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ABSTRACT

Conceptually, Neural Ordinary Differential Equations (NeuralODEs) pose an at-
tractive way to extract dynamical laws from time series data, as they are natural
extensions of the traditional differential equation-based modeling paradigm of the
physical sciences. In practice, NeuralODEs display long training times and sub-
optimal results, especially for longer duration data where they may fail to fit the
data altogether. While methods have been proposed to stabilize NeuralODE train-
ing, many of these involve placing a strong constraint on the functional form the
trained NeuralODE can take that the actual underlying governing equation does
not guarantee satisfaction. In this work, we present a novel NeuralODE training
algorithm that leverages tools from the chaos and mathematical optimization com-
munities – synchronization and homotopy optimization – for a breakthrough in
tackling the NeuralODE training obstacle. We demonstrate architectural changes
are unnecessary for effective NeuralODE training. Compared to the conventional
training methods, our algorithm achieves drastically lower loss values without any
changes to the model architectures. Experiments on both simulated and real sys-
tems with complex temporal behaviors demonstrate NeuralODEs trained with our
algorithm are able to accurately capture true long term behaviors and correctly
extrapolate into the future.

1 INTRODUCTION

Predicting the evolution of a time varying system and discovering mathematical models that gov-
ern it is paramount to both deeper scientific understanding and potential engineering applications.
The centuries-old paradigm to tackle this problem was to either ingeniously deduce empirical rules
from experimental data, or mathematically derive physical laws from first principles. However, the
complexities of the systems of interest have grown so much that these traditional approaches are
now often insufficient. This has led to a growing interest in using machine learning methods to infer
dynamical laws from data.

One school of thought, such as the seminal work of Schmidt & Lipson (2009) or Brunton et al.
(2016), focuses on deducing the exact symbolic form of the governing equations from data using
techniques such as genetic algorithm or sparse regression. While these methods are powerful in that
they output mathematical equations that are directly human-interpretable, they require prior infor-
mation on the possible terms that may enter the underlying equation. This hinders the application
of symbolic approaches to scenarios where there is insufficient prior information on the possible
candidate terms, or complex, nonlinear systems whose governing equations involve non-elementary
functions.

On the other hand, neural network-based methods, such as Raissi et al. (2018), leverage the univer-
sal approximation capabilities of neural networks to model the underlying dynamics of the system
without explicitly involving mathematical formulae. Of the various architectual designs in literature,
Neural Ordinary Differential Equations(NeuralODEs) Chen et al. (2018) stand out in particular be-
cause these seamlessly incorporate neural networks inside ordinary differential equations (ODES),
thus bridging the expressibility and flexibility of neural networks with the de facto mathematical lan-
guage of the physical sciences. Subsequent works have expanded on this idea, including blending
NeuralODEs with partial information on the form of the governing equation to produce ”grey-box”
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dynamics model (Rackauckas et al., 2021), and endowing NeuralODEs with mathematical structures
that the system must satisfy (Greydanus et al., 2019; Finzi et al., 2020).

However, despite the conceptual elegance of NeuralODEs, training these models tend to result in
long training times and sub-optimal results, a problem that is further exacerbated as the length of
the training data grows (Ghosh et al., 2020; Finlay et al., 2020). Different methods have been
proposed to tackle the problem, but majority of these approaches to date involve placing either strong
(Choromanski et al., 2020; Hasani et al., 2021), or semi-strong constraints(Finlay et al., 2020; Kidger
et al., 2021) to the functional form the NeuralODE can take - something the underlying governing
equation does not guarantee satisfying.

Contributions. We introduce a novel training algorithm that does not require architectural con-
straints to accurately train NeuralODEs on long time series data. As our algorithm is inspired by
ideas from the chaos and mathematical optimization literature, we provide a background survey on
the ideas involved before providing both a general framework and a specific implementation for our
algorithm. Experiments on various systems of difficulties demonstrate that our method always out-
performs conventional gradient-descent based training, with resulting trained NeuralODEs having
both higher interpolation and extrapolation capabilities than their counterparts. Especially, for the
relatively simple Lotka-Volterra system, we report a ×102 improvement for interpolation error and
a staggering ×107 improvement in extrapolation error, showcasing the power of our new approach.

2 BACKGROUND

2.1 NEURAL ORDINARY DIFFERENTIAL EQUATIONS

A NeuralODE (Chen et al., 2018) is a model of the form,
du

dt
= U(t,u;θ), u(t = t0) = u0 (1)

where u0 ∈ Rn is the initial condition or input given to the model, and U(...;θ) : R × Rn → Rn

is neural network with parameters θ ∈ Rm that governs the dynamics of the model state u ∈ Rn

over time t ∈ R. The value of the model state at a given time can then be evaluated by numerically
integrating equation 1 starting from the initial conditions.

In this paper, we concern ourselves with the problem of training NeuralODEs on time series data.
Specifically, given an monotonically increasing sequence of time points {t(i)}Ni=0 and the corre-
sponding vector-valued measurements {û(i) ∈ Rn}Ni=0, we wish to train a NeuralODE on the data
to learn the underlying governing equation and forecast future data.

Conventionally, NeuralODE training starts with using an ordinary differential equation (ODE) solver
to numerically integrate equation 1 to obtain the model state u at given time points :

{u(i)(θ)}Ni=0 = ODESolve
(
du

dt
= U(t,u;θ), {t(i)}Ni=0,u0

)
(2)

with u(i)(θ) being a shorthand for u(t(i);θ). Afterwards, the loss function L(θ) : Rm → R is
computed according to

L(θ) = 1

N + 1

∑
i

l
(
u(i)(θ)− û(i)

)
(3)

where l(u, û) is the pairwise loss function. In this paper, we adopt the widely used mean-squared
error function l(u, û) = ||u− û||2/n, but other metrics such as the L1 loss can be used (Finzi et al.,
2020; Kim et al., 2021).

Training is performed by minimizing equation 3 via gradient descent. A non-trivial aspect of this
process is that computing ∇θL requires differentiating the ODESolve operation. This can be done
by either directly backpropagating through the internals of the ODE solver algorithm - which re-
turns accurate gradients but is memory intensive - or by the ”adjoint method”, which computes an
auxiliary set of ODEs to obtain gradients at a low memory cost, but can yield inaccurate gradients.
In this paper, we embrace recent advances in the field and use the ”symplectic-adjoint method”,
which brings the best of both worlds by having both low memory footprint and improved accuracy
guarantees (Matsubara et al., 2021).
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2.2 SYNCHRONIZATION OF DYNAMICAL SYSTEMS

Consider the following two dynamical systems,

du

dt
= U(t,u;θ),

dû

dt
= Û(t, û; θ̂) (4)

where u, û ∈ Rn are n-dimensional state vectors, and U , Û : R × Rn → Rn are the dynamics of
the two systems with coefficients θ, θ̂. The functional form of the first system U(...;θ) is known
and we wish to fit this to data generated from the second system, {û(i)}Ni=0, at time points {t(i)}Ni=0.
We assume U = Û , that is, the functional form of the data generating dynamics is the same as the
equation to be fitted and the initial conditions of the two systems are identical.

As the coefficients θ, θ̂ of the two systems are different, the resulting trajectories u(t), û(t) will, in
general, be independent of each other. For chaotic systems, the result is more drastic as the solutions
to these systems are extremely sensitive to parameter variations (Figure 1). For the periodic system
(left panel), we find that a ±50% parameter perturbation only changes the period and amplitude
of the signal. In contrast, perturbation of the same relative magnitude on a chaotic system (middle
panel) results in completely different behaviors for the resulting solution.
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Figure 1: Dynamics of single parameter perturbed systems. The systems and the parameters used are
described in Experiments. (Left) Solutions for the periodic Lotka-Volterra equations with perturbed
α parameter. (Middle) Solutions for the chaotic Lorenz system with perturbed β parameter. (Right)
MSE loss function landscape for the Lotka-Volterra equations (Up) and Lorenz system (Down) for
different lengths of time series data for the loss calculation.

Determining the coefficients θ of the known equation U to find the unknown coefficients θ̂ un-
derlying the data {û(i)}Ni=0, proceeds analogously to the NeuralODE training described in section
(2.1): the equation to be fitted is numerically solved for a given parameter guess, the loss function
is calculated with respect to data, then minimized using gradient descent to yield the final answer.
However, the independent evolution of two uncoupled dynamics can easily lead to non-convex loss
functions with sharp local minima, especially for longer, more irregular time series (Figure 1, right
panel). This, in turn, leads to unstable loss function minimization and finally resulting in inaccurate
coefficients (Voss et al., 2004). Furthermore, this problem of irregular loss function during train-
ing also occurs in recurrent neural network (RNN) and NeuralODE training as well (Doya, 1993;
Ribeiro et al., 2020).

Enter a slightly altered version of equation 4, which has an additional term in the u dynamics that
couples the two systems:

dũ

dt
= Ũ(t, ũ;θ) = U(t, ũ;θ)−K(ũ− û),

dû

dt
= Û(t, û; θ̂) (5)

where the K = diag(k1, ..., kn) is the diagonal coupling matrix K. It was found that if the elements
of K are positive and are sufficiently large, the dynamics of u and v synchronize with increasing
time regardless of the parameter mismatch: meaning ||ũ(t) − û(t)||2 → 0 as t → ∞ (Abarbanel
et al., 2009; Pecora & Carroll, 2015). Figure 2 illustrates this phenomenon for both periodic (left
panel) and chaotic (middle panel) systems, using K = kI where k ∈ R+ is the scalar coupling
strength and I is the n× n identity matrix.

The new coupling term acts similarly to the proportional control term used in PID control, and
actively drives the modified dynamics ũ(t) towards the reference trajectory û(t). Increasing the
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Figure 2: Dynamics of coupled systems with varying coupling strengths. The systems and the
parameters used are identical to those of figure 1. (Left) Results for the periodic Lotka-Volterra
equations. (Middle) Results for the chaotic Lorenz system. (Right) Loss function landscape of the
coupled systems with different coupling strengths.

coupling strength correspond to turning up the proportional gain, and causes the two trajectories to
converge even faster (Figure 2, left and middle panels).

Repeating the parameter estimation procedure, the loss function L between ũ and û now becomes
a function of both θ and K (= kI) (Figure 2, right panel). In the context of loss function calcula-
tion, increasing the coupling strength k effectively acts as shortening the length of the data because
increased coupling causes the two trajectories to start synchronizing earlier in time, after which the
error between the two will diminish and contribute negligibly to the total loss. Therefore, synchro-
nizing the model and the data generating equations leads to a more favorable loss landscape, which
gradient descent based optimizers will not struggle on.

However, directly minimizing this new loss function L(θ,K) associated with the coupled system
(equation 5) does not result in our desired goal of discovering the unknown data generating coeffi-
cients θ̂. This is because our goal requires us to fit the original uncoupled equation (4) on the data,
and not the modified equation (5) that has an additional term. Therefore, a method that reaps the
benefits of a better-behaved loss function using synchronization, but also results in a minimizer of
the original loss function L(θ) is needed. That method is homotopy optimization, which we describe
in the following section.

2.3 HOMOTOPY OPTIMIZATION AND PARAMETER IDENTIFICATION

Consider the problem of finding the parameter vector θ∗ ∈ Rm that minimizes the function F(θ) :
Rm → R. While minimization algorithms, such as the commonly used gradient descent methods,
can directly be applied to the target function, these tend to struggle if F is non-convex and has
a complicated landscape riddled with local minima. To address such difficulties, the homotopy
optimization method (Dunlavy & O’Leary, 2005) introduces an alternative objective function

H(θ, λ) =

{
G(θ), if λ = 1

F(θ), if λ = 0
(6)

where G(θ) : Rm → R is an auxillary function whose minimum is easily found, and H(θ, λ) :
Rm×R → R is a continuous function that smoothly interpolates between G and F as the homotopy
parameter λ is varied from 1 to 0.

The motivation behind this scheme is similar to simulated annealing: one starts out with a relaxed
version of the more complicated problem of interest, and finds a series of approximate solutions
while slowly morphing the relaxed problem back into its original non-trivial form. This allows
the optimization process to not get stuck in spurious sharp minima and accurately converge to the
minimum of interest.

To proceed with the method, one first selects the number of discrete steps for optimization, s, as
well as a series of positive decrement values for the homotopy parameter {∆λ(k)}s−1

0 that sum to
1. Afterwards, optimization starts with an initial λ value of λ(0) = 1, which gives H(0)(θ) = G(θ).
At each step, the objective function at the current iteration is minimized with respect to θ, using the
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output from the previous step θ∗(k−1) is as the initial guess, and :

H(k)(θ) = H(θ, λ = λ(k)) → θ∗(k) = argmin
θ

H(k)(θ) (7)

Afterwards, λ decremented to its next value, λ(k+1) = λ(k) − ∆λ(k), and this iteration continues
until the final step s where λ(s) = 0, H(s)(θ) = F(θ), and the final minimizer θ∗(s) = θ∗ is the
sought-after solution to the original minimization problem F(θ).

Application to synchronization. To combine homotopy optimization with synchronization, we
slightly modify the coupling term of equation 5 by multiplying it with the homotopy parameter λ:

−K(ũ− û) → −λK(ũ− û). (8)

With this modification, applying homotopy optimation to the problem is straightforward. When
λ = 1 and the coupling matrix K has sufficiently large elements, synchronization occurs and the
resulting loss function L(θ, 1 · K) is well-behaved, serving the role of the auxillary function G
in equation 6. When λ = 0, the coupled equation 5 reduces to the original equation 4, and the
corresponding loss function L(θ) = L(θ, 0 · K) is the complicated loss function F we need to
ultimately minimize. Therefore, starting with λ = 1 and successively decreasing its value to 0 in
discrete steps, all the while optimizing for the coupled loss function L(θ, λK) allows one to leverage
the well-behaved loss function landscape from synchronization while being able to properly uncover
the system parameters (Vyasarayani et al., 2012; Schäfer et al., 2019).

3 HOMOTOPY OPTIMIZATION FOR NEURALODE TRAINING

While the approaches in the previous sections were developed for the problem of determining the
unknown coefficients of a differential equation from data, we propose to apply them to the problem
of training a NeuralODE on time series data. This conceptual leap is based on two observations:

1. The previous formalism on synchronization and homotopy optimization can directly be
translated over to NeuralODE training by reinterpreting U(...,θ) from ’a known equation
whose coefficients θ we wish to find’ to ’a NeuralODE with parameters θ we wish learn
the data generating equation Û(...,θ) with.

2. While subsection 2.2 considered the case where the model equation differs only in coeffi-
cients with the data generating equation (U = Û ), it has been discovered that two systems
with different functional forms can also synchronize - a phenomena called ”generalized
synchronization” (Pecora & Carroll, 2015). This motivates our coupling a NeuralODE to a
given time series data to facilitate training.

3.1 IMPLEMENTATION DETAILS

The previous sections describe a general methodology of using homotopy optimization for Neu-
ralODE training. However, there are couple details that need addressing in order to create a specific
implementation of our algorithm. We briefly discuss these points below.

Construction of the coupling term In the previous section, the coupling term −K(ũ − û) in
the right hand side of equation 5 was implicitly thought to be defined for all time t. However, Neu-
ralODEs are trained on measurements {û(i)}Ni=0 sampled at discrete time points {t(i)}Ni=0, which
makes the control term undefined on any other time points. Leaving the control term partially defined
is not an option, as most ODE solver algorithms require evaluating the right hand side of equation 5
at intermediate time points as well. Therefore, one must extend the definition of the control term so
that it is defined even at times where the measurements û(i) are not supplied.

One solution to this problem is to apply the coupling term as a sequence of impulses, only applying it
where it is defined, and keeping it zero at other times. While this is an interesting avenue of interest
- especially so since this can be shown to be mathematically equivalent to teacher forcing(Quinn
et al., 2009), a method used to mitigate instabilities during RNN training(Toomarian & Barhen,
1992) - we do not adopt this method in this paper. Instead, we construct smoothing cubic splines
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from the data points to supply the measurement values at unseen time points that are needed to
evaluate the coupling term, with smoothing chosen over interpolation to make our approach robust
to measurement noise in the data.

Scheduling the homotopy parameter While the homotopy parameter λ can be decremented
in various different ways, the most common approach is to use constant decrements: ∆λ(k) =
1/s, k ∈ [0, s− 1] where s is the number of homotopy steps. In our study, we modify this slightly
so that the decrements are decayed by a constant ratio for each passing step (Figure 3, left panel) -
that is,

∆λ(k+1) = κλ∆λ(k);

s−1∑
k=0

∆λ(k) = 1; 0 < κλ ≤ 1. (9)

3.2 ALGORITHM OVERVIEW

Our final implementation of the homotopy training algorithm has five hyperparameters. Here, we
briefly describe the effects and the tips for tuning each.

• Number of homotopy steps (s) : This determines how many relaxed problem the opti-
mization process will pass through to get to the final solution. Similar to scheduling the
temperature in simulated annealing, fewer steps results in the model becoming stuck in a
sharp local minima, and too many steps makes the optimization process unnecessarily long.
We find using values in the range of 6-8 or slightly larger values for more complex systems
yields satisfactory results.

• Epochs per homotopy steps (nepoch) : This determines how long the model will train on
a given homotopy parameter value λ. Too small, and the model lacks the time to properly
converge on the loss function; too large, and the model overfits on the simpler loss land-
scape of λ ̸= 0, resulting in a reduced final performance when λ = 0. We find for simpler
monotonic or periodic systems, values of 100-150 work well; for more irregular systems,
200-250 are suitable.

• Coupling strength (k) : This determines how trivial the auxillary function for the homo-
topy optimization will be. Too small, and even the auxillary function will have a jagged
landscape; too large, and the initial auxillary function will become flat (Figure 2, left panel,
k = 1.0, 1.5) resulting in very slow parameter updates. We find good choices of k tend to
be comparable to the scale of the measurement values.

• λ decrement ratio (κλ) : This determines how the homotopy parameter λ is decremented.
Values close to 1 cause λ to decrease in nearly equal decrements, whereas smaller values
cause a large decrease of λ in the earlier parts of the training, followed by subtler decre-
ments later on. We empirically find that κλ values of 0.5-0.6 tends to work well.

• Learning rate (η) : This is as same as in conventional NeuralODE training. We found
values in the range of 0.01-0.1 to be adequate for our experiments.

4 EXPERIMENTS

We evaluate the performance of our algorithm by training NeuralODEs on three different systems
of varying difficulties selected from literature: the Lotka-Volterra system, the Lorenz equations and
the double pendulum. In both homotopy and baseline experiments, the MSE loss was monitored
during training, and the checkpoint corresponding to this MSE minimum was used for further anal-
ysis. Each experiment was repeated three times with different random seeds, and we report the
corresponding means and standard errors as solid lines and shaded bands wherever applicable. Ad-
ditional details regarding the experiments can be found in the ??.

4.1 LOTKA-VOLTERRA SYSTEM

We start our experiments with the Lotka-Volterra system, which is a simplified model of predator-
prey dynamics given by the following equations,
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dx

dt
= αx− βxy,

dy

dt
= −γy + δxy (10)

where x(t), y(t) denote the prey and predator populations as a function of time, and α, β, γ, δ are
parameters regarding the interaction between the populations (Murray, 2002). We follow the exper-
imental design of Rackauckas et al. (2021), where the goal of the experiment is to fit the following
hybrid model on the simulated data,

dx

dt
= αx+ U1(x, y;θ1),

dy

dt
= −γy + U2(x, y;θ2) (11)

where U1(x, y;θ1), U2(x, y;θ2) are neural networks employed to discover the corresponding ”un-
known” terms −βxy, δxy from the given data.
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Figure 3: Lotka-Volterra dataset results. (Left) Train loss L(θ, λ) and homotopy parameter λ during
training. (Middle) Mean squared error as a function of training epochs for both homotopy-based
and vanilla NeuralODE. Models corresponding to the minimum of this curved are used to plot the
prediction results on the right. (Right) Interpolation and extrapolation results for both the homotopy
and vanilla trained models. The dashed gray line indicates the end of training data and the start of
extrapolation.

Figure 3 displays results for both vanilla and our homotopy-based NeuralODE training. We find that
not only does our training method reach the final MSE value of the vanilla NeuralODE in about half
the number of epochs, the best MSE error achieved is near to the noise floor of the dataset - which
is the lowest value the MSE can take without model overfitting. Inspecting Figure 3 (right), we
find NeuralODEs trained with the homotopy method is able to perfectly fit the training data in the
interpolation regime as suggested by extremely low best MSE value of the middle panel. The high
performance of the trained model continues far into the extrapolation regime (after the dashed gray
line), where it near perfectly predicts the data across multiple future periods. As the final trained
model was selected only using the training data and had not seen any data in the extrapolation
regime, the near perfect future predictions indicate that our training method accurately extracted the
underlying dynamics of the data. These results are in stark contrast to those obtained by standard
NeuralODE training, whose results overfit the y variable and neglect the x variable almost entirely
and has no predictive capabilities.

Training on different length trajectories. Simply training NeuralODEs with a gradient-based
optimizer gives drastically deteriorating results as the length of training trajectories increases.
To illustrate this point, simulation trajectories of different time spans were generated: t ∈
[0, 3.1], [0, 6.1], [0, 9.1], ∆t = 0.1, and the same hybrid model (equation 11) was trained using
both vanilla and homotopy methods with identical hyperparameter settings as before.

Figure 4 shows the training results for Lotka-Volterra train data of different lengths. In the case of
interpolation, our method consistently trains models to loss values near the noise floor, regardless of
the length of the training data. On the other hands, the conventional training method only manages
to train NeuralODEs for very short data, and completely fails to learn the oscillatory dynamics that
start to arise at longer times. The differences are even more drastic for the case of extrapolation,
where there is a ×107 MSE difference between our approach and the baseline for longer time series.
In the case of short data, our result also gives a high, albeit slightly lower loss value than the baseline.
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Figure 4: Different train data length results. (Left) Interpolation and extrapolation MSE values as a
function of training data length. Extrapolation MSE was calculated by computing prediction values
for 50 points after the end of training data, then computing the MSE value against the noise-added
true dynamics. Error bars indicate one standard error away from the mean over three runs. (Right)
Interpolation and extrapolation results for models trained with our method. End of training data is
marked by the colored dash lines, and extrapolations are performed for 50 points after the end of
train data to match the results on the left panel.

Inspecting the right panel, this is revealed to be due to a lack of information in the training data -
given access to less than half the oscillation period, it would be impossible for the model to determine
whether the true dynamics is oscillatory or not.

4.2 LORENZ EQUATIONS

For our next set of experiments, we turn to the Lorenz equations, given by

dx

dt
= σ(y − x),

dy

dt
= x(ρ− z)− y,

dz

dt
= xy − βz. (12)

The chaotic nature of these equations makes even the seemingly simple task of determining the un-
known coefficients of the equations from the data extremely nontrivial. Hence, the Lorenz equations
serve as the perfect stress test for training a NeuralODE on the data.

The task of the experiment was to fit the ”black-box” model of equation 1 on the simulated and noise
added trajectory of 31 points, and the resulting extrapolation performance of the trained models were
inspected using another 31 points following the end of training data.
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Figure 5: Lorenz system: (Left) State space trajectories for the train data and learned dynamics
using the homotopy and vanilla training methods. (Right) Interpolation and extrapolation results on
the Lorenz equations dataset for both homotopy and vanilla trained results.

Figure 5 again highlights the effectiveness of our homotopy training against the baseline approach.
Without homotopy, the NeuralODE fails to learn any useful feature of the system dynamics, col-
lapsing into a flat line after the first few points in the interpolation interval. In contrast, results from
the homotopy training is able to accurately fit the training data in the interpolation interval, having
learnt both the initial peak and the subsequent oscillations. Due to the complexity of the chaotic
system, the model predictions does start to go out-of-sync with the ground truth in the extrapolation
regime, but it is evident the dynamics learned with homotopy is much richer and accurate than its
baseline counterpart.
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4.3 DOUBLE PENDULUM

For our final set of experiments, we used real-world measurement data of the dynamics of a dou-
ble pendulum taken by Schmidt & Lipson (2009). The goal of the experiment was to fit another
”black-box” model on the training data, which consists of 100 time points, and monitor the model
predictions for another 50 points afterwards.
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Figure 6: Double pendulum: (Left) Diagram of the double pendulum with the state variables θ1, θ2,
ω1, ω2 denoted. l1 and l2 correspond to the lengths of the pendulum bars. (Right) Interpolation and
extrapolation results on the double pendulum dataset for both homotopy and vanilla trained results.

From Figure 6, we see once again that our homotopy approach produces models that are much more
accurate in the interpolation regime than those by the conventional training method. For extrapola-
tion, both homotopy and baseline results fail to accurately predict all four state variables. However,
the homotopy result does much closely follow the rises and falls of the ground truth data (especially
for θ1) than its counterpart, demonstrating the effectiveness of our algorithm.

5 RELATED WORKS

Stabilizing NeuralODE training The necessity for improving NeuralODE training has been no-
ticed by the community, and multiple different methods have been proposed. Works such as Choro-
manski et al. (2020) or Hasani et al. (2021) use specific mathematical forms for their NeuralODEs
that guarantee stability. However, for the purpose of discovering dynamical equations underlying
the data, these approaches are inadequate as one cannot ascertain their hidden equations conform
to the rigid mathematical structure of these approaches. Another class of methods, such as Finlay
et al. (2020) and Kelly et al. (2020) use a softer form of regularization to boost training, by placing
constraints on the Jacobian or high derivatives of the differential equation to be learned. However,
these methods were also developed in the context of using NeuralODEs for input-output mapping.
There, as long as the mapping is the same, the actual form of the dynamics underneath does not
matter - which is not the case in our problem setting. Ghosh et al. (2020) introduces a method that
does not impose any constraint on the model form, but treats the integration time points as stochas-
tic variables. Other methods such as Kidger et al. (2021), Zhuang et al. (2020), Matsubara et al.
(2021), and Kim et al. (2021) study other aspects of NeuralODE training, including better gradient
calculation using improved adjoint methods. Such methods are fully compatible with our proposed
work, as evidenced by our use of the ”symplectic-adjoint-method” of Matsubara et al. (2021) in our
experiments.

6 DISCUSSION AND OUTLOOK

In this paper, we adapted the concepts of synchronization and homotopy optimization for the first
time in the NeuralODE literature, and demonstrated that models trained with our proposed method
are unrivaled in both interpolation and extrapolation accuracy across three different systems. As
our training algorithm is first of its kind for NeuralODEs, there are diverse avenues of future re-
search, including a more through investigation on the presented hyperparameter selection heuristics,
or using regularization terms in loss function to decrease the coupling term as opposed to manual
scheduling (Abarbanel et al., 2009; Schäfer et al., 2019). As NeuralODEs are continuous analogs of
RNNs, our work holds new prospect for stabilizing RNN training as well.
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A EXPERIMENT DETAILS

In all experiments, the AdamW optimizer (Loshchilov & Hutter, 2017) was used to minimize the re-
spective loss functions for the vanilla and homotopy training. The number of hidden layers was fixed
to two for all experiments, with hyperbolic tangent activation for the input and hidden layers, and
the identity function for the output layer. Hyperparameters were chosen by running hyperparameter
sweeps and selecting the resulting best values.

A.1 LOTKA-VOLTERRA SYSTEM

Following the experimental design of Rackauckas et al. (2021), we numerically integrate equation 10
in the time interval t ∈ [0, 6.1], ∆t = 0.1 with the parameter values α, β, γ, δ = 1.3, 0.9, 0.8, 1.8
and initial conditions x(0), y(0) = 0.44249296, 4.6280594. Continuing with the recipe, Gaussian
random noise with zero mean and standard deviations with magnitude of 5% of the mean of each tra-
jectory was added to both populations. The integration was performed using the dopri5 solver from
the torch-symplectic-adjoint package (Matsubara et al., 2021) was used with an absolute tolerance
of 1e-9 and a relative tolerance of 1e-7.

The neural networks U1(x, y;θ1) and U2(x, y;θ2) had 2 nodes for the input layer, 5 nodes for
its two hidden layers, and 1 node for the output layer. Deviating from Rackauckas et al. (2021),
we used hyperbolic tangent activation functions instead of the radial basis function activation that
the previous authors used. This change was made to better adhere to the standard practices of the
NeuralODE community.

11



Under review as a conference paper at ICLR 2023

A.2 LORENZ ATTRACTOR

To generate the data, we followed experimental settings of Vyasarayani et al. (2012), we used the
parameter values σ, ρ, β = 10, 28, 8/3 and the initial condition x0, y0, z0 = 1.2, 2.1, 1.7 which,
upon integration, gives rise to the well-known ”butterfly attractor”. Adhering to the paper, a Gaus-
sian noise of mean 0 and standard deviation 0.25 was added to the simulated trajectories to model
experimental noise. The ODE solver and the tolerance values were kept identical to the previous
Lotka-Volterra experiment.

The NeuralODE used for the experiment had 50 nodes for its two hidden layers, and 3 nodes for
its input and output layers corresponding to the three degrees of freedom of the state vector u =
[x, y, z]T of the system.

A.3 DOUBLE PENDULUM

The experimental data from Schmidt & Lipson (2009) consists of two trajectories of the double
pendulum, captured using multiple cameras. The noise in the data is subdued due to the LOESS
smoothing performed by the original authors. For our experiments, we used the first 100 points of
the first trajectory for training and the next 50 for evaluating the extrapolation capabilities of the
trained model.

Similar to the previous experiment, we used a ”black-box” NeuralODE with 50 nodes for the hidden
layers, and the input and output layer nodes changed to 4 to reflect the four degrees of freedom of
the system (Figure 6, left panel).
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