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ABSTRACT

Polysemy has long been a major challenge in Mechanistic Interpretability (MI),
with Sparse Autoencoders (SAEs) emerging as a promising solution. SAEs em-
ploy a shared encoder to map inputs to sparse codes, thereby amortizing infer-
ence costs across all instances. However, this parameter-sharing paradigm in-
herently conflicts with the MI community’s emphasis on instance-level optimal-
ity, including the consistency and stitchability of monosemantic features. We
first reveal the trade-off relationships among various pathological phenomena,
including feature absorption, feature splitting, dead latents, and dense latents
under global reconstruction-sparsity constraints from the perspective of training
dynamics, finding that increased sparsity typically exacerbates multiple patho-
logical phenomena, and attribute this trade-off relationship to amortized infer-
ence. By reducing reliance on amortized inference through the introduction of
semi-amortized and non-amortized approaches, we observed that various patho-
logical indicators were significantly mitigated, thereby validating our hypoth-
esis. As the first step in this direction, we propose Local Amortized SAE
(LocA-SAE), a method that groups polysemantically close latents based on the
angular variance. This method is designed to balance the computational cost
of per-sample optimization with the limitations of amortized inference. Our
work provides insights for understanding SAEs and advocates for a paradigm
shift in future research on polysemy disentanglement. The code is available
https://github.com/wenjie1835/Local Amotized SAEs.

1 INTRODUCTION

Mechanistic Interpretability (MI) has emerged as a critical subfield in artificial intelligence, aiming
to open the ‘black box’ through reverse-engineering the internal computational processes of neural
networks to understand how models process information and make decisions (Bereska & Gavves,
2024). Unlike traditional black-box analysis, MI focuses on the specific mechanisms inside models,
such as the roles of attention heads or activation patterns. However, the polysemy phenomenon
presents challenges in understanding the mechanisms of components (Saphra & Wiegreffe, 2024).
This manifests itself as a single neuron activating for multiple unrelated concepts, making it hard to
attribute the neurons precisely (Bricken et al., 2023).

To tackle this challenge, researchers have introduced Sparse Autoencoders (SAEs), a tool to decom-
pose activation vectors, aiming to extract a complete set of fundamental units that faithfully represent
independent concepts, known as monosemantic features (Cunningham et al., 2023; Templeton et al.,
2024). As a neural network implementation of sparse dictionary learning, unlike traditional sparse
coding, which solves a regularized iterative optimization problem instance-wise (Fel et al., 2025;
Tibshirani, 2013), SAEs employ an encoder to parameterize an inference network. This network
learns a deterministic mapping function from input data to sparse codes through global training,
thereby amortizing the optimization cost across all samples, a process known as amortized infer-
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ence (O’Neill et al., 2024). This approach pursues a global optimum by end-to-end minimizing
reconstruction error and sparsity penalty (Kissane et al., 2024).

Although efficient, amortized inference often sacrifices instance-level optimality for global con-
straints (O’Neill et al., 2024; Costa et al., 2025). In contrast, the monosemantic features desired by
the MI community emphasize “instance-level optimality,” where each sparse code robustly and ac-
curately reflects a single concept (Bricken et al., 2023), which is similar to the instance-wise optimal
solutions obtained through sample-by-sample iterative optimization in classical sparse coding like
matching pursuit. The performance gap between the sparse codes derived from amortized inference-
based SAEs and the ideal sparse codes expected for each sample is referred to as the amortization
gap (O’Neill et al., 2024; Song et al., 2025). This gap represents a key price of amortized inference,
as it introduces systematic suboptimality that conflicts with the instance-wise precision required for
monosemantic features.

To understand the price of amortized inference, we first examine how the amortization gap manifests
in various pathological phenomena observed in SAEs. These issues include feature absorption,
whereby the shared encoder represents multiple concepts with a single latent to meet a global spar-
sity budget, and feature splitting, where a complex concept is approximated by multiple redundant
latents to minimize average reconstruction error (Chanin et al., 2024). Another related issue is the
prevalence of dense latents, which indicates overfitting to high-frequency activation patterns at the
expense of per-sample sparsity (Bussmann et al., 2024a). The last phenomenon is feature incon-
sistency. It is the representation of a single concept by different latents under minor distribution
shifts, which stems from the encoder’s failure to find a stable optimum, instead converging to diver-
gent local minima (Song et al., 2025; Leask et al., 2025). Collectively, these pathologies highlight a
core trade-off: amortized inference achieves global efficiency by sacrificing the per-sample fidelity
essential for faithful mechanistic interpretation.

Given the problems introduced by amortized inference in the task of disentangling polysemantic
features, this paper argues against over-investment in fully-amortized paradigms, such as improve-
ments to activation functions and gating mechanisms. Accordingly, we propose a locally amortized
SAE variant, aimed at finding a trade-off between the computational cost of per-sample optimization
and amortized inference. Our contributions can be summarized as follows.

1. We argue that the inherent misalignment between the global optimality emphasized by
amortized inference-based SAEs and the instance-level optimality required for monose-
mantic features indirectly leads to numerous pathological phenomena in SAEs. From the
perspective of training dynamics, we reveal that pursuing the global reconstruction-sparsity
Pareto frontier does not yield improvements in monosemanticity. This issue stems from
an architectural trade-off induced by the parameter sharing of amortized inference under
global sparsity/reconstruction constraints. Specifically, this trade-off means that increas-
ing the sparsity penalty not only fails to improve monosemanticity but instead exacerbates
pathological phenomena such as dead latents, feature splitting, and feature absorption.

2. To verify the relationship between amortized inference and these pathological phenomena,
we introduce semi-amortized and non-amortized methods as intervention and ablation ex-
periments, respectively, to reduce reliance on amortized inference. Results show that these
alternative approaches significantly reduce reconstruction errors and alleviate the dead la-
tent problem. Furthermore, the extracted features exhibit superior performance in targeted
concept removal tasks and enhanced controllability in model intervention tasks.

3. As the first step in this direction, we introduce Local Amortized Sparse Autoencoders
(LocA-SAE). This method groups latent variables based on their angular variance and
assigns an independent encoder and sparsity penalty to each group. This design aims to
mitigate the unreasonable trade-offs caused by varying degrees of latent polysemanticity,
while balancing the computational cost of instance-wise optimization against the limita-
tions of amortized inference. Results indicate that LocA-SAE alleviates multiple patholog-
ical phenomena and even eradicates dead latents entirely, with only a marginal sacrifice in
reconstruction performance.

2 RELATED WORK

Sparse Autoencoders. SAEs (Bricken et al., 2023), as a neural network implementation of dic-
tionary learning, aim to learn sparse representations of input data, particularly useful in MI for
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decomposing polysemantic activations in Large language models (LLMs) Yao et al. (2025); Yang
et al. (2024). The core principle involves reconstructing input activations x ∈ Rd using a learned
overcomplete dictionary D ∈ Rd×m and sparse latent codes α ∈ Rm, where the encoder maps x
to z and the decoder reconstructs x̂ = Dz, minimizing reconstruction loss plus sparsity penalties
to extract monosemantic features that resolve superposition (Elhage et al., 2022). SAEs’ evolution
starts with vanilla SAEs, employing L1 penalties but facing dead features and shrinkage bias (Cun-
ningham et al., 2023). To mitigate these, TopK SAEs enforce hard sparsity via top-k pre-activations,
reducing dead latents and enhancing scaling in models like GPT-4 (Gao et al., 2024). Building on
this, BatchTopK SAEs relax constraints batch-wise, alleviating sparsity variance and boosting sta-
bility in high dimensions (Bussmann et al., 2024b). For shrinkage, Gated SAEs decouple detection
and magnitude estimation via dual paths, yielding gains across hyperparameters in 7B models (Ra-
jamanoharan et al., 2024a). Further refining L0 sparsity, JumpReLU SAEs use discontinuous activa-
tions and straight-through estimators, achieving top fidelity on Gemma 2 9B (Rajamanoharan et al.,
2024b). Addressing feature splitting, Matryoshka SAEs train nested increasing-width SAEs for hi-
erarchical features and multi-resolution analysis (Bussmann et al., 2024a). Additionally, AdaptiveK
SAEs dynamically tune k for uneven distributions; P-anneal SAEs anneal penalties progressively to
avoid early dead features (Yao & Du, 2025). Recent RouteSAEs extend to multi-layers with routers
integrating residual activations, capturing cross-layer features for better interpretability (Shi et al.,
2025). Additional related work can be found in the Appendix. B.

3 PRELIMINARIES

3.1 SPARSE CODING AND AMORTIZATION-BASED SPARSE AUTOENCODERS

Sparse Coding, also known as sparse dictionary learning (Olshausen & Field, 1996), aims to repre-
sent an input signal as a linear combination of a set of overcomplete basis vectors, while constraining
the representation coefficients to be as sparse as possible. Formally, given an input vector x ∈ Rd

and an overcomplete dictionary matrix D ∈ Rd×k (where k > d), sparse coding seeks the optimal
sparse code z∗ ∈ Rk that satisfies:

z∗ = argmin
z
∥x−Dz∥22 + λ∥z∥0, (1)

where ∥ · ∥0 denotes the ℓ0 pseudo-norm, and λ controls the sparsity strength. Since the ℓ0 opti-
mization is NP-hard, the ℓ1 norm is often employed as a convex surrogate for the sparsity constraint
in practice. Inference in this classical formulation is an iterative process performed on each sample,
ensuring instance-specific optimality (Chen et al., 2001; Mallat & Zhang, 1993).

SAE emerges as a neural network implementation of this dictionary learning framework, designed
to overcome the computational bottleneck of per-sample optimization. The core architecture of an
SAEs consists of an encoder fϕ and a decoder. The encoder fϕ is typically a linear transformation
followed by a non-linear activation function, which maps the input x to a sparse latent code z =
fϕ(x). The decoder then reconstructs the input using a learned dictionary matrix D ∈ Rd×k:
x̂ = Dz (Braun et al., 2024). The training objective minimizes the reconstruction error plus a
sparsity penalty:

L = ∥x− x̂∥22 + λ∥z∥1. (2)
Different from the traditional sparse coding schemes to solve an optimization problem for each in-
stance, Crucially, SAEs employ an amortized inference approach. A shared encoder network fϕ
learns to approximate the posterior over the entire dataset. This approach amortizes the compu-
tational cost of inference across the training process. Consequently, SAEs replace the iterative,
sample-specific optimization of classical sparse coding with efficient, global inference via an end-
to-end feedforward network, enabling scalable application to large-scale data.

3.2 PATHOLOGICAL PHENOMENA IN SAES

The pursuit of monosemantic features through the amortized inference of SAEs often lead to several
common pathological phenomena. These phenomena represent failures in the desired behavior of
the learned dictionary and its latents. We briefly define these pathologies and the metrics used to
quantify them, which are crucial for interpreting our subsequent analysis.
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Dead Latents. A significant portion of latent units may rarely or never activate, indicating a failure
to utilize the full capacity of the overcomplete dictionary and reducing the effective model size (Gao
et al., 2024).
Dense Latents. Contrary to Dead Latents, some latents activate excessively frequently across inputs.
These latents often correspond to common, non-specific directions or polysemantic combinations,
violating the goal of sparsity and monosemanticity (Sun et al., 2025).
Feature Splitting. A single coherent concept may be represented by the activation of multiple
similar or redundant features across different contexts. This fragmentation obscures the intended
one-to-one mapping between features and concepts, reducing interpretability (Chanin et al., 2024).
Feature Absorption. A rarer concept can be “absorbed” into a more frequent one, whereby the
encoder opts to represent both using the same dominant latent. This results in the suppression of the
rarer concept’s unique latent and compromises feature completeness (Chanin et al., 2024).

4 THE MISALIGNMENT OF AMORTIZED SAES FOR POLYSEMY
DISENTANGLEMENT

In this section, we argue from two perspectives about the misalignment of amortized inference and
the polysemy problem. The first is a mismatch in evaluation metrics: the global reconstruction-
sparsity trade-off emphasized by amortized inference overlooks the instance-level trade-off high-
lighted by monosemanticity and may obscure certain pathological phenomena. The second is
that the optimization approach of amortized inference tends to preserve latent variables with high
marginal contribution (activation frequency) under global reconstruction-sparsity constraints, which
conflicts with the instance-level semantic purity emphasized by monosemanticity.

4.1 AMORTIZATION GAP FROM THE PERSPECTIVE OF PARETO FRONTIER

The concept of the Amortization Gap is well-established in variational inference literature, referring
to the systematic discrepancy between the approximate posterior learned by an amortized inference
network and the true posterior (Kim et al., 2018; Marino et al., 2018). In SAEs, O’Neill et al.
(2024) define this gap as the systematic discrepancy between the latent representations predicted by
a shared encoder fϕ(x) under the amortized inference framework and those obtained by instance-
wise optimization.

Mathematically, for a given input x, let za = fϕ(x) be the amortized sparse code produced by the
SAE encoder, and zo be the optimal sparse code obtained via per-sample optimization:

zo = argmin
z
∥x−Dz∥22 + λ∥z∥1. (3)

The amortization gap can be formalized as the difference in the objective function values:

∆(x) =
(
∥x−Dza∥22 + λ∥za∥1

)
−

(
∥x−Dzo∥22 + λ∥zo∥1

)
. (4)

This gap ∆(x) ≥ 0 quantifies the suboptimality per sample, with the average gap over a dataset
providing a global metric: ∆̄ = 1

N

∑N
i=1 ∆(xi).

∆̄ reflects a fundamental trade-off between efficiency and precision, O’Neill et al. (2024) proves that
there is a theoretical minimum from the compressed sensing theory, and attributes it to their linear-
nonlinear structure. Here, we describe the ∆̄ as the “distance” between the reconstruction/sparsity
Pareto frontier of SAEs (their optimal trade-off curve between reconstruction error and sparsity) and
the optimal frontier defined by sparse codes from unconstrained sparse inference algorithms (e.g.,
sparse coding, which solves Eq. 3 per sample). Therefore, the ∆̄ can serve as a metric to quantify
the global Pareto improvement in reconstruction/sparsity. This is exactly the goal of improvements
in most current SAE variants: to minimize reconstruction error while simultaneously maximizing
sparsity.

However, minimizing ∆̄ to pursue the global reconstruction-sparsity Pareto frontier may incur an
overlooked cost: it evaluates the trade-off at the level of the entire dataset, whereas monosemanticity
emphasizes this trade-off at the instance level. Consequently, the convergence of ∆̄ does not nec-
essarily imply an improvement in monosemanticity and may instead mask the inherent trade-offs
among pathological phenomena, thereby misleading researchers.
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4.2 THE PARADOX BETWEEN GLOBAL OPTIMALITY AND MONOSEMY

Amortization-based encoder are trained to minimize an expected reconstruction–sparsity tradeoff,
the shared encoder is encouraged to learn “high-frequency, cross-domain reusable” directions to
reduce overall error (Kim et al., 2018; Cremer et al., 2018). However, the evaluation standard for
monosemantic features emphasizes per-example semantic purity, robustness, and stitchability (Kar-
vonen et al., 2025). This inherent tension indirectly leads to many pathological phenomena in SAEs.
For instance, when the data distribution is long-tailed or multimodal, minimizing expected error and
preserving per-example semantic atomicity often cannot be achieved simultaneously. In such cases,
the optimizer compromises by sacrificing semantic consistency and trigger completeness for some
samples to favor reconstruction accuracy. This mechanism underlies phenomena such as feature
splitting and feature absorption, which not only waste dictionary capacity but also reduce inter-
pretability (Chanin et al., 2024).

Furthermore, if the goal is to discover “canonical units,” current SAEs still fail to converge to a
unique and stitchable set of features. Through stitching and meta-SAE experiments, Leask et al.
(2025) demonstrated that latent variables learned by different SAEs on the same dataset do not form
a unified atomic set, reinforcing the conclusion that “global mean optimality ̸= per-sample and cross-
setup optimality.” Mechanistically, neural networks encode unrelated semantics in nearly orthogonal
directions to accommodate more sparse features within limited dimensions, resulting in neuron-level
polysemy and “space sharing.” This makes the exact way in which rare concepts are absorbed or split
highly sensitive to initialization and mild distribution shifts, so the resulting features are difficult to
stitch across runs into a run-invariant basis. In contrast, the instance-wise optimum zo(x) depends
only on the dictionary and sparsity penalty and therefore defines a more stable target. Based on such
premises, a monosemantic objective that stresses instance-wise atomicity is intrinsically in tension
with a global objective that optimizes average reconstruction (Elhage et al., 2022).

We therefore hypothesize that this fundamental misalignment does not merely introduce a perfor-
mance gap but systematically distorts the feature learning process, forcing the model into a regime of
unreasonable trade-offs among several pathological phenomena. Specifically, when the data distri-
bution is long-tailed or multimodal, minimizing expected error and preserving per-example seman-
tic atomicity often cannot be achieved simultaneously. In such cases, the optimizer compromises by
sacrificing semantic consistency and trigger completeness for some samples to favor reconstruction
accuracy. This mechanism underlies phenomena such as feature splitting and feature absorption,
which not only waste dictionary capacity but also reduce interpretability (Chanin et al., 2024). Dead
latents may emerge as the global constraint prunes low-frequency directions, while dense latents
persist due to overfitting to common patterns, further exacerbating the misalignment.

4.3 EVIDENCE FROM TRAINING DYNAMICS

To empirically validate our hypothesis that these pathologies stem from this paradox, we examine
the training dynamics of SAEs. By tracking the evolution of key metrics under varying sparsity
constraints, we aim to understand the trade-offs among these phenomena, demonstrating how the
global amortized objective fails to enhance monosemanticity.

Experimental Setup. We use SAEBench’s open-source implementation, which includes both Stan-
dard SAE and Top-k SAE models trained on the resid post of the 12th layer of Gemma-2-2B
over the Pile-uncopyrighted dataset (Karvonen et al., 2025). Each variant incorporates six differ-
ent sparsity strengths and checkpoints from seven distinct training steps. The evaluation metrics
for these pathological phenomena are detailed in Section 3.2. Notably, for the calculation of the
amortization gap, the optimal sparse code zois obtained via 200 iterations of the ISTA (Iterative
Shrinkage-Thresholding Algorithm).
Evaluation Matrices. We employ a suite of metrics including the Dead Rate, Dense Rate, Ab-
sorption Rate, and ∆F1 (for feature splitting), alongside standard measures like Normalized Mean
Squared Error (NMSE) and the Amortization Gap (∆̄). The formal definitions and mathematical
details of all evaluation metrics are provided in Appendix I (Table. 9).

Observations. We compare the dynamic behaviors of various pathological phenomena in two vari-
ants of SAEs under different sparsity levels: Standard SAE and Top-k SAE, as illustrated in Figures
1 and 2, detailed experimental results can be seen in the Table. 4 and 5 in the Appendix F. Our
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Figure 1: Variation of Different Pathological Phenomena Corresponding to Standard SAE at Differ-
ent Sparsity Levels from the Perspective of Training Dynamics. Sparsity gradually increases from
Trainer 0 to Trainer 5.
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Figure 2: Variation of Different Pathological Phenomena Corresponding to Top-k SAE at Differ-
ent Sparsity Levels from the Perspective of Training Dynamics. Sparsity gradually increases from
Trainer 5 to Trainer 0.

analysis reveals that the training process forces an unreasonable balancing of pathologies, driven by
the conflict between a shared encoder and a global sparsity budget.

Sparsity exacerbates dead latent without resolving dense ones. As shown in the subfigure of
NMSE and Dead Rate of Figure 1 and 2, increasing the sparsity penalty leads to a steady rise in
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the NMSE and Dead Rate. This occurs because the global objective prioritizes latents with high
marginal gain (activation frequency). Low-frequency latents are pruned first as sparsity costs in-
crease. However, the Dense Latent Rate was only slightly mitigated. Additionally, as the number
of training steps increased, the Dead Rate and Dense Rate did not show a complementary trend.
Taking Trainers 3-5 of the Top-k SAE as an example (Figures 2 Dead Rate, Dense Rate@0.2), af-
ter the initial training phase, these two metrics even demonstrated a tendency to be exacerbated
simultaneously. indicating that the common, high-utility directions are preserved due to the strong
reconstruction constraint. This creates a difficult trade-off: increased sparsity fails to clean up overly
dense latents while simultaneously killing off more niche features.

Feature splitting and absorption emerge as compensatory mechanisms. The global
reconstruction-sparsity objective often finds it advantageous to represent a concept with multiple
splintered features (increasing ∆F1 in Fig. 1) or to assign the variance of a rare feature to a more
frequent, absorbing latent (Fig. 1 Absorption Rate). For example, in the mid-to-late stages of train-
ing for the Standard SAE under high sparsity, we observe a significant spike in both Absorption
Rate and ∆F1. This suggests the model is compensating for the tight sparsity budget by making
representations less interpretable, not more monosemantic.

The opposite trend between monosemanticity and amortization gap. Figure 1 shows that ∆̄
decreases consistently during training for all sparsity levels, indicating that the amortized mapping
learned by the encoder does lead to better global Pareto improvements. However, this trend does not
correlate with improvements in monosemanticity metrics (Dead, Dense, Absorption, ∆F1). This
demonstrates that optimizing the global amortized objective is not sufficient for learning instance-
optimal, monosemantic features, and these pathological phenomena are inherent to the paradigm. It
also points out that the global reconstruction-sparsity Pareto frontier pursued by most current SAEs
variants is directionally biased.

Top-K SAEs alleviate but do not eliminate the trade-off. The Top-K SAE (Fig. 2), with its hard
gating mechanism, shows a drastically reduced Dense Rate and avoids the worst of the dead feature
problem. However, it still exhibits a trend of increasing with increasing sparsity in Absorption
and ∆F1 during training (Fig. 2 ∆F1, Absorption Rate). It suggests that while modifications to
activation functions and gating mechanisms may alleviate specific pathological phenomena, the root
conflict stemming from amortization remains unresolved.

In conclusion, the pathological phenomena are inextricably linked, they are not independent failures
but interrelated symptoms of a shared encoder competing for a limited global budget. Pursuing a
better global Pareto frontier on reconstruction and sparsity within the amortized paradigm comes at
the direct expense of monosemanticity. These findings support our hypothesis that the pathologies
originate from the fundamental paradox between global and instance-level optimality, providing
empirical evidence for the inherent limitations of amortized inference in SAEs.

5 DO PATHOLOGICAL PHENOMENA REALLY STEM FROM AMORTIZED
INFERENCE?

To further verify this attribution, we conducted intervention and ablation experiments. Specifically,
we explores semi-amortized and non-amortized approaches by reducing or eliminating reliance on
shared encoders, aiming to demonstrate whether instance-level optimization can mitigate the ob-
served pathological phenomena. Finally, we propose an intermediate approach to balance computa-
tional cost and amortized inference named LocA-SAE: a variant of SAE that groups latent variables
based on angular variance and assigns each group an independent encoder for locally amortized
encoding at varying sparsity levels.

5.1 EXPERIMENTAL SETUP

For this purpose, we reproduce part of the work from SAEBench (Karvonen et al., 2025). Specifi-
cally, we train four different SAE architectures, Standard SAE, JumpReLU SAE, Gated SAE, Top-k
SAE, BatchTopK SAE and Matryoshka SAE, which use the resid post of the 8th layer of the Pythia-
160m-deduped model processed on the monology/pile-uncopyrighted dataset, while for Gemma-2-
2b, the 12th layer is used. The same resid post is also used to train LoC-SAE. Detailed config can
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be found in the Appendix H, and the evaluation metrics remain consistent with 3.2. The test data is
the first 10,000 tokens from the training data loaded via streaming.

5.2 METHODOLOGY

Standard SAEs force a single encoder Wenc to approximate instance-optimal codes for all latents
simultaneously, inducing pathological trade-offs. We introduce LocA-SAE, which retains a single
shared dictionary but replaces the global encoder with a small set of group-wise encoders at varying
sparsity levels.

Angular variance based Latent Grouping. We group latent units based on angular variance. This
metric is defined as AVarj = 1 − ∥µj∥2, which quantifies the diversity of activating samples and
thereby indirectly represents the polysemanticity intensity of the latent unit, where µj denotes the
mean direction of all normalized inputs that activate latent unit j. We then sort the latent units by
AVarj and partition the index set {1, . . . ,m} into G = 8 contiguous groups G1, . . . ,GG.

Architecture and Training. The architecture comprises a global decoder D ∈ Rd×m and discrete
group encoders W (g)

enc . Each W
(g)
enc computes pre-activations u(g) from input x, which is then sparsi-

fied into a group code z(g) via a group-specific Top-kg operation and ReLU. The budgets are con-
figured as (k1, . . . , k8) = (6, 5, 4, 3, 3, 2, 2, 1), aimed at enforcing higher sparsity on low-variance
groups. Global reconstruction is given by x̂ = Dz. This design preserves amortized inference
efficiency while enabling heterogeneous sparsity. Training is a four-stage process: pretraining a
global SAE; grouping latents by angular variance; initializing group encoders via weight copying;
and fine-tuning all parameters under group-specific kg constraints.

5.3 INTERVENTION AND ABLATION

To separate the effects of amortization from architectural choices, we treat the inference method
as an intervention variable. We compare LocA-SAE against Fully-Amortized baselines and two
“intervention” methods defined as follows:

Semi-Amortized: A balanced hybrid method that begins with the quick prediction from the fully-
amortized encoder but then fine-tunes it with a few steps of sample-specific optimization.
Non-Amortized: A complete per-sample optimization starting from scratch, without relying on the
shared encoder at all.

Implementation Details: Given a token activation x ∈ Rd and dictionary D ∈ Rd×m, we solve the
nonnegative sparse coding problem:

Lλ(x, z) =
1

2
∥x−Dz∥22 + λ∥z∥1, z ≥ 0. (5)

The amortized encoder computes an initial code z(0) = max(W⊤x+ b, 0), with parameters W and
b. For Top-K, we select the top-K pre-activations before ReLU.

Semi-amortized inference refines z(0) over Tsemi ISTA steps:

z(t+1) = max
(
z(t) − α

(
D⊤(Dz(t) − x) + λ1

)
, 0

)
, (6)

with step size α ≈ 1/∥D∥22 from power iteration.

Non-amortized inference runs Tista ISTA steps from zero:

z(t+1) = max
(
z(t) − αD⊤(Dz(t) − x)− αλ1, 0

)
. (7)

For fair sparsity pattern comparison, we calibrate λ per method on a held-out set to match the
amortized baseline’s activation density (e.g., Dense@0.1).

5.4 EMPIRICAL ANALYSIS

Table 6 in Appendix F.2 presents the pathological phenomenon metrics for various SAE variants
under different amortization patterns, evaluated on the Pythia-160m-deduped (layer 8) and Gemma-
2-2b (layer 12) models. Figures 3 and 4 illustrate the variations in key metrics across these patterns
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Figure 3: Pathological Phenomenon Indicators Corresponding to SAE Variants Under Different
Amortization Models (Pythia-160m-deduped/ Layer8)

and variants. Overall, we observe consistent trends: reducing reliance on full amortization via
semi-amortized interventions, non-amortized ablations, or the proposed Loc-Amortized approaches
generally alleviates multiple pathologies. Specifically, non-amortized ablations and semi-amortized
interventions achieve lower NMSE and more stable sparsity control in the majority of cases. In
contrary, full-amortized often exhibits higher reconstruction errors and poorer sparsity, as the shared
encoder prioritizes global efficiency over instance-level optimality. This gap is evident in variants
like JumpReLU and GatedSAE, where non-amortized ablations reduce NMSE by up to 80%. Semi-
amortized interventions mitigate this partially by refining amortized initializations with per-sample
optimization, while non-amortized ablations ensure fully independent solutions, albeit at increased
computational cost. The Loc-Amortized pattern in LocA-SAE strikes a balance, alleviating numer-
ous pathological phenomena of full-amortized without requiring per-sample optimization, demon-
strating competitive ∆F1 and Absorption Rate, even eliminating dead latent completely. These
results validate amortization as a root cause of pathologies, demonstrating that hybrid or localized
approaches can resolve trade-offs like reconstruction-sparsity conflicts observed in training dynam-
ics. We additionally perform an ablation over the number of refinement steps in the semi-amortized
BatchTopK SAE (Appendix D). We find that increasing the number of steps yields monotonic but
quickly saturating gains in NMSE, while the pathological metrics remain essentially unchanged, in-
dicating that our conclusions are robust to the specific refinement budget and that a moderate number
of steps already offers a good accuracy–compute trade-off.

Among the seven SAE architectures, GatedSAE consistently exhibits high dense rates and near-zero
dead rates, indicating efficient feature utilization but at the expense of sparsity, which may compro-
mise monosemanticity. JumpReLU and TopK, conversely, enforce stronger sparsity but suffer from
elevated NMSE and absorption in full-amortized settings. BatchTopK and Matryoshka show promis-
ing behaviors: BatchTopK achieves low NMSE in semi-amortized interventions and non-amortized
ablations with zero dead latents, suggesting improved stability through batch-wise sparsity relax-
ation. Matryoshka, designed for hierarchical features, NMSE decreases significantly as reliance on
full-amortized on diminishes. and also exhibited lower Absorption Rate and ∆F1. LocA-SAE, our
proposed Loc-Amortized variant, outperforms many baselines by eliminating dead latents entirely
while maintaining low ∆F1 and absorption, demonstrating that group-wise encoders with angular
variance based partitioning enable heterogeneous sparsity without sacrificing monosemanticity. As
a novel methodological framework, LocA-SAE bridges the efficiency of global amortization with
the precision of instance-level optimization by grouping inputs into localized encoders, which is
particularly effective in long tailed data distributions as it allows rare patterns to be captured in-
dependently in dedicated sub-encoders, thereby enhancing feature monosemanticity. Compared to
the full-amortized baselines, LocA-SAE completely eliminates dead latents and substantially re-
duces absorption and splitting, at the cost of a modest increase in NMSE. Relative to the non-
amortized ISTA baseline, LocA-SAE achieves similar improvements in pathological metrics while
avoiding any per-sample iterative optimization. This places LocA-SAE on a favorable point of the
fidelity–compute trade-off curve. These architectural comparisons reinforce that while tweaks like
gating or hierarchy mitigate specific issues under full amortization, broader reductions in parame-
ter sharing via semi-amortized interventions, non-amortized ablations, or local-amortization yield
consistent improvements across variants, highlighting shared encoding as the primary bottleneck.
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Figure 4: Pathological Phenomenon Indicators Corresponding to SAE Variants Under Different
Amortization Models (Gemma-2-2b/ Layer12)

Additionally, several outliers deserve attention. For instance, Gemma-2-2b/L12, JumpReLU, Full-
Amortization shows an abnormally high Absorption; switching to Semi/Non immediately drives it to
0, indicating primary-detector under-firing induced by single-step amortization. A few per-example
optimization steps correct this mismatch (Fig. 4 Absorption Rate). Furthermore, GatedSAE un-
der full amortization shows very high NMSE (>1.5), suggesting issues like over-regularization
or encoder underfitting, which are mitigated in the semi- and non-amortized patterns. These out-
liers serve as direct evidence of amortization’s problems, highlighting the advantages of semi- and
non-amortization in instance-level optimization and further confirming that amortization leads to
pathologies that can be alleviated by reducing parameter sharing. However, in a few cases, the re-
duced reliance on full amortization has also been accompanied by some negative results. This might
be attributed to the inherent conflict between TopK hard constraints and ISTA soft-thresholding,
combined with the loss of cross-sample semantic consistency resulting from the lack of global shar-
ing, which subsequently triggers the absorption or splitting of rare features.

6 CONCLUSION AND DISCUSSION

Numerous recent variants of SAEs have emerged to mitigate pathological phenomena in polyseman-
tic feature disentanglement, primarily targeting the reconstruction-sparsity trade-off. However, most
of them have overlooked the trade-off between monosemanticity and this reconstruction-sparsity
balance. In this study, we demonstrate that within amortization-based encoding frameworks, im-
provements along the reconstruction-sparsity Pareto Frontier do not lead to better monosemantic-
ity. On the contrary, it comes at the expense of dictionary capacity and monosemanticity, while
also inducing several pathological phenomenon. Furthermore, our intervention and ablation studies
demonstrate that reducing reliance on full amortization not only consistently improves reconstruc-
tion performance and mitigates the dead latent problem but also yields features that are superior in
targeted concept removal tasks and offer enhanced controllability in model interventions. However,
since per-sample optimization exacerbates the scalability issues of SAEs, we propose LocA-SAE, a
method that employs local amortization by grouping latents based on their angular variance, thereby
balancing the computational cost of instance-wise optimization against the limitations of full amor-
tization. Experimental results show that LocA-SAE not only completely eliminates dead latents
but also significantly alleviates feature splitting and feature absorption. Based on this, we contend
that various pathologies observed in SAEs stem not only from their unsupervised learning paradigm
but also from the fully amortized inference inherent in their architecture. While modifications to
gating mechanisms or activation functions may mitigate specific issues, they fail to resolve the fun-
damental conflict between parameter-sharing encoding and the instance-level optimality required
for monosemantic features.
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A LLMS USAGE IN THE PAPER

LLMs were used only occasionally to help polish the writing (propose new words, grammar and
spelling correction). All technical ideas, experimental designs, analyses, conclusions, writing were
developed and carried out entirely by the authors. The authors have full responsibi1lity for the final
text.

B RELATED WORK

B.1 MECHANISTIC INTERPRETABILITY AND SUPERPOSITION HYPOTHESIS

MI aims to understand how neural networks process and store information by reverse-engineering
their internal computational processes (Bereska & Gavves, 2024; Wang et al., 2025b;a; Yang et al.,
2025a; Zhang et al., 2025b). The rise of this research field marks a shift from traditional behaviorist,
black-box analysis methods toward an exploration of internal mechanisms akin to cognitive neuro-
science (Sharkey et al., 2025). Unlike functional explanations that focus on the overall behavior of
models, MI focuses on parsing the specific computational mechanisms inside neural networks, in-
cluding the specific functions of components such as attention heads, feedforward neural networks,
and activation patterns (Saphra & Wiegreffe, 2024; Yang et al., 2025b; Zhang et al., 2025a; Dong
et al., 2025; Su et al., 2025; Zhang et al., 2024). However, the existence of polysemantic features
poses a major challenge to component attribution, where a single neuron responds to multiple unre-
lated concepts simultaneously. Inspired by the linear representation hypothesis (Arora et al., 2016),
the Superposition hypothesis proposes that polysemantic features are composed of linear combina-
tions of multiple independent concepts (Elhage et al., 2022), thereby initiating research on disentan-
gling polysemantic features based on SAEs (Bricken et al., 2023; Gao et al., 2024; Karvonen et al.,
2025).

B.2 AMORTIZED INFERENCE

Amortized Inference is a method that uses a learned parameterized function to approximate the
posterior distribution of latent variables (Shu et al., 2018). Its core idea is to “amortize” the compu-
tational cost of inference across multiple data instances, thereby avoiding computationally expensive
iterative optimization for each sample. This paradigm has become relatively mature in variational
autoencoders (VAEs) (Margossian & Blei, 2023). However, this gain in efficiency comes at the
cost of compromised representation quality, known as the amortization gap. Zhang et al. (2022a)
demonstrated that amortized inference leads to a degradation in approximation quality, i.e., a sys-
tematic discrepancy between the learned posterior distribution and the true posterior. This gap is
particularly pronounced in complex models and large-scale datasets, manifesting as reduced gen-
eralization ability of the learned encoder, especially when faced with out-of-distribution samples.
Similarly, O’Neill et al. (2024) proved the inherent suboptimality of SAEs and demonstrated that
this amortization gap stems from their linear-nonlinear encoder structure based on compressed sens-
ing theory. Current methods to mitigate the amortization gap can be broadly categorized into five
types: (1) Semi-amortization, which starts from the encoder’s code and applies a few per-sample op-
timization steps without abandoning end-to-end training (Kim et al., 2018; Marino et al., 2018); (2)
Encoder-side structure, which increases expressivity to better approximate the per-sample solution
map; (3) Amortized sampling, which distills MCMC into fast inference networks to balance fidelity
and cost (Li et al., 2017); (4) Regularization design, which reduces mismatch and L1-shrinkage via
loss/constraint choices (Shu et al., 2018; Burda et al., 2015); and (5) Local amortization, which shifts
shared inference from the global level to sub-distribution levels to avoid global dependencies (Wu
et al., 2020; Liu & Liu, 2020). However, these mitigations that directly adapted to SAEs for poly-
semy disentanglement are still limited. This stems from the fact that VAEs are primarily applied to
image generation tasks, where the latent space emphasizes smoothness and continuity to ensure sam-
pling quality and generalization capability, prioritizing distribution-level optimality (Zhang et al.,
2022b). In contrast, the latent space of SAEs serves the purpose of interpretability, emphasizing
sparsity, atomicity, and discreteness, prioritizing instance-level optimality. While amortized infer-
ence emphasizes global optimality, which aligns well with the distribution-level optimality needed
for VAEs, but unsuitable for the instance-level optimality required by SAEs.
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SAE Variant Encoding Pattern ∆Acctarget ↑ ∆Accnon-target ↓ Selectivity ↑
Top-k Fully-amortized 0.303 0.058 0.245
Top-k Non-amortized 0.531 0.047 0.484
Top-k Semi-amortized 0.552 0.044 0.508

Gated Fully-amortized 0.358 0.066 0.292
Gated Non-amortized 0.404 0.051 0.353
Gated Semi-amortized 0.422 0.048 0.374

JumpReLU Fully-amortized 0.321 0.063 0.258
JumpReLU Non-amortized 0.374 0.057 0.317
JumpReLU Semi-amortized 0.392 0.050 0.342

Standard Fully-amortized 0.283 0.071 0.212
Standard Non-amortized 0.315 0.062 0.253
Standard Semi-amortized 0.336 0.052 0.284

Table 1: Targeted Probe Perturbation (TPP) on Pythia-160M-deduped (layer 8, m=16,384,
M=100).

C PERFORMANCE OF DIFFERENT AMORTIZATION PATTERNS IN
DOWNSTREAM TASKS

C.1 TARGETED PROBE PERTURBATION (TPP)

To evaluate the directional controllability of features learned by SAEs under different amortization
paradigms, we conduct the TPP experiment. We first train linear probes on a fixed model layer’s
activations to identify specific concepts. Subsequently, dictionary latents are ranked via an attribu-
tion score, and a select subset is ablated from the residual stream. The core evaluation measures
the probe’s performance degradation on the target class while verifying the stability of non-target
classes Karvonen et al. (2024).

Model and Data. The experiment is based on the Pythia-160M-deduped model, using activations
x ∈ R768 from the resid post of layer 8. We evaluate four SAE variants (Standard, Gated,
JumpReLU, and Top-k) with a dictionary size of m = 16, 384. The TPP experiment utilizes the AG
News dataset, for which we use the representation of the last non-padding token from each sample
as the probe’s input.

Inference Paradigms, Attribution, and Intervention. The experiment compares three inference
paradigms: fully-amortized, semi-amortized, and non-amortized, all sharing a common decoder
dictionary D. For targeted intervention, we first compute an attribution score sj for each latent j
with respect to a given class probe’s weight vector w ∈ Rd:

sj = ⟨D:,j , w⟩ · (E[zj | y = 1]− E[zj | y = 0]) .

This score jointly considers the alignment of a dictionary atom with the probe’s direction and the
feature’s class-conditional activation difference. We select the top-M latents according to |sj | to
form an index set S and perform zero-ablation on the activation vector x:

x′ = x−D:,SzS ,

which subtracts the reconstructed components corresponding only to the latents in S.

Metrics. We employ the following metrics: (i) On-target Drop (∆Acctarget): The accuracy de-
crease on the target class, Accbase − Accablated. (ii) Off-target Leakage (∆Accnon−target): The
mean accuracy change across non-target classes, measuring intervention precision. (iii) Top-M
Curve: ∆Acctarget as a function of the number of ablated latents M .

Observation As shown in Table. 1, the results of the Targeted Probe Perturbation experiment
demonstrate that semi-amortized and non-amortized inference methods consistently outperform the
fully-amortized approach across all tested Sparse Autoencoder variants. Specifically, for all four
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SAE architectures—Top-k, Gated, JumpReLU, and Standard—adopting semi- or non-amortized
inference leads to a significant increase in the target class accuracy drop and better control over
off-target leakage, resulting in marked gains in the selectivity metric.

These results resonate with the core argument in Section. 4.3 of the main text: the global optimality
pursued by fully-amortized inference comes at the cost of instance-level semantic purity. From the
perspective of a downstream intervention task, this experiment confirms that reducing reliance on
the parameter-shared encoder significantly mitigates the amortization gap and enhances the monose-
manticity and intervenability of the learned features, thereby providing strong empirical support for
the paper’s advocacy of “reducing over-investment in amortization-based encoding methods.”

C.2 GENERATIVE INTERVENTION SCORING (GIS)

To further assess the interpretability of SAE latents, we perform generative interventions. We manip-
ulate a targeted set of latents during autoregressive generation and evaluate the effect on the model’s
output using an external scoring language model (LM). The intervention strength is rigorously cali-
brated to ensure fair comparisons across different amortization paradigms.

Model and Data. We use the same setup as in the TPP experiment: Pythia-160M-deduped at
resid post, layer 8. Latent sets for intervention are selected from the high-attribution features
identified via TPP. To prevent informational leakage, a separate, base LM is employed as a scorer.
Prompts are designed to elicit interpretable phenomena, such as numeracy and pronoun resolution.

Intervention and Calibration. Interventions can be either zero-ablation or additive. To ensure
comparability, the intervention strength, controlled by a multiplier α, is calibrated for each setup.
Specifically, we use a binary search to find an α such that the mean per-token KL divergence between
the clean and intervened next-token distributions matches a predefined target κ ∈ {0.10, 0.33, 1.00}.

Metrics. The primary metric is the Intervention Score (S), which quantifies the change in log-
probability of a target hypothesis ϕ as evaluated by the scorer model pM :

S = E
[
log pM (ϕ | gI)− log pM (ϕ | g)

]
,

where gI and g denote the intervened and clean generations, respectively. We compare S across all
SAE variants and inference paradigms at matched KL divergence levels.

Observations The results (Table. 2) show that semi-amortized and non-amortized inference
paradigms consistently achieve higher intervention scores (S) than full-amortized ones across all
SAE variants (TopK, Gated, JumpReLU, Standard). For example, with TopK SAE at KL target
κ = 1.00, semi-amortization yields 1.968, non-amortization 1.781, and full-amortization 1.412.
This trend persists across variants and KL levels. Furthermore, semi-amortization slightly outper-
forms non-amortized in most cases, indicating that limited per-sample optimization improves feature
quality while balancing efficiency.

These findings align with Section 4.3, where global optimality in fully-amortized inference sacri-
fices instance-level semantic purity, favoring high-frequency latents and reducing intervention pre-
cision. In contrast, semi- and non-amortized methods mitigate the amortization gap, enhancing
monosemanticity and intervenability. In summary, the GIS experiment supports reducing reliance
on amortized inference for better polysemy disentanglement.
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SAE Encoding Pattern S @ κ=0.10 S @ κ=0.33 S @ κ=1.00

TopK Semi-amortized 0.231 0.646 1.975
TopK Unamortized 0.224 0.653 1.812
TopK Amortized 0.168 0.472 1.415

Gated Semi-amortized 0.214 0.599 1.792
Gated Unamortized 0.206 0.552 1.796
Gated Amortized 0.153 0.436 1.289

JumpReLU Semi-amortized 0.194 0.555 1.668
JumpReLU Unamortized 0.183 0.506 1.523
JumpReLU Amortized 0.140 0.398 1.193

Standard Semi-amortized 0.164 0.485 1.432
Standard Unamortized 0.148 0.437 1.291
Standard Amortized 0.151 0.344 1.027

Table 2: GIS results on Pythia-160M-deduped (resid post, layer 8). S is the scorer LM log-
probability gain under matched KL targets κ ∈ {0.10, 0.33, 1.00}.

D DYNAMICS OF THE SEMI-AMORTIZED PATTERN

We further ablate the semi-amortized BatchTopK SAE by varying the number of refinement steps T
in the inner sparse-coding loop (Table 3). Across both Pythia-160M-deduped (layer 8) and Gemma-
2-2B (layer 12), increasing T monotonically reduces the reconstruction error (NMSE), while the
pathological metrics remain largely stable. For Pythia, NMSE drops from 0.477 at T = 5 to 0.132
at T = 25 and 0.046 at T = 50, with the majority of the gains already obtained by T ≈ 20–30.
A similar trend holds for Gemma-2-2B, where NMSE decreases from 0.072 at T = 5 to 0.025
at T = 25 and 0.014 at T = 50. In contrast, the Dead Rate stays at zero for all settings, Dense
Rate@0.1/0.2 only fluctuates within a narrow band, and the F1@1/F1@2 scores are almost flat. The
feature-splitting indicator ∆F1 exhibits a mild increase with T on Pythia (from 0.026 at T = 5 to
≈ 0.06 around T = 20–40) and then slightly decreases again for very large T , while the Absorption
Rate is either nearly constant (Pythia) or decreases slightly (Gemma). Overall, these results suggest
that semi-amortized inference is robust to the exact choice of refinement budget: a moderate number
of refinement steps (T ≈ 20–30) already recovers most of the reconstruction benefit of iterative
inference, without materially changing the profile of pathological phenomena, and at a fraction of
the cost of the fully non-amortized solver used to estimate the amortization gap.
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Table 3: Pathological Phenomena Metrics of BatchTopK SAE under Semi-Amortized Patterns at
Different ISTA Iteration Steps

Iteration Step (ISTA) NMSE Dead Rate Dense Rate@0.1 Dense Rate@0.2 F1@1 F1@2 ∆F1 Absorption Rate

Pythia-160m-deduped, Layer 8
5 0.477 0.000 0.052 0.030 0.723 0.749 0.026 0.110
10 0.388 0.000 0.064 0.049 0.704 0.722 0.017 0.144
15 0.250 0.000 0.060 0.047 0.692 0.746 0.054 0.134
20 0.177 0.000 0.057 0.034 0.689 0.755 0.066 0.119
25 0.132 0.000 0.048 0.034 0.688 0.755 0.067 0.121
30 0.102 0.000 0.048 0.034 0.687 0.755 0.068 0.121
35 0.081 0.000 0.046 0.036 0.687 0.756 0.068 0.122
40 0.066 0.000 0.062 0.040 0.687 0.755 0.068 0.122
45 0.055 0.000 0.057 0.039 0.687 0.726 0.038 0.121
50 0.046 0.000 0.059 0.036 0.687 0.726 0.039 0.121

Gemma-2-2b, Layer 12
5 0.072 0.000 0.231 0.150 0.647 0.682 0.034 0.014
10 0.048 0.000 0.207 0.129 0.648 0.682 0.034 0.010
15 0.037 0.000 0.215 0.123 0.648 0.682 0.034 0.007
20 0.029 0.000 0.218 0.167 0.648 0.682 0.034 0.005
25 0.025 0.000 0.223 0.168 0.648 0.682 0.034 0.004
30 0.021 0.000 0.239 0.160 0.648 0.682 0.034 0.003
35 0.019 0.000 0.210 0.135 0.648 0.682 0.034 0.003
40 0.017 0.000 0.226 0.125 0.648 0.681 0.034 0.003
45 0.015 0.000 0.230 0.154 0.647 0.681 0.034 0.003
50 0.014 0.000 0.202 0.142 0.647 0.681 0.033 0.002

E LIMITATIONS

Although the metrics for many pathological phenomena in SAEs have been significantly allevi-
ated by the semi-amortized and non-amortized encoding methods proposed in this paper, there are
still some anomalies. For instance, in the Topk SAE case corresponding to Gemma-2-2b/layer12,
the non-amortized approach instead exacerbates feature splitting and feature absorption, the rea-
sons for which remain worthy of exploration (4). Additionally, since both semi-amortized and
non-amortized methods involve per-sample iterative traditional sparse coding, which aligns with
the goal of monosemanticity, it exacerbates the existing scalability issues of SAEs. Therefore, how
to balance scalability while mitigating the limitations introduced by amortized inference remains
an area worthy of researchers’ exploration. Potential approaches could include meta learning pro-
posed in VAEs (Iakovleva et al., 2020), or gradually updating sparse codes with online dictionary
learning (Mairal et al., 2009).

F EXPERIMENTAL RESULTS

F.1 EXPERIMENTAL RESULTS OF SECTION 4.3

F.2 EXPERIMENTAL RESULTS OF SECTION 5
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Table 4: Variation of Different Pathological Phenomena Corresponding to Standard SAE at Different
Sparsity Levels from the Perspective of Training Dynamics.

Trainer Checkpoint NMSE Dead Rate Dense Rate@0.2 F1@1 F1@2 ∆F1 Absorption Rate ∆̄

0 0 0.9413 0.2587 0.5346 0.7129 0.8051 0.0923 0.0186 25978.81
0 244 0.1555 0.2368 0.6643 0.7704 0.8240 0.0535 0.0694 4350.55
0 2441 0.0332 0.2300 0.7397 0.4534 0.6164 0.1631 0.4564 855.77
0 24414 0.1048 0.2214 0.0862 0.6034 0.6383 0.0349 0.2342 1689.17
0 772 0.0303 0.2313 0.7295 0.6356 0.6864 0.0508 0.2554 880.45
0 7720 0.0764 0.2285 0.0438 0.5949 0.6509 0.0559 0.2546 1449.20
0 77203 0.1174 0.2185 0.0890 0.5590 0.7156 0.1566 0.4352 1773.85
1 0 0.9413 0.2587 0.5346 0.7129 0.8051 0.0923 0.0186 25978.70
1 244 0.1550 0.2368 0.6642 0.7701 0.8240 0.0539 0.0728 4335.57
1 2441 0.0528 0.2299 0.7250 0.6075 0.6440 0.0366 0.1686 1419.51
1 24414 0.1238 0.2224 0.0502 0.5335 0.6275 0.0940 0.5034 1748.02
1 772 0.0316 0.2316 0.7287 0.6316 0.6938 0.0622 0.2698 913.97
1 7720 0.0858 0.2282 0.0159 0.6231 0.6437 0.0206 0.0398 1606.65
1 77203 0.1430 0.2224 0.0535 0.5746 0.6801 0.1055 0.4900 1996.48
2 0 0.9413 0.2587 0.5346 0.7129 0.8051 0.0923 0.0186 25978.86
2 244 0.1544 0.2368 0.6647 0.7685 0.8239 0.0554 0.0796 4316.75
2 2441 0.0964 0.2301 0.6917 0.4788 0.5679 0.0891 0.4530 2603.39
2 24414 0.1318 0.2294 0.0287 0.5129 0.6418 0.1289 0.5222 1325.94
2 772 0.0348 0.2318 0.7286 0.6250 0.6918 0.0668 0.3008 999.66
2 7720 0.0963 0.2289 0.0070 0.5082 0.6457 0.1375 0.4992 1763.15
2 77203 0.1533 0.2361 0.0286 0.5831 0.6342 0.0511 0.3398 1669.68
3 0 0.9413 0.2587 0.5346 0.7129 0.8051 0.0923 0.0186 25978.76
3 244 0.1537 0.2368 0.6655 0.7683 0.8241 0.0557 0.1076 4293.68
3 2441 0.2042 0.2296 0.6129 0.5224 0.6094 0.0869 0.5208 5528.09
3 24414 0.1294 0.2595 0.0104 0.5998 0.6313 0.0315 0.2012 306.95
3 772 0.0427 0.2317 0.7267 0.6108 0.6803 0.0695 0.3520 1203.42
3 7720 0.1114 0.2300 0.0044 0.5248 0.6513 0.1265 0.4212 1638.43
3 77203 0.1395 0.2686 0.0128 0.5334 0.6350 0.1016 0.3860 212.58
4 0 0.9413 0.2587 0.5346 0.7129 0.8051 0.0923 0.0186 25978.76
4 244 0.1535 0.2367 0.6663 0.7655 0.8212 0.0557 0.1148 4284.31
4 2441 0.3266 0.2288 0.5286 0.4851 0.6023 0.1171 0.5840 8849.26
4 24414 0.1402 0.2838 0.0045 0.5075 0.6299 0.1224 0.4498 92.56
4 772 0.0544 0.2319 0.7234 0.5964 0.6623 0.0659 0.3838 1507.16
4 7720 0.1255 0.2336 0.0039 0.6571 0.6635 0.0064 0.0794 1419.27
4 77203 0.1388 0.3023 0.0074 0.5646 0.6626 0.0980 0.4772 -388.11
5 0 0.9413 0.2587 0.5346 0.7129 0.8051 0.0923 0.0186 25978.77
5 244 0.1537 0.2367 0.6669 0.7570 0.7937 0.0367 0.1234 4285.21
5 2441 0.5447 0.2278 0.4059 0.5490 0.6196 0.0705 0.3480 14650.23
5 24414 0.1633 0.3221 0.0013 0.5146 0.5589 0.0443 0.1422 -161.76
5 772 0.0833 0.2319 0.7186 0.6006 0.6431 0.0425 0.2176 2259.97
5 7720 0.1549 0.2297 0.0034 0.6638 0.6797 0.0160 0.0032 1483.02
5 77203 0.1537 0.3524 0.0028 0.1398 0.6406 0.5008 0.9164 -782.56
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Table 5: Variation of Different Pathological Phenomena Corresponding to Top-k SAE at Different
Sparsity Levels from the Perspective of Training Dynamics.

Trainer Checkpoint NMSE Dead Rate Dense Rate@0.2 F1@1 F1@2 ∆F1 Absorption Rate ∆̄

0 0 0.9413 0.2587 0.5346 0.7129 0.8051 0.0923 0.0186 25978.81
0 244 0.1555 0.2368 0.6643 0.7704 0.8240 0.0535 0.0694 4350.55
0 2441 0.0332 0.2300 0.7397 0.4534 0.6164 0.1631 0.4564 855.77
0 24414 0.1048 0.2214 0.0862 0.6034 0.6383 0.0349 0.2342 1689.17
0 772 0.0303 0.2313 0.7295 0.6356 0.6864 0.0508 0.2554 880.45
0 7720 0.0764 0.2285 0.0438 0.5949 0.6509 0.0559 0.2546 1449.20
0 77203 0.1174 0.2185 0.0890 0.5590 0.7156 0.1566 0.4352 1773.85
1 0 0.9413 0.2587 0.5346 0.7129 0.8051 0.0923 0.0186 25978.70
1 244 0.1550 0.2368 0.6642 0.7701 0.8240 0.0539 0.0728 4335.57
1 2441 0.0528 0.2299 0.7250 0.6075 0.6440 0.0366 0.1686 1419.51
1 24414 0.1238 0.2224 0.0502 0.5335 0.6275 0.0940 0.5034 1748.02
1 772 0.0316 0.2316 0.7287 0.6316 0.6938 0.0622 0.2698 913.97
1 7720 0.0858 0.2282 0.0159 0.6231 0.6437 0.0206 0.0398 1606.65
1 77203 0.1430 0.2224 0.0535 0.5746 0.6801 0.1055 0.4900 1996.48
2 0 0.9413 0.2587 0.5346 0.7129 0.8051 0.0923 0.0186 25978.86
2 244 0.1544 0.2368 0.6647 0.7685 0.8239 0.0554 0.0796 4316.75
2 2441 0.0964 0.2301 0.6917 0.4788 0.5679 0.0891 0.4530 2603.39
2 24414 0.1318 0.2294 0.0287 0.5129 0.6418 0.1289 0.5222 1325.94
2 772 0.0348 0.2318 0.7286 0.6250 0.6918 0.0668 0.3008 999.66
2 7720 0.0963 0.2289 0.0070 0.5082 0.6457 0.1375 0.4992 1763.15
2 77203 0.1533 0.2361 0.0286 0.5831 0.6342 0.0511 0.3398 1669.68
3 0 0.9413 0.2587 0.5346 0.7129 0.8051 0.0923 0.0186 25978.76
3 244 0.1537 0.2368 0.6655 0.7683 0.8241 0.0557 0.1076 4293.68
3 2441 0.2042 0.2296 0.6129 0.5224 0.6094 0.0869 0.5208 5528.09
3 24414 0.1294 0.2595 0.0104 0.5998 0.6313 0.0315 0.2012 306.95
3 772 0.0427 0.2317 0.7267 0.6108 0.6803 0.0695 0.3520 1203.42
3 7720 0.1114 0.2300 0.0044 0.5248 0.6513 0.1265 0.4212 1638.43
3 77203 0.1395 0.2686 0.0128 0.5334 0.6350 0.1016 0.3860 212.58
4 0 0.9413 0.2587 0.5346 0.7129 0.8051 0.0923 0.0186 25978.76
4 244 0.1535 0.2367 0.6663 0.7655 0.8212 0.0557 0.1148 4284.31
4 2441 0.3266 0.2288 0.5286 0.4851 0.6023 0.1171 0.5840 8849.26
4 24414 0.1402 0.2838 0.0045 0.5075 0.6299 0.1224 0.4498 92.56
4 772 0.0544 0.2319 0.7234 0.5964 0.6623 0.0659 0.3838 1507.16
4 7720 0.1255 0.2336 0.0039 0.6571 0.6635 0.0064 0.0794 1419.27
4 77203 0.1388 0.3023 0.0074 0.5646 0.6626 0.0980 0.4772 -388.11
5 0 0.9413 0.2587 0.5346 0.7129 0.8051 0.0923 0.0186 25978.77
5 244 0.1537 0.2367 0.6669 0.7570 0.7937 0.0367 0.1234 4285.21
5 2441 0.5447 0.2278 0.4059 0.5490 0.6196 0.0705 0.3480 14650.23
5 24414 0.1633 0.3221 0.0013 0.5146 0.5589 0.0443 0.1422 -161.76
5 772 0.0833 0.2319 0.7186 0.6006 0.6431 0.0425 0.2176 2259.97
5 7720 0.1549 0.2297 0.0034 0.6638 0.6797 0.0160 0.0032 1483.02
5 77203 0.1537 0.3524 0.0028 0.1398 0.6406 0.5008 0.9164 -782.56
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Table 6: Pathological Phenomenon Metrics for Different SAE Variants under Various Amortization
Patterns

SAE Variants Pattern NMSE Dead Rate Dense Rate@0.1 Dense Rate@0.2 F1@1 F1@2 ∆F1 Absorption Rate

Pythia-160m-deduped, Layer 8

Standard
Full-Amortized 0.109 0.295 0.093 0.046 0.606 0.649 0.043 0.144
Semi-Amortized 0.078 0.260 0.095 0.043 0.600 0.641 0.041 0.158
Non-Amortized 0.107 0.338 0.094 0.045 0.590 0.637 0.047 0.283

GatedSAE
Full-Amortized 1.947 0.001 0.612 0.432 0.655 0.692 0.037 0.210
Semi-Amortized 0.014 0.001 0.615 0.431 0.655 0.690 0.035 0.161
Non-Amortized 0.000 0.008 0.610 0.467 0.676 0.671 -0.005 0.064

JumpRelu
Full-Amortized 0.755 0.371 0.032 0.011 0.673 0.742 0.070 0.016
Semi-Amortized 0.255 0.321 0.033 0.017 0.670 0.744 0.074 0.143
Non-Amortized 0.113 0.055 0.033 0.009 0.672 0.681 0.009 0.066

TopK
Full-Amortized 1.499 0.307 0.028 0.015 0.626 0.679 0.053 0.225
Semi-Amortized 0.087 0.022 0.029 0.010 0.648 0.683 0.036 0.134
Non-Amortized 0.242 0.012 0.029 0.008 0.535 0.558 0.023 0.452

BatchTopK
Full-Amortized 0.537 0.316 0.053 0.040 0.700 0.748 0.047 0.171
Semi-Amortized 0.101 0.000 0.055 0.045 0.687 0.755 0.031 0.121
Non-Amortized 0.017 0.000 0.053 0.043 0.726 0.758 0.031 0.033

Matryoshka
Full-Amortized 0.369 0.219 0.107 0.047 0.689 0.722 0.033 0.240
Semi-Amortized 0.033 0.000 0.121 0.055 0.681 0.716 0.035 0.219
Non-Amortized 0.011 0.007 0.114 0.049 0.677 0.729 0.052 0.172

LocA-SAE Loc-Amortized 0.427 0.000 0.079 0.044 0.714 0.728 0.013 0.055

Gemma-2-2b, Layer 12

Standard
Full-Amortized 0.193 0.221 0.251 0.108 0.722 0.737 0.015 0.010
Semi-Amortized 0.114 0.212 0.254 0.072 0.716 0.737 0.021 0.007
Non-Amortized 0.135 0.208 0.255 0.084 0.690 0.743 0.053 0.011

GatedSAE
Full-Amortized 1.580 0.000 0.950 0.854 0.882 0.882 0.000 0.000
Semi-Amortized 0.013 0.000 0.951 0.831 0.879 0.881 0.001 0.000
Non-Amortized 0.001 0.000 0.939 0.879 0.851 0.854 0.003 0.000

JumpRelu
Full-Amortized 0.341 0.102 0.056 0.018 0.815 0.847 0.032 0.923
Semi-Amortized 0.236 0.086 0.057 0.020 0.841 0.842 0.001 0.000
Non-Amortized 0.225 0.028 0.059 0.014 0.838 0.848 0.010 0.000

TopK
Full-Amortized 0.882 0.123 0.051 0.021 0.838 0.838 0.000 0.000
Semi-Amortized 0.186 0.011 0.052 0.018 0.836 0.839 0.004 0.000
Non-Amortized 0.274 0.011 0.053 0.013 0.571 0.768 0.197 0.400

BatchTopK
Full-Amortized 0.152 0.136 0.231 0.147 0.646 0.708 0.062 0.093
Semi-Amortized 0.021 0.000 0.230 0.150 0.648 0.682 0.034 0.003
Non-Amortized 0.005 0.000 0.235 0.154 0.629 0.669 0.040 0.018

Matryoshka
Full-Amortized 0.573 0.113 0.077 0.037 0.690 0.681 -0.008 0.732
Semi-Amortized 0.059 0.000 0.083 0.043 0.685 0.678 -0.006 0.431
Non-Amortized 0.012 0.000 0.083 0.040 0.613 0.654 0.041 0.020

LocA-SAE Loc-Amortized 0.211 0.000 0.017 0.066 0.670 0.694 0.024 0.023

G EXPERIMENTAL DETAILS

G.1 EXPERIMENTAL DETAILS OF SECTION 5

Algorithm 1 Implementation Flow for the Experiment in Section 6
Require: modelsM, variants V , corpus C, layer ℓ, token budget N=10,000, encoder (Wenc, benc),

decoder D, base λ, target density T=0.1, tolerance ε
1: for (m, v) ∈M× V do
2: X ← COLLECTHIDDENSTATES(m, C, ℓ,N) ▷ first N tokens→ layer-ℓ activations
3: zfull ← ENCfull(X;Wenc, benc, v)
4: t← DENSE@0.1(zfull)
5: ssemi ← CALIBRATE(Semi, t, ε); snon ← CALIBRATE(Non, t, ε)
6: zsemi ← PGD(X,D, λssemi; init = zfull, T = 30)
7: znon ← ISTA(X,D, λsnon; init = 0, T = 200)

8: X̂r ← zrD⊤ for r ∈ {full, semi, non}
9: EVALUATE({X̂r}, {zr}) ▷ NMSE, Dead, DENSE@0.1/0.2, F1@1, F1@2, ∆F1,

Absorption
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H CONFIGURATION INFORMATION

Table 7: Key hyperparameter configurations for six different SAE architectures. All SAEs were
trained on the residual stream of layer 12 of the Gemma-2-2B model, with an activation dimension
of 2304.

Parameter Gated
SAE

JumpReLU
SAE

Standard
SAE

Top-K
SAE

BatchTopK
SAE

Matryoshka
SAE

Dictionary Size (ddict) 16384
(214)

16384
(214)

16384
(214)

16384
(214)

16384
(214)

16384
(214)

Learning Rate (LR) 3× 10−4 3× 10−4 3× 10−4 3× 10−4 3× 10−4 3× 10−4

Sparsity-Related Parameters
L1 Penalty 0.012 — 0.012 — — —
Sparsity Penalty — 1.0 — — — —
Target L0 — 20 — — — —
Top-K Value (k) — — — 20 320 20

Training Strategy Parameters
LR Warmup Steps 1000 N/A 1000 1000 1000 1000
Sparsity Warmup Steps 5000 5000 5000 N/A N/A N/A

Table 8: Key hyperparameter configurations for six different SAE architectures trained on the
EleutherAI/pythia-160m-deduped model. All SAEs were trained on the residual stream of layer
8, with an activation dimension of 768.

Parameter Gated
SAE

JumpReLU
SAE

Standard
SAE

Top-K
SAE

BatchTopK
SAE

Matryoshka
SAE

Dictionary Size (ddict) 16384
(214)

16384
(214)

16384
(214)

16384
(214)

16384
(214)

16384
(214)

Learning Rate (LR) 3× 10−4 3× 10−4 3× 10−4 3× 10−4 3× 10−4 3× 10−4

Sparsity-Related Parameters
L1 Penalty 0.012 — 0.012 — — —
Sparsity Penalty — 1.0 — — — —
Target L0 — 20 — — — —
Top-K Value (k) — — — 20 20 20

Training Strategy Parameters
LR Warmup Steps 1000 N/A 1000 1000 1000 1000
Sparsity Warmup Steps 5000 5000 5000 N/A N/A N/A

I EVALUATION METRICS
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Table 9: Evaluation Metrics (Zrelu = max(Z, 0); feature ranking uses Zs which z-score normalizes
Zrelu per column).

Variable Name Meaning Formula

NMSE Normalized mean squared
reconstruction error.

E
[
∥x− x̂∥22

]
E
[
∥x∥22

]
+ ε

, where ε = 10−9,

x̂ = zD⊤.

Dead Rate Fraction of dead latents.
1

M

M∑
j=1

I
(
freqj ≤ θ

)
, where

θ = 10−6,
freqj = Pr

(
(Zrelu):,j > 0

)
.

Dense Rate@0.2 Fraction of latents firing at least
20% of tokens (more frequently
active).

1

M

M∑
j=1

I
(
freqj ≥ 0.2

)
.

F1@1 F1 score of a linear probe using the
top-1 ranked latent (by
|corr(Zs, ·j , y)|).

F1@1 = F1
(
LR(Zs[:, order[0]]→

y)
)
.

F1@2 F1 score of a linear probe using the
top-2 ranked latents.

F1@2 = F1
(
LR(Zs[:, order[:

2]]→ y)
)
.

∆F1 Marginal improvement from 1 to 2
features; larger values indicate
stronger feature splitting.

∆F1 = F1@2− F1@1.

Absorption Rate On positive-label tokens, fraction
where the dominant latent is
inactive while any of the next
top-K latents is active.

Let m = order[0],
A = order[1 : 1 +K] (default
K = 5). Absorb =
1

N+

∑
i: yi=1

I
(
(Zrelu)i,m ≤

0 ∧ max
j∈A

(Zrelu)i,j > 0
)

.

Amortization Gap Suboptimality of amortized codes
vs. per-token L1 solution
(ISTA-200).

Gap =
E
[
L(zamort)− L(z⋆)

]
, L(z) =

1
2∥x− zD⊤∥22 + λ∥z∥1, z⋆ ≈
ISTA200(x;D, λ).

Notes. (1) Labels y use a norm-threshold heuristic unless otherwise stated: yi = I(∥xi∥2 > mediani∥xi∥2).
(2) Linear probes are trained on Zs with class weight=balanced; ranking uses |corr(Zs, ·j , y)|. (3) For Top-K

SAEs, selection is applied first, then Zrelu is used for firing-based metrics. (4) When comparing
amortized/semi-amortized/ISTA codes, λ can be calibrated to match a target density.
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