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MHLA: RESTORING EXPRESSIVITY OF
LINEAR ATTENTION VIA TOKEN-LEVEL MULTI-HEAD

Anonymous authors
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(c) Attention Type vs. Information Expressivity

(a) Generation results from SANA-MHLA

(d) Throughput of DiT-S/2 with 4096 resolution(b) Throughput vs. Resolution

Model Attn Type FID↓

DiT-S/2
Linear-Attn 89.7
Self-Attn 68.4

MHLA(Ours) 59.8

DiT-XL/2
Linear-Attn 28.63
Self-Attn 19.47

MHLA(Ours) 19.17

Figure 1: (a) Generation results from our fine-tuned SANA model using MHLA. (b) Perfor-
mance and efficiency comparison between the proposed MHLA and baselines. The throughput
was tested on the NVIDIA H100 Tensor Core GPU. Following the previous method, we report the
FID in the table at a resolution of 256×256. (c) Average rank and entropy of attention scores for
DeiT-T with different attention types, showing MHLA yields richer and more focused attention. (d)
Throughput of DiT-S/2 at 4096 resolution across different devices. All improvements are solely
due to MHLA, and can be further combined with orthogonal techniques for even greater speedups.

ABSTRACT

While the Transformer architecture dominates many fields, its quadratic self-
attention complexity hinders its use in large-scale applications. Linear atten-
tion offers an efficient alternative, but its direct application often degrades per-
formance, with existing fixes typically re-introducing computational overhead
through extra modules (e.g., depthwise separable convolution) that defeat the orig-
inal purpose. In this work, we identify a key failure mode in these methods: global
context collapse, where the model loses representational diversity. To address
this, we propose Multi-Head Linear Attention (MHLA), which preserves this
diversity by computing attention within divided heads along the token dimension.
We prove that MHLA maintains linear complexity while recovering much of the
expressive power of softmax attention, and verify its effectiveness across multiple
domains, achieving a 3.6% improvement on ImageNet classification, a 6.3% gain
on NLP, a 12.6% improvement in image generation tasks and a 41% enhancement
in video generation tasks with the same computational complexity,
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1 INTRODUCTION

Self-attention is the core module for the recent dominant model architecture, Transformer, for both
computer vision (Dosovitskiy et al., 2021), natural language processing (Vaswani et al., 2017),
and generative tasks (Rombach et al., 2022). However, its quadratic time and memory complex-
ity severely limit its scalability to long sequence tasks such as high-resolution image generative and
video generation tasks (Zhou et al., 2022; Kong et al., 2024; Zhou et al., 2024).

To address the efficiency issue, a growing line of research (Katharopoulos et al., 2020; Choroman-
ski et al., 2021) has developed linear attention mechanisms that replace the softmax kernel with
associative feature maps. These approaches reduce the computational and memory complexity of
attention from quadratic to linear by compressing all keys and values into a global summary. Al-
though this improves efficiency, it eliminates one of the key advantages of softmax attention—its
ability to adapt to each query individually. Consequently, linear attention often experiences notable
accuracy degradation, particularly in long-sequence modeling tasks.

Recent works (Fan et al., 2025b; Han et al., 2023; 2024) have sought to mitigate the performance
degradation of linear attention by integrating components such as depthwise convolutions and gating
modules. However, this reliance on external modules introduces additional computational overhead
and continues to suffer from performance degradation as sequence length increases. In this paper,
we present a solution to the performance bottleneck in linear attention that requires no additional
depthwise convolution or self-attention modules. Our key insight is that, in conventional linear
attention design, all tokens are compressed into a single global key–value summary (KV summary)
that is shared by every query. This design could have reduced the model’s representation capacity,
as illustrated in Fig. 1b. To evaluate diversity, we compare the rank of the attention weight matrices
across different models. We find that using a shared global KV summary limits the model’s capacity
to represent rich interactions, effectively capping it at a fixed rank. As sequences grow longer, this
constraint tends to push the attention weights toward a more uniform distribution. In practice, this
reduces diversity and degrades performance on tasks where queries must concentrate on a small
subset of relevant tokens.

Our design goal is therefore simple: restore query-dependent diversity, the ability for different
queries to retrieve different contexts, without sacrificing linear-time behavior or introducing heavy
auxiliary modules.

Thus, we introduce Multi-head Linear Attention (MHLA) to achieve the aforementioned charac-
teristics. Specifically, MHLA partitions tokens into non-overlapping blocks (“heads” in the spa-
tial dimension), computes local key-value summaries, and lets each query block compute a query-
conditioned mixture over these summaries to retrieve a tailored context; within the selected blocks,
token contributions are further refined by a query-dependent reweighting module. Thanks to the sim-
plicity of MHLA, the implementation only relies on standard GEMMs, keeping the overall compu-
tational overhead negligible with O(N) complexity, retaining compatibility with streaming/stateful
execution. It was clearly observed that adding MHLA raise the rank of the attention weights matrix
significantly, as shown in Fig. 1b. The difference between previous linear attentions and MHLA is
briefly illustrated in Fig. 2.

We validate MHLA on image classification, image generation and natural language processing tasks.
Experiments show that MHLA consistently outperforms existing linear attention baselines with neg-
ligible computational overhead. Our main contributions are summarized as follows:

• We conduct an in-depth analysis of linear attention and identify one of the root causes of its
performance degradation: the absence of grouping along the token dimension during similarity
calculation. This limitation can be quantified by examining the rank of the attention matrix.

• We propose a new formulation of linear attention that achieves state-of-the-art performance on
both discriminative and generative tasks, while maintaining O(N) computational complexity and
avoiding reliance on additional modules.

• We conduct extensive experiments across various tasks, achieving state-of-the-art performance.
On ImageNet, MHLA delivers a 3.6% accuracy gain over self-attention, while on image genera-
tion tasks it outperforms the previous SOTA method DiT by 12.6%. MHLA also achieves a 6.3%
improvement on natural language processing tasks and provides a substantial 41% improvement
compared to vanilla linear attention in video generation tasks.
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Other Linear Attention

K V Q Output K V Q Output
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Multi-Head Mixing

Global
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Figure 2: Comparison between the proposed MHLA and other linear attentions. MHLA di-
vides multiple heads on token dimension. Through Multi-Head Mixing, MHLA restores query-
conditioned selectivity by mixing KV summaries with query-specific weight, improving token-level
diversity while keeping linear complexity.

2 ANALYSIS OF LINEAR ATTENTION

2.1 PRELIMINARY

We first formulate the calculation of the attention weights for both self-attention and linear attention
mechanism. Given an input token sequence X ∈ RN×d, we first compute queries, keys, and values
via Q = XWQ, K = XWK , V = XWV , where WQ,WK ,WV ∈ Rd×d are learnable projections.
The attention output of the token i can be expressed as:

Yi =

∑N
j=1 Sim(Qi,Kj)Vj∑N
m=1 Sim(Qi,Km)

, (1)

where Sim(·, ·) calculates the similarity between the input matrix. In softmax attention (Vaswani
et al., 2017), Sim(Qi,Kj) = exp(QiK

⊤
j /
√
d), all pairwise similarities need to be calculated and

normalized per query, resulting in O(N2) complexity.

Linear attention replaces the exponential kernel with a positive feature map ϕ(·) such that

Sim(Qi,Kj) ≈ ϕ(Qi)ϕ(Kj)
⊤, Yi =

ϕ(Qi)
(∑N

j=1 ϕ(Kj)
⊤Vj

)
ϕ(Qi)

(∑N
m=1 ϕ(Km)⊤

) , (2)

where the numerator and denominator can be precomputed as a global key–value summary G =∑
j ϕ(Kj)

⊤Vj and normalizer z =
∑

m ϕ(Km)⊤, respectively. This reduces the complexity from
O(N2) to O(Ndϕ), enabling linear-time scaling with sequence length.

2.2 GLOBAL CONTEXT COLLAPSE

While linear attention achieves linear-time complexity by reusing a global key–value summary
G =

∑N
j=1 ϕ(Kj)

⊤Vj ∈ Rd×d across all queries, this fixed-size design introduces an intrinsic
information bottleneck:

Observation

As the sequence length N increases, the information requiring representation exceeds the
capacity of the fixed-size d × d matrix, leading to performance saturation. We term this
phenomenon global context collapse.

This observation can be quantified using two complementary metrics, which are the rank and the
sparsity of the attention matrix:

Rank limitation. The rank of the attention matrix has been widely studied as a key indicator
of feature diversity and representational capacity in attention mechanisms (Fan et al., 2025b; Han
et al., 2023; Bhojanapalli et al., 2020). Specifically, with Q̃ = ϕ(Q) and K̃ = ϕ(K), global linear
attention produces

Alin = Q̃ K̃⊤ ∈ Rn×n, rank(Alin) ≤ min{rank(Q̃), rank(K̃)} ≤ d.

3
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Conclusion 1

Regardless of N , the representational capacity of Alin is strictly bounded by d. Although
several prior studies have attempted to increase the rank of Key–Value summaries (Fan et al.,
2025b; Cao & Wang, 2025), this bound results in a severely rank-deficient approximation
of the full n × n attention matrix when n ≫ d, constraining the model’s ability to capture
diverse, query-conditioned attention patterns.

We empirically verify this effect in Fig. 1b, which shows that the rank of attention scores in linear-
attention-based models is consistently capped by the head dimension (typically dh ≤ 72), and the
relative expressivity of the attention map degrades as the sequence length increases.

Loss of sparsity. The sparsity of the attention matrix is a critical factor influencing the perfor-
mance of attention mechanisms. Sparse distributions generally exhibit lower entropy, concentrating
probability mass on a smaller set of informative tokens (Zhang et al., 2025; Deng et al., 2023),
which benefits model optimization. Linear attention, however, computes scores by first compress-
ing all key–value pairs into a single global summary, and each query interacts with this shared
representation only once. In contrast, softmax attention leverages the exponential function to enable
each query qi to produce a distinct distribution over tokens (see Appendix B). Because linear atten-
tion relies on the same aggregated representation for all queries, it cannot reweight individual keys
according to query-specific relevance.

Conclusion 2

As the sequence length N increases, the contribution of each token becomes negligible.
Consequently, the attention weight distribution approaches uniformity, reducing the sparsity
and impairing the model’s ability to selectively emphasize informative tokens.

To quantify this effect, we compute the average entropy of the attention scores over 500 random sam-
ples for each attention variant. For each row of the attention score matrix, lower entropy indicates
that the distribution is closer to a one-hot vector, reflecting stronger concentration on a single token.
As shown in Fig. 1b and Fig. 3, linear attention exhibits significantly higher entropy, confirming its
lack of focus compared to softmax-based attention.

Linear Attention Softmax Attention MHLA

rank=59   H(p)avg=5.09 rank=256   H(p)avg=4.35 rank=247  H(p)avg=3.93

Linear Attention Softmax Attention MHLA

Figure 3: Visualization of attention score and attention maps of MHLA and baselines.

Taken together, these findings reveal that the reliance on a single global key–value summary in linear
attention leads to a severe collapse in representational capacity, manifested as both rank deficiency
and elevated entropy in the attention map. We refer to this phenomenon as global context collapse.
Fig. 3 visualizes attention scores and maps, clearly illustrating the inability of linear attention to cap-
ture fine-grained information. This observation motivates the development of methods that restore
query-conditioned token-level diversity while preserving the linear-time complexity of the attention
mechanism, which was detailed in the next section.

3 MULTI-HEAD LINEAR ATTENTION

3.1 OVERVIEW

Here we formalize the proposed Multi-Head Linear Attention (MHLA). As shown in Fig. 4a.
MHLA operates by splitting the sequence along the token dimension into multiple ”heads” and
running linear attention in parallel across these ”heads”. Let the input sequence be X ∈ RN×d,
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Key-Value Summaries

Mixed KV Summaries
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QKV Blocks
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Matmul

Multi-Head
Mixing

Inner Block 
Matmul

Normalized to (0, 1)

(a)

M=25

(b)

Figure 4: (a) Overview of the proposed Multi-Head Linear Attention. (b) We visualize two rows
of the initialized Learnbale Coefficient Matrix corresponding to Block 1 and Block 14 seperately
when M is 25. We reshape the two rows and the M dimension in 2D for better understanding.

projected to queries, keys, and values: Q = XWQ, K = XWK , V = XWV , with Q,K, V ∈
RN×d. For efficiency, we adopt a kernelized formulation, denoting Q̃ = ϕ(Q), K̃ = ϕ(K) for a
chosen feature map ϕ(·).
Standard linear attention aggregates all tokens into a single global d × d summary shared by every
query, which reduces expressivity by collapsing token-level diversity. To mitigate this, we split
the sequence into M non-overlapping blocks (the MHLA “heads”), with block b containing Nb

tokens and
∑M

b=1 Nb = N . In practice on vision models, blocks are defined on spatial (2D) or
spatiotemporal (3D) grids rather than by flattening to 1D. For each block b we compute a local
key–value summary and its normalizer:

Sb =
∑
j∈b

K̃jV
⊤
j ∈ Rd×d, zb =

∑
j∈b

K̃j ∈ Rd. (3)

To restore query adaptivity, MHLA constructs a distinct mixture of all key–value summaries for
each query block i through Multi-Head Mixing. Queries in block i can then attend to this mix-
ture, where different key–value summaries are weighted according to the attention preferences
of the current query block. Let mi ∈ RM denote the nonnegative, learnable mixing coeffi-
cients for block i, which are optimized during training. The mixed summaries are then defined
as S̃i =

∑M
b=1 mi,b Sb, and the corresponding normalizer is z̃i =

∑M
b=1 mi,b zb.

The process can be done with a highly hardware-efficient GEMM operation between key–value
summaries and coefficient matrix Mc ∈ RM×M consisting of mi. Given a query vector q̃ ∈ Rd

from block i, the output is

o =
q̃⊤S̃i

q̃⊤z̃i
=

∑M
b=1 mi,b q̃

⊤Sb∑M
b=1 mi,b q̃⊤zb

. (4)

Each output element can thus be interpreted as a query-specific, block-dependent recombination of
the entire value sequence. In tasks like language modeling and video generation, the normalizer term
can be omitted for better training stability (Qin et al., 2022) when the sequence is getting longer.

3.2 MULTI-HEAD MIXING

The core of MHLA’s adaptivity is a learned coefficient matrix Mc ∈ RM×M . The element at
position (i, j) denotes the affinity between query-block i and the local key–value summary of block
j. Equivalently, the i-th row ofMc, denoted mi, specifies how query-block i linearly combines the
M local summaries into a query-specific global summary.

Each row mi is produced and learned end-to-end; in practice we enforce nonnegativity and nor-
malization. Because blocks are defined along spatial or spatiotemporal axes, we initialize Mc to
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favor locality: for row i we set initial coefficients as m(0)
i,j ∝ 1−dist(i, j)/maxk(dist(i, k)), where

dist(i, j) measures the Euclidean distance and maxk dist(i, k) is the maximum distance from i to
any position k. The coefficients are then normalized such that

∑
j m

(0)
i,j = 1. A visualization of this

initialization can be found in Fig. 4b. This locality-biased initialization produces more stable and
faster convergence while leavingMc free to adapt during training. To further ensure stability, we
clip the coefficients to the interval (0, 1) on every update.

The token-level effect of the Multi-Head Mixing is transparent. Let b(t) denote the block index of
token t. Writing each local summary as a sum over its tokens, Gj =

∑
t∈block j K̃tV

⊤
t , the mixture

for query-block i expands to

S̃i =

M∑
j=1

mi,jSj =

N∑
t=1

mi,b(t) K̃tV
⊤
t ∈ Rd×d.

For a query vector q̃ = ϕ(q) (from block i), the numerator of the kernelized update becomes

q̃⊤S̃i =

N∑
t=1

mi,b(t)

(
q̃⊤K̃t

)
V ⊤
t ∈ Rd. (5)

Eq. 5 makes the mechanism transparent: each query-block rescales the contribution of entire blocks
via mi, and within each block the usual kernel inner product q̃⊤K̃t differentiates tokens. Thus
MHLA restores query-conditioned, token-level weighting in a two-stage manner (block selection ×
intra-block reweighting). Importantly, all operations reduce to blockwise summary computation and
linear combinations of M matrices of size d × d, so asymptotic complexity remains linear in N
while expressive capacity is substantially increased.

Chunkwise parallel form of MHLA. Linear attention commonly employs chunkwise parallel
training (Hua et al., 2022; Sun et al., 2023) to maintain linear-time complexity under causal mask-
ing, by partitioning the sequence into blocks and updating a running summary per block. MHLA
naturally fits this setting: each head can be directly mapped to a chunk, and we maintain one local
summary Sb per chunk. At training time, we aggregate these local summaries using the learned
mixture coefficients mi,b to form the mixed prefix summary S̃i =

∑
b≤i mi,bSb, which is then used

for block-level attention. Because mixture computation is performed once per block and reused for
all queries in that block, the overall complexity remains identical to chunkwise linear attention. For
a detailed derivation and the corresponding inference procedure, see Appendix C.

3.3 ANALYSIS OF MULTI-HEAD LINEAR ATTENTION

Rank analysis. Partition the sequence into M non-overlapping blocks of size Nb. Let the query
matrix be Q̃ = [Q̃⊤

1 , . . . , Q̃
⊤
M ]⊤ with Q̃b ∈ Rnb×d. From Eq. 5, in calculation of attention score,

the mixed key sequence seen by query-block i can be expressed as
Yi =

[
mi,b(1)k1, mi,b(2)k2, . . . , mi,b(n)kn

]
∈ Rd×n,

where mi,b(t) is the mixing coefficient selecting the block of token t. The attention submatrix
contributed by query-block i is Ai = Q̃iYi ∈ RNb×N , and the full attention matrix is AMHLA =[
A1 A2 · · · AM

]⊤ ∈ Rn×n. Then applying standard rank inequalities gives

rank(Ab) ≤ min
{
rank(Q̃b), rank(Yb)

}
≤ min(nb, d),

which yields the global bound rank(AMHLA) ≤ min
(
n,

∑M
b=1 min(nb, d)

)
.

This upper bound is attainable under mild, generic conditions: if each block product Q̃bYb has
full row rank rb = min(nb, d) and the row spaces of {Q̃bYb}Mb=1 are linearly independent, then
we get rank(AMHLA) = min(n,

∑M
b=1 rb). Even when the independence assumption is not fully

satisfied, the blockwise mixture still expands the diversity of the row spaces, causing rank(AMHLA)
to grow roughly additively with M . We empirically validate this behavior in Fig. 1b, where MHLA
consistently achieves a substantially higher attention-score rank than other linear attention variants—
and does so without relying on auxiliary components such as depth-wise convolutions. This confirms
that MHLA natively restores much of the representational capacity lost in global linear attention,
whose rank remains strictly limited by d regardless of the sequence length N .
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Sparsity analysis. The learned coefficient matrix Mc allows each query-block to assign higher
weights to a subset of blocks that are more relevant, effectively pruning irrelevant tokens at the
block level. Within each selected block, the kernel inner products q̃⊤K̃t further differentiate token
contributions, leading to sharper and more concentrated attention distributions. We validate this
effect empirically in Fig. 1b, where MHLA consistently yields lower attention entropy compared to
other linear-attention baselines and even the softmax attention. This confirms that MHLA preserves
query-conditioned selectivity and achieves substantially higher sparsity, enabling the model to attend
to a small, semantically relevant subset of tokens rather than spreading attention uniformly.

Table 1: Comparison between Self Attention, Linear Attention and MHLA. We report computa-
tion complexity, maximum achievable rank, memory complexity and query-conditioned selectivity.

Method Time Complexity Rank Bound Memory Complexity Query-Conditioned

Self Attention O(N2d) N O(N2) ✓
Linear Attention O(Nd2) d O(d2) ✗

MHLA (ours) O(Nd2 +M2d2)
∑M

b=1min(nb, d) O(Md2) ✓

Efficiency analysis. The computation of MHLA consists of local Key–value summary
computation, Multi-Head Mixing, and output computation, with a time complexity of
O
(
MNbd

2 +M2d2 +MNbd
2
)
= O(Nd2 + M2d2). To better capture local information while

ensuring efficiency, the number of blocks M is usually set to satisfy M2 ≤ N . Therefore, Nd2

becomes the leading term and the time complexity of MHLA is O(Nd2). The comparison of self at-
tention, linear attention, and MHLA is summarized in Tab. 1. We also provide an empirical analysis
of the scaling relationship between N and M in Appendix F.4 that verifies the induced complexity.

4 EXPERIMENTS

4.1 IMAGE CLASSIFICATION

Settings. We adopt the training configurations from prior work (Fan et al., 2025b;a; Touvron et al.,
2021). The proposed MHLA is integrated into two representative architectures, DeiT (Touvron
et al., 2021) and VLT (Fan et al., 2025b), across multiple model scales. The models are trained on
ImageNet-1K (Deng et al., 2009). For VLT, we strictly follow the setup in (Fan et al., 2025b). All
models are trained for 300 epochs with a batch size of 1024 and a peak learning rate of 1e-3. For
models with input size of 224, we pad the input size to 256 for better splitting of heads. The head
number M is set to 16 if there no extra description. See Appendix E for more details.

Results. We evaluate the pretrained DeiT models described above and report the result in Tab. 2a,
which clearly shows the superior performance of the proposed MHLA. We reach the best accuracy
in linear attention across all model sizes, while introducing the fewest extra parameters compared
with baselines. We then port the proposed MHLA to VLT (Fan et al., 2025b) and evaluate the
performance under the same settings. The results are shown in Tab. 2b, illustrating the proposed
MHLA’s state-of-art performance with consistent improvements compared with baseline models.

Table 2: Comparison on Image Classification task. MHLA achieves the best accuracy with mini-
mal parameter overhead on DeiT models, and outperforms Transformer-, LA-, and Mamba-based
SOTAs. Results marked with an * are reproduced under the same training setup as MHLA-VLT.
(a) Comparison of different attentions on DeiT.

Attention Type Params FLOPs Top1-ACC

Comparison on Deit-T Setting

Self Attn 5.7M 1.1G 72.2
Linear Attn 5.7M 1.1G 69.8
Focused LA (Han et al., 2023) 6.1M 1.1G 74.1
Inline Attn (Han et al., 2024) 6.5M 1.1G 74.5
MALA (Fan et al., 2025a) 6.3M 1.1G 75.1
MHLA (Ours) 5.7M 1.1G 75.8

Comparison on Deit-S Setting

Self Attn 22M 4.2G 79.8
Linear Attn 22M 4.2G 77.6
RALA (Fan et al., 2025b) 24M 4.6G 80.4
MALA (Fan et al., 2025a) 24M 4.6G 80.3
MHLA (Ours) 22M 4.2G 81.0

(b) Comparison with SOTA models on ImageNet-1K.

Cost Model Params FLOPs Top1-ACC

∼
2.

5G

FL-PVT-T (Han et al., 2023) 12M 2.0G 77.8
FL-PVTv2-B1 (Han et al., 2023) 13M 2.2G 79.5
MSVMamba-M (Shi et al., 2024) 12M 1.5G 79.8
NAT-M (Hassani et al., 2023) 20M 2.7G 81.8
RAVLT-T (Fan et al., 2025b) 15M 2.4G 82.3∗

MAViT-T (Fan et al., 2025a) 16M 2.5G 82.4∗

MHLA-VLT-T 16M 2.4G 82.6

∼
4.

5G

FAT-B3 (Fan et al., 2023) 29M 4.4G 83.6
Vmamba-T (Liu et al., 2024) 30M 4.9G 82.6
MV-T (Hatamizadeh & Kautz, 2025) 32M 4.4G 82.3
MSVMamba-T (Shi et al., 2024) 32M 5.1G 83.0
MAViT-S (Fan et al., 2025a) 27M 4.6G 84.3∗

MHLA-VLT-S 27M 4.6G 84.6
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4.2 IMAGE GENERATION
Table 3: Class-to-Image Generation. Across
all model sizes, MHLA achieves the best perfor-
mance. Notably, at L and XL scales, it matches
self-attention performance without relying on
any extra modules.

(a) Comparison of attention types across models.

Model Attention Type Resolution FID ↓

DiT-S/2

Self Attention 256 68.40
Linear Attention 256 89.72
MHLA (Ours) 256 59.80
Self Attention 512 84.54
Linear Attention 512 125.33
MHLA (Ours) 512 78.63

DiG-S/2
GLA (Yang et al., 2024) 256 62.06
GLA 512 99.04
MHLA (Ours) 256 59.49

DiT-B/2
Self Attention 256 43.47
Linear Attention 256 60.47
MHLA (Ours) 256 37.47

DiT-L/2

Self Attention 256 23.33
Linear Attention 256 32.35
MHLA (Ours, w/None) 256 25.37
MHLA (Ours, w/ CPE) 256 24.21
MHLA (Ours, w/ CPE+Gating) 256 21.37

DiT-XL/2

Self Attention 256 19.47
Linear Attention 256 28.63
MHLA (Ours, w/ None) 256 20.32
MHLA (Ours, w/ CPE) 256 22.79
MHLA (Ours, w/ CPE+Gating) 256 19.17

(b) Fast adaptation results on DiT-XL/2.

Model Attention Type FID ↓ IS ↑ sFID ↓

DiT-XL/2 Self Attention 9.62 121.50 6.85
MHLA (Ours) 8.34 121.27 5.52

DiT-XL/2(G) Self Attention 2.27 278.24 4.60
MHLA (Ours) 2.54 252.07 4.67

Settings. 1) For Class-to-Image(C2I) genera-
tion, we train DiT (Peebles & Xie, 2023) and
DiG (Zhu et al., 2025) from scratch for 400k
steps on ImageNet-1K (Deng et al., 2009) with
batch size 256 and learning rate 1e-4, following
their original settings. We evaluate five variants
in DiT and DiG, where the original self-attention
(DiT) or GLA (Yang et al., 2024) (DiG) is re-
placed by our MHLA while keeping other com-
ponents unchanged. The head number is set to 16
for both 256 and 512 resolutions. We try extra
CPE (Chu et al., 2021) and output gating mod-
ule (Yang et al., 2024). Their effects are ana-
lyzed in Appendix F.2. 2) For Text-to-Image(T2I)
generation, we finetune a Sana-0.6B (Xie et al.,
2024) model from official checkpoint. Both the
original linear attention and our MHLA variant
are trained for 40k steps with a batch size of 256.

C2I results. The main quantitative results are
summarized in Tab. 3a, where our method con-
sistently achieves state-of-the-art performance
across all DiT model sizes. In addition, Fig. 1a
compares the throughput of our MHLA with
baseline attention mechanisms on DiT-S as the in-
put resolution increases. Notably, MHLA main-
tains throughput nearly identical to linear atten-
tion while delivering performance on par with,
or even surpassing, self-attention. At 512 reso-
lution, MHLA achieves better FID scores while
doubling the throughput of self-attention. To fur-
ther demonstrate the fast adaptation ability of our
approach to existing models, we fine-tune the pretrained DiT-XL/2 model for 400k steps under the
same settings. As shown in Tab. 3b, our model achieves a lower FID score than DiT-XL/2 without
classifier-free guidance (CFG), and delivers comparable performance when CFG is applied. Full
results can be found in Appendix F.

Analysis. Although we add modules such as DWConv (CPE) (Fan et al., 2025b) to smaller DiT
models, it is worth noting that their benefits diminish as model size increases (CPE even degrades
performance on DiT-XL). As shown in Tab. 3a, plain MHLA already matches the performance of
self-attention on XL models, while adding CPE leads to regression. These results highlight the
intrinsic advantage of MHLA and suggest that, although modules like DWConv may offer gains at
small scales, their benefits do not scale with model size or sequence length.

Fast adaptation to SANA. As shown in Tab. 4, replacing linear attention with MHLA consistently
improves multiple evaluation metrics, surpassing not only the baseline Sana model but also the
PixArt (Chen et al., 2023) series. Fig. 5 further visualizes the training loss curves. The MHLA-based
model rapidly adapts, matching the pretrained checkpoint within the first 2k steps and subsequently
converging to a lower loss. This demonstrates MHLA’s fast adaptation capability and promising
performance at a larger model scale.

4.3 VIDEO GENERATION

Video generation involves extremely long sequence lengths, where quadratic attention becomes
prohibitively slow. To evaluate MHLA under such ultra-long contexts, we fine-tune a pretrained
Wan2.1-1.3B model by replacing its FlashAttention modules with MHLA. For comparison, we
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Table 4: Comparison on T2I models.

Model FID↓ CLIP ↑ GenEval ↑
PixArt-α (Chen et al., 2023) 6.14 27.55 0.48
PixArt-Σ (Chen et al., 2024) 6.34 27.62 0.52
SANA* (Xie et al., 2024) 6.10 28.15 0.64
SANA-MHLA 5.90 28.26 0.68
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Figure 5: Loss comparison.

Table 5: MHLA in Video Generation. Wan-FA indicates
a pretrained Wan2.1-1.3B. Wan-MHLA and Wan-LA re-
place all layers with MHLA and Linear Attention respec-
tively. Wan-MHLA-H only replace 2/3 layers.

Model Quality ↑ Semantic ↑ Total ↑ Latency (s) ↓
Wan-FA 85.23 75.65 83.31 166
Wan-LA 69.96 11.38 58.24 82
Wan-MHLA 84.01 76.24 82.46 81
Wan-MHLA-H 84.87 79.59 83.82 103
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Figure 6: Loss comparison on Wan-
2.1-1.3B. MHLA shows a much
stronger convergence capability.

also fine-tune a version where all attention layers are replaced with vanilla linear attention (LA). The
training uses 81-frame videos at 480×800 resolution, corresponding to a sequence length of 31,500
tokens, with the mixing-head number M = 105. In addition, we train a hybrid model where only
2/3 of the layers are replaced by MHLA.

We evaluate all models on VBench, and the results are reported in Tab. 5. MHLA delivers sub-
stantially stronger performance than vanilla LA while maintaining the same latency. At this
extreme sequence length, vanilla LA suffers severe degradation due to global context collapse,
whereas MHLA preserves linear-time complexity and recovers performance comparable to the orig-
inal FlashAttention-based Wan2.1-1.3B, achieving a 2.1× inference speedup. The hybrid model
provides an excellent trade-off, achieving a 1.6× speedup with even better overall performance.

We further visualize the training loss curves in Fig. 6. MHLA rapidly adapts during fine-tuning and
quickly approaches the pretrained model’s loss trajectory. In contrast, vanilla LA effectively fails to
train under such long sequences, with its loss plateauing at a high level. This validates our analysis
of global context collapse and demonstrates that conventional linear attention breaks down entirely
in ultra-long visual sequence settings.

4.4 NATURAL LANGUAGE PROCESSING

To evaluate MHLA under autoregressive modeling, we test its performance in language model-
ing. Following GLA (Yang et al., 2024), we train a 0.3B model from scratch on 10B tokens from
FineWeb-Edu (Penedo et al., 2024) with a batch size of 0.25M tokens, using a cosine learning rate
schedule (max LR 3e-4), weight decay of 0.01, and gradient clipping of 1.0. The head number M
is set to 32 for MHLA with training context length as 2048.

Common-sence reasoning and MMLU. In Tab. 6, we present the language modeling perplex-
ity, zero-shot accuracy on commonsense reasoning benchmarks and MMLU. The proposed MHLA
shows a comparable performance with Transformer++ (Touvron et al., 2023) and the state-of-the-art
linear models, including Gated DeltaNet (GDN) (Yang et al., 2025) and Mamba2 (Dao & Gu, 2024).
Additionally, MHLA outperforms all the baselines on the aggregated benchmark MMLU.

Long context understanding. As presented in Tab. 7, we evalute the models performance on
LongBench (Bai et al., 2024). The proposed MHLA shows explicit advantages over other SOTA
recurrent models, especillly in Mulit-Doc QA, Summarization, and Code tasks, and achieves the
highest average score. The result demonstrates the superior long context understanding capability
of the proposed MHLA.

4.5 ABLATION STUDY
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Table 6: MHLA in NLP. We report results evaluated on 340M models trained with 10B tokens. We
highlight the best and second best entries.

Model Wiki. LMB. PIQA Hella. Wino. ARC-e ARC-c OBQA BoolQ CSR MMLU
ppl ↓ ppl ↓ acc ↑ acc n ↑ acc ↑ acc n ↑ acc n ↑ acc n ↑ acc ↑ avg. ↑ acc ↑

GLA (325M) 41.47 86.98 62.9 33.5 50.0 45.8 25.5 31.0 60.8 44.2 22.9
Transformer++ (325M) 34.57 60.46 64.4 35.0 49.6 48.1 25.7 32.8 60.5 45.2 22.9
Mamba (360M) 38.32 62.43 64.1 35.2 50.5 48.3 24.9 32.4 58.2 44.9 23.5
Mamba2 (330M) 35.4 58.51 64.6 31.0 49.8 49.2 25.5 32.0 61.2 44.8 23.0
GDN (346M) 35.01 60.16 64.5 34.8 51.3 47.3 25.4 31.4 62.0 45.2 23.0
MHLA (325M) 38.31 71.64 64.4 33.7 51.3 46.5 25.9 33.4 61.3 45.2 23.7

Table 7: MHLA on LongBench. We report results evaluated on 340M models trained with 10B
tokens. We highlight the best and second best entries

Model Multi-Doc QA Single-Doc QA Few-shot Synthetic Summarization Code
2WM HQA Mus QQA NQA SSM TQA PEN PZH QMS GvR MNs RBP LCC AVG

Mamba(360M) 3.37 2.36 1.60 4.57 2.28 5.16 5.49 1.10 0.10 12.23 18.36 14.96 13.63 12.33 6.97
GLA(325M) 3.23 2.31 1.67 4.53 2.13 3.94 0.70 1.98 0.27 11.42 17.72 15.34 13.59 12.55 6.53
GDN(346M) 2.86 2.24 1.54 4.73 2.48 6.85 7.61 0.53 0.41 12.46 17.91 15.98 10.42 9.98 6.86
Transformer++(325M) 4.97 2.13 2.22 4.45 2.35 6.24 7.47 0.76 1.18 11.75 16.81 15.11 11.56 9.92 6.92
Mamba2(330M) 3.56 2.38 1.69 4.70 2.20 4.97 7.03 0.72 1.51 12.57 17.65 14.00 10.15 9.49 6.62
MHLA(325M) 3.58 2.97 1.87 4.68 2.38 6.41 6.44 1.69 1.49 12.58 18.59 15.01 13.37 12.72 7.41

Table 8: Ablation study of
the proposed MHLA.
(a) DeiT-T. LB-init denotes
Locality-biased Initialization.

LB-init Learnable Top1-acc(%)

✓ 75.4
✓ 75.1
✓ ✓ 75.8

(b) DiT-S-512.
Head number FID↓ Throughput↑

4 79.56 435
16 78.63 435
64 79.50 408

Multi-Head Mixing. To evaluate the impact of our initialization
strategy and learnable design in Multi-Head Mixing, we consider
two variants: (1) uniform initialization without locality bias and (2)
locality-biased initialization with frozen coefficients. We train and
evaluate these variants on DeiT-T, with results shown in Tab. 8a. The
results show that our locality-biased initialization provides a strong
prior, achieving competitive performance even without learning. Al-
lowing the coefficients to be learnable further adapts them to the
dataset distribution, yielding additional performance gains.

Head number. We also analyze the choice of head number M . For
DiT-S/2 at 512 resolution, the input sequence length is 1024. As
discussed in Sec. 3.3, MHLA retains linear complexity when M ≤

√
1024 = 32. We evaluate

M ∈ {4, 16, 64}, with results summarized in Tab. 8b. MHLA achieves excellent FID already at
M=16 while maintaining the highest throughput, implying that MHLA can reach best performance
with a relatively small M and thus leading almost no overhead.

5 RELATED WORKS

Transformers (Vaswani et al., 2017) have advanced various fields (Devlin et al., 2019; Dosovitskiy
et al., 2021; Saharia et al., 2022), but their quadratic time and memory complexity due to self-
attention limit scalability, especially for long sequences. To overcome this, linear attention mech-
anisms (Katharopoulos et al., 2020; Choromanski et al., 2021) have been proposed, which replace
softmax with kernel-based methods to achieve linear time complexity. While these mechanisms im-
prove the efficiency, they often lose expressiveness, making them suffer from performance drop in
capturing complex token interactions. Several solutions (Fan et al., 2025b; Han et al., 2023), includ-
ing adding convolutional layers or gating mechanisms, have attempted to recover performance but
tend to introduce additional computational costs. See the detailed related works in the Appendix A.

6 CONCLUSION

In this paper, we introduce a novel linear attention mechanism, termed Multi-Head Linear At-
tention (MHLA). By partitioning tokens into multiple groups, MHLA effectively preserves token-
wise diversity. Without relying on additional modules such as depthwise convolutions or hybrid
self-attention layers, MHLA achieves performance comparable to or even surpassing that of self-
attention-based models. We envision this work as establishing a fundamental attention mechanism
that can benefit a wide range of downstream applications such as high-quality image generation,
long-horizon video synthesis, and large-scale language modeling.
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harmful insights, discrimination, or privacy issues. The methods employed focus on improving the
efficiency of transformer models in machine learning tasks such as image classification, generation,
and natural language processing. No conflicts of interest are present, and the research adheres to the
highest standards of scientific integrity.

REPRODUCIBILITY STATEMENT

To ensure reproducibility, the authors have provided sufficient details on the methods and exper-
imental setup. The MHLA implementation and experiments are described in detail in the paper.
The code will be publicly available once the paper is accepted. All experiments, including image
classification and generation tasks, are reproducible as they adhere to standard benchmarks (e.g.,
ImageNet-1K) and configurations from previous work. The authors have also included the results
for different model architectures and configurations, demonstrating consistency across various tasks.
Further, the supplementary appendix provides additional implementation details to facilitate repro-
duction.
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PAPER APPENDIX FOR MHLA: RESTORING EXPRESSIVITY OF
LINEAR ATTENTION VIA TOKEN-LEVEL MULTI-HEAD

A FULL RELATED WORKS

Transformer. Since the introduction of the Transformer architecture (Vaswani et al., 2017), self-
attention has become the dominant mechanism across a wide range of domains, including natural
language processing (Devlin et al., 2019; Brown et al., 2020), computer vision (Dosovitskiy et al.,
2021; Liu et al., 2021; Hou et al., 2021; Zhou et al., 2021), and generative modeling (Esser et al.,
2021; Saharia et al., 2022). The expressive power of self-attention stems from its ability to model
pairwise interactions among all tokens, but this comes at a quadratic cost in both computation and
memory. This limitation becomes particularly pronounced in large-scale or real-time applications,
motivating the exploration of more efficient attention mechanisms. A broad spectrum of strategies
has been proposed, such as sparse attention (Child et al., 2019; Beltagy et al., 2020; Zaheer et al.,
2020), low-rank approximations (Wang et al., 2020; Xiong et al., 2021), and hardware-optimized
variants such as FlashAttention (Dao et al., 2022; Dao, 2024). Despite these advances, designing ef-
ficient attention mechanisms that maintain both scalability and accuracy remains an open challenge.

Linear Attention. Linear attention has emerged as a prominent direction for addressing the
quadratic complexity of standard self-attention. Early works reformulated the softmax operation
with kernel-based feature mappings, enabling linear-time complexity in both training and infer-
ence (Katharopoulos et al., 2020; Choromanski et al., 2021; Peng et al., 2023; 2024; Yang et al.,
2024). While these approaches make Transformers scalable to long sequences, they often suffer
from reduced representational power compared to full softmax attention, leading to accuracy drops
in challenging tasks such as vision and generative modeling. To bridge this gap, subsequent research
has incorporated additional modules to enrich the expressiveness of linear attention. For example,
convolutional layers have been introduced to capture local context (Peng et al., 2021; Shen et al.,
2021; Han et al., 2023; Fan et al., 2025b), gating mechanisms have been proposed to better con-
trol information flow. More recently, state space models such as Mamba (Gu & Dao, 2023; Dao
& Gu, 2024) and its variants (Shi et al., 2024; Liu et al., 2024) have also been explored as effi-
cient alternatives to linear attention, showing strong scalability on long sequences and competitive
accuracy. However, these methods still face two fundamental limitations: (1) when applied in a
unidirectional form to tasks requiring bidirectional attention, they exhibit substantial performance
degradation; and (2) when augmented with extra modules (e.g., convolutional layers or additional
self-attention blocks), they inevitably incur higher computational overhead and remain vulnerable
to global context collapse (see Sec. 2.2), where the global summary loses representational diversity

Sparse Attention. In addition to linear attention, sparse attention mechanisms have been another
major approach to addressing the computational bottleneck in Transformers. Methods such as Long-
former (Beltagy et al., 2020) and BigBird (Zaheer et al., 2020) introduce sparse attention patterns,
where each token only attends to a subset of the other tokens, reducing the overall number of atten-
tion operations. These methods exploit structural sparsity (e.g., local or global attention patterns) to
maintain efficiency while still capturing global context in long sequences. Other techniques, such
as the Performer (Choromanski et al., 2021), propose using kernel approximations to achieve sparse
attention while preserving the model’s expressive power. Although sparse attention mechanisms im-
prove scalability, they often introduce trade-offs in terms of accuracy, especially in tasks requiring
full token interactions.

Applications of Linear and Sparse Attention. Linear and sparse attention mechanisms have been
successfully applied across various domains, including NLP, CV, and generative modeling. In NLP,
linear attention has been used to scale models like BERT (Devlin et al., 2018) and GPT (Radford
et al., 2019) to longer sequences, enabling better handling of long documents and improving ef-
ficiency in language models (Devlin et al., 2019; Brown et al., 2020). In computer vision, linear
attention methods have been applied to vision transformers to improve efficiency when processing
large images, as seen in works like Swin Transformer (Liu et al., 2021) and DeiT (Touvron et al.,
2021). These applications demonstrate the broad utility of linear and sparse attention mechanisms,
but also highlight the need for continued development to balance efficiency with the expressive
power required by complex tasks like image generation and video understanding.
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B QUERY-CONDITIONED SELECTIVITY IN SOFTMAX ATTENTION

A key advantage of softmax self-attention is its query-conditioned selectivity. Recall the standard
attention formulation:

Attn(Q,K, V )i =

N∑
j=1

αijvj , αij =
exp(q⊤i kj)∑N
t=1 exp(q

⊤
i kt)

.

Two properties are crucial: (i) Query-conditioned weighting: each query qi produces its own
distribution {αij}Nj=1, so the relative importance of token kj is fully dependent on qi; (ii) Per-
token weighting: the weights act directly on each vj , without collapsing V into a global summary.
Together, these properties give softmax attention the ability to produce highly adaptive, sharply
concentrated context vectors.

By contrast, global linear attention aggregates all tokens into a single summary matrix Sglobal =∑N
j=1 K̃jV

⊤
j shared by all queries, yielding

Attnlin(Q,K, V )i =
q̃⊤i S

global

q̃⊤i
(∑N

j=1 K̃j

) ,
where the per-token contributions are no longer explicitly separable by i. As a result, different
queries obtain nearly identical context vectors, losing query-conditioned selectivity.

MHLA restores query-conditioned selectivity. MHLA bridges this gap by introducing a learn-
able coefficient matrixMc that forms query-block-specific mixtures of local summaries:

S̃i =

M∑
b=1

mi,bSb ⇒ AttnMHLA(Q,K, V )i = q̃⊤i S̃i.

Because mi,b varies with the query block i, MHLA assigns different effective weights to the same
token depending on the querying block. Expanding Sb into its token-level definition gives

q̃⊤i S̃i =

N∑
t=1

mi,b(t)

(
q̃⊤i K̃t

)
V ⊤
t ,

revealing a two-stage weighting mechanism: (i) block-level selection mi,b(t) that is query-
conditioned, followed by (ii) within-block token reweighting via the kernel inner product q̃⊤i K̃t.
This design reintroduces query-conditioned selectivity and per-token weighting while preserving
the linear-time complexity of kernelized attention.

C MHLA FOR AUTOREGRESSIVE MODELING

In autoregressive modeling, the causal mask prevents each token from attending to future tokens.
While linear attention normally achieves O(Nd2) complexity by reusing a global key–value sum-
mary, under causal masking the summary must be recomputed or updated for each prefix, which
naively results in O(N2d) cost over the full sequence. To avoid this quadratic overhead, a widely
adopted solution for linear attention is chunkwise parallel training (Sun et al., 2023), which splits
the sequence into blocks of size C and processes them in parallel to avoid the quadratic cost of
recomputing attention over all past tokens. For block b, a local key–value summary is computed as
Sb =

∑
j∈b K̃jV

⊤
j ∈ Rd×d, and the global summary is updated recursively:

Sglobal
i = Sglobal

i−1 + Si, Hi = QiS
global
i−1 + (QiK̃

⊤
i )Vi.

Here, the first term propagates context from preceding blocks via the prefix summary Sglobal
i−1 , while

the second term captures intra-block attention. This chunkwise scheme preserves causality and
allows block-parallel training with per-block complexity O(Cd2 + C2d), leading to an overall cost
O
(
L
C (Cd2 + C2d)

)
for a sequence of length L.
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MHLA with chunkwise parallel training. MHLA extends this scheme by replacing the single
global summary with query-conditioned mixtures of local summaries. Specifically, for block i we
form a mixed summary

S̃i =
∑
b≤i

mi,bSb, Hi = QiS̃i−1 +mi,b(QiK̃
⊤
i )Vi.

where mi,b are the learnable mixing coefficients from the causal coefficient matrixMcausal
c (upper-

triangular entries masked to enforce causality). Queries in block i then interact only with S̃i, yielding
block-specific, query-adaptive context representations rather than a shared global one. Because
the mixing is performed once per block and reused for all tokens in that block, the asymptotic
complexity matches that of chunkwise linear attention.

Causal inference. At inference time, we maintain the set of past local summaries {S1, . . . , Si−1}
and incrementally update the current block summary Si as new tokens arrive. When a block is
complete, its contribution to future mixtures is fixed and cached. For a new token in block i, we
simply update Si ← Si + K̃tV

⊤
t and recompute the block’s mixed summary S̃i by applying mi,i

to the incremental update. This avoids recomputation over previous blocks and keeps per-token
complexity O(d2).

D DATASET

To assess the effectiveness of our approach, we conduct extensive experiments on four tasks: image
classification, class-to-image (C2I) generation, text-to-image (T2I) generation and natural language
processing. Following prior works (Fan et al., 2025a;b; Han et al., 2023), we train classification
and C2I models on ImageNet-1K (Deng et al., 2009) and evaluate them on the standard validation
set. For T2I generation, we finetune a pretrained model using a relative small collection of 31,292k
images gotten from the internet. For natural language processing, we train models with a subset of
SlimPajama (Shen et al., 2024) with 5B tokens.

E EXTRA IMPLEMENTATION DETAILS

Image Classification. For training of DeiT, we replace the class token with average pooling and
train all baselines under identical settings to ensure fair comparison. We additionally add CPE (Chu
et al., 2021) with kernel size of 3 following previous works for a fair comparison. For VLT, we
strictly follow the setup in (Fan et al., 2025b). All models are trained for 300 epochs with a batch
size of 1024 and a peak learning rate of 1e-3. For models with input size of 224, we pad the input
size to 256 for better splitting of heads. The head number M is set to 16 for DeiT modes. For
VLT models, the sequence length for the two linear attention layer is {3136, 784}. So we set head
number M to {49, 16} for the two layers respectively.

F COMPLETE EXPERIMENTAL RESULTS

F.1 IMAGE GENERATION

We illustrate the complete results on DiT and DiG models in Tab. 10 and Tab. 9. We provide more
generation results of SANA-MHLA in Fig. 7.

Table 9: Fast adaptation results on DiT-XL/2 with MHLA, with and without guidance.

Model Attention Type Resolution FID ↓ IS ↑ sFID ↓ Precision ↑ Recall ↑

DiT-XL/2 Self Attention 256 9.62 121.50 6.85 0.67 0.67
MHLA (Ours) 256 8.34 121.27 5.52 0.69 0.65

DiT-XL/2(G) Self Attention 256 2.27 278.24 4.60 0.83 0.57
MHLA (Ours) 256 2.54 252.07 4.67 0.83 0.56
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Table 10: Comparison of different attention types across models.

Model Attention Type Resolution FID ↓ IS ↑ sFID ↓ Precision ↑ Recall ↑

DiT-S/2

Self Attention 256 68.40 – – – –
Linear Attention 256 89.72 15.24 21.87 0.28 0.41
MHLA (Ours) 256 59.80 23.49 10.16 0.39 0.56

Self Attention 512 84.54 15.53 17.02 0.36 0.49
Linear Attention 512 125.33 33.11 11.64 0.22 0.29
MHLA (Ours) 512 78.63 13.11 18.50 0.40 0.49

DiG-S/2
GLA (Yang et al., 2024) 256 62.06 – – – –
GLA 512 99.04 – – – –
MHLA (Ours) 256 59.49 24.04 11.51 0.40 0.57

DiT-B/2
Self Attention 256 43.47 – – – –
Linear Attention 256 60.47 24.27 13.69 0.39 0.57
MHLA (Ours) 256 37.47 38.79 7.35 0.51 0.63

DiT-L/2

Self Attention 256 23.33 – – – –
Linear Attention 256 32.35 45.57 8.55 0.54 0.62
MHLA (Ours, w/None) 256 25.37 54.38 6.06 0.59 0.61
MHLA (Ours, w/ CPE) 256 24.21 57.62 6.12 0.59 0.62
MHLA (Ours, w/ CPE+Gating) 256 21.37 63.47 5.80 0.61 0.62

DiT-XL/2

Self Attention 256 19.47 – – – –
Linear Attention 256 28.63 51.15 8.23 0.57 0.62
MHLA (Ours, w/ None) 256 20.32 65.95 6.01 0.61 0.62
MHLA (Ours, w/ CPE) 256 22.79 61.80 5.53 0.60 0.62
MHLA (Ours, w/ CPE+Gating) 256 19.17 68.97 5.70 0.63 0.62

Table 11: Comparison with LiT. We report the FID scores (mean± std) over three independent runs
for MHLA to demonstrate result stability.

Model FID (mean ± std)
LiT-S/2 63.21
DiT-S/2 with MHLA 59.744± 0.100
LiT-B/2 40.86
DiT-B/2 with MHLA 37.519± 0.039
LiT-L/2 24.04
DiT-L/2 with MHLA 21.426± 0.051
LiT-XL/2 20.66
DiT-XL/2 with MHLA 19.164± 0.031

We additionally provide more comprehensive comparisons against other recent linear attention
method on image generation tasks (Wang et al., 2025), and report the mean and standard deviation
of MHLA over three independent runs to demonstrate the stability of our results. The corresponding
results are summarized in Tab. 11.

F.2 ABLATION OF CPE AND OUTPUT GATING.

Table 12: Ablation study of
MHLA with CPE and output
gating.

Setting FID
Linear Attention 89.7
MHLA w/ None 76.4
MHLA w/ CPE 64.0
MHLA w/ Gating 68.5
MHLA w/ CPE+Gating 59.8

We conducted a detailed analysis of the effects of CPE and Output
Gating when combined with MHLA in the DiT-S model as shown
in Tab. 12. Our findings show that, in smaller models, CPE and Out-
put Gating serve as orthogonal optimizations of MHLA, effectively
enhancing the expressive ability when the model size is insufficient.
However, our experiments in Tab. 3a indicate that the performance
gains from CPE and Output Gating diminish as the model size in-
creases. In the DiT-XL model, adding CPE alone actually leads to
a performance decrease. In contrast, MHLA consistently provides
significant improvements in expressity, regardless of model size.
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Table 14: Profiling results of MHLA under varying sequence length N and token-level head number
M . Left: DiT-S/2. Right: DeiT-S/16.

M\N 256 1024 4096

4 42ms 3.7G 52ms 7.1G 147ms 20.8G
16 40ms 3.9G 51ms 7.2G 145ms 21.0G
64 39ms 4.8G 52ms 8.0G 148ms 21.7G
256 – 61ms 12.0G 157ms 25.4G

1024 – – 219ms 40.0G

M\N 256 1024

4 129 imgs/s 3.4G 124 imgs/s 8.9G
16 118 imgs/s 3.8G 118 imgs/s 9.4G
64 150 imgs/s 5.7G 104 imgs/s 11.0G
256 – 89 imgs/s 18.0G

Figure 7: More generation results from our fine-tuned SANA-MHLA model.

F.3 CLASSIFICATION RESULTS ON HIGHER RESOLUTIONS

Table 13: High-resolution classification
accuracy of DeiT-T with and without
MHLA.

Model Resolution ACC

DeiT-T 384×384 74.4
DeiT-T + MHLA 384×384 77.5
DeiT-T 512×512 75.3
DeiT-T + MHLA 512×512 78.3

We further conducted additional experiments at resolu-
tions of 384×384 and 512×512, using the DeiT-T model
to verify the effectiveness of MHLA on high-resolution
classification tasks. Results are shown in Tab. 13.

F.4 SCALING ANAYLSIS

In this section, we conduct empirical studies to evalu-
ate the throughput of MHLA across different tasks under
varying sequence lengths N and token-level head numbers M. The results in Tab. 14 show that
when M2 < N is satisfied, MHLA introduces only negligible overhead, whereas larger M leads to
more noticeable overhead. However, our ablation studies in Tab. 8b have already demonstrated that
choosing M such that M2 < N is sufficient to achieve strong performance.

G CLARIFICATION ON TERMINOLOGY AND COMPUTATIONAL CONCEPTS

In this section, we provide formal definitions for the terminology used in our method. These terms
describe novel computational behaviors in MHLA that lack direct analogues in prior linear attention
formulations.

G.1 CONCEPT 1: query-conditioned

The phrase “query-conditioned” describes a mechanism where the aggregation of contextual infor-
mation is dynamic and specific to each query instance, distinct from the fixed recurrence found in
standard linear attention.

Specifically, the process operates as follows:

• Each query token is associated with a unique vector of mixing coefficients.

• These coefficients are used to weight and aggregate all local KV summaries independently for
every query position.

Consequently, the adaptation occurs per query, rather than globally or via a shared recursive rule.
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G.2 CONCEPT 2: KV Summary vs. Hidden States

We introduce the term KV Summary tos strictly distinguish our approach from the Hidden State
found in traditional linear attention papers. While KV summary may seemingly resemble Hidden
States in notation, the underlying computation and dependency graphs are structurally different in
two key aspects:

• Unlike the strict recursive chain in traditional linear attention where ht relies on ht−1, MHLA
computes each Global KV Summary (Sg) independently, eliminating state propagation across
positions.

• While traditional states are derived via a one-to-one update from the previous step, MHLA follows
a many-to-one aggregation pattern, where each Sg is computed from all local summaries using
specific mixing coefficients.

By avoiding the rigid inheritance of history inherent to hidden states, MHLA’s KV summaries
achieve greater expressivity and flexibility.

H LLM USAGE.

We used large language models (LLMs) solely as a writing aid to polish the clarity and readability
of the manuscript. Specifically, we employed LLM-based tools to (i) refine grammar and phras-
ing for academic style consistency, (ii) improve logical flow between sections, and (iii) condense
overly verbose passages. No new research ideas, experimental designs, or results were produced by
the LLM; all scientific contributions, methodology development, and experimental analyses were
conceived and executed by the authors.
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