
Autoformulation of Mathematical Optimization Models Using LLMs

Nicolás Astorga * 1 Tennison Liu * 1 Yuanzhang Xiao 2 Mihaela van der Schaar 1

Abstract
Mathematical optimization is fundamental to
decision-making across diverse domains, from
operations research to healthcare. Yet, translat-
ing real-world problems into optimization models
remains a difficult task, often demanding special-
ized expertise. This paper approaches the prob-
lem of autoformulation: the automated creation
of solver-ready optimization models from natu-
ral language problem descriptions. We identify
three core challenges of autoformulation: (1) the
vast, problem-dependent hypothesis space, (2) ef-
ficient and diverse exploration of this space un-
der uncertainty, and (3) evaluation of formulation
correctness against problem description. To ad-
dress these challenges, we present a novel method
leveraging Large Language Models (LLMs) with
Monte-Carlo Tree Search, exploiting the hierar-
chical nature of optimization modeling to gener-
ate and systematically explore possible formula-
tions. To enhance search efficiency, we introduce
symbolic pruning to eliminate trivially equiva-
lent search paths (branches), and employ LLM-
based evaluation of partial formulations to guide
search. Empirical analysis on linear and mixed-
integer programming benchmarks demonstrates
our method’s effectiveness, with significant per-
formance gains from both LLM-based value esti-
mation and symbolic pruning techniques.

1. Introduction
Mathematical optimization has long been a cornerstone of
decision-making processes across various domains, from
supply chain management (Bramel & Simchi-Levi, 1997)
and healthcare resource allocation (Delgado et al., 2022) to
portfolio optimization (Mokhtar et al., 2014). These prob-

*Equal contribution 1DAMTP, University of Cambridge,
Cambridge, UK 2ECE, University of Hawaii at Manoa, Hon-
olulu, USA. Correspondence to: Nicolás Astorga, Tennison Liu
<{nja46,tl522}@cam.ac.uk>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

lems are characterized by maximizing an objective function
subject to constraints (Williams, 2013). Traditionally, opti-
mization modeling follows a three-step process: ▶ gathering
problem requirements, typically expressed in unstructured
formats and domain terminology; ▶ formulating these re-
quirements into a formal mathematical model, including
variables, constraints, and objective functions; ▶ implement-
ing the model computationally using specialized modeling
language for solution using commercial solvers.

Autoformulation. Despite major advances in solving algo-
rithms over the past decades, the process of formulating
optimization models still relies largely on human expertise
to understand problem requirements and translate them into
mathematical programs that software can efficiently solve
to find optimal decision values. Autoformulation aims to
address this bottleneck by automating the formulation pro-
cess, with the potential to significantly improve the time-
and cost-efficiency of the modeling process. For modelers,
autoformulation assists with rapid prototyping and itera-
tion of different formulations, reducing development time
and costs while minimizing implementation errors. For do-
main experts, it makes optimization tools accessible without
requiring deep optimization expertise, allowing domain ex-
perts to focus on critical business aspects like requirements
gathering, use-case development, and communication.

At its core, we conceptualize autoformulation as a search
for an optimal formulation within a vast hypothesis space.
This search faces several key challenges. First, the hypoth-
esis space is large and problem-dependent, encompassing
diverse variable definitions, constraint structures, or objec-
tive function forms, with complex dependencies between
these modeling decisions. Second, efficiently navigating
this space requires balancing exploitation and exploration,
particularly given the uncertainty in correct formulations
and redundancy in the hypothesis space. Finally, like any
search process, autoformulation requires a reliable evalua-
tion mechanism for candidate solutions. While solvers can
assess optimality and computational efficiency, determin-
ing whether a formulation accurately captures the intended
real-world problem remains particularly challenging.

Recent works (Ramamonjison et al., 2023; Xiao et al., 2023;
AhmadiTeshnizi et al., 2024) have demonstrated the promis-
ing potential of Large Language Models (LLMs) in autofor-

1

Autoformulation of Mathematical Optimization Models Using LLMs

A farmer has 10 acres of land and a $100
budget to plant wheat and corn. Wheat yields
$20/acre with a $2/acre cost, and corn yields

$30/acre with a $5/acre cost. The farmer seeks
to maximize returns.

[C2] Efficient search

[C1] Problem-dependent hypothesis space

[C3] Model evaluation

Optimal
objective: 300

Figure 1. Autoformulation and its challenges. Autoformulation translates a problem description (d ∈ D) into mathematical (m ∈ M)
and computational (c ∈ C) models. The challenges include [C1] vast, problem-dependent hypothesis space, [C2] efficient search under
formulation uncertainty and redundancy, and [C3] evaluating formulation correctness against problem requirements.

mulation, laying important groundwork in this field. LLMs
contribute several crucial capabilities to this process: nat-
ural language understanding of problem descriptions, vast
domain knowledge to incorporate relevant modeling tech-
niques, and in-context learning and reasoning capabilities
(Brown, 2020; Chowdhery et al., 2023). Building upon these
contributions, our work focuses on developing techniques
for efficient, systematic exploration and introducing robust
mechanisms for evaluating formulation correctness.

Key considerations. By conceptualizing autoformulation as
a search problem, we exploit the inherent hierarchical struc-
ture of optimization modeling to efficiently search through
the problem-dependent hypothesis space, guided by feed-
back on formulation correctness. Our first innovation is to
(1) decompose optimization modeling into hierarchical com-
ponents and develop a Monte-Carlo Tree Search (MCTS)
method to incrementally explore each component’s formu-
lation space (Coulom, 2006). This exploration is powered
by LLMs serving as conditional hypothesis generators, cre-
ating diverse component formulations at each level of the
search. To improve search performance, we introduce two
additional innovations: (2) a pruning technique using Satisfi-
ability Modulo Theories solvers (Barrett & Tinelli, 2018), to
eliminate redundant hypotheses (i.e., syntactically different
yet functionally equivalent); and (3) LLM-based evaluators
of formulation correctness, combined with solver feedback,
to obtain a reward signal to guide efficient search.

Contributions. Our main contributions are: 1 We formal-
ize autoformulation of mathematical optimization models
as a search problem and identify its core challenges. 2 We
develop a novel approach combining LLMs, symbolic tools
with MCTS to enable efficient and systematic exploration of
the optimization model space, using LLMs as both hypoth-

esis generators and correctness evaluators alongside sym-
bolic pruning techniques. 3 We demonstrate our method’s
superior performance across two real-world benchmarks
containing linear and mixed-integer programming problems,
observing significant performance gains from both search
pruning and LLM-based formulation evaluation.

2. Autoformulation: Towards Automated
Optimization Modeling

Optimization modeling seeks to minimize an objective func-
tion subject to specific constraints on decision variables
(Dantzig, 1990). The mathematical model can be expressed
in a general form:

Minimize f(x)

subject to gi(x) ≤ 0, i = 1, . . . , I,

hj(x) = 0, j = 1, . . . , J.

(1)

Here x ∈ X represents the vector of decision variables, and
X ⊆ Rℓ × Zk is the domain for which the objective and
constraints functions are all defined. Furthermore, f : X →
R is the objective function to be minimized, gi : X → R are
inequality constraints, hj : X → R are equality constraints,
and I and J are the numbers of inequality and equality
constraints respectively. The feasible region is the set of all
possible points that satisfy the problem constraints: {x ∈
X | gi(x) ≤ 0, ∀i ∈ [I], hj(x) = 0, ∀j ∈ [J]}.
Convex problems. An optimization problem is convex if
f and gi ∀i ∈ [I] are convex, and hj ∀ j ∈ [J] are affine.
Convexity is significant as any local optimum of a convex
problem is globally optimal, and specialized solvers can
efficiently solve convex problems to global optimality using
advanced algorithms (e.g., Gurobi (Gurobi Optimization,

2

Autoformulation of Mathematical Optimization Models Using LLMs

LLC, 2024), CVXPY (Diamond & Boyd, 2016)). Before
utilizing these solvers, the mathematical models are first
represented in code as computational models, which are
then passed to the solvers for optimization.

2.1. Problem Definition

Boyd & Vandenberghe (2004) aptly recognized that “the
challenge, and art, in using convex optimization is in recog-
nizing and formulating the problem. Once this formulation
is done, solving the problem is ... (almost) technology”.
While solver technology has significantly matured, the pro-
cess of formulating optimization models remains largely
human expertise driven. Responding to this challenge, auto-
formulation is the automated process of transforming natural
language descriptions of real-world problems into formal
optimization models, thus automating the “challenge and
art” of problem formulation.

Autoformulation: Formal Definition
LetD,M, and C represent the spaces of natural language
problem descriptions, mathematical formulations, and
computational models respectively, with d ∈ D,m ∈M,
and c ∈ C as their elements. Autoformulation involves
two transformations:

1. Mathematical formulation pϕ : D → P (M): Trans-
forming problem description into a mathematical formu-
lation. Here, P (·) represents the space of probability
distributions.
2. Computational representation pψ : M →
P (C): Converting the mathematical formulation into
computational formats suitable for solvers, which in-
cludes representing the model in a programming frame-
work, and specifying a solving algorithm.

Autoformulator. Here, pϕ and pψ are models of each
transformation, with ϕ, ψ their respective parameters.a

The complete autoformulation process can thus be repre-
sented as inferring the joint distribution pϕ,ψ(m, c | d) =
pψ(c |m) ·pϕ(m |d). We refer to any algorithm designed
for autoformulation as an autoformulator.
Objective. For a given problem d, the autoformulator
aims to find optimal mathematical and computational
formulations that maximize an evaluation measure Q(·) :

(m∗, c∗) ∈ argmax
m∼pϕ,c∼pψ

Q(m, c; d) (2)

Evaluation criteria. Here, Q assesses the quality of
(m, c) relative to d. There are many possible instantia-
tions of Q, a primary example is formulation correct-
ness—accuracy of the formulation in reflecting problem
requirements. Given that a formulation is correct, other
measures could consider optimality gap (distance from
optimal value, where certain convex formulation can

achieve zero optimality gap), and computational effi-
ciency (solution time and resource requirements, which
can vary significantly between equivalent formulations).b

aFollowing convention (Sumers et al., 2024), we define the
weights and procedural prompts as the parameters (ϕ, ψ) of an
LLM-based autoformulator.

bIn Appendix E, we discuss and empirically analyze the
effects of problem (re)-formulation and solver configuration on
optimality and computational efficiency.

A few observations. While autoformulation involves two
transformations, the mathematical formulation step (pϕ)
generally presents significantly greater challenges than creat-
ing computational models (pψ). This has also been observed
empirically in recent studies, where formulating mathemat-
ical models was the primary source of errors (Xiao et al.,
2023; AhmadiTeshnizi et al., 2024). Indeed, this step re-
quires deep domain understanding, abstraction of real-world
complexities into mathematical constructs, and a certain cre-
ativity in effective reformulations. While the translation to
computational models often follows a more standardized pat-
tern, with some automation already available through com-
mercial packages (Fourer et al., 1990). Thus, our subsequent
analysis focuses primarily on the mathematical formulation
step. However, we note that the second transformation also
presents unique challenges, most notably through the choice
of solving algorithm and its hyperparameter configuration.

2.2. Challenges

Our conceptualization of autoformulation as a search prob-
lem reveals a few key challenges:
[C1] Problem-dependent hypothesis space: For each
problem d, there exists a vast and problem-dependent hy-
pothesis space H(d), encompassing various variable def-
initions, constraint structures, objective functions, and
their interdependencies. This interdependence and domain-
specificity makes it infeasible to manually enumerate or
construct the search space (required in traditional search
problems), requiring automated methods to generate valid
and interdependent modeling components.
[C2] Efficient search: Efficiently searching the hypoth-
esis space is challenging, as ‘good’ formulations can be
sparse. There are two key uncertainties complicating
this search: uncertainty in formulation choices and un-
certainty due to ambiguous requirements (e.g., implicit or
common-sense constraints, including non-negativity of re-
source constraints). Additionally, trivial model equiva-
lence—syntactically different but functionally identical for-
mulations (e.g., 2x+ 3y versus 3y + 2x)—can lead to inef-
ficient exploration of superficial variations at the expense of
discovering more diverse and valuable formulations. Here,
‘trivial’ refers to syntactic variations, distinct from mathe-
matical reformulations that change the underlying structure

3

Autoformulation of Mathematical Optimization Models Using LLMs

(e.g., converting non-convex to convex constraints).
[C3] Model evaluation: While solvers can assess compu-
tational aspects like efficiency and solvability, evaluating
formulation correctness, whether a model faithfully cap-
tures the intended problem requirements, remains a core
challenge. This absence of a correctness signal complicates
the search process, as an efficient and optimal solution to an
incorrectly formulated problem is ultimately invalid.

Here, we note that the complexity of autoformulation also
varies significantly with problem characteristics of d, par-
ticularly convexity properties—while some problems allow
direct solution for global optimality, others require the aut-
oformulator to identify convex reformulations or develop
relaxation strategies balancing optimality and computational
efficiency (please see Appendix C for a detailed discussion).

3. LLM-Enhanced MCTS Search for
Autoformulation

Overview. Recent developments have shown the promis-
ing potential of using Large Language Models (LLM) for
autoformulation, leveraging their ability to generate formu-
lations dynamically and bypassing the need of manually
constructing hypothesis spaces ([C1], Xiao et al. (2023);
AhmadiTeshnizi et al. (2024)). Our approach builds on
these works, differing in three key ways. First, we decom-
pose the search space using optimization modeling’s hier-
archical structure, enabling systematic exploration through
Monte-Carlo Tree Search (MCTS) rather than generating
complete formulations at once [C2]. Second, we enhance ef-
ficiency by combining LLM-based evaluation of partial and
complete formulations with symbolic pruning of equivalent
branches, reducing redundant exploration while improv-
ing search guidance [C3]. Third, we employ a determinis-
tic parser to automatically transform mathematical models
into solver-ready computational code. While this success-
fully handled all problems in our experiments, eliminating
a source of error where LLM-based translation (as used in
existing works) proved unnecessary, we acknowledge that
more complex transformations may require sophisticated
approaches in future work. In what follows, we discuss each
aspect of our method in turn.

3.1. Hierarchical Decomposition

Optimization modeling is inherently complex, involving
multiple interconnected components. To manage this com-
plexity and improve search efficiency, we propose a decom-
position of the formulation process. This approach allows
us to sequentially explore each model component rather
than searching for entire formulations at once, potentially
leading to more efficient search.

Specifically, we structurally decompose the autoformula-

tion process into four distinct stages, each represented by
mi. The complete mathematical formulation is defined as
m = ⊕4

imi, where ⊕ denotes the composition of model
components: m1—parameters and decision variables,
m2—objective function, m3—equality constraints, and
m4—inequality constraints. Given a problem d, the joint
distribution pϕ,ψ(c,m | d) is decomposed hierarchically:

pϕ,ψ(c,m | d) = pψ(c |m)

4∏
i=1

pϕ(mi |m<i, d) (3)

Here, pϕ(mi |m<i, d) represents the sequential nature of
mathematical formulation, where each component mi de-
pends on the partial formulation m<i = ⊕i−1

j=0mj (with
m0 = ∅) and the problem description d.

3.2. MCTS-Based Autoformulator

Having established a structured decomposition of the aut-
oformulation process, we now address the challenge of ef-
ficiently navigating this hierarchical space. We employ an
MCTS-based algorithm, which is particularly well-suited
for exploring complex, hierarchical search spaces (Coulom,
2006). Our MCTS constructs a search tree of depth 4 to
explore possible formulations, where each of the four levels
corresponds to a component in our structured decomposition
(m1 to m4). Nodes in this tree contain component formula-
tions, and a complete formulation is represented by a path
from the root to a terminal node.

The MCTS algorithm iteratively builds the search tree
through four key steps: ▶ selection, ▶ expansion, ▶ eval-
uation, and ▶ backpropagation. For notational clarity,
we denote a tree node as n and any of its child nodes as
nchild ∈ Child(n), where Child(n) is the set of all child
nodes of n. We use n⃗ to represent the partial formulation
by concatenating the path from root to node n. For instance,
n⃗ for a node of depth 2 is the partial formulation containing
the parameters, decision variables, and the objective func-
tion. Terminal nodes are denoted as nt. In the interest of
space, we present detailed information about all prompts
used in the algorithm in Appendix B, providing only high-
level details in the following subsections.

3.2.1. EXPANSION

Upon reaching an unexpanded node n, we generate its
child nodes Child(n) through expansion. Unlike traditional
MCTS, which expands all actions from a predefined space,
our expansion explores an undefined space of possible com-
ponent formulations. We leverage LLMs to generate these
potential formulations, using the partial formulation con-
structed so far as context to ensure coherent expansions.
Our process involves: (1) generating diverse candidate for-
mulations through LLM-based exploration, and (2) pruning
trivially equivalent candidates to maintain a manageable yet

4

Autoformulation of Mathematical Optimization Models Using LLMs

(1) Generate set of candidate formulations

Current partial solution

(2) Prune trivially
equivalent candidates

equivalent

(3) Estimate value function
 for each solution Ranking solutions

Figure 2. Expansion and evaluation. Expansion involves gener-
ating candidate formulations, which are then pruned to remove
trivial equivalences. Remaining candidates are assigned a normal-
ized rank score as value initialization.

diverse search space. The combined expansion and evalua-
tion process is illustrated in Figure 2.

Generating candidate formulation. At node n, the LLM
generates potential child nodes (containing formulations
of the next component formulations) by conditioning on
the partial formulation and problem description, which
we denote as LLMϕ(nchild | n⃗, d). The LLM is queried
through a structured prompt with three elements: ▶ prob-
lem description: the original natural language problem
description d; ▶ partial formulation: the current partial
formulation n⃗ in JSON format; ▶ level-specific instruc-
tions: guidelines for the current modeling stage, includ-
ing output format and relevant considerations. We repre-
sent formulations and request formulations using JSON
format, where keys are descriptive labels and values are
mathematical expressions. For example, when generat-
ing possible inequality constraints, the LLM might return
the formulation: {“material balance”: x1 + x2 ≤ 100,

“quality requirement”: 0.8x1 + 0.6x2 ≥ 75}. For each
node expansion, we sample H ∈ N hypotheses from
the LLM’s distribution: Ĉhild(n) = {ñ(h)child | ñ

(h)
child ∼

LLMϕ(· | n⃗, d), ∀h ∈ [H]}, where ñ(h)child represents the h-th
candidate component formulation.

Search pruning. After generating candidate formulations,
we prune the search space to ensure diversity and effi-
ciency. Specifically, we eliminate trivially equivalent for-
mulations—expressions that differ only in syntax while
remaining functionally identical (e.g., 2x + 3y versus
3y + 2x). This pruning operation can be expressed as
Child(n) = pruning(Ĉhild(n)). We employ Satisfia-
bility Modulo Theories (SMT) solvers to detect equivalent
formulations (Barrett & Tinelli, 2018). For components m2-
m4 (objective functions, equality, and inequality constraints
respectively), we represent each candidate formulation as
a system of equations or inequalities. To compare two sys-
tems S1 and S2 over domain X , we check the satisfiability
of ¬(∀x : (S1(x) ⇐⇒ S2(x))). Unsatisfiability proves

equivalence by showing no x exists where the systems dif-
fer, while satisfiability indicates distinct formulations. We
apply this check pairwise across candidates in Ĉhild(n),
pruning trivially equivalent ones. Detailed SMT formulae
are provided in Appendix B.

While SMT solvers effectively detect equivalent formula-
tions, their decidability varies across problem types (Monni-
aux, 2016). Linear arithmetic over real and integer domains
is generally decidable, but mixed-integer or non-linear func-
tions may be undecidable depending on problem properties.
When a solver cannot determine equivalence, we conser-
vatively treat formulations as distinct, potentially explor-
ing some redundant paths but avoiding premature pruning.
While this is a heuristic approach that has scope for future
improvements, our empirical analysis indicates that it yields
significant efficiency gains through pruning (Section 5.3).
Additionally, since SMT solvers require consistent variable
domains X , we apply them only to levels m2-m4 where
nodes share decision variables. For level m1, which defines
decision variables, we query an LLM for pruning.

3.2.2. EVALUATION

After expansion, each newly created child nodes undergoes
an initial evaluation to estimate its value, guiding subsequent
exploration. While it is possible to use uniform priors, we
employ LLMs to evaluate child nodes to provide informed
value estimates, helping guide search toward promising for-
mulations earlier. Specifically, the LLM is provided with all
partial formulations of newly expanded child nodes, namely
{n⃗child | nchild ∈ Child(n)}, and instructed to assign a
numerical rank (from 1 to |Child(n)|), based on its evalu-
ation of formulation correctness, constraint feasibility and
alignment with the original problem description). These
ranks are then center-normalized to [0, 1], with the mid-
dle rank centered at 0.5. We denote this normalized score
s(n⃗child), which is used to initialize the child node’s value
Vprior(nchild)← s(n⃗child). Subsequently, we retain the top
I ∈ N candidates, based on their normalized rank scores.

3.2.3. DUAL REWARDS AND BACKPROPAGATION

Terminal rewards. We continue expanding until a termi-
nal node nt is reached, where n⃗t represents a complete
formulation (from root to terminal node). We evaluate the
complete formulation using a dual approach, combining
assessments of both mathematical correctness and computa-
tional model’s performance to obtain reward r(n⃗t):

r(n⃗t) = I (Ecsolver(parser(n⃗t)) = 1) ·EmLLM(n⃗t; d) (4)

where I is the indicator function and c = parser(n⃗t) is
our custom parser that converts each mathematical formu-
lation into a computational representation. EmLLM(n⃗t; d) is
the LLM’s evaluation of the mathematical formulation’s

5

Autoformulation of Mathematical Optimization Models Using LLMs

correctness, assessing how well it captures the problem re-
quirements and constraints in d. Ecsolver(parser(n⃗t)) is
the solver’s binary feedback on whether the program was
solved optimally. We note that this is an imperfect signal, as
an incorrectly formulated model could be solved to optimal-
ity despite not faithfully representing the original problem,
highlighting the importance of dual evaluation.

To evaluate formulation correctness for complete models,
we employ a comparative evaluation approach rather than
independent scoring. While LLMs could directly assign
scores to each formulation, our empirical analysis showed
mixed results with this approach—likely due to scoring
inconsistencies when evaluating solutions in isolation. In
comparison, relative comparisons yield more robust and
consistent evaluations. However, the approach described in
Section 3.2.2 is no longer practical (as each new solution
would require re-ranking and re-computing reward for all
previous formulations). Instead, we introduce a compara-
tive method where each formulation is evaluated against a
consistent set of baseline models mb. The LLM outputs a
score in [0, 1], where values above 0.5 indicate preference
for the candidate formulation over the baseline. Formally,
we express this as EmLLM(n⃗t; d) ∼ LLM(· | n⃗t,mb; d). This
approach ensures comparable rewards across all terminal
nodes by maintaining a consistent reference point.

Backpropagation. Following the reward calculation, we
backpropagate this value to update the statistics of all
nodes along the trajectory. For each node in this path
from root to terminal node, nt, we apply the following
updates: Vbp(n) ← Vbp(n)·N(n)+r(n⃗t)

N(n)+1 , N(n) ← N(n) +

1, ∀ n ∈ n⃗t. Here, we increment the visit count N(n)
by 1 and update the value Vbp(n) with a weighted aver-
age of its previous value and the new reward r(n⃗t). This
backpropagation process ensures that the tree gradually ac-
cumulates more accurate estimates of node values. These
updated statistics then inform the selection strategy in sub-
sequent iterations. The node value used in selection is then
V (n) = λ · Vprior(n) + (1− λ)Vbp(n).

3.2.4. SELECTION

The selection step guides the search towards promis-
ing regions of the tree. Starting from the root, the
algorithm recursively selects child nodes using the
Upper Confidence Bound for Trees (UCT): n∗child =

argmaxnchild∈Child(n)

(
V (nchild) + ω

√
lnN(n)
N(nchild)

)
(Kocsis & Szepesvári, 2006). This process continues until
reaching an unexpanded node. Here, n∗child is the selected
child node, V (nchild) is its estimated value, N(n) and
N(nchild) are visit counts for the parent and child nodes
respectively and ω is an exploration constant. This formula
balances exploitation (first term, favoring high-value nodes)
with exploration (second term, favoring less-visited nodes).

Summary. Our MCTS-based algorithm iterates through the
aforementioned steps, progressively constructing and refin-
ing a tree of possible formulations. We execute this process
for T ∈ N iterations, thoroughly exploring the space of
potential models and identifying promising formulations.
The final output is a set of M ∈ N, M ≤ T functionally
distinct optimization models (achieved through search prun-
ing), where each model is defined by a unique path through
the tree. Formally, we express the overall algorithm as:
{(m(i), c(i), r(i))}Mi=1 = MCTSLLM(d). The superscript i in-
dexes the functionally distinct formulation, and r(i) is the
estimated value/reward of the corresponding terminal node.

4. Related Work
Advances in LLMs. Recent works have demonstrated the
substantial potential of LLMs in solving complex reason-
ing tasks, including language understanding (Hendrycks
et al., 2021), commonsense reasoning (Brown, 2020), log-
ical reasoning (Wei et al., 2022; Yao et al., 2024), math-
ematical problem-solving (Lewkowycz et al., 2022), and
coding tasks (Chen et al., 2021). Of particular relevance are
studies employing LLMs in optimization and search tasks,
such as Bayesian Optimization (Liu et al., 2024), prompt
optimization (Guo et al., 2023), evolutionary optimization
(Yang et al., 2024; Liu et al., 2025), and symbolic program
refinement (Madaan et al., 2024). In contrast, our focus
is on leveraging LLMs to bridge the gap between natural
language description and formal optimization models.

Autoformulation. Early work by Ramamonjison et al.
(2023) introduced the first autoformulation competition.
The competition focused on linear programming problems,
but required predicting formulations in specific formats (i.e.,
entity problem tagging), using pre-LLM era NLP models
with limited generalization beyond given formats. Recent
advances by Xiao et al. (2023) and AhmadiTeshnizi et al.
(2024) employed multi-agent LLM frameworks, where mul-
tiple agents (e.g., coding and formulation agents) collabo-
rate to generate and iteratively refine complete formulations.
Our approach differs by decomposing the formulation into
components, using MCTS for systematic exploration, and
incorporating symbolic pruning and composite rewards to
improve search efficiency. In parallel, Tang et al. (2024) de-
veloped the first LLM specifically finetuned for optimization
modeling using a mixture of real and synthetic data.

Planning. Recent research have also explored the inte-
gration of LLMs with planning algorithms (Huang et al.,
2024a), the most pertinent of which consider approaches
that generate and select from multiple plans (Wei et al.,
2022; Wang et al., 2023). Such approaches are particularly
effective for complex tasks, where a single plan generated by
LLM is likely to be suboptimal, thus requiring exploration.
Yao et al. (2023) employed an LLM to generate multiple rea-

6

Autoformulation of Mathematical Optimization Models Using LLMs

Table 1. Benchmark comparison. Formulation correctness results on four benchmarks containing LPs/MILPs.

Method NL4OPT IndustryOR MAMO (ComplexLP) ComplexOR
Finetuned methods

ORLMLlama3-8B 85.7% 38.0% 39.3% 44.4%
Methods based on GPT4

Standard 47.3% 28.0% 24.6% 9.5%
Reflexion 53.0% - 36.0% 19.1%
Chain-of-Experts 64.2% - 40.2% 38.1%
OptiMUS 78.8% - - 66.7%
Autoformulator (N=1) 85.24% 35.0% 43.8% 66.7%
Autoformulator (N=3) 92.21% 42.0% 61.4% 72.2%
Autoformulator (All) 92.62% 48.0% 62.3% 72.2%

soning paths and self-evaluating choices to decide the next
action. Hao et al. (2023); Zhao et al. (2024) employ LLMs
as policy functions in MCTS framework, where potential ac-
tions are generated through LLM calls. Plans are evaluated
either through grounded feedback from the environment or
LLM self-evaluation, including the probability of ‘good’
actions (Hao et al., 2023), or a continuous score (Yuan et al.,
2024). Compared with these search-guided methods, our
work differs in hierarchical search, SMT-based pruning, and
comparative/ranking based evaluation of correctness, inno-
vations specifically tailored to autoformulation.

5. Experiments
We present our experimental evaluation across three key
areas. First, we benchmark our autoformulator against base-
line approaches on real-world problems (Section 5.1). We
then analyze two critical components: our ranking and com-
parative evaluation methods for assessing formulation cor-
rectness (Section 5.2), and our search space pruning tech-
niques for improved efficiency (Section 5.3). Section 5.4
concludes with insights on exploration diversity, perfor-
mance across problem types, and failure modes.

Benchmarks. We evaluate our methods on four real-world
benchmarks: NLP4OPT (Ramamonjison et al., 2023), a
curated set of 244 linear programming problems (based
on (Tang et al., 2024)); IndustryOR (Tang et al., 2024),
consisting of 100 problems spanning linear, integer, and
mixed-integer programming at various difficulty levels;
ComplexOR (Xiao et al., 2023), with 37 real-world opera-
tions research problems from diverse domains; and MAMO
(Huang et al., 2024b), using the more advanced ComplexLP
subset, which includes 211 problems.

Evaluations. Following (Tang et al., 2024; AhmadiTesh-
nizi et al., 2024), we report accuracy as the proportion of
problems where the discovered formulation yielded opti-
mal objective values. All baselines and experiments use
GPT4-0613 as the underlying LLM.

5.1. Benchmark Comparisons

Baselines. We compare against several methods: zero-
shot prompting (Standard), the reasoning-augmented
Reflexion (Shinn et al., 2023), and three specialized aut-
oformulators: Chain-of-Experts (Xiao et al., 2023)
and OptiMUS (AhmadiTeshnizi et al., 2024), both based
on multi-agent frameworks, and ORLM (Tang et al., 2024),
a Llama3-based model finetuned on a mix of real and syn-
thetic optimization datasets.

Analysis. We configure our method with H = 10 candidate
formulations, I = 3 children retained after pruning and
scoring, and T = 16 total rollouts. Unlike prior approaches
that return a single model, our MCTS-based search gener-
ates up to T distinct formulations. Accordingly, we report
Pass@N metrics to capture performance across multiple
candidates. Results in Table 1 show that our method matches
baseline performance with just one rollout, illustrating the
efficiency of hierarchical search decomposition. With three
rollouts, we surpass all baselines, including the finetuned
ORLM model. While additional rollouts further improve
accuracy, gains taper off due to diminishing returns and
increased computational cost.

Additional results are provided in Appendix A, including
comparisons with two ablated variants of our method that
underscore the importance of structured tree search. We
also present Best-of-N comparisons against ORLM (our
closest competitor), where we select the candidate with
the highest estimated value, highlighting the benefits of
exploration in our framework.

5.2. Formulation Correctness Evaluation

Next, we examine our formulation evaluation methods and
their effects on search performance. Specifically, we analyze
the estimated reward of complete formulations, and the
estimated value of partial formulations.

(1) Complete formulation reward. To analyze our ap-
proach to evaluate complete formulations, we considered

7

Autoformulation of Mathematical Optimization Models Using LLMs

1 5 10

Problems with at least (≥) # unique formulations

0.1

0.2

0.3

0.4

0.5

0.6
P

er
ce

nt
ag

e
(%

)
Greedy path

Random path

Figure 3. Evaluation of value initialization. Comparison of node
selection based on initial value estimates vs. random selection.

decision variables objective equality const. inequality const.
Formulation Step

0

20

40

60

80

100

P
er

ce
n
ta

ge
(%

)

Nodes After Pruning and Selection

Filter step

(1) Candidate formulations (2) SMT pruning (3) Normalized rank selection

decision variables objective equality const. inequality const.

(2) SMT pruning x4.71 x30.03 x107.53 x454.55

(3) Normalized rank selection x5.05 x37.74 x175.44 x1000.00

Estimated efficiency in accumulated generation over formulation steps

Figure 4. Improvements in search efficiency. Pruning and selec-
tion by normalized rank score significantly reduces search space.

all problems in IndustryOR where a correct solution was
found, and collected the scores assigned to correct and in-
correct formulations. We found that correct solutions were
evaluated with higher scores than incorrect formulations, ob-
taining a biserial correlation coefficient of 0.48 (p-value of
2.0681e−3). We compare this with a direct scoring method
(Zhang et al., 2024) that independently scores each formula-
tion from 1-100. This yielded a correlation of 0.23 (p-value
of 1.1185e−1), underscoring the effectiveness of our com-
parative evaluation approach.

(2) Partial formulation scores. To evaluate estimated prior
scores, we first obtain a fully expanded tree using Depth-
First Search, where each node can have up to three children.
Then we used our comparative evaluation to obtain node
scores. For evaluation, we compared the correctness of
a greedy formulation obtained by greedily selecting the
highest scoring node in each level of the search tree and a
randomly obtained solution. Figure 3 reveals that greedy
solutions obtained from prior scores were significantly more
accurate, with the gap increasing as the number of unique
formulations contained in the tree increases.

2 4 6 8 10 12 14 16

Number of Rollouts

36

38

40

42

44

46

48

#
of

S
ol

u
ti

on
s

F
ou

n
d

Cumulative # Solutions Found Over Rollouts

Cumulative # Solutions Found

Total # Solutions

Figure 5. Rate of formulation discovery. Our method continues
to discover unique and correct formulations during search.

5.3. Gains in Search Efficiency

The goal of this experiment is to analyze the gains in search
efficiency. Recall that, in each formulation stage, candidate
child nodes are (1) pruned using SMT to eliminate redun-
dant formulations, and (2) selective retention of the top-3
candidates based on normalized rank scores. In Figure 4, we
visualized the number of retained solutions of each filtering
stage. We note that, on average, around 20% of formulations
are retained after the symbolic pruning stage, with further
reduction after the selection stage. To quantify the efficiency
gains, we compared our approach against a non-hierarchical
search method. The analysis reveals that a non-hierarchical
approach would require 1000x more formulation genera-
tions to produce the same number of unique formulations,
demonstrating substantial savings in search budgets.

5.4. Performance Analysis

We conclude our evaluation by analyzing our method’s per-
formance through three lenses: (1) the rate of correct model
discovery, (2) performance across problem categories, and
(3) the underlying sources of error in formulated models.

Formulation discovery rate. Figure 5 describes the number
of correct formulations discovered on IndustryOR as a func-
tion of MCTS rollouts (where 48 total correct formulations
were found). We observed that while additional rollouts
consistently yielded more correct solutions, the search pro-
duces diminishing returns: discovering the final 4 correct
solutions required 10 additional rollouts. This illustrates
that while our method continues to explore useful candi-
dates, the marginal gain per rollout decreases, highlighting
a trade-off between coverage and computational budget.

Finegrained performance. We further examined accuracy
across different problem categories in Table 2. Our method
performs consistently well across categories, with no signifi-
cant drop in performance for any specific type. Interestingly,
we observed that categories with lower accuracy tended to
exhibit greater average tree entropy, a measure of diversity
in the generated search trees. This suggests that tree entropy

8

Autoformulation of Mathematical Optimization Models Using LLMs

may be a useful indicator of uncertainty and a potential
predictor of formulation success.

Table 2. Finegrained results. By problem type and difficulty.

Accuracy Entropy
Problem Difficulty

Easy 0.68 1.96
Medium 0.29 3.04
Hard 0.50 2.73

Problem Type
IP 0.55 1.65
LP 0.42 2.17
MIP 0.52 3.32

Sources of error. To understand where our method fails,
we conducted a targeted expert evaluation on 18 autofor-
mulated problems from the ComplexOR benchmark. An
optimization expert manually reviewed each model and as-
sessed the correctness of four key components: decision
variables, objective function, equality constraints, and in-
equality constraints. These assessments were also compared
against our objective-value-based proxy for correctness.

Table 3. Sources of error in incorrect formulations.
Component Dec var Obj fun Eq const Ineq const Agree %
Error rate 23% 15% 54% 54% 82%

The expert analysis revealed that constraint modeling, espe-
cially inequality constraints, was the most frequent source
of error. Issues included incorrect formulations, omissions,
or misclassifications (e.g., treating an inequality as an equal-
ity), with constraint-related errors present in over 50% of
incorrect models. Notably, there was an 82% agreement be-
tween the expert’s judgments and our objective-value proxy.
In two cases, the expert assessed the model to be incorrect
despite matching the correct objective value; in two others,
models assessed to be correct by the expert produced slightly
incorrect objectives. These findings suggest that while accu-
racy based on comparing returned objective values serve as
a strong and scalable proxy for formulation correctness, it
does not always capture semantic correctness, highlighting
the need for caution when interpreting matching objective
values as evidence of fully correct formulations.

6. Discussions
In summary, this work formally defines autoformulation for
mathematical optimization models, establishing objectives,
evaluation metrics, and identifying key challenges. We in-
troduced a novel approach that frames autoformulation as a
search problem, effectively leveraging the hierarchical struc-
ture of optimization modeling. Our method integrates LLMs
as conditional hypothesis generators and evaluators of for-
mulation correctness within an MCTS framework, system-
atically exploring the hypothesis space of possible formula-
tions. The introduction of search pruning using SMT solvers

further enhances efficiency by eliminating redundant formu-
lations. Empirical evaluations across real-world benchmarks
demonstrate our method’s superior performance in formu-
lating correct models, with notable efficiency gains from
pruning and LLM-based correctness evaluation.

Future Work. Looking ahead, we see autoformulation as a
promising domain where LLMs can meaningfully augment
human expertise. Future research directions include devel-
oping collaborative frameworks that integrate humans in-
the-loop with autoformulator capabilities, potentially lever-
aging active acquisition techniques (Astorga et al., 2024;
Kobalczyk et al., 2025). Additionally, exploring advanced
LLM-based methods, such as retrieval-augmented genera-
tion (Lewis et al., 2020), can further enhance formulation
processes. Our current method can be viewed as a form of
test-time search, and its core principles, hierarchical decom-
position, LLM-based evaluation of formulation quality, and
search space pruning, can be naturally extended to inform
LLM finetuning via outcome- or process-level supervision
(Lightman et al., 2023; Wan et al., 2024). Advancing this
field will also require the creation of large-scale, diverse
benchmarks spanning a wider range of problem types and
complexities. In particular, future benchmarks should go
beyond integer and mixed-integer programming and include
more challenging problems that demand advanced or cre-
ative reformulations.

9

Autoformulation of Mathematical Optimization Models Using LLMs

Impact Statement
While automated optimization model formulation through
LLMs offers promising efficiency gains, it raises concerns
about model reliability and verification challenges, as LLM-
generated formulations may contain subtle errors that could
lead to incorrect solutions in critical applications. As for-
mulations grow more complex, verifying their correctness
becomes increasingly challenging. Prior to deployment in
critical applications, practitioners must have a clear under-
standing of system capabilities and limitations, alongside
robust institutional frameworks that ensure human oversight
and expert validation.

Reproducibility
We provide details on implementing our methods and repro-
ducing results in Section 5 and Appendix B. We provide
the code to reproduce our results at https://github.
com/jumpynitro/AutoFormulator.1

Acknowledgements
We thank the anonymous ICML reviewers, members of
the van der Schaar lab, and Andrew Rashbass for many
insightful comments and suggestions. Tennison Liu would
like to thank AstraZeneca for their sponsorship and sup-
port. Nicolás Astorga thanks W.D. Armstrong Trust for their
support. Yuanzhang Xiao was supported by the National
Science Foundation under Grant NRT-AI 2244574. This
work was supported by Microsoft’s Accelerate Foundation
Models Academic Research initiative.

References
AhmadiTeshnizi, A., Gao, W., and Udell, M. Optimus:

Scalable optimization modeling with (mi) lp solvers and
large language models. arXiv preprint arXiv:2402.10172,
2024.

Alizadeh, F. and Goldfarb, D. Second-order cone program-
ming. Mathematical programming, 95(1):3–51, 2003.

Astorga, N., Liu, T., Seedat, N., and van der Schaar, M.
Active learning with llms for partially observed and cost-
aware scenarios. Advances in Neural Information Pro-
cessing Systems, 37:20819–20857, 2024. URL https:
//openreview.net/pdf?id=bescO94wog.

Barrett, C. and Tinelli, C. Satisfiability modulo theories.
Handbook of model checking, pp. 305–343, 2018.

Belghazi, M. I., Baratin, A., Rajeshwar, S., Ozair, S., Ben-
gio, Y., Courville, A., and Hjelm, D. Mutual information

1Also available at the wider lab repository https://
github.com/vanderschaarlab/AutoFormulator.

neural estimation. In International conference on ma-
chine learning, pp. 531–540. PMLR, 2018.

Boyd, S. and Vandenberghe, L. Convex Optimization. Cam-
bridge University Press, 2004.

Bramel, J. and Simchi-Levi, D. The Logic of Logistics:
Theory, Algorithms, and Applications for Logistics Man-
agement. Springer, 1997.

Brown, T. B. Language models are few-shot learners. arXiv
preprint arXiv:2005.14165, 2020.

Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H. P. D. O.,
Kaplan, J., Edwards, H., Burda, Y., Joseph, N., Brockman,
G., et al. Evaluating large language models trained on
code. arXiv preprint arXiv:2107.03374, 2021.

Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra,
G., Roberts, A., Barham, P., Chung, H. W., Sutton, C.,
Gehrmann, S., et al. Palm: Scaling language modeling
with pathways. Journal of Machine Learning Research,
24(240):1–113, 2023.

Coulom, R. Efficient selectivity and backup operators in
monte-carlo tree search. In International conference on
computers and games, pp. 72–83. Springer, 2006.

Dantzig, G. B. Origins of the simplex method. In A history
of scientific computing, pp. 141–151. 1990.

Delgado, E. J., Cabezas, X., Martin-Barreiro, C., Leiva, V.,
and Rojas, F. An equity-based optimization model to
solve the location problem for healthcare centers applied
to hospital beds and covid-19 vaccination. Mathematics,
10(11):1825, 2022.

Diamond, S. and Boyd, S. CVXPY: A Python-embedded
modeling language for convex optimization. Journal of
Machine Learning Research, 17(83):1–5, 2016.

Fourer, R., Gay, D. M., and Kernighan, B. W. A modeling
language for mathematical programming. Management
Science, 36(5):519–554, 1990.

Fuchs, B. Application of convex relaxation to array syn-
thesis problems. IEEE Transactions on Antennas and
Propagation, 62(2):634–640, 2013.

Goemans, M. X. and Williamson, D. P. Improved approx-
imation algorithms for maximum cut and satisfiability
problems using semidefinite programming. Journal of
the ACM (JACM), 42(6):1115–1145, 1995.

Goldsmith, A. J. and Varaiya, P. P. Capacity, mutual in-
formation, and coding for finite-state markov channels.
IEEE transactions on Information Theory, 42(3):868–
886, 1996.

10

https://github.com/jumpynitro/AutoFormulator
https://github.com/jumpynitro/AutoFormulator
https://openreview.net/pdf?id=bescO94wog
https://openreview.net/pdf?id=bescO94wog
https://github.com/vanderschaarlab/AutoFormulator
https://github.com/vanderschaarlab/AutoFormulator

Autoformulation of Mathematical Optimization Models Using LLMs

Guo, Q., Wang, R., Guo, J., Li, B., Song, K., Tan, X., Liu,
G., Bian, J., and Yang, Y. Connecting large language mod-
els with evolutionary algorithms yields powerful prompt
optimizers. arXiv preprint arXiv:2309.08532, 2023.

Gurobi Optimization, LLC. Gurobi Optimizer Reference
Manual, 2024. URL https://www.gurobi.com.

Hao, S., Gu, Y., Ma, H., Hong, J. J., Wang, Z., Wang, D. Z.,
and Hu, Z. Reasoning with language model is planning
with world model. In The 2023 Conference on Empirical
Methods in Natural Language Processing, 2023.

Hendrycks, D., Burns, C., Basart, S., Zou, A., Mazeika, M.,
Song, D., and Steinhardt, J. Measuring massive multitask
language understanding. In International Conference on
Learning Representations, 2021.

Huang, X., Liu, W., Chen, X., Wang, X., Wang, H., Lian,
D., Wang, Y., Tang, R., and Chen, E. Understanding
the planning of llm agents: A survey. arXiv preprint
arXiv:2402.02716, 2024a.

Huang, X., Shen, Q., Hu, Y., Gao, A., and Wang, B. Mamo:
a mathematical modeling benchmark with solvers. arXiv
preprint arXiv:2405.13144, 2024b.

Kobalczyk, K., Astorga, N., Liu, T., and van der Schaar, M.
Active task disambiguation with LLMs. In The Thirteenth
International Conference on Learning Representations,
2025. URL https://openreview.net/forum?
id=JAMxRSXLFz.

Kocsis, L. and Szepesvári, C. Bandit based monte-carlo
planning. In European conference on machine learning,
pp. 282–293. Springer, 2006.

Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin, V.,
Goyal, N., Küttler, H., Lewis, M., Yih, W.-t., Rocktäschel,
T., et al. Retrieval-augmented generation for knowledge-
intensive nlp tasks. Advances in Neural Information Pro-
cessing Systems, 33:9459–9474, 2020.

Lewkowycz, A., Andreassen, A., Dohan, D., Dyer, E.,
Michalewski, H., Ramasesh, V., Slone, A., Anil, C.,
Schlag, I., Gutman-Solo, T., et al. Solving quantitative
reasoning problems with language models. Advances in
Neural Information Processing Systems, 35:3843–3857,
2022.

Lightman, H., Kosaraju, V., Burda, Y., Edwards, H., Baker,
B., Lee, T., Leike, J., Schulman, J., Sutskever, I., and
Cobbe, K. Let’s verify step by step. arXiv preprint
arXiv:2305.20050, 2023.

Liu, T., Astorga, N., Seedat, N., and van der Schaar, M.
Large language models to enhance bayesian optimization.
In The Twelfth International Conference on Learning

Representations, 2024. URL https://openreview.
net/forum?id=OOxotBmGol.

Liu, T., Huynh, N., and van der Schaar, M. Decision tree in-
duction through LLMs via semantically-aware evolution.
In The Thirteenth International Conference on Learning
Representations, 2025. URL https://openreview.
net/forum?id=UyhRtB4hjN.

Madaan, A., Tandon, N., Gupta, P., Hallinan, S., Gao,
L., Wiegreffe, S., Alon, U., Dziri, N., Prabhumoye, S.,
Yang, Y., et al. Self-refine: Iterative refinement with self-
feedback. Advances in Neural Information Processing
Systems, 36, 2024.

Mokhtar, M., Shuib, A., and Mohamad, D. Mathematical
programming models for portfolio optimization problem:
A review. International Journal of Mathematical and
Computational Sciences, 8(2):428–435, 2014.

Monniaux, D. A survey of satisfiability modulo theory. In
Computer Algebra in Scientific Computing: 18th Inter-
national Workshop, CASC 2016, Bucharest, Romania,
September 19-23, 2016, Proceedings 18, pp. 401–425.
Springer, 2016.

Ramamonjison, R., Yu, T., Li, R., Li, H., Carenini, G., Ghad-
dar, B., He, S., Mostajabdaveh, M., Banitalebi-Dehkordi,
A., Zhou, Z., et al. Nl4opt competition: Formulating
optimization problems based on their natural language
descriptions. In NeurIPS 2022 Competition Track, pp.
189–203. PMLR, 2023.

Shinn, N., Labash, B., and Gopinath, A. Reflexion: an au-
tonomous agent with dynamic memory and self-reflection.
arXiv preprint arXiv:2303.11366, 2023.

Sumers, T., Yao, S., Narasimhan, K., and Griffiths, T.
Cognitive architectures for language agents. Transac-
tions on Machine Learning Research, 2024. ISSN 2835-
8856. URL https://openreview.net/forum?
id=1i6ZCvflQJ. Survey Certification.

Tang, Z., Huang, C., Zheng, X., Hu, S., Wang, Z., Ge, D.,
and Wang, B. Orlm: Training large language models for
optimization modeling. arXiv preprint arXiv:2405.17743,
2024.

Wan, Z., Feng, X., Wen, M., McAleer, S. M., Wen, Y.,
Zhang, W., and Wang, J. Alphazero-like tree-search can
guide large language model decoding and training. In
Forty-first International Conference on Machine Learn-
ing, 2024.

Wang, X., Wei, J., Schuurmans, D., Le, Q. V., Chi,
E. H., Narang, S., Chowdhery, A., and Zhou, D. Self-
consistency improves chain of thought reasoning in lan-
guage models. In The Eleventh International Confer-

11

https://www.gurobi.com
https://openreview.net/forum?id=JAMxRSXLFz
https://openreview.net/forum?id=JAMxRSXLFz
https://openreview.net/forum?id=OOxotBmGol
https://openreview.net/forum?id=OOxotBmGol
https://openreview.net/forum?id=UyhRtB4hjN
https://openreview.net/forum?id=UyhRtB4hjN
https://openreview.net/forum?id=1i6ZCvflQJ
https://openreview.net/forum?id=1i6ZCvflQJ

Autoformulation of Mathematical Optimization Models Using LLMs

ence on Learning Representations, 2023. URL https:
//openreview.net/forum?id=1PL1NIMMrw.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi,
E., Le, Q. V., Zhou, D., et al. Chain-of-thought prompting
elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837,
2022.

Williams, H. P. Model building in mathematical program-
ming. John Wiley & Sons, 2013.

Xiao, Z., Zhang, D., Wu, Y., Xu, L., Wang, Y. J., Han, X.,
Fu, X., Zhong, T., Zeng, J., Song, M., et al. Chain-of-
experts: When llms meet complex operations research
problems. In The Twelfth International Conference on
Learning Representations, 2023.

Yang, C., Wang, X., Lu, Y., Liu, H., Le, Q. V., Zhou, D., and
Chen, X. Large language models as optimizers. In The
Twelfth International Conference on Learning Represen-
tations, 2024. URL https://openreview.net/
forum?id=Bb4VGOWELI.

Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T. L., Cao,
Y., and Narasimhan, K. R. Tree of thoughts: Deliberate
problem solving with large language models. In Thirty-
seventh Conference on Neural Information Processing
Systems, 2023. URL https://openreview.net/
forum?id=5Xc1ecxO1h.

Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T., Cao, Y.,
and Narasimhan, K. Tree of thoughts: Deliberate problem
solving with large language models. Advances in Neural
Information Processing Systems, 36, 2024.

Yates, R. D. A framework for uplink power control in
cellular radio systems. IEEE Journal on selected areas
in communications, 13(7):1341–1347, 1995.

Yuan, W., Pang, R. Y., Cho, K., Li, X., Sukhbaatar, S.,
Xu, J., and Weston, J. E. Self-rewarding language mod-
els. In Forty-first International Conference on Machine
Learning, 2024. URL https://openreview.net/
forum?id=0NphYCmgua.

Zhang, D., Huang, X., Zhou, D., Li, Y., and Ouyang, W.
Accessing gpt-4 level mathematical olympiad solutions
via monte carlo tree self-refine with llama-3 8b, 2024.

Zhao, Z., Lee, W. S., and Hsu, D. Large language models as
commonsense knowledge for large-scale task planning.
Advances in Neural Information Processing Systems, 36,
2024.

12

https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=Bb4VGOWELI
https://openreview.net/forum?id=Bb4VGOWELI
https://openreview.net/forum?id=5Xc1ecxO1h
https://openreview.net/forum?id=5Xc1ecxO1h
https://openreview.net/forum?id=0NphYCmgua
https://openreview.net/forum?id=0NphYCmgua

Autoformulation of Mathematical Optimization Models Using LLMs

A. Additional Results
A.1. Pass@N vs. Best-of-N Results

We conduct two additional analyses: (1) evaluating the effectiveness of selecting the best formulation from our method
using its estimated reward, and (2) comparing our method’s performance against ORLM under the Pass@N metric. For
fair comparisons, we generate N independent samples from ORLM, matching our rollout count. We focus on ORLM for
comparison, since our method already outperforms other baselines at N = 1. These comparisons aim to highlight a key
distinction: our method performs structured exploration with redundancy pruning, encouraging diversity and functional
distinctness among formulations. In contrast, naive sampling (as with ORLM) often produces redundant or similar outputs
due to the lack of guided search.

Table 4 reports the Best-of-N results, where we select the top-ranked formulation by estimated score (i.e., argmax over the
N outputs). Our method selects the best formulation on over 90% of problems, consistently outperforming baselines and
supporting the value of our evaluation mechanism. In Table 5, we compare Pass@N performance with ORLM. Our method
maintains a clear advantage, further demonstrating its strength in structured, feedback-driven search over functionally
diverse solution candidates, an ability ORLM does not inherently possess.

Table 4. Pass@N vs. Best-of-N .
Method NL4OPT IndustryOR MAMO (ComplexLP) ComplexOR

Pass@N results
MCTS (N=1) 85.24% 35.0% 43.8% 66.7%
MCTS (N=3) 92.21% 42.0% 61.4% 72.2%

Best-of-N results (selected using formulation reward)
MCTS (N=3) 88.11% 37.00% 53.3% 72.2%

Table 5. Pass@N comparison to ORLM.
Method NL4OPT IndustryOR MAMO (ComplexLP) ComplexOR
ORLM (N=1) 85.7% 38.0% 39.3% 44.4%
ORLM (N=3) 90.2% 42.0% 56.3% 61.1%

MCTS (N=1) 85.24% 35.0% 43.8% 66.7%
MCTS (N=3) 92.21% 42.0% 61.4% 72.2%

A.2. Comparisons Against Additional Baselines

In this section of the Appendix, we present additional ablation studies to isolate the key contributors to the performance of
our MCTS-based method. We compare against two additional baselines:

1. A Tree-of-Thought (implemented using Depth-First Search) baseline using the same hierarchical structure but without
uncertainty guidance or search feedback;
2. A naive sequential sampling baseline with the same hierarchy but no structured search or pruning: each component is
sampled sequentially, conditioned only on the partial formulation.

Results in Table 6 show that our method consistently outperforms both baselines across all benchmarks. This highlights the
importance of structured decomposition, feedback-driven search, and redundancy pruning. Compared to Tree-of-Thought,
MCTS offers more effective exploration by using uncertainty and cumulative feedback to avoid suboptimal branches
and refine search paths. The comparison with the naive baseline shows that decomposition alone is insufficient: without
guided search or pruning, performance degrades, and manual inspection reveals a higher incidence of invalid or redundant
formulations.

Table 6. Benchmark comparisons against additional baselines.
Method NL4OPT IndustryOR

Additional baselines
Tree-of-Thought (N=3) 66.53% 28.0%
Sequential (N=3) 60.82% 28.0%

Autoformulator (N=1) 85.24% 35.0%
Autoformulator (N=3) 92.21% 42.0%
Autoformulator (All) 92.62% 48.0%

13

Autoformulation of Mathematical Optimization Models Using LLMs

B. Additional Details on Method
B.1. Formulation Equivalence Checks

SMT solvers offer a powerful approach for verifying equivalence between various components of optimization models
(Barrett & Tinelli, 2018). These tools can rigorously check if different formulations of objective functions, sets of equality
constraints, or sets of inequality constraints are logically equivalent. By encoding the components as logical formulas within
appropriate theories (such as linear arithmetic), SMT solvers can determine if the formulations are satisfiable under the
same conditions. For objective functions, the solver can check if the difference between two functions is always zero across
the feasible region. This is formally described in Equation (5). For constraint sets, it can verify if they define identical
feasible regions by checking that each constraint in one set is implied by the other set and vice versa, formally described
in Equations (6) and (7). This approach not only ensures the correctness of model transformations or reformulations but
also aids in identifying redundant constraints and simplifying complex models. However, the effectiveness of SMT solvers
in this context depends on the nature of the optimization problem, as nonlinear or highly complex formulations may pose
challenges for current solvers.

1. For objective functions f (i) and f (j):

Equivalent(f (i), f (j)) ⇐⇒ ∀x ∈ X , f (i)(x) = f (j)(x) (5)

2. For sets of equality constraints g(i) = {g(i)k }Kk and g(j) = {g(j)l }Ll :

Equivalent(g(i), g(j)) ⇐⇒ ∀x ∈ X , (
∧
k

g
(i)
k (x) = 0) ⇐⇒ (

∧
l

g
(j)
l (x) = 0) (6)

3. For sets of inequality constraints h(i) = {h(i)k }Kk and h(j) = {h(j)l }Ll :

Equivalent(h(i), h(j)) ⇐⇒ ∀x ∈ X , (
∧
k

h
(i)
k (x) ≤ 0) ⇐⇒ (

∧
l

h
(j)
l (x) ≤ 0) (7)

B.2. Prompt Design

Template instruction

I have a problem in operational research:

###PROBLEM DESCRIPTION###

I have the following formalization:
formalization dict = {"parameters": {}, "decision variables2: {}, "objective": {},
"equality constraints": {}, "inequality constraints": {}}

Template for generating parameters (depth=0)

You are an optimization modeling expert. Complete formalization dict based on
the problem description, you should complete the "parameters" field, which
consists of assigning constants to descriptive variable names.
Only complete "parameters" and nothing else. Follow these guidelines:
1. Your primary responsibility is to define all the parameters from the
problem description that will later be used to define decision variables, the
objective, and constraints (both equality and inequality).
2. You may include additional parameters in a format suitable for facilitating
the subsequent tasks of defining decision variables, the objective function,
and constraints.
3. For parameters that involve multiple indices (e.g., x[i] or x[i,j]), use
the most appropriate data structure, such as lists, dictionaries, or
dictionaries with tuple keys, to represent them.

14

Autoformulation of Mathematical Optimization Models Using LLMs

4. For each parameter, include a clear, descriptive comment explaining its
meaning.
5. Ensure that the parameter names (keys) are descriptive and intuitive.
Return only the python dictionary update (i.e.,
formalization dict["parameters"] = ...) following the described
requirements.

Template for generating decision variables (depth = 1)

You are an optimization modeling expert. Complete only the "decision variables"
field within the "formalization dict" based on the provided problem
description.
Ensure the decision variables comprehensively cover all essential elements to
accurately model the optimization problem.
Each key-value pair in the dictionary must adhere to the following structure:

<key>: {
"description": <description>,
"type": <type>,
"iteration_space": <space>

}

The structure should meet these requirements:
1. Each <key> represents a decision variable that will later be used to
implement the objective, equality, and inequality constraints in a Python
program.
2. Replace <key> with a symbolic name representing the decision variable.
Ensure that each <key> represents a distinct decision variable with a unique
symbolic name.
3. Replace <description> with a detailed explanation of the role of the
decision variable in the optimization model.
4. Replace <type> with a string representing the Gurobi variable type (e.g.,
GRB.INTEGER), as this will be used to create the variable via Gurobi’s addVar
function.
5. If the decision variable is indexed, replace <space> with a string
representing Python for-loop using list comprehension syntax to represent the
index space. For this, assume direct access to these parameter variables
(i.e., avoid using parameters[variables] syntax).
6. If the variable is not indexed, set <space> to None.
7. If the variable is indexed, do not write the index in the symbol (do not
put the index when writing <key>).
8. You are encouraged to create decision variables that are general. If two
decision variables represent the same concept write them as one key, creating
an appropriate iteration space.
Return only the Python dictionary update (i.e.,
formalization dict["decision variables"] = ...) following the described
requirements.

Template for generating objective functions (depth = 2)

You are an optimization modeling expert. Complete only the "objective" field
within the "formalization dict" based on the provided problem description.
Do not complete any other fields. Follow these requirements:
1. Write the objective function mathematically using decision variables.
2. Preface the key-value pair with a Python comment explaining the rationale

15

Autoformulation of Mathematical Optimization Models Using LLMs

behind the objective. DO NOT make a commentary inside the mathematical
description.
3. Use parameter-defined variables instead of hard-coded values. Assume
direct access to these parameter variables (i.e., avoid using
parameters[variables] syntax).
4. The dictionary key must be ’min’ or ’max’, reflecting the nature of the
objective (minimization or maximization).
5. The dictionary value must be a string representation of the objective
function based on the problem description, written in valid Python syntax.
Return only the Python dictionary update (i.e., formalization dict["objective"]
= "max": ... or formalization dict["objective"] = "min": ...) following the
described requirements.

Template for generating equality constraints (depth = 3)

You are an optimization modeling expert. Complete the formalization dict by
filling in the equality constraints field based on the problem description and
the decision variables provided.
These constraints include border constraints, initialization, and equality
constraints derived from the problem description. Do not complete the
"inequality constraints" field. Follow these requirements:
1. Descriptive constraints: Each key in the dictionary should represent a
unique, clearly named constraint, with the value being a string that describes
the corresponding mathematical equality using "==".
2. Parameter Variables: Use parameter-defined variables instead of hard-coded
values. Assume direct access to these parameter variables (i.e., avoid using
parameters[variables] syntax).
3. Indexed Variables: For indexed decision variables, indicate the index
within brackets (e.g., x[i]).
4. Handling Multiple Constraints: For similar constraints that repeat across
indices or variables, use Python for loops and list comprehensions for
efficient representation.
5. String mathematical description: Note, the value (mathematical
description) should be a single string. DO NOT use .join() or anything else.
Even if it represents multiple constraints using a for loop.
6. No Inequality Constraints: Only define equality constraints. Inequality
constraints will be handled separately by a subsequent expert.
7. Comments: Include a Python comment before each key-value pair, explaining
the rationale behind the constraint.
Return only the Python dictionary update (i.e.,
formalization dict["equality constraints"] = ...) following these requirements.
Important: If the problem contains only inequality constraints and no equality
constraints, return: formalization dict["equality constraints"] = {None: None}.
This will signal the need to focus on inequality constraints in subsequent
modeling steps.

Template for generating inequality constraints (depth = 4)

You are an optimization modeling expert. Complete the formalization dict by
adding the inequality constraints field based on the problem description.
Follow these requirements:
1. Descriptive constraints: Each key in the dictionary should represent a
unique, clearly named constraint, with the value being a string that describes
the corresponding mathematical inequality.

16

Autoformulation of Mathematical Optimization Models Using LLMs

2. Parameter Variables: Use parameter-defined variables instead of hard-coded
values. Assume direct access to these parameter variables (i.e., avoid using
parameters[variables] syntax).
3. Indexed Variables: For indexed decision variables, indicate the index
within brackets (e.g., x[i]).
4. Handling Multiple Constraints: For similar constraints that repeat across
indices or variables, use Python for loops and list comprehensions for
efficient representation.
5. String mathematical description: Note, the value (mathematical
description) should be a single string without using join or anything else.
Even if it represents multiple constraints using a for loop.
6. Inequality Constraints Only: Include only inequality constraints. Exclude
any constraints already covered under equality constraints.
7. Comments: Include a Python comment before each key-value pair, explaining
the rationale behind the constraint.
Return only the Python dictionary update (i.e.,
formalization dict["inequality constraints"] = ...) following these
requirements.
Important: Think carefully of inequality constraints that are not explicit in
the problem description that should be considered. If after thinking you
conclude the problem contains only equality constraints and no inequality
constraints, return: formalization dict["inequality constraints"] = {None:
None}.

Template for pruning decision variables

- Objective:
As an expert in optimization modeling, your role is to evaluate multiple sets
of decision variables provided for an operations research problem. You are
responsible for determining if two or more sets of decision variables should be
grouped together based on their equivalency from an optimization perspective.
- Task Breakdown:
Your grouping decision is critical for assisting a subsequent optimization
expert, who will define the objective function, equality constraints, and
inequality constraints for each group. To facilitate this process, follow
these precise guidelines:
- Equivalency Criteria:
1. Same Objectives and Constraints: Two sets of decision variables should be
grouped together if they result in the definition of the same objective
function, equality constraints, and inequality constraints, even if the
variable names differ.
2. Conceptual Equivalency: Variable sets should be grouped together if,
despite having different variable names, they define the same underlying
concepts that ultimately lead to identical objectives and constraints (both
equality and inequality).
3. Non-Equivalency Conditions: Two sets of decision variables should not be
grouped together if they lead to differences in any of the following:
Objective function, Equality constraints, Inequality constraints.
4. Naming Convention Irrelevance: The names of the decision variables are
irrelevant for grouping purposes. Only the functional impact of the variables
on the objective function and constraints should be considered. If two sets of
variables lead to the same results, group them together, even if the names
differ.

17

Autoformulation of Mathematical Optimization Models Using LLMs

By following these guidelines, you will help ensure that decision variable sets
are clearly classified for the next expert in the process.
Please list your clusters as follows:

###
groups = {
1: group_1,
...,
n: group_n}
###

Where group i is a python list containing the names (string) of all the set of
decision variables that are equivalent. One set of decision variables can only
belong to one group. The list should consider at least one element.
Important: Think carefully STEP BY STEP about your grouping decision, then
conclude your assessment using the structured format provided above.
Here are the current solutions:

solutions = {}

Template for ranking expanded children nodes

You are an expert in optimization modeling. Using the formalization dict as
your current progress, you are tasked with selecting the optimal #VARIABLE#
from the provided options.
Please follow these steps:
1. Carefully evaluate each potential #VARIABLE#.
2. Rank the variables from best to worst based on their suitability.
Present your rankings in the following format:

###
rank = {
1: solution_1,
...,
n: solution_n}
###

Where:
- solution 1 represents the best #VARIABLE#.
- solution n represents the least suitable #VARIABLE#.
Important: Think carefully STEP BY STEP about your ranking decision. Then
conclude by listing the solutions in string format as structured above.
Here are the possible solutions:

solutions = {}

B.3. Benchmarks

• NL4OPT: A widely adopted benchmark for Operations Research originating from a NeurIPS competition (Ramamonjison
et al., 2023). Since the original NL4OPT provides only mathematical formulations, we utilize the labelled problem set
prepared by (Tang et al., 2024). This dataset consists of 289 linear programming problems for which optimal solutions
were generated using GPT-4 with the assistance of experts, facilitating evaluation based on execution accuracy.

• MAMO: A benchmark specifically designed to assess mathematical modeling capabilities of Large Language Models. It
comprises two subsets: 652 easy and 211 complex linear programming problems, each accompanied by optimal solutions.
Our experiments focus exclusively on the complex subset due to the easier set is relatively saturated in comparison.

• IndustryOR: Introduced in (Tang et al., 2024), this benchmark focuses on industrial applications of Operations Research.
It includes 100 real-world problems from 13 distinct industries, primarily covering linear programming (LP), integer

18

Autoformulation of Mathematical Optimization Models Using LLMs

programming (IP), and mixed-integer linear programming (MILP), with the addition of one non-linear programming
instance. The dataset categorizes problems into three difficulty levels.

• ComplexOR: This dataset encompasses 37 complex Operations Research problems across various application domains,
including 12 MILP problems. For our evaluation, we utilize all 18 publicly available problems from this dataset2.

B.4. Metrics

• Execution Accuracy: The primary evaluation metric, defined by the correctness of executable code generated by a
model. A response is deemed correct if its computed optimal value aligns closely with the ground truth solutions
provided, allowing a margin of error within 5% following the evaluation protocol used in (Tang et al., 2024) (see official
implementation).

• Pass@k: This metric assesses inference quality by generating k candidate solutions for each problem. The model is
considered successful if at least one of these k candidates achieves correctness based on the execution accuracy criterion.

• Best of N: This is an inference strategy where the model generates N candidate solutions. A selection mechanism
(which could be another model, a heuristic, or a verification process) then chooses the single “best” solution out of the N
candidates. In our case, the selection mechanism computes the average V values along the path from the root node to the
final node, which is the complete formulation, selecting the candidate with the highest average.

C. Categorization of Autoformulation Challenges by Optimization Problem Structure
The exact challenges faced by an autoformulator depends on the nature of the problem d. Here, we provide a categorization
of optimization problems and their characteristics. To help elucidate different types of problems, we introduce two concepts.
First, we define the set of correct formulations for a problemM(d) ⊂M as the set of all equivalent formulations that
correctly model a problem d. Second, we introduce the set of original formsMo(d) ⊆ M(d)—the set containing the
natural representations of the problem, typically the initial models an optimization expert would create. This is a set, as it
can contain trivially equivalent formulations. Finally, we partition the setM into the set of convex problemsMconv and the
set of non-convex problemsMnonc.

1. Type I problems. These are problems where the original form is inherently convex, namelyMo(d) ⊆Mconv. Examples
include certain resource allocation problems that can be naturally formulated as linear programs. The challenge of solving
Type I problems is to ensure that the problem is correctly represented (formulation correctness, i.e.H(d)∩Mo(d) ̸= ∅),
which would entail that it can be efficiently solved to global optimality.

2. Type II problems. These are problems where the original form is non-convex, but can be reformulated into an
equivalent convex problem, namelyMo(d) ⊆Mnonc butM(d) ∩Mconv ̸= ∅. In addition to formulation correctness,
another challenge of solving Type II problems is to ensure the autoformulator can identify and apply appropriate
reformulation strategies (e.g. change of variables) to transform the non-convex into an equivalent convex form, namely
H(d)∩ (M(d) ∩Mconv) ̸= ∅. For such problems, evaluation extends beyond correctness to include the ability to achieve
global optimality through reformulation.

3. Type III problems. These are problems where the original form is non-convex and cannot be reformulated into a convex
problem, namelyM(d) ⊆Mnonc. In such cases, there are two general options: a) solve the non-convex problem using
general-purpose algorithms (e.g. gradient descent), or b) relax into a convex problem that approximates, but is not
equivalent to, the original problem (e.g. semidefinite relaxation of a Max-Cut problem (Goemans & Williamson, 1995)).

A crucial nuance here is that mathematically equivalent models, even when both are convex, can exhibit vastly different
computational complexities. An example of this is quadratic programming and second-order cone programming (SOCP)
reformulations of the same problems (Alizadeh & Goldfarb, 2003). Although mathematically equivalent, SOCP formulations
often allow for more efficient solution methods. Therefore, computational efficiency is an important evaluation metric
across all three problem types, significantly impacting practical utility of model formulations. In Appendix D, we provide
concrete examples to illustrate each type of optimization problems.

2https://github.com/xzymustbexzy/Chain-of-Experts/tree/main

19

https://github.com/Cardinal-Operations/ORLM
https://github.com/Cardinal-Operations/ORLM
https://github.com/xzymustbexzy/Chain-of-Experts/tree/main

Autoformulation of Mathematical Optimization Models Using LLMs

D. Illustrative Examples of Problem Categorization
In this section, we provide examples of canonical problems in engineering and machine learning that belong to each of the
identified problem types. Specifically:

• Type I: Problems that have a precise mathematical model, which is convex in its original form. Examples are provided in
Appendix D.1.

• Type II: Problems that have a precise mathematical model, which is non-convex in its original form but can be reformulated
as a convex problem (sometimes additional assumptions are needed). Examples are provided in Appendix D.2.

• Type III: Problems that have a precise mathematical model, which is non-convex in its original form but can be relaxed
to a convex problem (sometimes additional assumptions are needed). The difference from Type II is that the convex
relaxation is not equivalent to the original problem. Examples are provided in Appendix D.3.

D.1. Examples of Type-I Problems

Overview. Maximizing mutual information in a wireless channel.

Mutual information is a quantity that measures the divergence between two random variables, with applications in wireless
communications (Goldsmith & Varaiya, 1996) and in data science (Belghazi et al., 2018). Here, we describe it in the context
of maximizing Shannon capacity in wireless communications.

We consider a discrete memoryless channel with an input random variable X ∈ {1, . . . , ℓ}, an output random variable
Y ∈ {1, . . . , y}, and a channel transition matrix P ∈ Ry×ℓ with the element on the j-th row and the i-th column being
pji = prob (Y = j | X = i).

Input X Transition Probability P Output Y

Our goal is to choose the optimal probability distribution of input X , denoted x ∈ Rℓ with xi = prob (X = i), in order to
maximize the mutual information between input X and input Y

I(X;Y) =

ℓ∑
i=1

y∑
j=1

xipji log2
pji∑ℓ

k=1 xkpjk
.

The optimal value of the problem is called Shannon capacity.

This problem is convex in its original form:

Maximize
ℓ∑
i=1

 y∑
j=1

pji log2 pji

xi −
y∑
j=1

(
ℓ∑
i=1

pjixi

)
log2

(
ℓ∑
i=1

pjixi

)
subject to xi ≥ 0, i = 1, . . . , ℓ,

ℓ∑
i=1

xi = 1.

(8)

• Reformulation strategies: None.
• Difficulty in reformulation: Not applicable.
• Difficulty in solving the reformulated/original problem: Easy.

D.2. Example of Type-II Problem

Overview. Power control to satisfy SINR requirements with minimum power usage (PC-MinPower)

We consider the problem of determine the transmit power of ℓ pairs of transceivers. They operate in the same frequency at
the same time, hence causing interference to each other. The problem data is a channel gain matrix G ∈ Rℓ×ℓ, where gij is

20

Autoformulation of Mathematical Optimization Models Using LLMs

the channel gain from transmitter j to receiver i, the noise power vector σ ∈ Rℓ with σi as the noise power at receiver i, and
the minimum SINR requirement vector γ ∈ Rℓ with γi as the minimum SINR required by the transceiver i.

Our goal is to choose the transmit power, denoted x ∈ Rℓ+ with xi being the power of transmitter i, in order to minimize the
total transmit power while satisfying the SINR requirements of each transceiver (Yates, 1995).

This problem is non-convex in its original form:

Minimize
ℓ∑
i=1

xi

subject to
giixi∑

j ̸=i gijxj + σi
≥ γi, i = 1, . . . , ℓ.

(9)

But it is not hard to observe that the constraints of SINR requirements can be reformulated as linear constraints, resulting in
a LP:

Minimize
ℓ∑
i=1

xi

subject to giixi ≥ γi

∑
j ̸=i

gijxj + σi

 , i = 1, . . . , ℓ.

(10)

• Reformulation strategies: Transformation of function.
• Difficulty in reformulation: Easy (straightforward observation).
• Difficulty in solving the reformulated/original problem: Easy (the reformulated problem is LP).

D.3. Examples of Type-III Problems

We consider the same setting as Beamform-MinSidelobe. But here, our goal is to maximize the gain at the target
direction θtar, while limiting the ripple effect at directions θ1, . . . , θm outside the target area.

This problem is non-convex: (Fuchs, 2013)

Maximize
∣∣G(w; θtar)

∣∣
subject to 1/δ ≤ |G(w; θi)| ≤ δ, i = 1, . . . ,m.

(11)

It is non-convex because we maximize a convex function (i.e., norm) and have constraints on convex functions greater than
or equal to a constant.

In this case, the standard semidefinite relaxation technique can be used, which “lifts” the problem to higher dimensions.
Specifically, we define a rank-1 semidefinite matrix W ≜ wwH . Then the gain at direction θ satisfies

|G(w; θ)|2 = trace (E(θi) ·W) ,

where E(θi) = e(θi)
∗ · e(θi)T ∈ Cn×n with

e(θi) =
[
ei(x1 cos θ+y1 sin θ), . . . , ei(xn cos θ+yn sin θ)

]T
.

With the new matrix variable W, we have the following equivalent problem:

Maximize trace (E(θtar) ·W)

subject to (1/δ)2 ≤ trace (E(θi) ·W) ≤ δ2, i = 1, . . . ,m,

W ⪰ 0,

rank(W) = 1.

(12)

21

Autoformulation of Mathematical Optimization Models Using LLMs

Here, the only nonconvexity comes from the rank constraint. By removing it, we get the following convex relaxation:

Maximize trace (E(θtar) ·W)

subject to (1/δ)2 ≤ trace (E(θi) ·W) ≤ δ2, i = 1, . . . ,m,

W ⪰ 0.

(13)

In general, we need to recover an approximate solution vector w from the solution matrix W. Under certain conditions
(e.g., uniform linear arrays), we can guarantee to recover the exact solution vector.

• Relaxation strategies: Semidefinite relaxation (SDR).
• Difficulty in reformulation: Easy (standard SDR techniques were used).
• Difficulty in solving the reformulated/original problem: Medium (the relaxed convex problem is a SDP, and recovery

methods are needed).

E. Effect of Formulation on Optimality, Solution Time
In this section, we present simulation results comparing the performance of various optimization solvers on the
PC MinPower problem, both in its original non-convex form and in a reformulated convex form (see Appendix D.2). We
consider problem instances with ℓ = 10 and ℓ = 100 users (i.e., ℓ optimization variables). For each instance, we evaluate
the solvers in terms of success rate, optimality gap, and average solve time over 100 random samples.

E.1. Experimental Setup

The PC MinPower problem aims to minimize the total power consumption in a system while satisfying certain constraints.
The original formulation of this problem is non-convex, which can pose challenges for optimization algorithms. However,
by reformulating the problem, it can be converted into an equivalent convex problem, which is generally easier to solve
efficiently.

We evaluated the following solvers:

• General-Purpose Solvers:
– TRCA: Trust-Region Constrained Algorithm
– SLSQP: Sequential Least Squares Programming.
– COBYLA: Constrained Optimization BY Linear Approximations.
– COBYQA: Constrained Optimization BY Quadratic Approximations.

• Convex Program Solvers:
– CLARABEL: A conic optimization solver.
– ECOS: Embedded Conic Solver.
– SCS: Splitting Conic Solver.
– OSQP: Operator Splitting Quadratic Program Solver.

For each solver and problem instance, we recorded:

• Success Rate: The percentage of runs where the solver successfully found a feasible solution.
• Optimality Gap: The difference between the objective value obtained by the solver and the known optimal value.
• Average Solve Time: The average computation time (in seconds) required by the solver.

E.2. Results

Tables 7 and 8 present the performance of the solvers for problem sizes n = 10 and n = 100, respectively.

E.3. Discussion

The results demonstrate several key observations:

22

Autoformulation of Mathematical Optimization Models Using LLMs

Table 7. Solver Performance for ℓ = 10 Users

Solver Type Original Nonconvex Problem Reformulated Convex Problem
Success Optimality Gap Time (s) Success Optimality Gap Time (s)

General-Purpose Solvers
TRCA General-Purpose 100% 7.31× 10−3 0.0399 100% 1.25× 10−3 0.0420
SLSQP General-Purpose 100% 6.47× 10−7 0.0019 100% 6.48× 10−7 0.0009
COBYLA General-Purpose 67% 2.94× 10−6 0.0073 100% 7.15× 10−6 0.0039
COBYQA General-Purpose 0% — — 6% 9.80 14.4067
Convex Program Solvers
CLARABEL Convex Solver — — — 100% 6.32× 10−7 0.0002
ECOS Convex Solver — — — 100% 6.16× 10−7 0.0001
SCS Convex Solver — — — 100% 4.45× 10−7 0.0002
OSQP Convex Solver — — — 100% 6.48× 10−7 0.0003

Table 8. Solver Performance for ℓ = 100 Users

Solver Type Original Nonconvex Problem Reformulated Convex Problem
Success Optimality Gap Time (s) Success Optimality Gap Time (s)

General-Purpose Solvers
TRCA General-Purpose 100% 7.75× 10−2 0.6628 100% 1.28× 10−2 0.6856
SLSQP General-Purpose 100% 1.04× 10−6 0.0750 100% 1.04× 10−6 0.0298
COBYLA General-Purpose 0% — 6.0764 100% 2.86× 10−5 9.9629
COBYQA General-Purpose 0% — — 0% — —
Convex Program Solvers
CLARABEL Convex Solver — — — 100% 6.22× 10−7 0.0121
ECOS Convex Solver — — — 100% 9.91× 10−7 0.0097
SCS Convex Solver — — — 100% 1.05× 10−6 0.0055
OSQP Convex Solver — — — 100% 1.04× 10−6 0.0110

• Importance of Problem Reformulation: For general-purpose solvers, reformulating the original nonconvex problem
into an equivalent convex problem significantly improves solution quality. This improvement is more pronounced for
larger problem sizes (ℓ = 100). For instance, COBYLA’s success rate increased from 0% to 100% when the problem was
reformulated.

• Solver Selection Matters: Different general-purpose solvers exhibit varying performance levels. SLSQP consistently
achieves near-zero optimality gaps and high success rates with relatively low solve times across both problem formulations
and sizes. In contrast, COBYQA fails to find feasible solutions in most cases, highlighting the necessity of careful solver
selection.

• Performance of Convex Program Solvers: For the reformulated convex problem, convex program solvers (CLARABEL,
ECOS, SCS, OSQP) show excellent and consistent performance. They all achieve 100% success rates, negligible
optimality gaps, and minimal solve times. The differences among these solvers are minimal, suggesting that any of them
would be suitable for solving the convex formulation efficiently.

These findings underscore the importance of problem reformulation and solver selection in optimization tasks. Reformulating
a non-convex problem into a convex one can significantly enhance the performance of general-purpose solvers. Additionally,
selecting the appropriate solver is crucial, as it can greatly impact the success rate and computational efficiency.

23

