λ̂↑) ≤ α almost surely and thus this directly implies

lim sup
n→∞

R↑(λ̂↑
n

)
≤ α a.s..

Finally, since for all n, R↑(λ̂↑
n

)
≤ B, by Fatou’s lemma,

lim
n→∞

E
[
Ln+1

(
λ̂↑
n

)]
≤ lim sup

n→∞
E
[
R↑(λ̂↑

n

)]
≤ E

[
lim sup
n→∞

R↑(λ̂↑
n

)]
≤ α.

Proposition 3. Let

λ̂′ = inf

{
λ :

∑n+1
i=1 w(Xi)Li(λ)∑n+1

i=1 w(Xi)
≤ α

}
.

Since infλ Li(λ) ≤ α, λ̂′ exists almost surely. Using the same argument as in the proof of Theorem
1, we can show that λ̂′ ≤ λ̂(Xn+1). Since Ln+1(λ) is non-increasing in λ,

E[Ln+1(λ̂(Xn+1))] ≤ E[Ln+1(λ̂
′)].

Let E be the multiset of loss functions {(X1, Y1), . . . , (Xn+1, Yn+1)}. Then λ̂′ is a function of E,
or, equivalently, λ̂′ is a constant conditional on E. Lemma 3 of Tibshirani et al. (2019) implies that

(Xn+1, Yn+1) | E ∼
n+1∑
i=1

w(Xi)∑n+1
j=1 w(Xj)

δ(Xj ,Yj) =⇒ Ln+1 | E ∼
n+1∑
i=1

w(Xi)∑n+1
j=1 w(Xj)

δLi

where δz denotes the Dirac measure at z. Together with the right-continuity of Li, the above result
implies

E
[
Ln+1(λ̂

′) | E
]
=

∑n+1
i=1 w(Xi)Li(λ̂

′)∑n+1
i=1 w(Xi)

≤ α.

The proof is then completed by the law of total expectation.
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Lemma 2 (Glivenko-Cantelli for Monotone Functions). For i.i.d., right-continuous, monotone loss
functions L1, . . . , Ln, we have that

lim
n→∞

sup
λ

|R̂n(λ)−R(λ)| a.s.= 0.

Lemma 2. We generalize the proof of the Glivenko-Cantelli Theorem (see, e.g., Van der Vaart
(2000)). Let the notation R(λ−) denote the limit of R from the left-hand side approaching λ.
By the strong law of large numbers, R̂n(λ)

a.s.→ R(λ) and R̂n(λ−)
a.s.→ R(λ−) for all λ. Fix

ϵ > 0. It is well-known that a monotone function cannot have more than a countable number of
discontinuities (Froda, 1931). Thus, there exists a finite partition Λ(ϵ) = {−∞ ≤ λ1 ≤ . . . ≤
λk ≤ ∞}, such that R(λi−) − R(λi−1) < ϵ. (There can only be a finite number of jumps greater
than ϵ in size, and these can be included in Λ(ϵ).) The uniform convergence on the finite set Λ(ϵ) is
immediate by the law of large numbers; thus, we have that limn→∞ supλ∈Λ(ϵ) |R̂n(λ)−R(λ)| a.s.= 0.
For any λ ̸∈ Λ(ϵ), suppose λ ∈ (λj−1, λj). Then R̂n(λ) − R(λ) ≤ R̂n(λj) − R(λj−1) <

R̂n(λj)−R(λj)+ ϵ. Similarly, R̂n(λ)−R(λ) ≥ R̂n(λj−1)−R(λ−
j ) > R̂n(λj−1)−R(λj−1)− ϵ.

Combining two pieces, we conclude that supλ |R̂n(λ) − R(λ)| ≤ supλ∈Λ(ϵ) |R̂n(λ) − R(λ)| + ϵ.

As a result, limn→∞ supλ |R̂n(λ)−R(λ)|
a.s.
≤ ϵ. Taking ϵ → 0 completes the proof.

Proposition 4. Define the vector Z ′ = (Z ′
1, . . . , Z

′
n, Zn+1), where Z ′

i
i.i.d.∼ L(Zn+1) for all i ∈ [n].

Let

ϵ =

n∑
i=1

TV(Zi, Z
′
i).

By sublinearity,
TV(Z,Z ′) ≤ ϵ. (18)

It is a standard fact that (18) implies

sup
f∈F1

|E[f(Z)]− E[f(Z ′)]| ≤ ϵ,

where F1 = {f : Z 7→ [0, 1]}. Let ℓ : Z × Λ → [0, B] be a bounded loss function. Furthermore,
let g(z) = ℓ(zn+1; λ̂(z1, . . . , zn)). Since g(Z) ∈ [0, B],

|E[g(Z)]− E[g(Z ′)]| ≤ Bϵ.

Furthermore, since Z ′
1, . . . , Z

′
n+1 are exchangeable, we can apply Theorems 1 and 2 to E[g(Z ′)],

recovering

α− 2B

n+ 1
≤ E[g(Z ′)] ≤ α.

A final step of triangle inequality implies the result:

α− 2B

n+ 1
−Bϵ ≤ E[g(Z)] ≤ α+Bϵ.

Proposition 5. It is left to prove that L̃i(λ) satisfies the conditions of Theorem 1. It is clear that
L̃i(λ) ≤ 1 and L̃i(λ) is non-increasing in λ when Li(λ) is. Since Li(λ) is non-increasing and
right-continuous, for any sequence λm ↓ λ,

Li(λm) ↑ Li(λ) =⇒ 1 {Li(λm) > α} → 1 {Li(λ) > α} .

Thus, L̃i(λ) is right-continuous. Finally, Li(λmax) ≤ α implies L̃i(λmax) = 0 ≤ 1− β.

Proposition 6. Examining the form of λ̂, for each γ ∈ Γ, we have

E
[
L(λ̂, γ)

]
≤ E

[
L(λ̂γ , γ)

]
≤ α(γ).

Thus, dividing both sides by α(γ) and taking the supremum, we get that supγ∈Γ E
[
L(λ̂,γ)
α(γ)

]
≤ 1,

and the worst-case risk is controlled.
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Proposition 7. Because Li(λ, γ) is bounded and monotone in λ for all choices of γ, it is also true
that L̃i(λ) is bounded and monotone. Furthermore, the pointwise supremum of right-continuous
functions is also right-continuous. Therefore, the L̃i satisfy the assumptions of Theorem 1.

Proposition 8. Let

λ̂′
k = inf

λ :
k!n!

(n+ k)!

∑
S⊂{1,...,n+k},|S|=k

LS(λ) ≤ α

 .

Since LS(λmax) ≤ α, λ̂′
k exists almost surely. Since LS(λ) ≤ B, we have

k!n!

(n+ k)!

∑
S⊂{1,...,n+k},|S|=k

LS(λ)

≤ k!n!

(n+ k)!

∑
S⊂{1,...,n},|S|=k

LS(λ) +B ·
∑

S∩{n+1,...,n+k}≠∅,|S|=k

1

=
k!n!

(n+ k)!

∑
S⊂{1,...,n},|S|=k

LS(λ) +B

1− k!n!

(n+ k)!

∑
S⊂{1,...,n},|S|=k

1


=

k!n!

(n+ k)!

∑
S⊂{1,...,n},|S|=k

LS(λ) +B

(
1− (n!)2

(n+ k)!(n− k)!

)
.

Since LS(λ) is non-increasing in λ, we conclude that λ̂′
k ≤ λ̂k if the right-hand side of (15) is not

empty; otherwise, by definition, λ̂′
k ≤ λmax = λ̂k. Thus, λ̂′

k ≤ λ̂k almost surely. Let E be the
multiset of loss functions {LS : S ⊂ {1, . . . , n+ k}, |S| = k}. Using the same argument in the end
of the proof of Theorem 1 and the right-continuity of LS , we can show that

E
[
L{n+1,...,n+k}(λ̂

′
k) | E

]
=

k!n!

(n+ k)!

∑
S⊂{1,...,n+k},|S|=k

LS(λ) ≤ α.

The proof is then completed by the law of iterated expectation.
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