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ABSTRACT

One of the most important AI research questions is to trade off computation ver-
sus performance, since “perfect rational” exists in theory but it is impossible to
achieve in practice. Recently, Monte-Carlo tree search (MCTS) has attracted con-
siderable attention due to the significant improvement of performance in varieties
of challenging domains. However, the expensive time cost during search severely
restricts its scope for applications. This paper proposes the Virtual MCTS (V-
MCTS), a variant of MCTS that spends adequate amounts of time to think about
different questions. Inspired by this, we propose a strategy that converges to the
ground truth MCTS search results with much less computation. We give theoreti-
cal bounds of the the proposed method and evaluate the performance in 9× 9 Go
board games and Atari games. Experiments show that our method can achieve
similar performances as the original search algorithm while requiring less than
50% number of search times on average. We believe that this approach is a viable
alternative for tasks with limited time and resources.

1 INTRODUCTION

When artificial intelligence was first studied in the 1950s, researchers seek to answer the question
of what is the solution to the question if the agent were “perfect rational”. The term “perfect ra-
tional” here refers to the decision made with infinite amounts of computations. However, without
taking into consideration the practical computation time, one can only solve small-scale problems,
since classical search algorithms usually exhibit exponential running time. Recent AI researches no
longer seek to achieve “perfect rational”, but instead carefully trade-off computation versus the level
of rationality. People have developed computational models like “bounded optimality” to model
these settings (Russell & Subramanian, 1994). The increasing level of rationality under the same
computational budget has given us a lot of AI successes nowadays. Notable algorithms include the
Monte-Carlo sampling algorithms, the variational inference algorithms, and using neural networks
as universal function approximators (Coulom, 2006; Chaslot et al., 2008; Gelly & Silver, 2011;
Silver et al., 2016; Hoffman et al., 2013).

More recently, MCTS-based RL algorithms have achieved a lot of success, mainly in board games.
The most notable achievement is that AlphaGO beats Hui Fan in 2015 (Silver et al., 2016). This is
the first time that a computer program beats a human professional player. After that, AlphaGo beats
two top-ranking human players, Lee Sedol in 2016 and Jie Ke in 2017, the latter of which rank first
worldwide at the time. Later, the MCTS-based RL algorithms are further extended to other board
games, as well as the Atari video games (Schrittwieser et al., 2020). EfficientZero (Ye et al., 2021)
greatly improves the sample efficiency of MCTS-based RL algorithms, shedding light on its future
applications in real-world applications like robotics and self-driving.

Despite the impressive performance of MCTS-based RL algorithms, they require massive compu-
tations to train and evaluate. For example, Schrittwieser et al. (2020) used 1000 TPUs trained for
12 hours to learn the game of GO, and for a single Atari game, it needs 40 TPUs to train 12 hours.
Compared to previous algorithms on the Atari games benchmark, it needs around two orders of mag-
nitude more compute. This prohibitively large computational requirement has slowed down both the
further development of MCTS-based RL algorithms, as well as its practical use.

Under the hood, MCTS-based RL algorithms are model-based methods, that imagine what the fu-
tures look like when doing different future action sequences. However, this imaging process for the
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current method is not computationally efficient. For example, AlphaGo needs to look ahead 1600
game states to place a single stone. On the contrary, top human professional players can only think
through around 100-200 game states per minute (Silver et al., 2016). Besides being computation-
ally inefficient, the current MCTS algorithm deals with easy cases and hard ones with the same
computational budget. On the other hand, human knows to use their time when it is most needed.

In this paper, we aim to design new algorithms that save the computational time of the MCTS-based
RL methods. More specifically, we are interested in pushing the Pareto front of the rationality level
- computation curve. Empirical results show that our method can achieve comparable performance
while requiring less than 50% simulations to search on average.

2 RELATED WORK

2.1 MULTI-ARMED BANDIT PROBLEM

RL algorithms are always brought into the exploration and exploitation dilemma. Multi-armed ban-
dit (MAB) problem (Berry & Fristedt, 1985; Auer et al., 2002; Lattimore & Szepesvári, 2020) is one
of the most extensively studied but fundamental instances. TheK-armed MAB problem is a sequen-
tial game with a collection of K unidentified but independent reward distributions, each associated
with the corresponding arms. For each round, the learner pulls an arm and receives a reward sampled
from the corresponding distributions. The optimal policy of the learner for the MAB problem is to
maximize the cumulative rewards obtained from the sequential decisions.

In the case where the cost of pulling arms is little, the learner is allowed to trial and error for enough
times until convergence. A series of upper confidence bound (UCB) algorithms (Auer et al., 2002;
Bubeck & Cesa-Bianchi, 2012) are proposed to solve the stochastic MAB problem and they have
theoretical bounds. When there exist costs for each trial, pure exploration attempts to make the best
use of the finite trials (Bubeck et al., 2011; Lattimore & Szepesvári, 2020). Kocsis & Szepesvári
(2006) proposed UCT to adapt UCB algorithms to the tree structures, which is the basis of MCTS.

2.2 REINFORCEMENT LEARNING WITH MCTS

For a long time, Computer Go is regarded as a very challenging game (Bouzy & Cazenave, 2001;
Cai & Wunsch, 2007). Researchers attempt to use Monte-Carlo techniques that evaluate the value of
the node state through random playouts (Bouzy & Helmstetter, 2004; Gelly & Silver, 2007; 2008;
Silver et al., 2016). Afterwards, UCT has generally replaced those earlier heuristic methods for
Monte-Carlo tree search (MCTS). UCT algorithms (Kocsis & Szepesvári, 2006) apply UCB1 to
select action at each node of the tree. Recently, MCTS-based methods (Silver et al., 2016; 2017;
2018; Schrittwieser et al., 2020) have become increasingly popular and achieved super-human per-
formances on board games because of the strong ability to search. Modern MCTS-based RL algo-
rithms include four stages in each search iteration, namely simulation: selection, expansion, eval-
uation, and backpropagation. The selection stage targets selecting a new leaf node with UCT. The
expansion stage expands the selected node and updates the search tree. The evaluation stage evalu-
ates the value of the new node. The backpropagation stage propagates the newly computed value to
the nodes along the search path to obtain more accurate Q-values with Bellman backup. However,
search is quite time-consuming, which prevents MCTS-based methods to be used in wider scenarios.

2.3 ACCELERATION OF MCTS

There are two kinds of bottlenecks in MCTS in the aspect of speed: the evaluation/selection stage
of each iteration and the outer search loop. In the previous research, people attempted to evaluate
the node value by random playouts to the end of the game, which makes the evaluation stage quite
expensive. In addition, compared to other model-free RL methods like PPO (Schulman et al., 2017)
and SAC (Haarnoja et al., 2018), MCTS-based algorithms have much larger computations due to the
search loop. Therefore, a lot of works are devoted to accelerating MCTS. Some heuristic pruning
methods (Gelly et al., 2006; Wang & Gelly, 2007; Sephton et al., 2014; Baier & Winands, 2014;
2018) are developed to make the selection or evaluation more effectively. Lorentz (2015) proposed
early playout termination of MCTS (MCTS-EPT) to stop the random playouts early and use an
evaluation function to assess win or loss, which is an improvement in the evaluation stage of normal
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MCTS. And Hsueh et al. (2016) applied MCTS-EPT to the Chinese dark chess. Afterwards, MCTS-
EPT similar ideas have been applied in the evaluation stage of AlphaGoZero (Silver et al., 2017) and
later MCTS-based methods (Silver et al., 2018; Schrittwieser et al., 2020; Ye et al., 2021) including
our baseline models. They evaluate the Q-values through evaluation networks instead of running
playouts to the end. However, these methods focus on the specific stage of the search iteration to
accelerate the MCTS. We propose Virtual MCTS, which aims to terminate the outer search iteration
adaptively in MCTS under distinct circumstances without sacrificing the final policy quality.

3 BACKGROUND

The AlphaGo series of work (Silver et al., 2016; 2017; 2018; Schrittwieser et al., 2020) are all
MCTS-based reinforcement learning algorithms. Those algorithms assume the environment tran-
sition dynamics are known or learn the environment dynamics. Based on the dynamics, they use
the Monte-Carlo tree search (MCTS) as the policy improvement operator. I.e. taking in the current
policy, MCTS returns a better policy with the search algorithm. The systematic search allows the
MCTS-based RL algorithm to quickly improve the policy, and perform much better in the setting
where a lot of reasoning is required. MCTS is the core component in the algorithms like AlphaGo.

3.1 MCTS

In this part, we give a brief introduction to the MCTS method implemented in reinforcement learning
applications. MCTS takes in the current MDP state and runs a search algorithm guided by the current
policy function. It outputs an improved policy of the current state. The improved policy is later to
select an action in the environment. In the selection stage, an action will be selected by maximizing
over UCB. Specifically, AlphaZero (Silver et al., 2018) and MuZero (Schrittwieser et al., 2020) are
developed based on a variant of UCB, P-UCT (Rosin, 2011) and have achieved great success on
board games and Atari games. The formula of P-UCT in the two methods is the Eq (1):

ak = argmax
a∈A

Q(s, a) + P (s, a)

√∑
bN(s, b)

1 +N(s, a)

(
c1 + log

(∑
bN(s, b) + c2 + 1

c2

))
, (1)

where k is the index of the iterative step,A is the action set,Q(s, a) is the estimated Q-value, P (s, a)
is the policy prior obtained from neural networks and N(s, a) is the visit counts to select the action
a from the state s. The output of MCTS is the visit count of each action of the root node. After
N search iterations, the final policy π(s) is defined as the normalized root visit count distribution
πN (s), where πk(s, a) = (N(s, a))/

∑
b∈AN(s, b) = N(s, a)/k, a ∈ A. For simplification, we

use πk in place of πk(s) sometimes. In our method, we propose to approximate the final policy
πN (s) with π̂k(s), which we name as a policy candidate, through a new expansion method and a
termination rule. In this way, the number of iterations in MCTS can be reduced from N to k.

3.2 COMPUTATION REQUIREMENT

Most of the computations in MCTS-based RL are in the MCTS procedure. For each action taken
by MCTS, it needs N times neural network evaluations, where N is the number of search iterations
in MCTS. Traditional RL algorithms, such as PPO (Schulman et al., 2017) or DQN (Mnih et al.,
2015), only need a single neural network evaluation per action. Thus, MCTS-based RL is roughly
N times computationally more expansive than traditional RL algorithms.

In practice, training a single Atari game needs 12 hours of computation time on 40 TPUs (Schrit-
twieser et al., 2020). The computation need is roughly two orders of magnitude more than traditional
RL algorithms (Schulman et al., 2017), although the final performance of MuZero is much better.

4 METHOD

In this paper, we propose an algorithm named Virtual MCTS to reduce the computation cost of
MCTS-based RL algorithms. More concretely, we aim to push the front of the Pareto curve of
the performance–computation trade-off. Intuitively, human knows when to make a quick decision
and when to make a slow decision in different circumstances. It gives the ability to overcome
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more difficult problems without wasting much time on easy ones. This situation-aware behavior is
absent in current MCTS algorithms. We propose an MCTS algorithm variant that early terminates
the search iteration in MCTS adaptively under distinct situations of states. It is consists of two
components, the virtual expansion to estimate the final visit count based on the current partial tree;
the termination rule that decides when to terminate based on the hardness of the current scenario.

4.1 TERMINATION RULE

We propose to terminate the MCTS early based on the current tree statistics. Intuitively, during
the MCTS tree expansion process, if we find that recent searches do not further change the root
visitation distribution, then we no longer need to search further. With this intuition in mind, we
propose a simple modification to the MCTS search algorithm. Let πk(s) denote the root visitation
distribution of the root state s at MCTS expansion iteration k. We propose to terminate when:

||πk(s)− πk/2(s)||1 < ε

where ε is a tolerance hyper-parameter. Note that, in MCTS-based RL algorithms, not only the
best arm matters but the other arms matter as well. It is because MCTS is used in the exploration
process, and we need to make sure proper exploration happens at the non-best arms. This seems to
be a heuristic rule, without any guarantees whether πk is close to πN , whereN is the original MCTS
search iteration. However, we show that under certain conditions, a bound on ||πk(s) − πk/2(s)||1
implies a bound on ||πk(s)− πN (s)||1.

First of all, we list some notations: k is the index of the current search iteration and N is the number
of total search simulations, Rt(s, a) is the predicted Q-value output at the t-th iteration, Nk(s, a)
denotes the total visit counts of the action a from the state s after the k-th iteration, the Q-value at
k-th iteration is Qk(s, a) =

∑k
t=1Rt(s, a)/Nk(s, a). The Lemma here gives a brief bound for the

ranges of Q-values at different iterations, and the proof is attached in Appendix A.2.

Lemma 1 ∀a ∈ A, given that Rt(s, a) ∈ [−1, 1] and the Qk(s, a) =
∑Nk(s,a)

t=1 Rt(s,a)
Nk(s,a)

, then at

iteration 1 ≤ k1 < k2 ≤ N , Qk2
(s, a)−Qk1

(s, a) ≤ (1− Nk1
(s,a)

Nk2
(s,a) )(1−Qk1

(s, a)).

It tells that the future changes ofQ-values withN−k further searches are bounded in a small range.
Through the virtual expansion that we propose in Section 4.2, we can generate a policy candidate π̂k
to approximate the final oracle policy πN . Furthermore, Lemma 2 measures the distance between
the oracle policy πN and our current policy candidate π̂k and the proof is attached in Appendix A.2.
If the policy candidates π̂k and π̂k/2 are close enough, so are π̂k and π̂N . In the proof, we show that
π̂N is equal to the oracle policy πN . Therefore we conclude that the current policy candidate π̂k is
a near-oracle policy if the termination rule

∣∣∣∣π̂k(s)− π̂k/2(s)∣∣∣∣1 < ε is satisfied.

Lemma 2 ∀a ∈ A, given that r ∈ (0, 1], if ∃k ∈ [rN,N ],
∣∣∣∣π̂k(s)− π̂k/2(s)∣∣∣∣1 < ε, then

||π̂k(s)− πN (s)||1 < ε+ 1− r.

4.2 VIRTUAL EXPANSION IN MCTS

In the derivation above, we assume πi and πj are directly comparable. Here πi and πj denote two
root node visit count distributions at iteration i and j respectively. However, because the tree is
expanded with UCT, they are not directly comparable. UCT is an algorithm that maintains the upper
bound of the node values in the search tree. As the number of visits increases, the upper bound
would be tighter and the latter visits are more focused on the most promising part of the tree. Thus
earlier visit count distributions (smaller iteration number) can exhibit more exploratory distribution,
while latter ones (larger iteration number) are more exploitative on promising parts.

To compare πi and πj properly, we propose a method called virtual expansion in MCTS. In a nut-
shell, it aligns two distributions by virtual UCT expansions until the constant budget N . When the
tree is expanded at iteration i, it hasN− i iterations to go. A normal expansion would require evalu-
ating neural network N − i times for a more accurate Q(s, a) estimate for each arm at the root node.
Our proposed virtual expansion still expands N − i times according to UCT, but it ignores the N − i
neural network evaluations and simply assumes that each arm’s Q(s, a) does not change. We denote
the virtual expanded distribution from πi as a policy candidate π̂i. By doing virtual expansions on
both πi and πj , we effectively remove the different levels of exploration/exploitation in them.
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Algorithm 1 Iteration of Search in MCTS

1: Current k-th iteration step:
2: Given: A, P,Qk(s, a), Nk(s, a)
3: s← sroot
4: repeat do search
5: a∗ ← UCT (Q,P,N)
6: s← next state(s, a∗)
7: until Nk(s, a

∗) = 0
8: Evaluate the state value R(s, a) and P (s, a)
9: for s along the search path do

10: Qk+1(s, a) =
Nk(s,a)·Qk(s,a)+R(s,a)

Nk(s,a)+1

11: Nk+1(s, a) = Nk(s, a) + 1
12: end for
13: Return Qk+1(s, a), Nk+1(s, a)

Algorithm 2 Iteration of Search in MCTS with
Virtual Expansion

1: Current k-th iteration step:
2: Given: A, P,Qk(s, a), Nk(s, a), N̂k(s, a)
3:
4: if Not init N̂k(s, a) then
5: Init: N̂k(s, a)← Nk(s, a)
6: end if
7:
8: s← sroot

9: a∗ ← UCT (Q,P, N̂)

10: N̂k(s, a)← N̂k(s, a) + 1
11:
12: Return N̂k(s, a)

The comparisons between the MCTS and the one with virtual expansion are illustrated in Algorithm
1, 2. Here we display the complete one-step iteration of MCTS with or without virtual expansion.
The time-consuming computations are highlighted in Algorithm 1. Line 4 to 7 in Algorithm 1 target
at searching with UCT to reach an unvisited state for exploration. Then it evaluates the state and
backpropagates along the search path to fit a better estimation of Q-values. After a total of N
iterations, the visit count distribution of the root node πN (s) is considered as the final policy π(s).
However, in the MCTS with virtual expansions, listed in Algorithm 2, it only searches one step from
the root node and selects the action based on the current estimations without changing any properties
of the search tree. Furthermore, the virtual visited counts N̂k(s, a) are changed after virtual visits to
balance the exploitation and the exploration issue. Then the policy candidate after virtual expansions
becomes π̂k(s, a) = N̂k(s, a)/N instead of Nk(s, a)/k. When k = N , further searches after the
root have no effects on the final policy. So we have π̂N (s, a) = πN (s, a). In this way, the final visit
count distribution obtained through the virtual expansions is similar to the oracle one.

4.3 V-MCTS ALGORITHM SUMMARY

Algorithm 3 Virtual MCTS

1: Given budget N , state s, conservativeness r, error ε
2: for k ∈ N do
3: Selection with UCT
4: Expansion for the new node
5: Evaluation with Neural Networks
6: Backpropagation for updating Q and visit counts
7: πk(s, a)← Nk(s, a)/n

8: Virtual expand N − k nodes and update N̂(s, a)

9: π̂k(s)← N̂k(s, a)/N
10: if k ≥ rN ∧

∣∣∣∣π̂k(s)− π̂k/2(s)∣∣∣∣1 < ε then
11: π(s)← π̂k(s)
12: Break
13: end if
14: π(s)← πk(s)
15: end for
16: Return π(s)

The procedure of MCTS with the ter-
mination rule is listed as Algorithm 3.
Compared with the original MCTS,
the line 8-13 are the pseudo code on
the termination rule. In each itera-
tion, we do some calculations with
little cost to judge whether the condi-
tion of termination is satisfied. If it is,
then the search process is terminated
and returns the current policy candi-
date π̂k(s). Thus, it skips the next
N − k model predictions from neu-
ral networks in the evaluation stage
highlighted in line 5. In this way,
we can approximate the oracle distri-
bution πN by π̂k while reducing the
budget of N simulations to k. Here,
k ≥ rN and r is a hyperparameter of
the minimum budget rN . Then we
can reduce the tree size by 1/r times
at most. However, r cannot be a tiny
value as the minimum distance of distributions is bounded by r. Otherwise, the termination rule has
little effect. In conclusion, this rule tells the MCTS to terminate if the policy candidates have con-
verged. On such occasions, the virtual expansion method has similar effects as the real expansion of
MCTS to generate a near-oracle policy, which can save the time cost of the left N − k simulations.
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Furthermore, in the next section, we do some ablations to further investigate the effects of r, ε and
visualizations to understand why the termination rule works. We name our method Virtual MCTS
(V-MCTS), a variant of MCTS with a termination rule based on the virtual expansion.

5 EXPERIMENTS

In this section, the goal of the experiments is to prove the effectiveness and efficiency of our proposed
algorithm. We compare the performance as well as the cost of the budget of the MCTS-based
methods with or without the termination rule. Specifically, we evaluate the board game Go 9 × 9,
and a few Atari games. In addition, we do some ablations to further examine the effectiveness of the
virtual expansion and evaluate how sensitive our method is to the hyper-parameters. Finally, we try
to understand the adaptive mechanism with visualizations and performance analysis.

5.1 SETUP

Recently, Ye et al. (2021) proposed EfficientZero, a variant of MuZero (Schrittwieser et al., 2020)
with three extra components to improve the sample efficiency, which only requires 8 GPUs in train-
ing, and thus it is more affordable. Here we choose the board game Go 9 × 9 as our benchmark
environment. The game of Go tests how the algorithm performs in a challenging planning problem.
We also benchmark on a few Atari games, which feature complexity on the visual side.

As for the Go 9×9, we choose Tromp-Taylor rules during training and evaluation. The environment
of Go is built based on an open-source codebase, GymGo (Huang, 2021). We evaluate the perfor-
mance of the agent against GNU Go v3.8 at level 10 (Bump et al., 2005) for 200 games. We include
100 games as the black player and 100 games as the white one with different seeds. We set the komi
to 6.5 as most papers do. As for the Atari games, we choose 5 games with 100k environment steps,
which follows the setting of EfficientZero. We evaluate all these games for 32 distinct seeds.

5.2 COMPARATIVE EVALUATION

We compare our method to EfficientZero with original MCTS, on Go 9× 9 and some Atari games.
Figure 1a illustrates the comparisons on Go among different algorithms or models against the GnuGo
(level 10) agent. The x-axis is the training speed and the y-axis is the winning rate. Here, we train
the baseline method with different constant budgets N , noted as the blue points. Besides, we also
train the V-MCTS with hyperparameters r = 0.2, ε = 0.1. We evaluate the trained model with
different ε to display the tradeoff between performance and the time cost, noted as the red points.
The pink points are the GnuGo with different levels.

The result shows that the performance of V-MCTS is comparable to the MCTS of maximum budget
(N = 150) while it requires less time to search. Notably, V-MCTS achieves a 72% winning rate
against the GnuGo level 10. Meanwhile, the time cost of our method for a one-step move is 0.12s
while the GnuGo engine is 0.18s. For the data points with the winning rate higher than 50%, the V-
MCTS is significantly better than the original MCTS considering both the winning rate and the time
cost. Consequently, we believe that such termination rule of MCTS can keep the strong performance
while saving lots of budgets, which means our method is effective enough and more time-efficient.

The training curve presented in Figure 1b illustrates that the budget of search times is quite signifi-
cant to the MCTS method. However, the performance of V-MCTS is better than that of MCTS with
N = 120 while maintaining an average tree size of less than 80. Furthermore, it is interesting that
the tree size varies over training procedures. In the beginning, the outputs of the value network are
close to zero because the agent usually draws in self-play and receives the zero reward signal, which
means the little changes of Qk(s, a) during the search. The visit count distribution of the root after
virtual expansions is similar to that after real expansions. Therefore, in this stage, the termination
condition is easy to meet. Afterward, as the model is trained better and receives more diverse reward
signals during self-play, the probability of searching some valuable states becomes much larger. The
value Qk(s, a) varies considerably in each iteration of the search, which results in the changes of
distributions of policy candidates. Thus, it is much more difficult for the search process to terminate
and leads to a larger number of tree sizes. Finally, with more training steps, the prediction of the
policy network is more accurate and then gives a stronger prior heuristic knowledge P (s, a) before
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(a) Evaluations of Performance (b) Wining Rates and Tree Size on Training Stage

Figure 1: Performance of Virtual MCTS on Go 9 × 9 against GnuGo (level 10). (a) Evaluating
the speed of search and winning rate of MCTS, V-MCTS as well as the GnuGo at different levels.
The termination rule is able to reduce the search cost while keeping comparable performance and
it outperforms the GnuGo at level 10 in the aspect of speed and winning rate. (b) Evaluating the
winning rate as well as the average tree size in different training phases. The solid lines and dashed
lines display the winning probability and the tree size respectively. The dark blue curve is the oracle
version of MCTS (N = 150) and the red one is the version of V-MCTS. The termination rule can
make the tree size adaptive in training with a little loss of performance. Directly reducing N in
MCTS (the grey curve with N = 90) results in a larger performance drop.

Table 1: Results from Atari games: scores over total 32 seeds on 5 environments. Here MCTS
(N = 50) is the oracle version and the best results among those versions except the oracle are
marked in bold. V-MCTS outperforms MCTS (N = 30) while requiring fewer search times.

MCTS (N = 50) MCTS (N = 30) MCTS (N = 10) Ours Size Avg.
Pong 20.8 17.2 2.1 19.9 13
Breakout 411.1 347.4 309.0 389.2 16
Seaquest 1737.5 930.6 625.6 1340.1 15
Hero 9715.0 7499.1 7310.0 7465.0 15
Qbert 15465.6 7792.9 6035.2 10880.5 17

search. For those actions with higher prior knowledge, the changes of Qk(s, a) have less impact on
the UCT scores. The procedure of the virtual expansion is similar to the real expansion. However,
the changes of Qk(s, a) are still possible during the search process. Consequently, the average num-
ber of tree size keeps in a reasonable range, which is larger than that in the innocent beginning stage
and the minimum budget rN . Our method can determine whether to continue searching or not.

Apart from the results of Go, we also evaluate our method on some visually complex games. Since
the search space of Atari games is much smaller than that of Go and the Atari games are easier, here
we choose a few Atari games to study how the proposed method impacts the performance under less
necessity of search. We follow the setting of EffcientZero, 100k Atari benchmark, which contains
only 400k frames data. The results are shown in Table 1. Generally, we find that our method works
in Atari games. The tree size is adaptive and the performance of V-MCTS is still comparable to the
MCTS with full search trails. It has better performance than the MCTS(N = 30) while requiring
much fewer searches, which proves the effectiveness and the efficiency of the termination rule in the
tree search method. The Hero game is not an outlier considering the similar performance between
N = 50 and N = 30. Besides, the number of search times decreases more than that on Go.

To sum up, Virtual MCTS shapes better policy candidates close to the oracles through the virtual ex-
pansion with less cost of the budget. The performance of V-MCTS can keep sound with fewer search
iterations while simply reducing the total budget of MCTS will encounter a larger performance drop.
In addition, the savings of search cost is more substantial in easier environments.
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(a) Ablation of minimum budget k = rN (b) Ablation of minimum distance ε

Figure 2: Sensitivity of the termination rules to the hyperparameter r, ε on Go 9× 9. The solid lines
and dashed lines display the winning probability and the average tree size respectively.

Table 2: Ablation results of different expansion methods on Go 9× 9 against GnuGo (level 10).

Algorithm Size Avg. Winning Rate
Original expansion 30 16%
Greedy expansion 30 5%
Virtual expansion 30 32%

5.3 ABLATION STUDY

The results in the previous section suggest that our method reduces the response time of MCTS
while keeping considerable performance on challenging tasks. In this section, we try to figure out
which component contributes to the performance and how the hyperparameters affect it.

Virtual Expansion In Section 4.2, we introduce the virtual expansion and discuss the difference
between the MCTS with and without virtual expansion. We compare the MCTS with virtual ex-
pansion and another two expansion methods. Here we introduce the two methods briefly. One is
the original expansion, which does nothing once termination. It samples an action directly from
πk(s, a) = Nk(s, a)/k. Another is the greedy expansion, which spends the left N − k simula-
tions in searching the current best action greedily, indicating that π̂k(s, a) = (Nk(s, a) + (N −
k)Ia=argmaxNk(s,a))/N . Besides, we stop the search process after k iterations regardless of the
termination condition, where k = rN and r = 0.2, N = 150.

We compare the winning rate against the GnuGo engine and the results are listed as Table 2 shows.
All the versions here only search for the given minimum tree size, and the virtual expansion method
can still achieve a 32% winning rate, which is much better than the others. Notably, MCTS with
greedy expansion does not work. It is over-exploitation and results in severe exploration issues.
Consequently, the virtual expansion method can generate a better policy distribution because it can
balance the exploration and exploitation problem through UCT with further virtual simulations.

Termination Rule Since the virtual expansion provides a better choice of policy distributions, it is
significant to explore a better termination rule to keep the sound performance while decreasing the
tree size as much as possible. As mentioned in Section 4.1, the termination rule sets two hyperpa-
rameters r, ε to determine the termination rule. Then we do ablations for the different values of r
and ε respectively. The default values of r, ε are set to 0.2, 0.1 in all experiments here.

Figure 2 compares the winning rate as well as the average tree size across the training stage. Firstly,
Figure 2a gives the results of different minimum search times r. The winning probability is not
sensitive to r when r ≥ 0.2. But the average tree size is sensitive to r because V-MCTS is supposed
to search for at least rN times. In addition, there is a drop between the performance between r = 0.1
and r = 0.2. Therefore, it is reasonable to choose r = 0.2 to balance the speed and the performance.

8
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Board state

MCTS

Virtual MCTS

k=30 k=30 k=140 k=32 k=90 k=66 k=110

Figure 3: Heatmap of policy distributions from the MCTS (N = 150) and the V-MCTS. A darker
red color represents larger visit counts of the corresponding action. The V-MCTS will terminate with
different search times k according to the situations and generate a near-oracle policy distribution.

Besides, the comparisons of different minimum distance ε are shown in Figure 2b. A larger ε makes
the tree size smaller because

∣∣∣∣π̂k(s)− π̂k/2(s)∣∣∣∣1 < ε is easier to reach. In practical, we find that the
performance is highly correlated with ε. In terms of the winning probability, a smaller ε outperforms
a larger one. However, the better performance is at cost of a larger response time. Therefore, it is
a good choice to set r = 0.2, ε = 0.1. We suggest selecting an appropriate minimum distance to
balance the performance and the response time.

5.4 VISUALIZATION

In this section, we do some visualizations to better understand the behavior of Virtual MCTS. Specif-
ically, we choose some states at different time steps on one game of Go against the GnuGo with a
trained model and visualize the heatmap of policy distribution, as Figure 3 shows. In this figure, our
player is the black one. The board states are shown in the first row, and the next two rows are the
heatmap visualization for oracle MCTS and V-MCTS. The darker the color is on the grid, the more
the corresponding action is visited during the search. In general, π̂k is close to the πN at distinct
states, indicating that the termination rule is reasonable and effective. The less valuable actions there
are, the sooner the V-MCTS will terminate. For example, on Go games, the start states are usually
not complex because there are only a few stones on the board but the situations are much more com-
plicated in shuban, the closing stage of the game. Notably, the termination occurs earlier in the start
states (columns 1, 2) but it is the opposite when the situation is more complicated. More importantly,
the termination step k is not related to the number of Go pieces. And the policy candidate obtained
after virtual expansion can be close to the oracle one at distinct states of a game. Therefore, we can
conclude that V-MCTS makes adaptive terminations according to the situations of the current state,
which is the key to maintaining comparable performances.

6 DISCUSSION

In this paper, we propose a novel method named V-MCTS to accelerate the MCTS to determine the
termination of search iterations. It can keep comparable performances while reducing half of the
time to search adaptively. We are in the belief that this work can be one step toward applying the
MCTS-based methods to some real-time domains.

9
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7 REPRODUCIBILITY STATEMENT

The main implementations of our proposed method are in Algorithm 2 and 3. In addition, the
settings of the experiments and hyper-parameters we choose are in Appendix A.1. The proof of the
lemma is in Appendix A.2. More significantly, the details of the design of training procedures for
Go are around Appendix A.1.2. Besides, we will release the codebase if this paper is accepted.
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A APPENDIX

A.1 EXPERIMENTAL SETUP

A.1.1 MODELS AND HYPER-PARAMETERS

Model Design As for the architecture of the networks, we follow the implementation of Effi-
cientZero (Ye et al., 2021) in Atari games, which proposes three components based on MuZero:
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self-supervised consistency, value prefix, and off-policy correction. In the implementation of Effi-
cientZero, there are a representation network, a dynamics network and a reward/value/policy predic-
tion network. The representation network is to encode observations to hidden states. The dynamics
network is to predict the next hidden state given the current hidden state and an action. The re-
ward/value/policy prediction network is to predict the reward/value/policy. Notably, they propose to
keep temporal consistency between st+1 and the predicted state ŝt+1. The training objective is:

Lt(θ) = λ1L(ut, rt) + λ2L(πt, pt) + λ3L(zt, vt) + λ4Lsimilarity(st+1, ŝt+1) + c||θ||2

L(θ) = 1

lunroll

lunroll−1∑
i=0

Lt+i(θ),
(2)

where ut, πt, zt are the target reward/policy/value of the state st and rt, pt, vt are the predicted
reward/policy/value of the state st respectively. The prediction will do lunroll = 5 times iteratively
for the state s on both Go and Atari games. We do some changes when dealing with board games.
For example, we remove the reward prediction network because the agent will receive a reward only
at the end of the games. The other major changes for board games are listed as follows.

Since the board game Go is harder than the Atari games, we add more residual blocks (two times
blocks). Specifically, we use 2 residual blocks in the representation network, the dynamics network
as well as the value/policy prediction network on Go 9× 9 while EfficientZero uses only 1 residual
block in those networks on Atari games. As for the representation network, we remove the down-
sampling part here because there is no need to do downsampling for Go states. In the value/policy
prediction networks, we enlarge the dimension of the hidden layer from 32 to 128. Besides, con-
sidering that the reward is sparse on Go (only the final value) and the collected data are sufficient,
we only take the self-supervised consistency component in EfficientZero to give more temporal
supervision during training.

Hyper-parameters In each case, we train EfficientZero for unrolled 5 steps and mini-batches of
size 256. Besides, the model is trained for 100k batches with 100M frames of data in board games
while 100k batches with 400k frames in Atari games. We stack 8 frames in board games without
frameskip while stacking 4 frames in Atari games with a frameskip of 4. During both training and
evaluation, EfficientZero chooses 150 simulations of budget for each search in board games while
50 simulations of budget in Atari games. Other hyper-parameters are listed in Table 3.

Go 9× 9 Atari
Maximum number of tree size 150 50
Observation down-sampling No 96 × 96

Total frames 100M 400k
Replay buffer size 2M 100k

Max frames per episode 163 108k
Cost of training time 24h 8h

Komi of Go 6.5 -
Frame stack 8 4
Frame skip 1 4

Training steps 100k 100k
Mini batch 256 256

Learning rate 0.05 0.2
Weight decay (c) 0.0001 0.0001

Reward loss coefficient (λ1) 0 1
Policy loss coefficient (λ2) 1 1
Value loss coefficient (λ3) 1 0.25

Consistency loss coefficient (λ4) 2 0.5
Dirichlet α 0.03 0.3
c1 in P-UCT 1.25 1.25
c2 in P-UCT 19652 19652

ε 0.1 0.1
r 0.2 0.2

Table 3: Hyper-parameters of V-MCTS on Go 9× 9 and Atari games
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A.1.2 TRAINING DETAILS OF GO

The detailed implementations of Atari games are discussed in EfficientZero (Ye et al., 2021). How-
ever, it is nontrivial to adapt to board games. Here we give detailed instructions for training board
games Go 9× 9 in our implementations.

Inputs We follow the designs of AlphaZero and we use the Tromp-Taylor rules, which is similar to
previous work (Silver et al., 2018; Schrittwieser et al., 2020). The input states of the Go board are
encoded into a 17× 9× 9 array which stacks the historical 8 frames and uses the last channels C to
identify the current player, 0 for black and 1 for white. Notably, the one historical frame consists of
two planes [X,Y ], where the first plane X represents the stones of the current player and the second
one [Y ] represents the stones of the opponent. Besides, if there is a stone on board, then the state of
the corresponding position in the frame will be set to 1, otherwise to 0. For example, if the current
player is black and suppose b[i, j] is the current board state, X[i, j] = 1b[i,j]=black stone, Y [i, j] =
1b[i,j]=white stone. In summary, we concatenate together the historical planes to generate the input
state s = [Xt−7, Yt−7, Xt−6, Xt−6, ..., Xt, Yt, C], where Xt, Yt are the feature planes at time step t
and C gives information of the current player.

Training As for the training phase, we train the model from scratch without any human expert data,
which is the same as the setting of Atari games. Besides, limited to the GPU resources, we do not
use the reanalyzing mechanism of MuZero (Schrittwieser et al., 2020) and EfficientZero (Ye et al.,
2021), which targets at recalculation of the target values and policies from trajectories in the replay
buffer with the current fresher model. Specifically, we use 6 GPUs for doing self-play to collect
data, 1 GPU for training, and 1 GPU for evaluation.

Exploration To make a better exploration on Go, we reduce the α in the Dirichlet noise Dir(α) from
0.3 to 0.03 and we scale the exploration noise through the typical number of legal actions, which
follows these works (Silver et al., 2018; Schrittwieser et al., 2020). In terms of sampling actions
from MCTS visit distributions, we will mask the MCTS visit distributions with the legal actions and
sample an action at, where

at :=

{
at ∼ πt, t < T

at = argmaxπt, t ≥ T (3)

T is set to 16 in self-play and is set to 0 in evaluation, which is similar to these works (Silver et al.,
2018; Schrittwieser et al., 2020). In this way, the agent does more explorations for the previous
T steps while taking the best action afterwards. But for Atari games, ∀t, we choose at ∼ πt in
self-play and at = argmaxπt in evaluation, which is the same as these works (Schrittwieser et al.,
2020; Ye et al., 2021).

Two-player MCTS On board games, there are two players against each other, which is different
from that of one-player games. Therefore, we should do some changes to the MCTS with the two-
player game. For one thing, the value network always predicts the Q-value of the black player
instead of the current player, which provides a more stable prediction. Furthermore, A significant
change is that during backpropagation of MCTS, the value should be updated with the negative
value from the child node. Because the child node is the opponent, the higher value of the opponent
indicates a worse value of the current player. Besides, as for Q-values of the unvisited children on
Go and Atari games, we follow the implementation of EfficientZero (Ye et al., 2021) as follows:

Q̂(sroot) = 0

Q̂(s) =
Q̂(sparent) +

∑
b 1N(s,b)>0Q(s, b)

1 +
∑

b 1N(s,b)>0

Q(s, a) : =

{
Q(s, a) N(s, a) > 0

Q̂(s) N(s, a) = 0

(4)

Notably, we allow the resignation for players when maxa∈AQ(sroot, a) < −0.9 during self-play
and evaluation, which means that the predicted winning probability is less than 5%. As for other
hyperparameters on both Go and Atari games, we note that we choose the same values as those in
EffcientZero. Specifically, the c1, c2 in our mentioned P-UCT formula (Eq. 1) are set to 1.25 and
19652, following these works (Schrittwieser et al., 2020; Ye et al., 2021).
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A.2 PROOF

Lemma 1. ∀a ∈ A, given that Rt(s, a) ∈ [−1, 1] and the Qk(s, a) =
∑Nk(s,a)

t=1 Rt(s,a)
Nk(s,a)

, then at

iteration 1 ≤ k1 < k2 ≤ N , Qk2(s, a)−Qk1(s, a) ≤ (1− Nk1
(s,a)

Nk2
(s,a) )(1−Qk1(s, a)).

proof. Since Qk(s, a) =

k∑
t=1

Rt(s,a)

Nk(s,a)
, we have

Qk2
(s, a) =

Nk1(s, a)Qk1(s, a) +
∑Nk2

(s,a)

t=Nk1
(s,a)Rt(s, a)

Nk2
(s, a)

(5)

Because Rt(s, a) ∈ [−1, 1], then

Qk2
(s, a) ≤ Nk1(s, a)

Nk2
(s, a)

Qk1
(s, a) +

Nk2(s, a)−Nk1(s, a)

Nk2
(s, a)

(6)

Therefore

Qk2(s, a)−Qk1(s, a) ≤ (1− Nk1
(s, a)

Nk2(s, a)
)(1−Qk1

(s, a)) (7)

Lemma 2. Given that r ∈ (0, 1], if ∃k ∈ [rN,N ],
∣∣∣∣π̂k(s)− π̂k/2(s)∣∣∣∣1 < ε, then

||π̂k(s)− πN (s)||1 < ε+ 1− r

proof. Since the π̂k(s, a) is a distribution that equals to N̂k(s,a)
N . Therefore,

||π̂N (s)− π̂k(s)||1 ≤
∣∣∣∣π̂N (s)− π̂N/2(s)

∣∣∣∣
1
+
∣∣∣∣π̂N/2(s)− π̂k(s)

∣∣∣∣
1

(8)

Then

||π̂N (s)− π̂k(s)||1 ≤
M∑
t=0

∣∣∣∣∣∣π̂N
2t
(s)− π̂ N

2t+1
(s)
∣∣∣∣∣∣
1
+
∣∣∣∣∣∣π̂k(s)− π̂ N

2M+1
(s)
∣∣∣∣∣∣
1

(9)

, where N
2M+2 ≤ k ≤ N

2M+1 . In addition,
∣∣∣∣∣∣π̂k(s)− π̂ N

2M+1
(s)
∣∣∣∣∣∣
1
≤
∣∣∣∣π̂k(s)− π̂k/2(s)∣∣∣∣1 < ε.

Besides, k ≥ rN , then we have

||π̂N (s)− π̂k(s)||1 ≤
M∑
t=0

∣∣∣∣∣∣π̂N
2t
(s)− π̂ N

2t+1
(s)
∣∣∣∣∣∣
1
+
∣∣∣∣∣∣π̂k(s)− π̂ N

2M+1
(s)
∣∣∣∣∣∣
1

<

M∑
t=0

∣∣∣∣∣∣π̂N
2t
(s)− π̂ N

2t+1
(s)
∣∣∣∣∣∣
1
+ ε

≤ 1 + ε− 1

2M

≤ ε+ 1− r

(10)

For theN -th iteration of the search process, the final visit count distributions keep the same between
the original expansion (Algorithm 1) and the virtual expansion (Algorithm 2). This is because at the
last iteration, searching the nodes after the root has no effects on the final distribution. Therefore,
π̂N (s) = πN (s). So we have

||π̂k(s)− πN (s)||1 < ε+ 1− r (11)
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