THE PRICE OF AMORTIZED INFERENCE IN SPARSE AUTOENCODERS

Anonymous authors

Paper under double-blind review

ABSTRACT

Polysemy has long been a major challenge in Mechanistic Interpretability (MI), with Sparse Autoencoders (SAEs) emerging as a promising solution. SAEs employ a shared encoder to map inputs to sparse codes, thereby amortizing inference costs across all instances. However, this parameter-sharing paradigm inherently conflicts with the MI community's emphasis on instance-level optimality, including the consistency and stitchability of monosemantic features. Thus, this paper advocates for reduced investment in amortization-based encoding methods for polysemy disentanglement. We first reveal the trade-off relationships among various pathological phenomena, including feature absorption, feature splitting, dead latents, and dense latents under global reconstruction-sparsity constraints from the perspective of training dynamics, finding that increased sparsity typically exacerbates multiple pathological phenomena, and attribute this trade-off relationship to amortized inference. As the first step in this new direction, we also explore semi-amortized and non-amortized encoding methods and find that they can significantly mitigate many limitations of SAEs. This work provides insights for understanding SAEs and suggests a paradigm shift for future research for polysemy disentanglement. The code is available at https: //anonymous.4open.science/r/sae-amortization-5335.

1 Introduction

Mechanistic Interpretability (MI) has emerged as a critical subfield in artificial intelligence, aiming to open the 'black box' through reverse-engineering the internal computational processes of neural networks to understand how models process information and make decisions (Bereska & Gavves, 2024). Unlike traditional black-box analysis, MI focuses on the specific mechanisms inside models, such as the roles of attention heads or activation patterns. However, the polysemy phenomenon presents challenges in understanding the mechanisms of components (Saphra & Wiegreffe, 2024). This manifests itself as a single neuron activating for multiple unrelated concepts, making it hard to attribute the neurons precisely (Bricken et al., 2023).

To tackle this challenge, researchers have introduced Sparse Autoencoders (SAEs), a tool to decompose activation vectors, aiming to extract a complete set of fundamental units that faithfully represent independent concepts, known as monosemantic features (Cunningham et al., 2023; Templeton et al., 2024). As a neural network implementation of sparse dictionary learning, unlike traditional sparse coding, which solves a regularized iterative optimization problem instance-wise (Fel et al., 2025; Tibshirani, 2013), SAEs employ an encoder to parameterize an inference network. This network learns a deterministic mapping function from input data to sparse codes through global training, thereby amortizing the optimization cost across all samples, a process known as amortized inference (O'Neill et al., 2024). This approach pursues a global optimum by end-to-end minimizing reconstruction error and sparsity penalty (Kissane et al., 2024).

Although efficient, amortized inference often sacrifices instance-level optimality for global constraints (O'Neill et al., 2024; Costa et al., 2025). In contrast, the monosemantic features desired by the MI community emphasize "instance-level optimality," where each sparse code robustly and accurately reflects a single concept (Bricken et al., 2023), which is similar to the instance-wise optimal solutions obtained through sample-by-sample iterative optimization in classical sparse coding like matching pursuit. The performance gap between the sparse codes derived from amortized inference-

based SAEs and the ideal sparse codes expected for each sample is referred to as the amortization gap (O'Neill et al., 2024; Song et al., 2025). This gap represents a key price of amortized inference, as it introduces systematic suboptimality that conflicts with the instance-wise precision required for monosemantic features.

To understand the price of amortized inference, we first examine how the amortization gap manifests in various pathological phenomena observed in SAEs. These issues include **feature absorption**, whereby the shared encoder represents multiple concepts with a single latent to meet a global sparsity budget, and **feature splitting**, where a complex concept is approximated by multiple redundant latents to minimize average reconstruction error (Chanin et al., 2024). Another related issue is the **prevalence of dense latents**, which indicates overfitting to high-frequency activation patterns at the expense of per-sample sparsity (Bussmann et al., 2024a). The last phenomenon is **feature inconsistency**. It is the representation of a single concept by different latents under minor distribution shifts, which stems from the encoder's failure to find a stable optimum, instead converging to divergent local minima (Song et al., 2025; Leask et al., 2025). Collectively, these pathologies highlight a core trade-off: amortized inference achieves global efficiency by sacrificing the per-sample fidelity essential for faithful mechanistic interpretation.

Given the problems introduced by amortized inference in the task of disentangling polysemantic features, this paper advocates for a paradigm shift. Although amortized inference offers efficiency, given that monosemantic features emphasize instance-level optimality, researchers should reduce over-investment in this paradigm. Our contributions can be summarized as follows.

- We advocate reducing over-investment in amortization-based encoding methods for disentangling polysemantic features, highlighting both the inevitability of the amortization gap and the fundamental conflict between the global optimality pursued by amortized inference emphasizing parameter sharing and the instance-level optimality required for monosemantic features.
- 2. We reveal the unreasonable balancing process of multiple pathological phenomena in SAEs from the perspective of training dynamics, and point out that the pursuit of the Pareto frontier between reconstruction-sparsity performance has not led to improvements in monosemanticity. This stems from an architectural trade-off induced by the parameter sharing of amortized inference under global sparsity/reconstruction constraints. The trade-off results the increased sparsity penalty not only fails to improve monosemanticity but instead induces pathological phenomena such as dead latents, feature splitting, and feature absorption.
- 3. As the first step in this direction, we also explore encoding schemes beyond purely amortization, including semi-amortized and non-amortized approaches. Our findings demonstrate that these alternatives significantly alleviate reconstruction errors and the dead latent problem. Moreover, the extracted features demonstrate superior performance in target concept removal tasks and enhanced controllability in model intervention tasks.

2 Related Work

2.1 Sparse Autoencoders

SAEs, as a neural network implementation of dictionary learning, aim to learn sparse representations of input data, particularly useful in MI for decomposing polysemantic activations in Large language models (LLMs) (Bricken et al., 2023). The core principle involves reconstructing input activations $\mathbf{x} \in \mathbb{R}^d$ using a learned overcomplete dictionary $\mathbf{D} \in \mathbb{R}^{d \times m}$ and sparse latent codes $\alpha \in \mathbb{R}^m$, where the encoder maps \mathbf{x} to \mathbf{z} and the decoder reconstructs $\hat{\mathbf{x}} = \mathbf{D}\mathbf{z}$, minimizing reconstruction loss plus sparsity penalties to extract monosemantic features that resolve superposition (Elhage et al., 2022). SAEs' evolution starts with vanilla SAEs, employing L_1 penalties but facing dead features and shrinkage bias (Cunningham et al., 2023). To mitigate these, TopK SAEs enforce hard sparsity via top-k pre-activations, reducing dead latents and enhancing scaling in models like GPT-4 (Gao et al., 2024). Building on this, BatchTopK SAEs relax constraints batch-wise, alleviating sparsity variance and boosting stability in high dimensions (Bussmann et al., 2024b). For shrinkage, Gated SAEs decouple detection and magnitude estimation via dual paths,

yielding gains across hyperparameters in 7B models (Rajamanoharan et al., 2024a). Further refining L_0 sparsity, JumpReLU SAEs use discontinuous activations and straight-through estimators, achieving top fidelity on Gemma 2 9B (Rajamanoharan et al., 2024b). Addressing feature splitting, Matryoshka SAEs train nested increasing-width SAEs for hierarchical features and multi-resolution analysis (Bussmann et al., 2024a). Additionally, AdaptiveK SAEs dynamically tune k for uneven distributions; P-anneal SAEs anneal penalties progressively to avoid early dead features (Yao & Du, 2025). Recent RouteSAEs extend to multi-layers with routers integrating residual activations, capturing cross-layer features for better interpretability (Shi et al., 2025). Additional related work can be found in the Appendix. D.

3 Preliminaries

3.1 Sparse Coding and Amortization-Based Sparse Autoencoders

 Sparse Coding, also known as sparse dictionary learning (Olshausen & Field, 1996), aims to represent an input signal as a linear combination of a set of overcomplete basis vectors, while constraining the representation coefficients to be as sparse as possible. Formally, given an input vector $\mathbf{x} \in \mathbb{R}^d$ and an overcomplete dictionary matrix $\mathbf{D} \in \mathbb{R}^{d \times k}$ (where k > d), sparse coding seeks the optimal sparse code $\mathbf{z}^* \in \mathbb{R}^k$ that satisfies:

$$\mathbf{z}^* = \arg\min_{\mathbf{z}} \|\mathbf{x} - \mathbf{D}\mathbf{z}\|_2^2 + \lambda \|\mathbf{z}\|_0, \tag{1}$$

where $\|\cdot\|_0$ denotes the ℓ_0 pseudo-norm, and λ controls the sparsity strength. Since the ℓ_0 optimization is NP-hard, the ℓ_1 norm is often employed as a convex surrogate for the sparsity constraint in practice. Inference in this classical formulation is an iterative process performed on each sample, ensuring instance-specific optimality (Chen et al., 2001; Mallat & Zhang, 1993).

SAE emerges as a neural network implementation of this dictionary learning framework, designed to overcome the computational bottleneck of per-sample optimization. The core architecture of an SAEs consists of an encoder f_{ϕ} and a decoder. The encoder f_{ϕ} is typically a linear transformation followed by a non-linear activation function, which maps the input \mathbf{x} to a sparse latent code $\mathbf{z} = f_{\phi}(\mathbf{x})$. The decoder then reconstructs the input using a learned dictionary matrix $\mathbf{D} \in \mathbb{R}^{d \times k}$: $\hat{\mathbf{x}} = \mathbf{D}\mathbf{z}$ (Braun et al., 2024). The training objective minimizes the reconstruction error plus a sparsity penalty:

 $\mathcal{L} = \|\mathbf{x} - \hat{\mathbf{x}}\|_2^2 + \lambda \|\mathbf{z}\|_1. \tag{2}$

Different from the traditional sparse coding schemes to solve an optimization problem for each instance, Crucially, SAEs employ an amortized inference approach. A shared encoder network f_{ϕ} learns to approximate the posterior over the entire dataset. This approach amortizes the computational cost of inference across the training process. Consequently, SAEs replace the iterative, sample-specific optimization of classical sparse coding with efficient, global inference via an end-to-end feedforward network, enabling scalable application to large-scale data.

3.2 PATHOLOGICAL PHENOMENA IN SAES

The pursuit of monosemantic features through the amortized inference of SAEs often lead to several common pathological phenomena. These phenomena represent failures in the desired behavior of the learned dictionary and its latents. We briefly define these pathologies and the metrics used to quantify them, which are crucial for interpreting our subsequent analysis.

Dead Latents. A significant portion of latent units may rarely or never activate, indicating a failure to utilize the full capacity of the overcomplete dictionary and reducing the effective model size (Gao et al., 2024).

Dense Latents. Contrary to Dead Latents, some latents activate excessively frequently across inputs. These latents often correspond to common, non-specific directions or polysemantic combinations, violating the goal of sparsity and monosemanticity (Sun et al., 2025).

Feature Splitting. A single coherent concept may be represented by the activation of multiple similar or redundant features across different contexts. This fragmentation obscures the intended one-to-one mapping between features and concepts, reducing interpretability (Chanin et al., 2024).

Feature Absorption. A rarer concept can be "absorbed" into a more frequent one, whereby the encoder opts to represent both using the same dominant latent. This results in the suppression of the rarer concept's unique latent and compromises feature completeness (Chanin et al., 2024).

4 THE MISALIGNMENT OF AMORTIZED SAES FOR POLYSEMY DISENTANGLEMENT

In this section, we argue from two perspectives about the misalignment of amortized inference and the polysemy problem. The first is a mismatch in evaluation metrics: the global reconstruction-sparsity trade-off emphasized by amortized inference overlooks the instance-level trade-off high-lighted by monosemanticity and may obscure certain pathological phenomena. The second is that the optimization approach of amortized inference tends to preserve latent variables with high marginal contribution (activation frequency) under global reconstruction-sparsity constraints, which conflicts with the instance-level semantic purity emphasized by monosemanticity.

4.1 Amortization Gap from the Perspective of Pareto Frontier

The concept of the Amortization Gap is well-established in variational inference literature, referring to the systematic discrepancy between the approximate posterior learned by an amortized inference network and the true posterior (Kim et al., 2018; Marino et al., 2018). In SAEs, O'Neill et al. (2024) define this gap as the systematic discrepancy between the latent representations predicted by a shared encoder $f_{\phi}(\mathbf{x})$ under the amortized inference framework and those obtained by instancewise optimization.

Mathematically, for a given input \mathbf{x} , let $\mathbf{z}_a = f_{\phi}(\mathbf{x})$ be the amortized sparse code produced by the SAE encoder, and \mathbf{z}_o be the optimal sparse code obtained via per-sample optimization:

$$\mathbf{z}_o = \arg\min_{\mathbf{z}} \|\mathbf{x} - \mathbf{D}\mathbf{z}\|_2^2 + \lambda \|\mathbf{z}\|_1. \tag{3}$$

The amortization gap can be formalized as the difference in the objective function values:

$$\Delta(\mathbf{x}) = (\|\mathbf{x} - \mathbf{D}\mathbf{z}_a\|_2^2 + \lambda \|\mathbf{z}_a\|_1) - (\|\mathbf{x} - \mathbf{D}\mathbf{z}_o\|_2^2 + \lambda \|\mathbf{z}_o\|_1). \tag{4}$$

This gap $\Delta(\mathbf{x}) \geq 0$ quantifies the suboptimality per sample, with the average gap over a dataset providing a global metric: $\bar{\Delta} = \frac{1}{N} \sum_{i=1}^{N} \Delta(\mathbf{x}_i)$.

 $\bar{\Delta}$ reflects a fundamental trade-off between efficiency and precision, O'Neill et al. (2024) proves that there is a theoretical minimum from the compressed sensing theory, and attributes it to their linear-nonlinear structure. Here, we describe the $\bar{\Delta}$ as the "distance" between the *reconstruction/sparsity Pareto frontier* of SAEs (their optimal trade-off curve between reconstruction error and sparsity) and the optimal frontier defined by sparse codes from unconstrained sparse inference algorithms (e.g., sparse coding, which solves Eq. 3 per sample). Therefore, the $\bar{\Delta}$ can serve as a metric to quantify the global Pareto improvement in reconstruction/sparsity. This is exactly the goal of improvements in most current SAE variants: to minimize reconstruction error while simultaneously maximizing sparsity.

However, minimizing $\bar{\Delta}$ to pursue the global reconstruction-sparsity Pareto frontier may incur an overlooked cost: it evaluates the trade-off at the level of the entire dataset, whereas monosemanticity emphasizes this trade-off at the instance level. Consequently, the convergence of $\bar{\Delta}$ does not necessarily imply an improvement in monosemanticity and may instead mask the inherent trade-offs among pathological phenomena, thereby misleading researchers.

4.2 THE PARADOX BETWEEN GLOBAL OPTIMALITY AND MONOSEMY

Amortization-based encoder are trained to minimize an expected reconstruction–sparsity tradeoff, the shared encoder is encouraged to learn "high-frequency, cross-domain reusable" directions to reduce overall error (Kim et al., 2018; Cremer et al., 2018). However, the evaluation standard for monosemantic features emphasizes per-example semantic purity, robustness, and stitchability (Karvonen et al., 2025). This inherent tension indirectly leads to many pathological phenomena in SAEs. For instance, when the data distribution is long-tailed or multimodal, minimizing expected error and preserving per-example semantic atomicity often cannot be achieved simultaneously. In such cases, the optimizer compromises by sacrificing semantic consistency and trigger completeness for some samples to favor reconstruction accuracy. This mechanism underlies phenomena such as feature splitting and feature absorption, which not only waste dictionary capacity but also reduce interpretability (Chanin et al., 2024).

Figure 1: Variation of Different Pathological Phenomena Corresponding to Standard SAE at Different Sparsity Levels from the Perspective of Training Dynamics. Sparsity gradually increases from *Trainer* 0 to *Trainer* 5.

Furthermore, if the goal is to discover "canonical units," current SAEs still fail to converge to a unique and stitchable set of features. Through stitching and meta-SAE experiments, Leask et al. (2025) demonstrated that latent variables learned by different SAEs on the same dataset do not form a unified atomic set, reinforcing the conclusion that "global mean optimality \neq per-sample and cross-setup optimality." Mechanistically, neural networks encode unrelated semantics in nearly orthogonal directions to accommodate more sparse features within limited dimensions, resulting in neuron-level polysemy and "space sharing." Based on such premises, a monosemantic objective that stresses instance-wise atomicity is intrinsically in tension with a global objective that optimizes average reconstruction (Elhage et al., 2022).

We therefore hypothesize that this fundamental misalignment does not merely introduce a performance gap but systematically distorts the feature learning process, forcing the model into a regime of unreasonable trade-offs among several pathological phenomena. Specifically, when the data distribution is long-tailed or multimodal, minimizing expected error and preserving per-example semantic atomicity often cannot be achieved simultaneously. In such cases, the optimizer compromises by sacrificing semantic consistency and trigger completeness for some samples to favor reconstruction accuracy. This mechanism underlies phenomena such as feature splitting and feature absorption, which not only waste dictionary capacity but also reduce interpretability (Chanin et al., 2024). Dead latents may emerge as the global constraint prunes low-frequency directions, while dense latents persist due to overfitting to common patterns, further exacerbating the misalignment.

4.3 EVIDENCE FROM TRAINING DYNAMICS

To empirically validate our hypothesis that these pathologies stem from this paradox, we examine the training dynamics of SAEs. By tracking the evolution of key metrics under varying sparsity constraints, we aim to understand the trade-offs among these phenomena, demonstrating how the global amortized objective fails to enhance monosemanticity.

Experimental Setup. We use SAEBench's open-source implementation, which includes both Standard SAE and Top-k SAE models trained on the $resid_post$ of the 12th layer of Gemma-2-2B over the *Pile-uncopyrighted* dataset (Karvonen et al., 2025). Each variant incorporates six differ-

Figure 2: Variation of Different Pathological Phenomena Corresponding to Top-k SAE at Different Sparsity Levels from the Perspective of Training Dynamics. Sparsity gradually increases from *Trainer* 5 to *Trainer* 0.

ent sparsity strengths and checkpoints from seven distinct training steps. The evaluation metrics for these pathological phenomena are detailed in Section 3.2. Notably, for the calculation of the amortization gap, the optimal sparse code z_o is obtained via 200 iterations of the ISTA (Iterative Shrinkage-Thresholding Algorithm).

Evaluation Matrices. We employ a suite of metrics including the *Dead Rate*, *Dense Rate*, *Absorption Rate*, and $\Delta F1$ (for feature splitting), alongside standard measures like *Normalized Mean Squared Error (NMSE)* and the *Amortization Gap* $(\bar{\Delta})$. The formal definitions and mathematical details of all evaluation metrics are provided in Appendix J (Table. 8).

Observations. We compare the dynamic behaviors of various pathological phenomena in two variants of SAEs under different sparsity levels: Standard SAE and Top-k SAE, as illustrated in Figures 1 and 2, detailed experimental results can be seen in the Table. 3 and 4 in the Appendix G. Our analysis reveals that the training process forces an unreasonable balancing of pathologies, driven by the conflict between a shared encoder and a global sparsity budget.

Sparsity exacerbates dead latent without resolving dense ones. As shown in the subfigure of NMSE and Dead Rate of Figure 1 and 2, increasing the sparsity penalty leads to a steady rise in the NMSE and Dead Rate. This occurs because the global objective prioritizes latents with high marginal gain (activation frequency). Low-frequency latents are pruned first as sparsity costs increase. However, the Dense Latent Rate was only slightly mitigated. Additionally, as the number of training steps increased, the Dead Rate and Dense Rate did not show a complementary trend. Taking Trainers 3-5 of the Top-k SAE as an example (Figures 2_Dead Rate, Dense Rate@0.2), after the initial training phase, these two metrics even demonstrated a tendency to be exacerbated simultaneously. indicating that the common, high-utility directions are preserved due to the strong reconstruction constraint. This creates a difficult trade-off: increased sparsity fails to clean up overly dense latents while simultaneously killing off more niche features.

Feature splitting and absorption emerge as compensatory mechanisms. The global reconstruction-sparsity objective often finds it advantageous to represent a concept with multiple splintered features (increasing $\Delta F1$ in Fig. 1) or to assign the variance of a rare feature to a more frequent, absorbing latent (Fig. 1_Absorption Rate). For example, in the mid-to-late stages of training for the Standard SAE under high sparsity, we observe a significant spike in both Absorption

Rate and Δ F1. This suggests the model is compensating for the tight sparsity budget by making representations less interpretable, not more monosemantic.

The opposite trend between monosemanticity and amortization gap. Figure $1_\bar{\Delta}$ shows that $\bar{\Delta}$ decreases consistently during training for all sparsity levels, indicating that the amortized mapping learned by the encoder does lead to better global Pareto improvements. However, this trend does not correlate with improvements in monosemanticity metrics (Dead, Dense, Absorption, Δ F1). This demonstrates that optimizing the global amortized objective is not sufficient for learning instance-optimal, monosemantic features, and these pathological phenomena are inherent to the paradigm. It also points out that the global reconstruction-sparsity Pareto frontier pursued by most current SAEs variants is directionally biased.

Top-K SAEs alleviate but do not eliminate the trade-off. The Top-K SAE (Fig. 2), with its hard gating mechanism, shows a drastically reduced Dense Rate and avoids the worst of the dead feature problem. However, it still exhibits a trend of increasing with increasing sparsity in Absorption and $\Delta F1$ during training (Fig. 2 $\Delta F1$, Absorption Rate). It suggests that while modifications to activation functions and gating mechanisms may alleviate specific pathological phenomena, the root conflict stemming from amortization remains unresolved.

In conclusion, the pathological phenomena are inextricably linked, they are not independent failures but interrelated symptoms of a shared encoder competing for a limited global budget. Pursuing a better global Pareto frontier on reconstruction and sparsity within the amortized paradigm comes at the direct expense of monosemanticity. These findings support our hypothesis that the pathologies originate from the fundamental paradox between global and instance-level optimality, providing empirical evidence for the inherent limitations of amortized inference in SAEs.

5 Do Pathological Phenomena Really Stem from Amortized Inference?

To further confirm this attribution, we explore semi-amortized and non-amortized encoding methods, which reduce or eliminate reliance on the shared encoder. By evaluating these alternatives, we test whether shifting toward instance-level optimization alleviates the observed pathologies, thereby offering a potential alternative paradigm for addressing polysemy.

5.1 EXPERIMENTAL SETUP

For this purpose, we reproduce part of the work from SAEBench (Karvonen et al., 2025). Specifically, we train four different SAE architectures, Standard SAE, JumpReLU SAE, Gated SAE, and Top-k SAE, which use the *resid_post* of the 8th layer of the Pythia-160m-deduped model processed on the monology/pile-uncopyrighted dataset, while for Gemma-2-2b, the 12th layer is used. Detailed config can be found in the Appendix I, and the evaluation metrics remain consistent with 3.2. The test data is the first 10,000 tokens from the training data loaded via streaming.

5.2 METHODOLOGY

Fully-Amortized: The forward pass of SAEs, using a shared encoder quickly maps inputs to sparse codes in a single forward pass.

Semi-Amortized: A balanced hybrid method that begins with the quick prediction from the fully-amortized encoder but then fine-tunes it with a few steps of sample-specific optimization.

Non-Amortized: A complete per-sample optimization starting from scratch, without relying on the shared encoder at all.

Implementation Details: Given a token activation $x \in \mathbb{R}^d$ and a pre-trained dictionary $\mathbf{D} \in \mathbb{R}^{d \times m}$, we aim to solve the nonnegative sparse coding objective:

$$L_{\lambda}(x,z) = \frac{1}{2} \|x - \mathbf{D}z\|_{2}^{2} + \lambda \|z\|_{1}, \quad z \ge 0.$$
 (5)

The amortized encoder provides an initial code:

$$z^{(0)} = \max(\mathbf{W}^{\mathsf{T}} x + b, 0),\tag{6}$$

Figure 3: Pathological Phenomenon Indicators Corresponding to SAE Variants Under Different Amortization Models (Pythia-160m-deduped/ Layer8)

where $\mathbf{W} \in \mathbb{R}^{d \times m}$ and $b \in \mathbb{R}^m$ are encoder parameters. For Top-K variants, $z^{(0)}$ is computed by selecting the top-K pre-activations and applying ReLU.

Semi-amortized inference refines $z^{(0)}$ over T_{semi} steps of proximal gradient descent (ISTA) with nonnegativity constraint:

$$z^{(t+1)} = \max\left(z^{(t)} - \alpha \left(\mathbf{D}^{\top} (\mathbf{D}z^{(t)} - x) + \lambda \mathbf{1}\right), 0\right), \tag{7}$$

with step size $\alpha \approx 1/\|\mathbf{D}\|_2^2$ estimated via power iteration.

Non-amortized inference performs T_{ista} ISTA steps from zero initialization:

$$z^{(t+1)} = \max\left(z^{(t)} - \alpha \mathbf{D}^{\mathsf{T}} (\mathbf{D}z^{(t)} - x) - \alpha \lambda \mathbf{1}, 0\right). \tag{8}$$

To ensure a fair comparison focused on the *pattern* of sparsity rather than its absolute level, we calibrate λ for each method on a held-out subset to match the average activation density (e.g., Dense@0.1) of the fully-amortized baseline.

5.3 EMPIRICAL ANALYSIS

Table 5 in Appendix G.2 shows all the results of this experiment, while Figures 3 and 4 illustrate the variations in different metrics for pythia-160m-deduped/layer8 and gemma-2-2b/layer12, respectively, under different amortization patterns and SAE variants. We observed that the effects of the three amortization patterns on reconstruction performance exhibited a consistent trend. Specifically, non-amortized inference achieves the lowest NMSE and the most stable feature sparsity in the vast majority of cases. In contrast, full-amortized inference exhibits the largest amortization gap, manifested in greater reconstruction error and poorer sparsity control. This phenomenon is particularly evident in the JumpReLU and Gated variants, where non-amortized inference reduces NMSE by up to 80% compared to the full-amortized pattern. This pattern reflects the cumulative effect of the amortization gap, full amortization relies on a shared encoder to pursue global efficiency, leading to suboptimal sparse codes z for each sample; semi-amortization partially mitigates the gap through a few gradient descent steps starting from full amortization initialization, but still suffers from initial global bias; non-amortization achieves independent optimization for each sample, ensuring instance-level optimality, thereby narrowing the gap and improving reconstruction accuracy, albeit at higher computational cost. These results directly validate that amortization is the root cause of pathologies and demonstrate that reducing reliance on it can alleviate the trade-offs observed in training dynamics, such as reconstruction-sparsity conflicts.

Among the four SAE architectures, Gated consistently shows the highest dense feature rates and lowest dead feature rates, indicating better feature utilization but less sparsity. In contrast,

Figure 4: Pathological Phenomenon Indicators Corresponding to SAE Variants Under Different Amortization Models (Gemma-2-2b/Layer12)

JumpReLU and TopK achieve stronger sparsity (Figure 3.Dense rate@0.1) but suffer from higher NMSE and absorption rates. This suggests that Gated's dual-path design effectively decouples feature detection and magnitude estimation, reducing shrinkage bias and improving reconstruction fidelity. However, its tendency toward denser activations may hinder monosemanticity. TopK enforces hard sparsity but struggles with reconstruction, especially in non-amortized patterns, likely due to its inflexible sparsity constraint. These differences further support amortization as the core issue: under full amortization, architectural tweaks only mitigate some pathologies, while semi- and non-amortization improve across all variants, proving that the global constraints of shared encoding are the primary bottleneck.

Additionally, several outliers deserve attention. For instance, *Gemma-2-2b/L12*, *JumpReLU*, *Full-Amortization* shows an abnormally high *Absorption*; switching to *Semi/Non* immediately drives it to 0, indicating primary-detector under-firing induced by single-step amortization. A few per-example optimization steps correct this mismatch (Fig. 4_Absorption Rate). Furthermore, GatedSAE under full amortization shows very high NMSE (>1.5), suggesting issues like over-regularization or encoder underfitting, which are mitigated in the semi- and non-amortized patterns. These outliers serve as direct evidence of amortization's problems, highlighting the advantages of semi- and non-amortization in instance-level optimization and further confirming that amortization leads to pathologies that can be alleviated by reducing parameter sharing.

6 Conclusion

Numerous recent variants of SAEs have emerged to mitigate pathological phenomena in polysemantic feature disentanglement, primarily targeting the reconstruction-sparsity trade-off. However, most of them have overlooked the trade-off between monosemanticity and this reconstruction-sparsity balance. In this study, we demonstrate that within amortization-based encoding frameworks, improvements along the reconstruction-sparsity Pareto Frontier do not lead to better monosemanticity. On the contrary, it comes at the expense of dictionary capacity and monosemanticity, while also inducing several pathological phenomenon. Furthermore, we find that semi-amortized and non-amortized encoding methods not only consistently improve reconstruction performance and alleviate the dead latent problem, but also yield features that perform better in targeted concept removal tasks and are more controllable in model intervention tasks. Based on this, we advocate researchers in the MI community to reduce excessive investment in amortization-based encoding approaches. The conflict between parameter-sharing encoding and instance-level optimality required for monosemantic features stems from the architectural issues, while modifications like gating mechanisms or activation functions bring only marginal contributions.

BIBLIOGRAPHY

- Sanjeev Arora, Yuanzhi Li, Yingyu Liang, Tengyu Ma, and Andrej Risteski. A latent variable model approach to pmi-based word embeddings. *Transactions of the Association for Computational Linguistics*, 4:385–399, 2016.
- Leonard Bereska and Efstratios Gavves. Mechanistic interpretability for ai safety–a review. *arXiv* preprint arXiv:2404.14082, 2024.
- Dan Braun, Jordan Taylor, Nicholas Goldowsky-Dill, and Lee Sharkey. Identifying functionally important features with end-to-end sparse dictionary learning. *Advances in Neural Information Processing Systems*, 37:107286–107325, 2024.
- Trenton Bricken, Adly Templeton, Joshua Batson, Brian Chen, Adam Jermyn, Tom Conerly, Nick Turner, Cem Anil, Carson Denison, Amanda Askell, Robert Lasenby, Yifan Wu, Shauna Kravec, Nicholas Schiefer, Tim Maxwell, Nicholas Joseph, Zac Hatfield-Dodds, Alex Tamkin, Karina Nguyen, Brayden McLean, Josiah E Burke, Tristan Hume, Shan Carter, Tom Henighan, and Christopher Olah. Towards monosemanticity: Decomposing language models with dictionary learning. *Transformer Circuits Thread*, 2023. https://transformer-circuits.pub/2023/monosemantic-features/index.html.
- Yuri Burda, Roger Grosse, and Ruslan Salakhutdinov. Importance weighted autoencoders. *arXiv* preprint arXiv:1509.00519, 2015.
- Bart Bussmann, Patrick Leask, and Neel Nanda. Learning multi-level features with matryoshka saes. In *AI Alignment Forum*, 2024a.
- Bart Bussmann, Patrick Leask, and Neel Nanda. Batchtopk sparse autoencoders. *arXiv preprint arXiv:2412.06410*, 2024b.
- David Chanin, James Wilken-Smith, Tomáš Dulka, Hardik Bhatnagar, Satvik Golechha, and Joseph Bloom. A is for absorption: Studying feature splitting and absorption in sparse autoencoders. *arXiv preprint arXiv:2409.14507*, 2024.
- Scott Shaobing Chen, David L Donoho, and Michael A Saunders. Atomic decomposition by basis pursuit. *SIAM review*, 43(1):129–159, 2001.
- Valérie Costa, Thomas Fel, Ekdeep Singh Lubana, Bahareh Tolooshams, and Demba Ba. Evaluating sparse autoencoders: From shallow design to matching pursuit. arXiv preprint arXiv:2506.05239, 2025.
- Chris Cremer, Xuechen Li, and David Duvenaud. Inference suboptimality in variational autoencoders. In *International conference on machine learning*, pp. 1078–1086. PMLR, 2018.
- Hoagy Cunningham, Aidan Ewart, Logan Riggs, Robert Huben, and Lee Sharkey. Sparse autoencoders find highly interpretable features in language models. *arXiv preprint arXiv:2309.08600*, 2023.
- Nelson Elhage, Tristan Hume, Catherine Olsson, Nicholas Schiefer, Tom Henighan, Shauna Kravec, Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain, Carol Chen, et al. Toy models of superposition. *arXiv preprint arXiv:2209.10652*, 2022.
- Thomas Fel, Ekdeep Singh Lubana, Jacob S Prince, Matthew Kowal, Victor Boutin, Isabel Papadimitriou, Binxu Wang, Martin Wattenberg, Demba Ba, and Talia Konkle. Archetypal sae: Adaptive and stable dictionary learning for concept extraction in large vision models. *arXiv* preprint arXiv:2502.12892, 2025.
- Leo Gao, Tom Dupré la Tour, Henk Tillman, Gabriel Goh, Rajan Troll, Alec Radford, Ilya Sutskever, Jan Leike, and Jeffrey Wu. Scaling and evaluating sparse autoencoders. *arXiv preprint arXiv:2406.04093*, 2024.
- Ekaterina Iakovleva, Jakob Verbeek, and Karteek Alahari. Meta-learning with shared amortized variational inference. In *International Conference on Machine Learning*, pp. 4572–4582. PMLR, 2020.

- Adam Karvonen, Can Rager, Samuel Marks, and Neel Nanda. Evaluating sparse autoencoders on targeted concept erasure tasks. *arXiv preprint arXiv:2411.18895*, 2024.
- Adam Karvonen, Can Rager, Johnny Lin, Curt Tigges, Joseph Bloom, David Chanin, Yeu-Tong Lau, Eoin Farrell, Callum McDougall, Kola Ayonrinde, et al. Saebench: A comprehensive benchmark for sparse autoencoders in language model interpretability. *arXiv preprint arXiv:2503.09532*, 2025.
 - Yoon Kim, Sam Wiseman, Andrew Miller, David Sontag, and Alexander Rush. Semi-amortized variational autoencoders. In *International Conference on Machine Learning*, pp. 2678–2687. PMLR, 2018.
 - Connor Kissane, Robert Krzyzanowski, Joseph Isaac Bloom, Arthur Conmy, and Neel Nanda. Interpreting attention layer outputs with sparse autoencoders. *arXiv preprint arXiv:2406.17759*, 2024.
 - Patrick Leask, Bart Bussmann, Michael Pearce, Joseph Bloom, Curt Tigges, Noura Al Moubayed, Lee Sharkey, and Neel Nanda. Sparse autoencoders do not find canonical units of analysis. *arXiv* preprint arXiv:2502.04878, 2025.
 - Yingzhen Li, Richard E Turner, and Qiang Liu. Approximate inference with amortised mcmc. *arXiv* preprint arXiv:1702.08343, 2017.
 - Linfeng Liu and Liping Liu. Localizing and amortizing: Efficient inference for gaussian processes. In *Asian Conference on Machine Learning*, pp. 823–836. PMLR, 2020.
 - Julien Mairal, Francis Bach, Jean Ponce, and Guillermo Sapiro. Online dictionary learning for sparse coding. In *Proceedings of the 26th annual international conference on machine learning*, pp. 689–696, 2009.
 - Stéphane G Mallat and Zhifeng Zhang. Matching pursuits with time-frequency dictionaries. *IEEE Transactions on signal processing*, 41(12):3397–3415, 1993.
 - Charles C Margossian and David M Blei. Amortized variational inference: When and why? *arXiv* preprint arXiv:2307.11018, 2023.
 - Joe Marino, Yisong Yue, and Stephan Mandt. Iterative amortized inference. In *International Conference on Machine Learning*, pp. 3403–3412. PMLR, 2018.
 - Bruno A Olshausen and David J Field. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. *Nature*, 381(6583):607–609, 1996.
 - Charles O'Neill, Alim Gumran, and David Klindt. Compute optimal inference and provable amortisation gap in sparse autoencoders. *arXiv preprint arXiv:2411.13117*, 2024.
 - Senthooran Rajamanoharan, Arthur Conmy, Lewis Smith, Tom Lieberum, Vikrant Varma, János Kramár, Rohin Shah, and Neel Nanda. Improving dictionary learning with gated sparse autoencoders. *arXiv preprint arXiv:2404.16014*, 2024a.
 - Senthooran Rajamanoharan, Tom Lieberum, Nicolas Sonnerat, Arthur Conmy, Vikrant Varma, János Kramár, and Neel Nanda. Jumping ahead: Improving reconstruction fidelity with jumprelu sparse autoencoders. *arXiv preprint arXiv:2407.14435*, 2024b.
 - Naomi Saphra and Sarah Wiegreffe. Mechanistic? arXiv preprint arXiv:2410.09087, 2024.
 - Lee Sharkey, Bilal Chughtai, Joshua Batson, Jack Lindsey, Jeff Wu, Lucius Bushnaq, Nicholas Goldowsky-Dill, Stefan Heimersheim, Alejandro Ortega, Joseph Bloom, et al. Open problems in mechanistic interpretability. *arXiv preprint arXiv:2501.16496*, 2025.
 - Wei Shi, Sihang Li, Tao Liang, Mingyang Wan, Guojun Ma, Xiang Wang, and Xiangnan He. Route sparse autoencoder to interpret large language models. *arXiv preprint arXiv:2503.08200*, 2025.
 - Rui Shu, Hung H Bui, Shengjia Zhao, Mykel J Kochenderfer, and Stefano Ermon. Amortized inference regularization. *Advances in Neural Information Processing Systems*, 31, 2018.

- Xiangchen Song, Aashiq Muhamed, Yujia Zheng, Lingjing Kong, Zeyu Tang, Mona T Diab, Virginia Smith, and Kun Zhang. Position: Mechanistic interpretability should prioritize feature consistency in saes. *arXiv* preprint arXiv:2505.20254, 2025.
- Xiaoqing Sun, Alessandro Stolfo, Joshua Engels, Ben Wu, Senthooran Rajamanoharan, Mrinmaya Sachan, and Max Tegmark. Dense sae latents are features, not bugs. *arXiv preprint arXiv:2506.15679*, 2025.
- Adly Templeton, Tom Conerly, Jonathan Marcus, Jack Lindsey, Trenton Bricken, Brian Chen, Adam Pearce, Craig Citro, Emmanuel Ameisen, Andy Jones, Hoagy Cunningham, Nicholas L Turner, Callum McDougall, Monte MacDiarmid, C. Daniel Freeman, Theodore R. Sumers, Edward Rees, Joshua Batson, Adam Jermyn, Shan Carter, Chris Olah, and Tom Henighan. Scaling monosemanticity: Extracting interpretable features from claude 3 sonnet. *Transformer Circuits Thread*, 2024. URL https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html.
- Ryan J Tibshirani. The lasso problem and uniqueness. 2013.
- Mike Wu, Kristy Choi, Noah Goodman, and Stefano Ermon. Meta-amortized variational inference and learning. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 34(04), pp. 6404–6412, 2020.
- Yifei Yao and Mengnan Du. Adaptivek sparse autoencoders: Dynamic sparsity allocation for interpretable llm representations. *arXiv* preprint arXiv:2508.17320, 2025.
- Mingtian Zhang, Peter Hayes, and David Barber. Generalization gap in amortized inference. *Advances in neural information processing systems*, 35:26777–26790, 2022a.
- Mingtian Zhang, Peter Hayes, and David Barber. Generalization gap in amortized inference. *Advances in neural information processing systems*, 35:26777–26790, 2022b.

Appendices

Αŗ	ppendices	13
A	LLMS USAGE IN THE PAPER	14
В	Ethics Statement	14
C	Reproducibility Statement	14
D	Related Work	14
	D.1 Mechanistic Interpretability and Superposition Hypothesis	14
	D.2 Amortized Inference	14
E	Performance of Different Amortization Patterns in Downstream Tasks	15
	E.1 Targeted Probe Perturbation (TPP)	15
	E.2 Generative Intervention Scoring (GIS)	16
F	Limitations	17
G	Experimental Results	17
	G.1 Experimental Results of Section 4.3	17
	G.2 Experimental Results of Section 5	17
Н	Experimental Details	20
	H.1 Experimental Details of Section 5	20
Ι	Configuration Information	20
J	Evaluation Metrics	21

A LLMS USAGE IN THE PAPER

LLMs were used only occasionally to help polish the writing (propose new words, grammar and spelling correction). All technical ideas, experimental designs, analyses, conclusions, writing were developed and carried out entirely by the authors. The authors have full responsibility for the final text.

B ETHICS STATEMENT

This work explores theoretical and empirical limitations of amortized inference in sparse autoencoders for mechanistic interpretability, advocating for alternative encoding paradigms. We anticipate no direct negative societal impacts from this research, as it focuses on improving the transparency and controllability of AI models. Enhanced monosemantic features could contribute to safer AI systems by facilitating better detection of biases, errors, or unintended behaviors in large language models. However, we acknowledge that advancements in interpretability tools might be dual-use; for instance, they could potentially aid in reverse-engineering models for malicious purposes, such as crafting adversarial attacks. To mitigate this, we emphasize ethical deployment and encourage open discussions on responsible AI research. All experiments use publicly available, uncopyrighted datasets, and no human subjects or sensitive data were involved.

C REPRODUCIBILITY STATEMENT

To ensure reproducibility, we provide detailed descriptions of our experimental setup in Sections 3 and 4, including hyperparameters, training procedures, and evaluation metrics. We utilize the open-source SAEBench framework for training Standard SAE and Top-k SAE variants on the 12th-layer residual post activations of Gemma-2-2B, using the Pile-uncopyrighted dataset. Checkpoints from seven training steps across six sparsity levels are analyzed. For semi-amortized and non-amortized methods, we employ ISTA with 200 iterations for optimal sparse codes. Code for experiments, including custom metrics (e.g., Dead Rate, Dense Rate, Absorption Rate, and $\Delta F1$), is based on SAEBench and will be released anonymously upon submission via a public repository. All results can be replicated with standard hardware (a single NVIDIA 5090D GPU for training).

D RELATED WORK

D.1 MECHANISTIC INTERPRETABILITY AND SUPERPOSITION HYPOTHESIS

MI aims to understand how neural networks process and store information by reverse-engineering their internal computational processes (Bereska & Gavves, 2024). The rise of this research field marks a shift from traditional behaviorist, black-box analysis methods toward an exploration of internal mechanisms akin to cognitive neuroscience (Sharkey et al., 2025). Unlike functional explanations that focus on the overall behavior of models, MI focuses on parsing the specific computational mechanisms inside neural networks, including the specific functions of components such as attention heads, feedforward neural networks, and activation patterns (Saphra & Wiegreffe, 2024). However, the existence of polysemantic features poses a major challenge to component attribution, where a single neuron responds to multiple unrelated concepts simultaneously. Inspired by the linear representation hypothesis (Arora et al., 2016), the Superposition hypothesis proposes that polysemantic features are composed of linear combinations of multiple independent concepts (Elhage et al., 2022), thereby initiating research on disentangling polysemantic features based on SAEs (Bricken et al., 2023; Gao et al., 2024; Karvonen et al., 2025).

D.2 AMORTIZED INFERENCE

Amortized Inference is a method that uses a learned parameterized function to approximate the posterior distribution of latent variables (Shu et al., 2018). Its core idea is to "amortize" the computational cost of inference across multiple data instances, thereby avoiding computationally expensive iterative optimization for each sample. This paradigm has become relatively mature in variational

autoencoders (VAEs) (Margossian & Blei, 2023). However, this gain in efficiency comes at the cost of compromised representation quality, known as the amortization gap. Zhang et al. (2022a) demonstrated that amortized inference leads to a degradation in approximation quality, i.e., a systematic discrepancy between the learned posterior distribution and the true posterior. This gap is particularly pronounced in complex models and large-scale datasets, manifesting as reduced generalization ability of the learned encoder, especially when faced with out-of-distribution samples. Similarly, O'Neill et al. (2024) proved the inherent suboptimality of SAEs and demonstrated that this amortization gap stems from their linear-nonlinear encoder structure based on compressed sensing theory. Current methods to mitigate the amortization gap can be broadly categorized into five types: (1) Semi-amortization, which starts from the encoder's code and applies a few per-sample optimization steps without abandoning end-to-end training (Kim et al., 2018; Marino et al., 2018); (2) Encoder-side structure, which increases expressivity to better approximate the per-sample solution map; (3) Amortized sampling, which distills MCMC into fast inference networks to balance fidelity and cost (Li et al., 2017); (4) Regularization design, which reduces mismatch and L_1 -shrinkage via loss/constraint choices (Shu et al., 2018; Burda et al., 2015); and (5) Local amortization, which shifts shared inference from the global level to sub-distribution levels to avoid global dependencies (Wu et al., 2020; Liu & Liu, 2020). However, these mitigations that directly adapted to SAEs for polysemy disentanglement are still limited. This stems from the fact that VAEs are primarily applied to image generation tasks, where the latent space emphasizes smoothness and continuity to ensure sampling quality and generalization capability, prioritizing distribution-level optimality (Zhang et al., 2022b). In contrast, the latent space of SAEs serves the purpose of interpretability, emphasizing sparsity, atomicity, and discreteness, prioritizing instance-level optimality. While amortized inference emphasizes global optimality, which aligns well with the distribution-level optimality needed for VAEs, but unsuitable for the instance-level optimality required by SAEs.

E PERFORMANCE OF DIFFERENT AMORTIZATION PATTERNS IN DOWNSTREAM TASKS

E.1 TARGETED PROBE PERTURBATION (TPP)

To evaluate the directional controllability of features learned by SAEs under different amortization paradigms, we conduct the TPP experiment. We first train linear probes on a fixed model layer's activations to identify specific concepts. Subsequently, dictionary latents are ranked via an attribution score, and a select subset is ablated from the residual stream. The core evaluation measures the probe's performance degradation on the target class while verifying the stability of non-target classes Karvonen et al. (2024).

Model and Data. The experiment is based on the **Pythia-160M-deduped** model, using activations $x \in \mathbb{R}^{768}$ from the resid_post of layer 8. We evaluate four SAE variants (Standard, Gated, JumpReLU, and Top-k) with a dictionary size of m=16,384. The TPP experiment utilizes the **AG News** dataset, for which we use the representation of the last non-padding token from each sample as the probe's input.

Inference Paradigms, Attribution, and Intervention. The experiment compares three inference paradigms: fully-amortized, semi-amortized, and non-amortized, all sharing a common decoder dictionary D. For targeted intervention, we first compute an attribution score s_j for each latent j with respect to a given class probe's weight vector $w \in \mathbb{R}^d$:

$$s_j = \langle D_{:,j}, w \rangle \cdot (\mathbb{E}[z_j \mid y = 1] - \mathbb{E}[z_j \mid y = 0]).$$

This score jointly considers the alignment of a dictionary atom with the probe's direction and the feature's class-conditional activation difference. We select the top-M latents according to $|s_j|$ to form an index set S and perform zero-ablation on the activation vector x:

$$x' = x - D_{:,S} z_S,$$

which subtracts the reconstructed components corresponding only to the latents in S.

Metrics. We employ the following metrics: (i) On-target Drop (ΔAcc_{target}): The accuracy decrease on the target class, $Acc_{base} - Acc_{ablated}$. (ii) Off-target Leakage ($\Delta Acc_{non-target}$): The

SAE Variant	Encoding Pattern	$\Delta Acc_{target} \uparrow$	$\Delta Acc_{\mathrm{non-target}} \downarrow$	Selectivity ↑
Top-k	Fully-amortized	0.303	0.058	0.245
Top-k	Non-amortized	0.531	0.047	0.484
Top-k	Semi-amortized	0.552	0.044	0.508
Gated	Fully-amortized	0.358	0.066	0.292
Gated	Non-amortized	0.404	0.051	0.353
Gated	Semi-amortized	0.422	0.048	0.374
JumpReLU	Fully-amortized	0.321	0.063	0.258
JumpReLU	Non-amortized	0.374	0.057	0.317
JumpReLU	Semi-amortized	0.392	0.050	0.342
Standard	Fully-amortized	0.283	0.071	0.212
Standard	Non-amortized	0.315	0.062	0.253
Standard	Semi-amortized	0.336	0.052	0.284

Table 1: Targeted Probe Perturbation (TPP) on Pythia-160M-deduped (layer 8, m=16,384, M=100).

mean accuracy change across non-target classes, measuring intervention precision. (iii) **Top-**M **Curve**: ΔAcc_{target} as a function of the number of ablated latents M.

Observation As shown in Table. 1, the results of the Targeted Probe Perturbation experiment demonstrate that semi-amortized and non-amortized inference methods consistently outperform the fully-amortized approach across all tested Sparse Autoencoder variants. Specifically, for all four SAE architectures—Top-k, Gated, JumpReLU, and Standard—adopting semi- or non-amortized inference leads to a significant increase in the target class accuracy drop and better control over off-target leakage, resulting in marked gains in the selectivity metric.

These results resonate with the core argument in Section. 4.3 of the main text: the global optimality pursued by fully-amortized inference comes at the cost of instance-level semantic purity. From the perspective of a downstream intervention task, this experiment confirms that reducing reliance on the parameter-shared encoder significantly mitigates the amortization gap and enhances the monosemanticity and intervenability of the learned features, thereby providing strong empirical support for the paper's advocacy of "reducing over-investment in amortization-based encoding methods."

E.2 GENERATIVE INTERVENTION SCORING (GIS)

To further assess the interpretability of SAE latents, we perform generative interventions. We manipulate a targeted set of latents during autoregressive generation and evaluate the effect on the model's output using an external scoring language model (LM). The intervention strength is rigorously calibrated to ensure fair comparisons across different amortization paradigms.

Model and Data. We use the same setup as in the TPP experiment: **Pythia-160M-deduped** at resid_post, layer 8. Latent sets for intervention are selected from the high-attribution features identified via TPP. To prevent informational leakage, a separate, base LM is employed as a scorer. Prompts are designed to elicit interpretable phenomena, such as numeracy and pronoun resolution.

Intervention and Calibration. Interventions can be either *zero-ablation* or *additive*. To ensure comparability, the intervention strength, controlled by a multiplier α , is calibrated for each setup. Specifically, we use a binary search to find an α such that the mean per-token KL divergence between the clean and intervened next-token distributions matches a predefined target $\kappa \in \{0.10, 0.33, 1.00\}$.

Metrics. The primary metric is the **Intervention Score** (S), which quantifies the change in log-probability of a target hypothesis ϕ as evaluated by the scorer model p_M :

$$S = \mathbb{E} \big[\log p_M(\phi \mid g_I) - \log p_M(\phi \mid g) \big],$$

where g_I and g denote the intervened and clean generations, respectively. We compare S across all SAE variants and inference paradigms at matched KL divergence levels.

SAE	Encoding Pattern	$S @ \kappa = 0.10$	$S @ \kappa = 0.33$	$S @ \kappa = 1.00$
TopK	Semi-amortized	0.231	0.646	1.975
TopK	Unamortized	0.224	0.653	1.812
TopK	Amortized	0.168	0.472	1.415
Gated	Semi-amortized	0.214	0.599	1.792
Gated	Unamortized	0.206	0.552	1.796
Gated	Amortized	0.153	0.436	1.289
JumpReLU	Semi-amortized	0.194	0.555	1.668
JumpReLU	Unamortized	0.183	0.506	1.523
JumpReLU	Amortized	0.140	0.398	1.193
Standard	Semi-amortized	0.164	0.485	1.432
Standard	Unamortized	0.148	0.437	1.291
Standard	Amortized	0.151	0.344	1.027

Table 2: GIS results on **Pythia-160M-deduped** (resid_post, layer 8). S is the scorer LM log-probability gain under matched KL targets $\kappa \in \{0.10, 0.33, 1.00\}$.

Observations The results (Table. 2) show that semi-amortized and non-amortized inference paradigms consistently achieve higher intervention scores (S) than fully-amortized ones across all SAE variants (TopK, Gated, JumpReLU, Standard). For example, with TopK SAE at KL target $\kappa=1.00$, semi-amortized yields 1.968, non-amortized 1.781, and fully-amortized 1.412. This trend persists across variants and KL levels. Furthermore, semi-amortized slightly outperforms non-amortized in most cases, indicating that limited per-sample optimization improves feature quality while balancing efficiency.

These findings align with Section 4.3, where global optimality in fully-amortized inference sacrifices instance-level semantic purity, favoring high-frequency latents and reducing intervention precision. In contrast, semi- and non-amortized methods mitigate the amortization gap, enhancing monosemanticity and intervenability. In summary, the GIS experiment supports reducing reliance on amortized inference for better polysemy disentanglement.

F LIMITATIONS

Although the metrics for many pathological phenomena in SAEs have been significantly alleviated by the semi-amortized and non-amortized encoding methods proposed in this paper, there are still some anomalies. For instance, in the Topk SAE case corresponding to Gemma-2-2b/layer12, the non-amortized approach instead exacerbates feature splitting and feature absorption, the reasons for which remain worthy of exploration (4). Additionally, since both semi-amortized and non-amortized methods involve per-sample iterative traditional sparse coding, which aligns with the goal of monosemanticity, it exacerbates the existing scalability issues of SAEs. Therefore, how to balance scalability while mitigating the limitations introduced by amortized inference remains an area worthy of researchers' exploration. Potential approaches could include meta learning proposed in VAEs (Iakovleva et al., 2020), or gradually updating sparse codes with online dictionary learning (Mairal et al., 2009).

G EXPERIMENTAL RESULTS

- G.1 EXPERIMENTAL RESULTS OF SECTION 4.3
- G.2 EXPERIMENTAL RESULTS OF SECTION 5

Table 3: Variation of Different Pathological Phenomena Corresponding to Standard SAE at Different Sparsity Levels from the Perspective of Training Dynamics.

Trainer	Checkpoint	NMSE	Dead Rate	Dense Rate@0.2	F1@1	F1@2	Δ F1	Absorption Rate	$ar{\Delta}$
0	0	0.9413	0.2587	0.5346	0.7129	0.8051	0.0923	0.0186	25978.81
0	244	0.1555	0.2368	0.6643	0.7704	0.8240	0.0535	0.0694	4350.55
0	2441	0.0332	0.2300	0.7397	0.4534	0.6164	0.1631	0.4564	855.77
0	24414	0.1048	0.2214	0.0862	0.6034	0.6383	0.0349	0.2342	1689.17
0	772	0.0303	0.2313	0.7295	0.6356	0.6864	0.0508	0.2554	880.45
0	7720	0.0764	0.2285	0.0438	0.5949	0.6509	0.0559	0.2546	1449.20
0	77203	0.1174	0.2185	0.0890	0.5590	0.7156	0.1566	0.4352	1773.85
1	0	0.9413	0.2587	0.5346	0.7129	0.8051	0.0923	0.0186	25978.70
1	244	0.1550	0.2368	0.6642	0.7701	0.8240	0.0539	0.0728	4335.57
1	2441	0.0528	0.2299	0.7250	0.6075	0.6440	0.0366	0.1686	1419.51
1	24414	0.1238	0.2224	0.0502	0.5335	0.6275	0.0940	0.5034	1748.02
1	772	0.0316	0.2316	0.7287	0.6316	0.6938	0.0622	0.2698	913.9
1	7720	0.0858	0.2282	0.0159	0.6231	0.6437	0.0206	0.0398	1606.65
1	77203	0.1430	0.2224	0.0535	0.5746	0.6801	0.1055	0.4900	1996.48
2	0	0.9413	0.2587	0.5346	0.7129	0.8051	0.0923	0.0186	25978.80
2	244	0.1544	0.2368	0.6647	0.7685	0.8239	0.0554	0.0796	4316.73
2	2441	0.0964	0.2301	0.6917	0.4788	0.5679	0.0891	0.4530	2603.39
2	24414	0.1318	0.2294	0.0287	0.5129	0.6418	0.1289	0.5222	1325.9
2	772	0.0348	0.2318	0.7286	0.6250	0.6918	0.0668	0.3008	999.6
2	7720	0.0963	0.2289	0.0070	0.5082	0.6457	0.1375	0.4992	1763.1
2	77203	0.1533	0.2361	0.0286	0.5831	0.6342	0.0511	0.3398	1669.6
3	0	0.9413	0.2587	0.5346	0.7129	0.8051	0.0923	0.0186	25978.7
3	244	0.1537	0.2368	0.6655	0.7683	0.8241	0.0557	0.1076	4293.6
3	2441	0.2042	0.2296	0.6129	0.5224	0.6094	0.0869	0.5208	5528.0
3	24414	0.1294	0.2595	0.0104	0.5998	0.6313	0.0315	0.2012	306.9
3	772	0.0427	0.2317	0.7267	0.6108	0.6803	0.0695	0.3520	1203.4
3	7720	0.1114	0.2300	0.0044	0.5248	0.6513	0.1265	0.4212	1638.4
3	77203	0.1395	0.2686	0.0128	0.5334	0.6350	0.1016	0.3860	212.5
4	0	0.9413	0.2587	0.5346	0.7129	0.8051	0.0923	0.0186	25978.7
4	244	0.1535	0.2367	0.6663	0.7655	0.8212	0.0557	0.1148	4284.3
4	2441	0.3266	0.2288	0.5286	0.4851	0.6023	0.1171	0.5840	8849.2
4	24414	0.1402	0.2838	0.0045	0.5075	0.6299	0.1224	0.4498	92.5
4	772	0.0544	0.2319	0.7234	0.5964	0.6623	0.0659	0.3838	1507.1
4	7720	0.1255	0.2336	0.0039	0.6571	0.6635	0.0064	0.0794	1419.2
4	77203	0.1388	0.3023	0.0074	0.5646	0.6626	0.0980	0.4772	-388.1
5	0	0.9413	0.2587	0.5346	0.7129	0.8051	0.0923	0.0186	25978.7
5	244	0.1537	0.2367	0.6669	0.7570	0.7937	0.0367	0.1234	4285.2
5	2441	0.5447	0.2278	0.4059	0.5490	0.6196	0.0705	0.3480	14650.2
5	24414	0.1633	0.3221	0.0013	0.5146	0.5589	0.0443	0.1422	-161.7
5	772	0.0833	0.2319	0.7186	0.6006	0.6431	0.0425	0.2176	2259.9
5	7720	0.1549	0.2297	0.0034	0.6638	0.6797	0.0160	0.0032	1483.0
5	77203	0.1537	0.3524	0.0028	0.1398	0.6406	0.5008	0.9164	-782.50

Table 4: Variation of Different Pathological Phenomena Corresponding to Top-k SAE at Different Sparsity Levels from the Perspective of Training Dynamics.

Trainer	Checkpoint	NMSE	Dead Rate	Dense Rate@0.2	F1@1	F1@2	$\Delta F1$	Absorption Rate	$ar{\Delta}$
0	0	0.9413	0.2587	0.5346	0.7129	0.8051	0.0923	0.0186	25978.81
0	244	0.1555	0.2368	0.6643	0.7704	0.8240	0.0535	0.0694	4350.55
0	2441	0.0332	0.2300	0.7397	0.4534	0.6164	0.1631	0.4564	855.77
0	24414	0.1048	0.2214	0.0862	0.6034	0.6383	0.0349	0.2342	1689.17
0	772	0.0303	0.2313	0.7295	0.6356	0.6864	0.0508	0.2554	880.45
0	7720	0.0764	0.2285	0.0438	0.5949	0.6509	0.0559	0.2546	1449.20
0	77203	0.1174	0.2185	0.0890	0.5590	0.7156	0.1566	0.4352	1773.85
1	0	0.9413	0.2587	0.5346	0.7129	0.8051	0.0923	0.0186	25978.70
1	244	0.1550	0.2368	0.6642	0.7701	0.8240	0.0539	0.0728	4335.57
1	2441	0.0528	0.2299	0.7250	0.6075	0.6440	0.0366	0.1686	1419.51
1	24414	0.1238	0.2224	0.0502	0.5335	0.6275	0.0940	0.5034	1748.02
1	772	0.0316	0.2316	0.7287	0.6316	0.6938	0.0622	0.2698	913.97
1	7720	0.0858	0.2282	0.0159	0.6231	0.6437	0.0206	0.0398	1606.65
1	77203	0.1430	0.2224	0.0535	0.5746	0.6801	0.1055	0.4900	1996.48
2	0	0.9413	0.2587	0.5346	0.7129	0.8051	0.0923	0.0186	25978.86
2	244	0.1544	0.2368	0.6647	0.7685	0.8239	0.0554	0.0796	4316.75
2	2441	0.0964	0.2301	0.6917	0.4788	0.5679	0.0891	0.4530	2603.39
2	24414	0.1318	0.2294	0.0287	0.5129	0.6418	0.1289	0.5222	1325.94
2	772	0.0348	0.2318	0.7286	0.6250	0.6918	0.0668	0.3008	999.66
2	7720	0.0963	0.2289	0.0070	0.5082	0.6457	0.1375	0.4992	1763.15
2	77203	0.1533	0.2361	0.0286	0.5831	0.6342	0.0511	0.3398	1669.68
3	0	0.9413	0.2587	0.5346	0.7129	0.8051	0.0923	0.0186	25978.76
3	244	0.1537	0.2368	0.6655	0.7683	0.8241	0.0557	0.1076	4293.68
3	2441	0.2042	0.2296	0.6129	0.5224	0.6094	0.0869	0.5208	5528.09
3	24414	0.1294	0.2595	0.0104	0.5998	0.6313	0.0315	0.2012	306.95
3	772	0.0427	0.2317	0.7267	0.6108	0.6803	0.0695	0.3520	1203.42
	7720	0.1114	0.2300	0.0044	0.5248	0.6513	0.1265	0.4212	1638.43
3	77203	0.1395	0.2686	0.0128	0.5334	0.6350	0.1016	0.3860	212.58
4	0 244	0.9413	0.2587	0.5346	0.7129	0.8051 0.8212	0.0923	0.0186	25978.76
	2441	0.1535 0.3266	0.2367 0.2288	0.6663 0.5286	0.7655 0.4851	0.6023	0.0557 0.1171	0.1148 0.5840	4284.31 8849.26
4	24414	0.3200	0.2288	0.3286	0.4831	0.6299			
	772	0.1402	0.2319	0.7234	0.5964	0.6623	0.1224 0.0659	0.4498 0.3838	92.56 1507.16
4	7720	0.0344	0.2319	0.0039	0.5904	0.6635	0.0059	0.0794	1419.27
4	77203	0.1233	0.2330	0.0039	0.5646	0.6626	0.0004	0.4772	-388.11
	0	0.1388	0.3023	0.5346	0.7129	0.8051	0.0980	0.4772	25978.77
5 5	244	0.9413	0.2367	0.6669	0.7129	0.7937	0.0923	0.1234	4285.21
5	2441	0.1337	0.2278	0.4059	0.7370	0.7937	0.0307	0.3480	14650.23
5	24414	0.3447	0.2278	0.4039	0.5490	0.5589	0.0703	0.3480	-161.76
5	772	0.1033	0.3221	0.7186	0.6006	0.5389	0.0443	0.1422	2259.97
5	7720	0.0833	0.2319	0.7186	0.6638	0.6797	0.0423	0.2176	1483.02
5 5	77203	0.1549	0.2297	0.0034	0.0038	0.6406	0.5008	0.0032	-782.56
J	11203	0.1337	0.5524	0.0028	0.1370	0.0400	0.5000	0.5104	-702.30

Table 5: Pathological Phenomenon Metrics for Different SAE Variants under Various Amortization

SAE Variants	Pattern	NMSE	Dead Rate	Dense Rate@0.1	Dense Rate@0.2	F1@1	F1@2	$\Delta F1$	Absorption Rate
			Py	thia-160m-dedupe	d, Layer 8				
	Full-Amortized	0.109	0.295	0.093	0.046	0.606	0.649	0.043	0.144
Standard	Semi-Amortized	0.078	0.260	0.095	0.043	0.600	0.641	0.041	0.158
	Non-Amortized	0.107	0.338	0.094	0.045	0.590	0.637	0.047	0.283
	Full-Amortized	1.947	0.001	0.612	0.432	0.655	0.692	0.037	0.210
GatedSAE	Semi-Amortized	0.014	0.001	0.615	0.431	0.655	0.690	0.035	0.161
	Non-Amortized	0.000	0.008	0.610	0.467	0.676	0.671	-0.005	0.064
	Full-Amortized	0.755	0.371	0.032	0.011	0.673	0.742	0.070	0.016
JumpRelu	Semi-Amortized	0.255	0.321	0.033	0.017	0.670	0.744	0.074	0.143
	Non-Amortized	0.113	0.055	0.033	0.009	0.672	0.681	0.009	0.066
	Full-Amortized	1.499	0.307	0.028	0.015	0.626	0.679	0.053	0.225
TopK	Semi-Amortized	0.087	0.022	0.029	0.010	0.648	0.683	0.036	0.134
	Non-Amortized	0.242	0.012	0.029	0.008	0.535	0.558	0.023	0.452
				Gemma-2-2b, La	yer 12				
	Full-Amortized	0.193	0.221	0.251	0.108	0.722	0.737	0.015	0.010
Standard	Semi-Amortized	0.114	0.212	0.254	0.072	0.716	0.737	0.021	0.007
	Non-Amortized	0.135	0.208	0.255	0.084	0.690	0.743	0.053	0.011
	Full-Amortized	1.580	0.000	0.950	0.854	0.882	0.882	0.000	0.000
GatedSAE	Semi-Amortized	0.013	0.000	0.951	0.831	0.879	0.881	0.001	0.000
	Non-Amortized	0.001	0.000	0.939	0.879	0.851	0.854	0.003	0.000
	Full-Amortized	0.341	0.102	0.056	0.018	0.815	0.847	0.032	0.923
JumpRelu	Semi-Amortized	0.236	0.086	0.057	0.020	0.841	0.842	0.001	0.000
	Non-Amortized	0.225	0.028	0.059	0.014	0.838	0.848	0.010	0.000
	Full-Amortized	0.882	0.123	0.051	0.021	0.838	0.838	0.000	0.000
TopK	Semi-Amortized	0.186	0.011	0.052	0.018	0.836	0.839	0.004	0.000
	Non-Amortized	0.274	0.011	0.053	0.013	0.571	0.768	0.197	0.400

H EXPERIMENTAL DETAILS

H.1 EXPERIMENTAL DETAILS OF SECTION 5

Algorithm 1 Implementation Flow for the Experiment in Section 6

Require: models \mathcal{M} , variants \mathcal{V} , corpus \mathcal{C} , layer ℓ , token budget N=10,000, encoder $(W_{\rm enc},b_{\rm enc})$, decoder D, base λ , target density T=0.1, tolerance ε

- 1: for $(m, v) \in \mathcal{M} \times \mathcal{V}$ do
- 2: $X \leftarrow \text{COLLECTHIDDENSTATES}(m, \mathcal{C}, \ell, N)$ \triangleright first N tokens \rightarrow layer- ℓ activations
- 3: $z^{\text{full}} \leftarrow \text{ENC}_{\text{full}}(X; W_{\text{enc}}, b_{\text{enc}}, v)$
- 4: $t \leftarrow \text{DENSE@0.1}(z^{\text{full}})$
- 5: $s_{\text{semi}} \leftarrow \text{Calibrate}(\text{Semi}, t, \varepsilon); \quad s_{\text{non}} \leftarrow \text{Calibrate}(\text{Non}, t, \varepsilon)$
- 6: $z^{\text{semi}} \leftarrow \text{PGD}(X, D, \lambda s_{\text{semi}}; \text{ init} = z^{\text{full}}, T = 30)$
- 7: $z^{\text{non}} \leftarrow \text{ISTA}(X, D, \lambda s_{\text{non}}; \text{ init} = 0, T = 200)$
- 8: $\hat{X}^r \leftarrow z^r D^\top$ for $r \in \{\text{full}, \text{semi}, \text{non}\}$
- 9: EVALUATE($\{\hat{X}^r\}, \{z^r\}$) ho NMSE, Dead, DENSE@0.1/0.2, $F1@1, F1@2, \Delta F1$, Absorption

I CONFIGURATION INFORMATION

Table 6: Key hyperparameter configurations for four different SAE architectures. All SAEs were trained on the residual stream of layer 12 of the Gemma-2-2B model, with an activation dimension of 2304.

Parameter	Gated SAE	JumpReLU SAE	Standard SAE	Top-K SAE
Dictionary Size (d_{dict}) Learning Rate (LR)	$16384 (2^{14}) 3 \times 10^{-4}$	$16384 (2^{14}) 3 \times 10^{-4}$	$16384 (2^{14}) \\ 3 \times 10^{-4}$	$16384 (2^{14}) \\ 3 \times 10^{-4}$
Sparsity-Related Parame	eters			
\hat{L}_1 Penalty	0.012	_	0.012	_
Sparsity Penalty	_	1.0	_	_
Target L_0	_	20	_	_
Top-K Value (k)	_	_	_	20
Training Strategy Param	eters			
LR Warmup Steps	1000	N/A	1000	1000
Sparsity Warmup Steps	5000	5000	5000	N/A

Table 7: Key hyperparameter configurations for four SAE architectures trained on the EleutherAI/pythia-160m-deduped model. All SAEs were trained on the residual stream of layer 8, with an activation dimension of 768.

Parameter	Gated SAE	JumpReLU SAE	Standard SAE	Top-K SAE
Dictionary Size (d_{dict}) Learning Rate (LR)	$16384 (2^{14}) 3 \times 10^{-4}$	$16384 (2^{14}) 3 \times 10^{-4}$	$16384 (2^{14}) \\ 3 \times 10^{-4}$	$16384 (2^{14}) \\ 3 \times 10^{-4}$
Sparsity-Related Parame	eters			
\hat{L}_1 Penalty	0.012	_	0.012	_
Sparsity Penalty	_	1.0	_	_
Target L_0	_	20	_	_
Top-K Value (k)	_	_	_	20
Training Strategy Param	eters			
LR Warmup Steps	1000	N/A	1000	1000
Sparsity Warmup Steps	5000	5000	5000	N/A

J EVALUATION METRICS

Table 8: Evaluation Metrics ($Z_{\text{relu}} = \max(Z, 0)$; feature ranking uses Z_s which z-score normalizes Z_{relu} per column).

Variable Name	Meaning	Formula
NMSE	Normalized mean squared reconstruction error.	$\frac{\mathbb{E}[\ x - \hat{x}\ _2^2]}{\mathbb{E}[\ x\ _2^2] + \varepsilon}, \text{ where } \varepsilon = 10^{-9},$
Dead Rate	Fraction of dead latents.	$\hat{x} = z \mathbf{D}^{\top}.$ $\frac{1}{M} \sum_{j=1}^{M} \mathbb{I}(\text{freq}_{j} \leq \theta), \text{ where}$ $\theta = 10^{-6}.$
Dense Rate@0.2	Fraction of latents firing at least	$egin{aligned} & heta = 10^{-6}, \ & ext{freq}_j = ext{Pr}\left((Z_{ ext{relu}})_{:,j} > 0\right). \ & rac{1}{M} \sum_{j=1}^{M} \mathbb{I}(ext{freq}_j \geq 0.2). \end{aligned}$
Dense Ruic C 0.2	20% of tokens (more frequently active).	$M \geq 1$ $M \leq M $
F1@1	F1 score of a linear probe using the top-1 ranked latent (by $ \operatorname{corr}(Z_{s,\cdot j},y) $).	F1@1 = F1(LR($Z_s[:, order[0]] - y$)).
F1@2	F1 score of a linear probe using the top-2 ranked latents.	$F1@2 = F1(LR(Z_s[:, order[: 2]] \rightarrow y)).$
Δ F1	Marginal improvement from 1 to 2 features; larger values indicate	$\Delta F1 = F1@2 - F1@1.$
Absorption Rate	stronger feature splitting. On positive-label tokens, fraction where the dominant latent is inactive while any of the next top- K latents is active.	$\begin{array}{l} \operatorname{Let} m = \operatorname{order}[0], \\ A = \operatorname{order}[1:1+K] \text{ (default } \\ K = 5). \text{ Absorb } = \\ \frac{1}{N_{+}} \sum_{i: y_{i}=1} \mathbb{I}\Big((Z_{\mathrm{relu}})_{i,m} \leq \\ \end{array}$
Amartination Co	Cub and mulifar of annualized and a	$0 \wedge \max_{j \in A} (Z_{\mathrm{relu}})_{i,j} > 0$.
Amortization Gap	Suboptimality of amortized codes vs. per-token L1 solution (ISTA-200).	$Gap = \mathbb{E}[L(z^{amort}) - L(z^*)], L(z) = \frac{1}{2} x - z\mathbf{D}^\top _2^2 + \lambda z _1, z^* \approx ISTA_{200}(x; \mathbf{D}, \lambda).$

Notes. (1) Labels y use a norm-threshold heuristic unless otherwise stated: y_i = I(||x_i||₂ > median_i||x_i||₂).
(2) Linear probes are trained on Z_s with class_weight=balanced; ranking uses |corr(Z_{s,·j}, y)|. (3) For Top-K SAEs, selection is applied first, then Z_{relu} is used for firing-based metrics. (4) When comparing amortized/semi-amortized/ISTA codes, λ can be calibrated to match a target density.