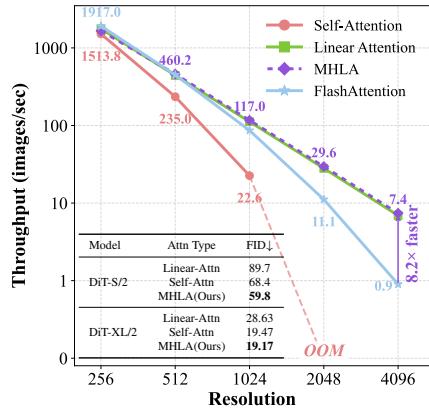


000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 MHLA: RESTORING EXPRESSIVITY OF LINEAR ATTENTION VIA TOKEN-LEVEL MULTI-HEAD

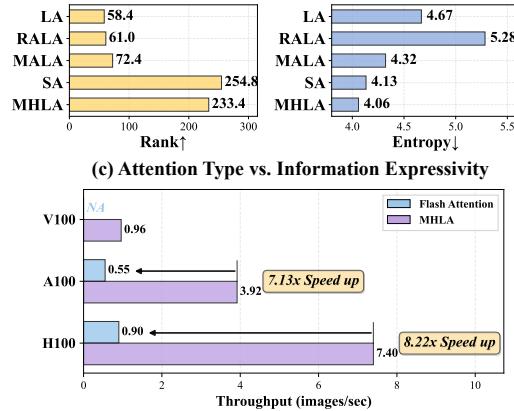
Anonymous authors

Paper under double-blind review

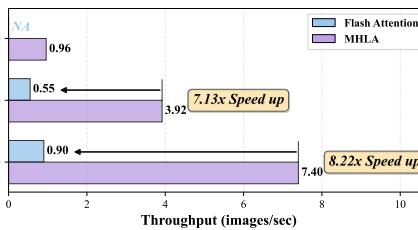
(a) Generation results from SANA-MHLA



(b) Throughput vs. Resolution



(c) Attention Type vs. Information Expressivity



(d) Throughput of DiT-S/2 at 4096 resolution

Figure 1: (a) Generation results from our fine-tuned SANA model using MHLA. (b) Performance and efficiency comparison between the proposed MHLA and baselines. The throughput was tested on the NVIDIA H100 Tensor Core GPU. Following the previous method, we report the FID in the table at a resolution of 256×256 . (c) Average rank and entropy of attention scores for DeiT-T with different attention types, showing MHLA yields richer and more focused attention. (d) Throughput of DiT-S/2 at 4096 resolution across different devices. All improvements are solely due to MHLA, and can be further combined with orthogonal techniques for even greater speedups.

ABSTRACT

While the Transformer architecture dominates many fields, its quadratic self-attention complexity hinders its use in large-scale applications. **Linear attention** offers an efficient alternative, but its direct application often degrades performance, with existing fixes typically re-introducing computational overhead through extra modules (e.g., depthwise separable convolution) that defeat the original purpose. In this work, we identify a key failure mode in these methods: **global context collapse**, where the model loses representational diversity. To address this, we propose **Multi-Head Linear Attention (MHLA)**, which preserves this diversity by computing attention within divided heads along the token dimension. We prove that MHLA maintains linear complexity while recovering much of the expressive power of softmax attention, and verify its effectiveness across multiple domains, achieving a **3.6%** improvement on ImageNet classification, a **6.3%** gain on NLP, a **12.6%** improvement in image generation tasks and a **41% enhancement in video generation tasks** with the same computational complexity,

054

1 INTRODUCTION

055
 056 Self-attention is the core module for the recent dominant model architecture, Transformer, for both
 057 computer vision (Dosovitskiy et al., 2021), natural language processing (Vaswani et al., 2017),
 058 and generative tasks (Rombach et al., 2022). However, its quadratic time and memory complex-
 059 ity severely limit its scalability to long sequence tasks such as high-resolution image generative and
 060 video generation tasks (Zhou et al., 2022; Kong et al., 2024; Zhou et al., 2024).

061 To address the efficiency issue, a growing line of research (Katharopoulos et al., 2020; Choroman-
 062 ski et al., 2021) has developed linear attention mechanisms that replace the softmax kernel with
 063 associative feature maps. These approaches reduce the computational and memory complexity of
 064 attention from quadratic to linear by compressing all keys and values into a global summary. Al-
 065 though this improves efficiency, it eliminates one of the key advantages of softmax attention—its
 066 ability to adapt to each query individually. Consequently, linear attention often experiences notable
 067 accuracy degradation, particularly in long-sequence modeling tasks.

068 Recent works (Fan et al., 2025b; Han et al., 2023; 2024) have sought to mitigate the performance
 069 degradation of linear attention by integrating components such as depthwise convolutions and gating
 070 modules. However, this reliance on external modules introduces additional computational overhead
 071 and continues to suffer from performance degradation as sequence length increases. In this paper,
 072 we present a solution to the performance bottleneck in linear attention that requires no additional
 073 depthwise convolution or self-attention modules. Our key insight is that, in conventional linear
 074 attention design, all tokens are compressed into a single global key–value summary (KV summary)
 075 that is shared by every query. This design could have reduced the model’s representation capacity,
 076 as illustrated in Fig. 1b. To evaluate diversity, we compare the rank of the attention weight matrices
 077 across different models. We find that using a shared global KV summary limits the model’s capacity
 078 to represent rich interactions, effectively capping it at a fixed rank. As sequences grow longer, this
 079 constraint tends to push the attention weights toward a more uniform distribution. In practice, this
 080 reduces diversity and degrades performance on tasks where queries must concentrate on a small
 081 subset of relevant tokens.

082 Our design goal is therefore simple: restore query-dependent diversity, the ability for different
 083 queries to retrieve different contexts, without sacrificing linear-time behavior or introducing heavy
 084 auxiliary modules.

085 Thus, we introduce Multi-head Linear Attention (MHLA) to achieve the aforementioned char-
 086 acteristics. Specifically, MHLA partitions tokens into non-overlapping blocks (“heads” in the
 087 spatial dimension), computes local key-value summaries, and lets each query block compute a query-
 088 conditioned mixture over these summaries to retrieve a tailored context; within the selected blocks,
 089 token contributions are further refined by a query-dependent reweighting module. Thanks to the sim-
 090 plicity of MHLA, the implementation only relies on standard GEMMs, keeping the overall compu-
 091 tational overhead negligible with $O(N)$ complexity, retaining compatibility with streaming/stateful
 092 execution. It was clearly observed that adding MHLA raise the rank of the attention weights matrix
 093 significantly, as shown in Fig. 1b. The difference between previous linear attentions and MHLA is
 094 briefly illustrated in Fig. 2.

095 We validate MHLA on image classification, image generation and natural language processing tasks.
 096 Experiments show that MHLA consistently outperforms existing linear attention baselines with neg-
 097 ligible computational overhead. Our main contributions are summarized as follows:

- 098 • We conduct an in-depth analysis of linear attention and identify one of the root causes of its
 099 performance degradation: the absence of grouping along the token dimension during similarity
 100 calculation. This limitation can be quantified by examining the rank of the attention matrix.
- 101 • We propose a new formulation of linear attention that achieves state-of-the-art performance on
 102 both discriminative and generative tasks, while maintaining $O(N)$ computational complexity and
 103 avoiding reliance on additional modules.
- 104 • We conduct extensive experiments across various tasks, achieving state-of-the-art performance.
 105 On ImageNet, MHLA delivers a **3.6%** accuracy gain over self-attention, while on image genera-
 106 tion tasks it outperforms the previous SOTA method DiT by **12.6%**. MHLA also achieves a **6.3%**
 107 improvement on natural language processing tasks and provides a substantial **41%** improvement
 108 compared to vanilla linear attention in video generation tasks.

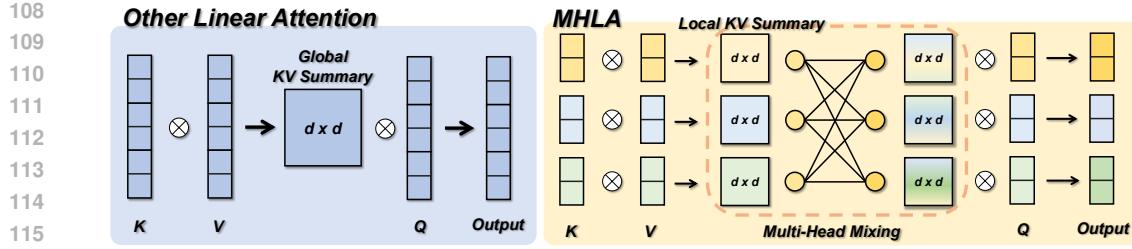


Figure 2: **Comparison between the proposed MHLA and other linear attentions.** MHLA divides multiple heads on token dimension. Through Multi-Head Mixing, MHLA restores query-conditioned selectivity by mixing KV summaries with query-specific weight, improving token-level diversity while keeping linear complexity.

2 ANALYSIS OF LINEAR ATTENTION

2.1 PRELIMINARY

We first formulate the calculation of the attention weights for both self-attention and linear attention mechanism. Given an input token sequence $X \in \mathbb{R}^{N \times d}$, we first compute queries, keys, and values via $Q = XW_Q$, $K = XW_K$, $V = XW_V$, where $W_Q, W_K, W_V \in \mathbb{R}^{d \times d}$ are learnable projections. The attention output of the token i can be expressed as:

$$Y_i = \frac{\sum_{j=1}^N \text{Sim}(Q_i, K_j)V_j}{\sum_{m=1}^N \text{Sim}(Q_i, K_m)}, \quad (1)$$

where $\text{Sim}(\cdot, \cdot)$ calculates the similarity between the input matrix. In softmax attention (Vaswani et al., 2017), $\text{Sim}(Q_i, K_j) = \exp(Q_i K_j^\top / \sqrt{d})$, all pairwise similarities need to be calculated and normalized per query, resulting in $O(N^2)$ complexity.

Linear attention replaces the exponential kernel with a positive feature map $\phi(\cdot)$ such that

$$\text{Sim}(Q_i, K_j) \approx \phi(Q_i)\phi(K_j)^\top, \quad Y_i = \frac{\phi(Q_i)(\sum_{j=1}^N \phi(K_j)^\top V_j)}{\phi(Q_i)(\sum_{m=1}^N \phi(K_m)^\top)}, \quad (2)$$

where the numerator and denominator can be precomputed as a global key–value summary $G = \sum_j \phi(K_j)^\top V_j$ and normalizer $z = \sum_m \phi(K_m)^\top$, respectively. This reduces the complexity from $O(N^2)$ to $O(Nd_\phi)$, enabling linear-time scaling with sequence length.

2.2 GLOBAL CONTEXT COLLAPSE

While linear attention achieves linear-time complexity by reusing a global key–value summary $G = \sum_{j=1}^N \phi(K_j)^\top V_j \in \mathbb{R}^{d \times d}$ across all queries, this fixed-size design introduces an intrinsic information bottleneck:

Observation

As the sequence length N increases, the information requiring representation exceeds the capacity of the fixed-size $d \times d$ matrix, leading to performance saturation. We term this phenomenon *global context collapse*.

This observation can be quantified using two complementary metrics, which are the rank and the sparsity of the attention matrix:

Rank limitation. The rank of the attention matrix has been widely studied as a key indicator of feature diversity and representational capacity in attention mechanisms (Fan et al., 2025b; Han et al., 2023; Bhojanapalli et al., 2020). Specifically, with $\tilde{Q} = \phi(Q)$ and $\tilde{K} = \phi(K)$, global linear attention produces

$$A_{\text{lin}} = \tilde{Q} \tilde{K}^\top \in \mathbb{R}^{n \times n}, \quad \text{rank}(A_{\text{lin}}) \leq \min\{\text{rank}(\tilde{Q}), \text{rank}(\tilde{K})\} \leq d.$$

162

Conclusion 1

163

164

165

166

167

168

169

170

171

172

173

Regardless of N , the representational capacity of A_{lin} is strictly bounded by d . Although several prior studies have attempted to increase the rank of Key–Value summaries (Fan et al., 2025b; Cao & Wang, 2025), this bound results in a severely rank-deficient approximation of the full $n \times n$ attention matrix when $n \gg d$, constraining the model’s ability to capture diverse, query-conditioned attention patterns.

174

We empirically verify this effect in Fig. 1b, which shows that the rank of attention scores in linear-attention-based models is consistently capped by the head dimension (typically $d_h \leq 72$), and the relative expressivity of the attention map degrades as the sequence length increases.

175

176

177

178

179

180

181

Loss of sparsity. The sparsity of the attention matrix is a critical factor influencing the performance of attention mechanisms. Sparse distributions generally exhibit lower entropy, concentrating probability mass on a smaller set of informative tokens (Zhang et al., 2025; Deng et al., 2023), which benefits model optimization. Linear attention, however, computes scores by first compressing all key–value pairs into a single global summary, and each query interacts with this shared representation only once. In contrast, softmax attention leverages the exponential function to enable each query q_i to produce a distinct distribution over tokens (see Appendix B). Because linear attention relies on the same aggregated representation for all queries, it cannot reweight individual keys according to query-specific relevance.

182

183

Conclusion 2

184

185

186

187

As the sequence length N increases, the contribution of each token becomes negligible. Consequently, the attention weight distribution approaches uniformity, reducing the sparsity and impairing the model’s ability to selectively emphasize informative tokens.

188

189

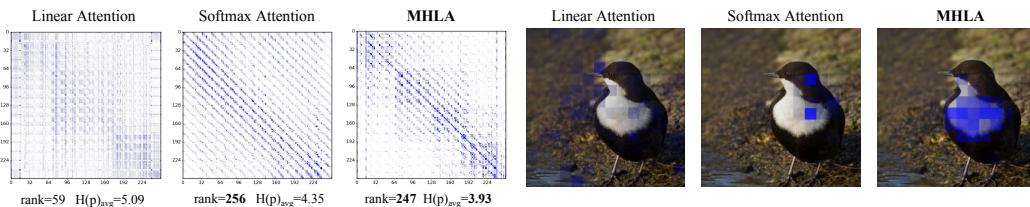
190

191

192

To quantify this effect, we compute the average entropy of the attention scores over 500 random samples for each attention variant. For each row of the attention score matrix, lower entropy indicates that the distribution is closer to a one-hot vector, reflecting stronger concentration on a single token. As shown in Fig. 1b and Fig. 3, linear attention exhibits significantly higher entropy, confirming its lack of focus compared to softmax-based attention.

193



194

195

196

197

198

199

200

201

Figure 3: **Visualization of attention score and attention maps of MHLA and baselines.**

Taken together, these findings reveal that the reliance on a single global key–value summary in linear attention leads to a severe collapse in representational capacity, manifested as both rank deficiency and elevated entropy in the attention map. We refer to this phenomenon as *global context collapse*. Fig. 3 visualizes attention scores and maps, clearly illustrating the inability of linear attention to capture fine-grained information. This observation motivates the development of methods that restore query-conditioned token-level diversity while preserving the linear-time complexity of the attention mechanism, which was detailed in the next section.

202

203

204

205

206

207

208

209

210

211

212

213

214

215

3 MULTI-HEAD LINEAR ATTENTION

3.1 OVERVIEW

Here we formalize the proposed **Multi-Head Linear Attention (MHLA)**. As shown in Fig. 4a, MHLA operates by splitting the sequence along the token dimension into multiple “heads” and running linear attention in parallel across these “heads”. Let the input sequence be $X \in \mathbb{R}^{N \times d}$,

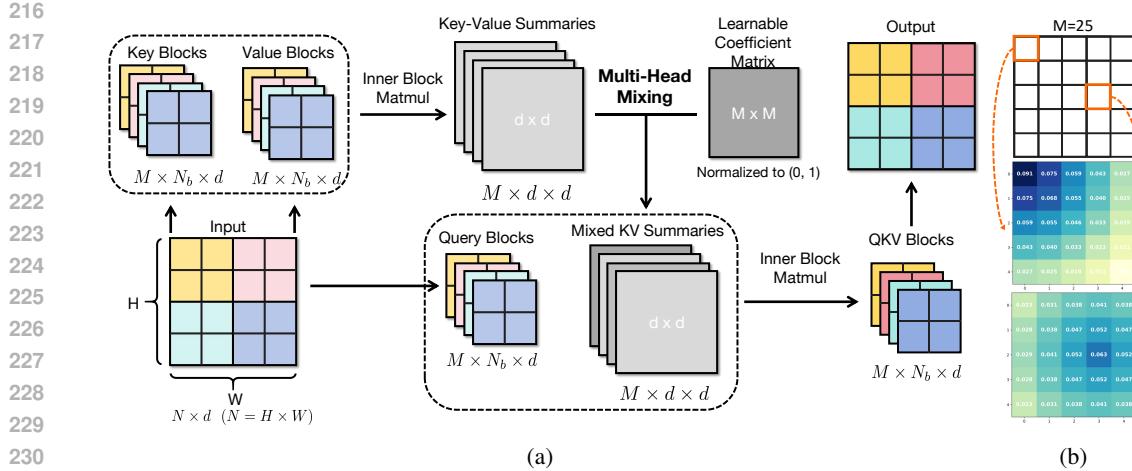


Figure 4: (a) **Overview of the proposed Multi-Head Linear Attention.** (b) We visualize two rows of the initialized Learnable Coefficient Matrix corresponding to *Block 1* and *Block 14* separately when M is 25. We reshape the two rows and the M dimension in 2D for better understanding.

projected to queries, keys, and values: $Q = XW_Q$, $K = XW_K$, $V = XW_V$, with $Q, K, V \in \mathbb{R}^{N \times d}$. For efficiency, we adopt a kernelized formulation, denoting $\tilde{Q} = \phi(Q)$, $\tilde{K} = \phi(K)$ for a chosen feature map $\phi(\cdot)$.

Standard linear attention aggregates all tokens into a single global $d \times d$ summary shared by every query, which reduces expressivity by collapsing token-level diversity. To mitigate this, we split the sequence into M non-overlapping blocks (the MHLA ‘‘heads’’), with block b containing N_b tokens and $\sum_{b=1}^M N_b = N$. In practice on vision models, blocks are defined on spatial (2D) or spatiotemporal (3D) grids rather than by flattening to 1D. For each block b we compute a local key–value summary and its normalizer:

$$S_b = \sum_{j \in b} \tilde{K}_j V_j^\top \in \mathbb{R}^{d \times d}, \quad z_b = \sum_{j \in b} \tilde{K}_j \in \mathbb{R}^d. \quad (3)$$

To restore query adaptivity, MHLA constructs a distinct mixture of all key–value summaries for each query block i through *Multi-Head Mixing*. Queries in block i can then attend to this mixture, where different key–value summaries are weighted according to the attention preferences of the current query block. Let $m_i \in \mathbb{R}^M$ denote the nonnegative, learnable mixing coefficients for block i , which are optimized during training. The mixed summaries are then defined as $\tilde{S}_i = \sum_{b=1}^M m_{i,b} S_b$, and the corresponding normalizer is $\tilde{z}_i = \sum_{b=1}^M m_{i,b} z_b$.

The process can be done with a highly hardware-efficient GEMM operation between key–value summaries and coefficient matrix $\mathcal{M}_c \in \mathbb{R}^{M \times M}$ consisting of m_i . Given a query vector $\tilde{q} \in \mathbb{R}^d$ from block i , the output is

$$o = \frac{\tilde{q}^\top \tilde{S}_i}{\tilde{q}^\top \tilde{z}_i} = \frac{\sum_{b=1}^M m_{i,b} \tilde{q}^\top S_b}{\sum_{b=1}^M m_{i,b} \tilde{q}^\top z_b}. \quad (4)$$

Each output element can thus be interpreted as a query-specific, block-dependent recombination of the entire value sequence. In tasks like language modeling and video generation, the normalizer term can be omitted for better training stability (Qin et al., 2022) when the sequence is getting longer.

3.2 MULTI-HEAD MIXING

The core of MHLA’s adaptivity is a learned coefficient matrix $\mathcal{M}_c \in \mathbb{R}^{M \times M}$. The element at position (i, j) denotes the affinity between query-block i and the local key–value summary of block j . Equivalently, the i -th row of \mathcal{M}_c , denoted m_i , specifies how query-block i linearly combines the M local summaries into a query-specific global summary.

Each row m_i is produced and learned end-to-end; in practice we enforce nonnegativity and normalization. Because blocks are defined along spatial or spatiotemporal axes, we initialize \mathcal{M}_c to

270 favor locality: for row i we set initial coefficients as $m_{i,j}^{(0)} \propto 1 - \text{dist}(i, j) / \max_k \text{dist}(i, k)$, where
 271 $\text{dist}(i, j)$ measures the Euclidean distance and $\max_k \text{dist}(i, k)$ is the maximum distance from i to
 272 any position k . The coefficients are then normalized such that $\sum_j m_{i,j}^{(0)} = 1$. A visualization of this
 273 initialization can be found in Fig. 4b. This locality-biased initialization produces more stable and
 274 faster convergence while leaving \mathcal{M}_c free to adapt during training. To further ensure stability, we
 275 clip the coefficients to the interval $(0, 1)$ on every update.
 276

277 The token-level effect of the Multi-Head Mixing is transparent. Let $b(t)$ denote the block index of
 278 token t . Writing each local summary as a sum over its tokens, $G_j = \sum_{t \in \text{block}_j} \tilde{K}_t V_t^\top$, the mixture
 279 for query-block i expands to

$$280 \quad \tilde{S}_i = \sum_{j=1}^M m_{i,j} S_j = \sum_{t=1}^N m_{i,b(t)} \tilde{K}_t V_t^\top \in \mathbb{R}^{d \times d}.$$

$$281$$

$$282$$

283 For a query vector $\tilde{q} = \phi(q)$ (from block i), the numerator of the kernelized update becomes

$$284 \quad \tilde{q}^\top \tilde{S}_i = \sum_{t=1}^N m_{i,b(t)} (\tilde{q}^\top \tilde{K}_t) V_t^\top \in \mathbb{R}^d. \quad (5)$$

$$285$$

$$286$$

287 Eq. 5 makes the mechanism transparent: each query-block rescales the contribution of entire blocks
 288 via m_i , and within each block the usual kernel inner product $\tilde{q}^\top \tilde{K}_t$ differentiates tokens. Thus
 289 MHLA restores *query-conditioned, token-level* weighting in a two-stage manner (block selection \times
 290 intra-block reweighting). Importantly, all operations reduce to blockwise summary computation and
 291 linear combinations of M matrices of size $d \times d$, so asymptotic complexity remains linear in N
 292 while expressive capacity is substantially increased.
 293

294 **Chunkwise parallel form of MHLA.** Linear attention commonly employs *chunkwise parallel*
 295 *training* (Hua et al., 2022; Sun et al., 2023) to maintain linear-time complexity under causal mask-
 296 ing, by partitioning the sequence into blocks and updating a running summary per block. MHLA
 297 naturally fits this setting: each head can be directly mapped to a chunk, and we maintain one local
 298 summary S_b per chunk. At training time, we aggregate these local summaries using the learned
 299 mixture coefficients $m_{i,b}$ to form the mixed prefix summary $\tilde{S}_i = \sum_{b \leq i} m_{i,b} S_b$, which is then used
 300 for block-level attention. Because mixture computation is performed once per block and reused for
 301 all queries in that block, the overall complexity remains identical to chunkwise linear attention. For
 302 a detailed derivation and the corresponding inference procedure, see Appendix C.
 303

3.3 ANALYSIS OF MULTI-HEAD LINEAR ATTENTION

305 **Rank analysis.** Partition the sequence into M non-overlapping blocks of size N_b . Let the query
 306 matrix be $\tilde{Q} = [\tilde{Q}_1^\top, \dots, \tilde{Q}_M^\top]^\top$ with $\tilde{Q}_b \in \mathbb{R}^{n_b \times d}$. From Eq. 5, in calculation of attention score,
 307 the mixed key sequence seen by query-block i can be expressed as

$$308 \quad Y_i = [m_{i,b(1)} k_1, m_{i,b(2)} k_2, \dots, m_{i,b(n)} k_n] \in \mathbb{R}^{d \times n},$$

$$309$$

310 where $m_{i,b(t)}$ is the mixing coefficient selecting the block of token t . The attention submatrix
 311 contributed by query-block i is $A_i = \tilde{Q}_i Y_i \in \mathbb{R}^{N_b \times N}$, and the full attention matrix is $A_{\text{MHLA}} =$
 312 $[A_1 \ A_2 \ \dots \ A_M]^\top \in \mathbb{R}^{n \times n}$. Then applying standard rank inequalities gives

$$313 \quad \text{rank}(A_b) \leq \min\{\text{rank}(\tilde{Q}_b), \text{rank}(Y_b)\} \leq \min(n_b, d),$$

$$314$$

315 which yields the global bound $\text{rank}(A_{\text{MHLA}}) \leq \min\left(n, \sum_{b=1}^M \min(n_b, d)\right)$.

316 This upper bound is *attainable* under mild, generic conditions: if each block product $\tilde{Q}_b Y_b$ has
 317 full row rank $r_b = \min(n_b, d)$ and the row spaces of $\{\tilde{Q}_b Y_b\}_{b=1}^M$ are linearly independent, then
 318 we get $\text{rank}(A_{\text{MHLA}}) = \min(n, \sum_{b=1}^M r_b)$. Even when the independence assumption is not fully
 319 satisfied, the blockwise mixture still expands the diversity of the row spaces, causing $\text{rank}(A_{\text{MHLA}})$
 320 to grow roughly additively with M . We empirically validate this behavior in Fig. 1b, where MHLA
 321 consistently achieves a substantially higher attention-score rank than other linear attention variants—
 322 and does so *without* relying on auxiliary components such as depth-wise convolutions. This confirms
 323 that MHLA natively restores much of the representational capacity lost in global linear attention,
 whose rank remains strictly limited by d regardless of the sequence length N .

Sparsity analysis. The learned coefficient matrix \mathcal{M}_c allows each query-block to assign higher weights to a subset of blocks that are more relevant, effectively pruning irrelevant tokens at the block level. Within each selected block, the kernel inner products $\tilde{q}^\top \tilde{K}_t$ further differentiate token contributions, leading to sharper and more concentrated attention distributions. We validate this effect empirically in Fig. 1b, where MHLA consistently yields lower attention entropy compared to other linear-attention baselines and even the softmax attention. This confirms that MHLA preserves query-conditioned selectivity and achieves substantially higher sparsity, enabling the model to attend to a small, semantically relevant subset of tokens rather than spreading attention uniformly.

Table 1: **Comparison between Self Attention, Linear Attention and MHLA.** We report computation complexity, maximum achievable rank, memory complexity and query-conditioned selectivity.

Method	Time Complexity	Rank Bound	Memory Complexity	Query-Conditioned
Self Attention	$O(N^2d)$	N	$O(N^2)$	✓
Linear Attention	$O(Nd^2)$	d	$O(d^2)$	✗
MHLA (ours)	$O(Nd^2 + M^2d^2)$	$\sum_{b=1}^M \min(n_b, d)$	$O(Md^2)$	✓

Efficiency analysis. The computation of MHLA consists of local Key–value summary computation, Multi-Head Mixing, and output computation, with a time complexity of $O(MN_b d^2 + M^2 d^2 + MN_b d^2) = O(Nd^2 + M^2 d^2)$. To better capture local information while ensuring efficiency, the number of blocks M is usually set to satisfy $M^2 \leq N$. Therefore, Nd^2 becomes the leading term and the time complexity of MHLA is $O(Nd^2)$. The comparison of self attention, linear attention, and MHLA is summarized in Tab. 1. We also provide an empirical analysis of the scaling relationship between N and M in Appendix F.4 that verifies the induced complexity.

4 EXPERIMENTS

4.1 IMAGE CLASSIFICATION

Settings. We adopt the training configurations from prior work (Fan et al., 2025b;a; Touvron et al., 2021). The proposed MHLA is integrated into two representative architectures, DeiT (Touvron et al., 2021) and VLT (Fan et al., 2025b), across multiple model scales. The models are trained on ImageNet-1K (Deng et al., 2009). For VLT, we strictly follow the setup in (Fan et al., 2025b). All models are trained for 300 epochs with a batch size of 1024 and a peak learning rate of 1e-3. For models with input size of 224, we pad the input size to 256 for better splitting of heads. The head number M is set to 16 if there no extra description. See Appendix E for more details.

Results. We evaluate the pretrained DeiT models described above and report the result in Tab. 2a, which clearly shows the superior performance of the proposed MHLA. We reach the best accuracy in linear attention across all model sizes, while introducing the fewest extra parameters compared with baselines. We then port the proposed MHLA to VLT (Fan et al., 2025b) and evaluate the performance under the same settings. The results are shown in Tab. 2b, illustrating the proposed MHLA’s state-of-art performance with consistent improvements compared with baseline models.

Table 2: **Comparison on Image Classification task.** MHLA achieves the best accuracy with minimal parameter overhead on DeiT models, and outperforms **Transformer**-, **LA**-, and **Mamba**-based SOTAs. Results marked with an * are reproduced under the same training setup as MHLA-VLT.

(a) Comparison of different attentions on DeiT.

Attention Type	Params	FLOPs	Top1-ACC
Comparison on DeiT-T Setting			
Self Attn	5.7M	1.1G	72.2
Linear Attn	5.7M	1.1G	69.8
Focused LA (Han et al., 2023)	6.1M	1.1G	74.1
Inline Attn (Han et al., 2024)	6.5M	1.1G	74.5
MALA (Fan et al., 2025a)	6.3M	1.1G	75.1
MHLA (Ours)	5.7M	1.1G	75.8

(b) Comparison with SOTA models on ImageNet-1K.

Cost	Model	Params	FLOPs	Top1-ACC
~2.5G	FL-PVT-T (Han et al., 2023)	12M	2.0G	77.8
	FL-PVTv2-B1 (Han et al., 2023)	13M	2.2G	79.5
	MSVManba-M (Shi et al., 2024)	12M	1.5G	79.8
	NAT-M (Hassani et al., 2023)	20M	2.7G	81.8
	RAVLT-T (Fan et al., 2025b)	15M	2.4G	82.3*
	MALAT-T (Fan et al., 2025a)	16M	2.5G	82.4*
~4.5G	MHLA-VLT-T	16M	2.4G	82.6
	FAT-B3 (Fan et al., 2023)	29M	4.4G	83.6
	Vmamba-T (Liu et al., 2024)	30M	4.9G	82.6
	MV-T (Hatamizadeh & Kautz, 2025)	32M	4.4G	82.3
	MSVManba-T (Shi et al., 2024)	32M	5.1G	83.0
	MAViT-S (Fan et al., 2025a)	27M	4.6G	84.3*
	MHLA-VLT-S	27M	4.6G	84.6

378 4.2 IMAGE GENERATION
379

380 **Settings.** 1) For *Class-to-Image(C2I)* generation,
381 we train DiT (Peebles & Xie, 2023) and
382 DiG (Zhu et al., 2025) from scratch for 400k
383 steps on ImageNet-1K (Deng et al., 2009) with
384 batch size 256 and learning rate 1e-4, following
385 their original settings. We evaluate five variants
386 in DiT and DiG, where the original self-attention
387 (DiT) or GLA (Yang et al., 2024) (DiG) is re-
388 placed by our MHLA while keeping other com-
389 ponents unchanged. The head number is set to 16
390 for both 256 and 512 resolutions. We try extra
391 CPE (Chu et al., 2021) and output gating mod-
392 ule (Yang et al., 2024). Their effects are ana-
393 lyzed in Appendix F.2. 2) For *Text-to-Image(T2I)*
394 generation, we finetune a Sana-0.6B (Xie et al.,
395 2024) model from official checkpoint. Both the
396 original linear attention and our MHLA variant
397 are trained for 40k steps with a batch size of 256.

398 **C2I results.** The main quantitative results are
399 summarized in Tab. 3a, where our method con-
400 sistently achieves state-of-the-art performance
401 across all DiT model sizes. In addition, Fig. 1a
402 compares the throughput of our MHLA with
403 baseline attention mechanisms on DiT-S as the in-
404 put resolution increases. Notably, MHLA main-
405 tains throughput nearly identical to linear atten-
406 tion while delivering performance on par with,
407 or even surpassing, self-attention. At 512 reso-
408 lution, MHLA achieves better FID scores while
409 doubling the throughput of self-attention. To fur-
410 ther demonstrate the fast adaptation ability of our
411 approach to existing models, we fine-tune the pretrained
412 DiT-XL/2 model for 400k steps under the
413 same settings. As shown in Tab. 3b, our model achieves a lower FID score than DiT-XL/2 without
414 classifier-free guidance (CFG), and delivers comparable performance when CFG is applied. Full
415 results can be found in Appendix F.

416 **Analysis.** Although we add modules such as DWConv (CPE) (Fan et al., 2025b) to smaller DiT
417 models, it is worth noting that their benefits diminish as model size increases (CPE even degrades
418 performance on DiT-XL). As shown in Tab. 3a, plain MHLA already matches the performance of
419 self-attention on XL models, while adding CPE leads to regression. These results highlight the
420 intrinsic advantage of MHLA and suggest that, although modules like DWConv may offer gains at
421 small scales, their benefits do not scale with model size or sequence length.

422 **Fast adaptation to SANA.** As shown in Tab. 4, replacing linear attention with MHLA consistently
423 improves multiple evaluation metrics, surpassing not only the baseline Sana model but also the
424 PixArt (Chen et al., 2023) series. Fig. 5 further visualizes the training loss curves. The MHLA-based
425 model rapidly adapts, matching the pretrained checkpoint within the first 2k steps and subsequently
426 converging to a lower loss. This demonstrates MHLA’s fast adaptation capability and promising
427 performance at a larger model scale.

428 4.3 VIDEO GENERATION
429

430 Video generation involves **extremely long sequence lengths**, where quadratic attention becomes
431 prohibitively slow. To evaluate MHLA under such ultra-long contexts, we fine-tune a pretrained
432 Wan2.1-1.3B model by replacing its FlashAttention modules with MHLA. For comparison, we

Table 3: **Class-to-Image Generation.** Across all model sizes, MHLA achieves the best performance. Notably, at L and XL scales, it matches self-attention performance without relying on any extra modules.

(a) Comparison of attention types across models.

Model	Attention Type	Resolution	FID \downarrow
DiT-S/2	Self Attention	256	68.40
	Linear Attention	256	89.72
	MHLA (Ours)	256	59.80
DiG-S/2	Self Attention	512	84.54
	Linear Attention	512	125.33
	MHLA (Ours)	512	78.63
DiT-B/2	GLA (Yang et al., 2024)	256	62.06
	GLA	512	99.04
	MHLA (Ours)	256	59.49
DiT-L/2	Self Attention	256	43.47
	Linear Attention	256	60.47
	MHLA (Ours)	256	37.47
DiT-XL/2	Self Attention	256	23.33
	Linear Attention	256	32.35
	MHLA (Ours, w/None)	256	25.37
	MHLA (Ours, w/ CPE)	256	24.21
	MHLA (Ours, w/ CPE+Gating)	256	21.37
DiT-XL/2(G)	Self Attention	256	19.47
	Linear Attention	256	28.63
	MHLA (Ours, w/ None)	256	20.32
	MHLA (Ours, w/ CPE)	256	22.79
	MHLA (Ours, w/ CPE+Gating)	256	19.17

(b) Fast adaptation results on DiT-XL/2.

Model	Attention Type	FID \downarrow	IS \uparrow	sFID \downarrow
DiT-XL/2	Self Attention	9.62	121.50	6.85
	MHLA (Ours)	8.34	121.27	5.52
DiT-XL/2(G)	Self Attention	2.27	278.24	4.60
	MHLA (Ours)	2.54	252.07	4.67

432

433

Table 4: Comparison on T2I models.

434

435

Model	FID \downarrow	CLIP \uparrow	GenEval \uparrow
PixArt- α (Chen et al., 2023)	6.14	27.55	0.48
PixArt- Σ (Chen et al., 2024)	6.34	27.62	0.52
SANA* (Xie et al., 2024)	6.10	28.15	0.64
SANA-MHLA	5.90	28.26	0.68

436

437

Table 5: MHLA in Video Generation. Wan-FA indicates a pretrained Wan2.1-1.3B. Wan-MHLA and Wan-LA replace all layers with MHLA and Linear Attention respectively. Wan-MHLA-H only replace 2/3 layers.

438

439

Table 5: MHLA in Video Generation. Wan-FA indicates a pretrained Wan2.1-1.3B. Wan-MHLA and Wan-LA replace all layers with MHLA and Linear Attention respectively. Wan-MHLA-H only replace 2/3 layers.

440

441

442

443

444

Model	Quality \uparrow	Semantic \uparrow	Total \uparrow	Latency (s) \downarrow
Wan-FA	85.23	75.65	83.31	166
Wan-LA	69.96	11.38	58.24	82
Wan-MHLA	84.01	76.24	82.46	81
Wan-MHLA-H	84.87	79.59	83.82	103

445

446

447

448

also fine-tune a version where all attention layers are replaced with vanilla linear attention (LA). The training uses 81-frame videos at 480×800 resolution, corresponding to a sequence length of **31,500 tokens**, with the mixing-head number $M = 105$. In addition, we train a hybrid model where only 2/3 of the layers are replaced by MHLA.

We evaluate all models on VBench, and the results are reported in Tab. 5. MHLA delivers **substantially stronger performance** than vanilla LA while maintaining **the same latency**. At this extreme sequence length, vanilla LA suffers severe degradation due to *global context collapse*, whereas MHLA preserves linear-time complexity and recovers performance comparable to the original FlashAttention-based Wan2.1-1.3B, achieving a **2.1 \times inference speedup**. The hybrid model provides an excellent trade-off, achieving a **1.6 \times speedup** with even better overall performance.

We further visualize the training loss curves in Fig. 6. MHLA rapidly adapts during fine-tuning and quickly approaches the pretrained model’s loss trajectory. In contrast, vanilla LA effectively fails to train under such long sequences, with its loss plateauing at a high level. This validates our analysis of *global context collapse* and demonstrates that conventional linear attention breaks down entirely in ultra-long visual sequence settings.

4.4 NATURAL LANGUAGE PROCESSING

To evaluate MHLA under autoregressive modeling, we test its performance in language modeling. Following GLA (Yang et al., 2024), we train a 0.3B model from scratch on 10B tokens from FineWeb-Edu (Penedo et al., 2024) with a batch size of 0.25M tokens, using a cosine learning rate schedule (max LR 3e-4), weight decay of 0.01, and gradient clipping of 1.0. The head number M is set to 32 for MHLA with training context length as 2048.

Common-sense reasoning and MMLU. In Tab. 6, we present the language modeling perplexity, zero-shot accuracy on commonsense reasoning benchmarks and MMLU. The proposed MHLA shows a comparable performance with Transformer++ (Touvron et al., 2023) and the state-of-the-art linear models, including Gated DeltaNet (GDN) (Yang et al., 2025) and Mamba2 (Dao & Gu, 2024). Additionally, MHLA outperforms all the baselines on the aggregated benchmark MMLU.

Long context understanding. As presented in Tab. 7, we evaluate the models performance on LongBench (Bai et al., 2024). The proposed MHLA shows explicit advantages over other SOTA recurrent models, especially in Multi-Doc QA, Summarization, and Code tasks, and achieves the highest average score. The result demonstrates the superior long context understanding capability of the proposed MHLA.

4.5 ABLATION STUDY

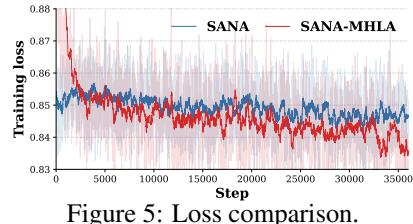


Figure 5: Loss comparison.

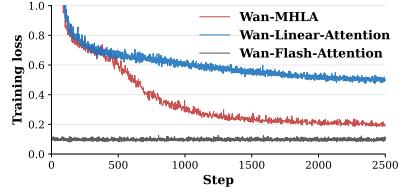


Figure 6: Loss comparison on Wan-2.1-1.3B. MHLA shows a much stronger convergence capability.

486
487
488
489
490
491
492
493
494
Table 6: **MHLA** in NLP. We report results evaluated on 340M models trained with 10B tokens. We
highlight the **best** and second best entries.

Model	Wiki. ppl ↓	LMB. ppl ↓	PIQA acc ↑	Hella. acc_n ↑	Wino. acc ↑	ARC-e acc_n ↑	ARC-c acc_n ↑	OBQA acc_n ↑	BoolQ acc ↑	CSR avg. ↑	MMLU acc ↑
GLA (325M)	41.47	86.98	62.9	33.5	50.0	45.8	25.5	31.0	60.8	44.2	22.9
Transformer++ (325M)	34.57	60.46	<u>64.4</u>	<u>35.0</u>	49.6	48.1	<u>25.7</u>	<u>32.8</u>	60.5	45.2	22.9
Mamba (360M)	38.32	<u>62.43</u>	64.1	35.2	50.5	48.3	24.9	32.4	58.2	44.9	23.5
Mamba2 (330M)	35.4	58.51	64.6	31.0	49.8	49.2	25.5	32.0	61.2	44.8	23.0
GDN (346M)	<u>35.01</u>	60.16	64.5	34.8	51.3	47.3	25.4	31.4	62.0	45.2	<u>23.0</u>
MHLA (325M)	38.31	71.64	<u>64.4</u>	33.7	51.3	46.5	25.9	<u>33.4</u>	61.3	45.2	<u>23.7</u>

495
496
Table 7: **MHLA** on LongBench. We report results evaluated on 340M models trained with 10B
tokens. We highlight the **best** and second best entries

Model	Multi-Doc QA			Single-Doc QA		Few-shot		Synthetic		Summarization			Code		Avg
	2WM	HQA	Mus	QQA	NQA	SSM	TQA	PEN	PZH	QMS	GVR	MNs	RBP	LCC	
Mamba(360M)	3.37	2.36	1.60	4.57	2.28	5.16	5.49	1.10	0.10	12.23	18.36	14.96	13.63	12.33	6.97
GLA(325M)	3.23	2.31	1.67	4.53	2.13	3.94	0.70	1.98	0.27	11.42	17.72	15.34	<u>13.59</u>	<u>12.55</u>	6.53
GDN(346M)	2.86	2.24	1.54	4.73	2.48	6.85	7.61	0.53	0.41	12.46	17.91	15.98	10.42	9.98	6.86
Transformer++(325M)	4.97	2.13	2.22	4.45	2.35	6.24	7.47	0.76	1.18	11.75	16.81	15.11	11.56	9.92	6.92
Mamba2(330M)	3.56	2.38	1.69	4.70	2.20	4.97	7.03	0.72	1.51	12.57	17.65	14.00	10.15	9.49	6.62
MHLA(325M)	3.58	2.97	1.87	4.68	2.38	<u>6.41</u>	6.44	1.69	1.49	12.58	18.59	15.01	13.37	12.72	7.41

503
504
505
506
507
508
509
510
511
512
Table 8: **Ablation study of
the proposed MHLA.**513
514
515
516
517
518
519
520
521
(a) DeiT-T. LB-init denotes
Locality-biased Initialization.

LB-init	Learnable	Top1-acc(%)
	✓	75.4
✓	✓	75.1
✓	✓	75.8

522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
(b) DiT-S-512.

Head number	FID↓	Throughput↑
4	79.56	435
16	78.63	435
64	79.50	408

530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
73100
73101
73102
73103
73104
73105
73106
73107
73108
73109
73110
73111
73112
73113
73114
73115
73116
73117
73118
73119
73120
73121
73122
73123
73124
73125
73126
73127
73128
73129
73130
73131
73132
73133
73134
73135
73136
73137
73138
73139
73140
73141
73142
73143
73144
73145
73146
73147
73148
73149
73150
73151
73152
73153
73154
73155
73156
73157
73158
73159
73160
73161
73162
73163
73164
73165
73166
73167
73168
73169
73170
73171
73172
73173
73174
73175
73176
73177
73178
73179
73180
73181
73182
73183
73184
73185
73186
73187
73188
73189
73190
73191
73192
73193
73194
73195
73196
73197
73198
73199
73200
73201
73202
73203
73204
73205
73206
73207
73208
73209
73210
73211
73212
73213
73214
73215
73216
73217
73218
73219
73220
73221
73222
73223
73224
73225
73226
73227
73228
73229
73230
73231
73232
73233
73234
73235
73236
73237
73238
73239
73240
73241
73242
73243
73244
73245
73246
73247
73248
73249
73250
73251
73252
73253
73254
73255
73256
73257
73258
73259
73260
73261
73262
73263
73264
73265
73266
73267
73268
73269
73270
73271
73272
73273
73274
73275
73276
73277
73278
73279
73280
73281
73282
73283
73284
73285
73286
73287
73288
73289
73290
73291
73292
73293
73294
73295
73296
73297
73298
73299
73300
73301
73302
73303
73304
73305
73306
73307
73308
73309
73310
73311
73312
73313
73314
73315
73316
73317
73318
73319
73320
73321
73322
73323
73324
73325
73326
73327
73328
73329
73330
73331
73332
73333
73334
73335
73336
73337
73338
73339
73340
73341
73342
73343
73344
73345
73346
73347
73348
73349
73350
73351
73352
73353
73354
73355
73356
73357
73358
73359
73360
73361
73362
73363
73364
73365
73366
73367
73368
73369
73370
73371
73372
73373
73374
73375
73376
73377
73378
73379
73380
73381
73382
73383
73384
73385
73386
73387
73388
73389
73390
73391
73392
73393
73394
73395
73396
73397
73398
73399
73400
73401
73402
73403
73404
73405
73406
73407
73408
73409
73410
73411
73412
73413
73414
73415
73416
73417
73418
73419
73420
73421
73422
73423
73424
73425
73426
73427
73428
73429
73430
73431
73432
73433
73434
73435
73436
73437
73438
73439
73440
73441
73442
73443
73444
73445
73446
73447
73448
73449
73450
73451
73452
73453
73454
73455
73456
73457
73458
73459
73460
73461
73462
73463
73464
73465
73466
73467
73468
73469
73470
73471
73472
73473
73474
73475
73476
73477
73478
73479
73480
73481
73482
73483
73484
73485
73486
73487
73488
73489
73490
73491
73492
73493
73494
73495
73496
73497
73498
73499
73500
73501
73502
73503
73504
73505
73506
73507
73508
73509
73510
73511
73512
73513
73514
73515
73516
73517
73518
73519
73520
73521
73522
73523
73524
73525
73526
73527
73528
73529
73530
73531
73532
73533
73534
73535
73536
73537
73538
73539
73540
73541
73542
73543
73544
73545
73546
73547
73548
73549
73550
73551
73552
73553
73554
73555
73556
73557
73558
73559
73560
73561
73562
73563
73564
73565
73566
73567
73568
73569
73570
73571
73572
73573
73574
73575
73576
73577
73578
73579
73580
73581
73582
73583
73584
73585
73586
73587
73588
73589
73590
73591
73592
73593
73594
73595
73596
73597
73598
73599
73600
73601
73602
73603
73604
73605
73606
73607
73608
73609
73610
73611
73612
73613
73614
73615
73616
73617
73618
73619
73620
73621
73622
73623
73624
73625
73626
73627
73628
73629
73630
73631
73632
73633
73634
73635
73636
73637
73638
73639
73640
73641
73642
73643
73644
73645
73646
73647
73648
73649
73650
73651
73652
73653
73654
73655
73656
73657
73658
73659
73660
73661
73662
73663
73664
73665
73666
73667
73668
73669
73670
73671
73672
73673
73674
73675
73676
73677
73678
73679
73680
73681
73682
73683
73684
73685
73686
73687
73688
73689
73690
73691
73692
73693
73694
73695
73696
73697
73698
73699
73700
73701
73702
73703
73704
73705
73706
73707
73708
73709
73710
73711
73712
73713
73714
73715
73716
73717
73718
73719
73720
73721
73722
73723
73724
73725
73726
73727
73728
73729
73730
73731
73732
73733
73734
73735
73736
73737
73738
73739
73740
73741
73742
73743
73744
73745
73746
73747
73748
73749
73750
73751
73752
73753
73754
73755
73756
73757
73758
73759
73760
73761
73762
73763
73764
73765
73766
73767
73768
73769
73770
73771
73772
73773
73774
73775
73776
73777
73778
73779
73780
73781
73782
73783
73784
73785
73786
73787
73788
73789
73790
73791
73792
73793
73794
73795
73796
73797
73798
73799
73800
73801
73802
73803
73804
73805
73806
73807
73808
73809
73810
73811
73812
73813
73814
73815
73816
73817
73818
73819
73820
73821
73822
73823
73824
73825
73826
73827
73828
73829
73830
73831
73832
73833
73834
73835
73836
73837
73838
73839
73840
73841
73842
73843
73844
73845
73846
73847
73848
73849
73850
73851
73852
73853
73854
73855
73856
73857
73858
73859
73860
73861
73862
73863
73864
73865
73866
73867
73868
73869
73870
73871
73872
73873
73874
73875
73876
73877
73878
73879
73880
73

540 ETHICS STATEMENT
541

542 This paper does not involve studies with human subjects, and it does not raise any concerns regarding
543 harmful insights, discrimination, or privacy issues. The methods employed focus on improving the
544 efficiency of transformer models in machine learning tasks such as image classification, generation,
545 and natural language processing. No conflicts of interest are present, and the research adheres to the
546 highest standards of scientific integrity.

548 REPRODUCIBILITY STATEMENT
549

550 To ensure reproducibility, the authors have provided sufficient details on the methods and exper-
551 imental setup. The MHLA implementation and experiments are described in detail in the paper.
552 The code will be publicly available once the paper is accepted. All experiments, including image
553 classification and generation tasks, are reproducible as they adhere to standard benchmarks (e.g.,
554 ImageNet-1K) and configurations from previous work. The authors have also included the results
555 for different model architectures and configurations, demonstrating consistency across various tasks.
556 Further, the supplementary appendix provides additional implementation details to facilitate repro-
557 duction.

559 REFERENCES
560

561 Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhdian Huang, Zhengxiao Du, Xiao
562 Liu, Aohan Zeng, Lei Hou, et al. Longbench: A bilingual, multitask benchmark for long context
563 understanding. In *Proceedings of the 62nd Annual Meeting of the Association for Computational
564 Linguistics (Volume 1: Long Papers)*, pp. 3119–3137, 2024.

565 Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document transformer. In
566 *arXiv preprint arXiv:2004.05150*, 2020.

567 Srinadh Bhojanapalli, Chulhee Yun, Ankit Singh Rawat, Sashank J. Reddi, and Sanjiv Kumar. Low-
568 rank bottleneck in multi-head attention models, 2020. URL <https://arxiv.org/abs/2002.07028>.

569 Tom Brown et al. Language models are few-shot learners. *Advances in Neural Information Pro-
570 cessing Systems (NeurIPS)*, 2020.

571 Yuan Cao and Dong Wang. Saga: Selective adaptive gating for efficient and expressive linear atten-
572 tion, 2025. URL <https://arxiv.org/abs/2509.12817>.

573 Junsong Chen, Jincheng Yu, Chongjian Ge, Lewei Yao, Enze Xie, Yue Wu, Zhongdao Wang, James
574 Kwok, Ping Luo, Huchuan Lu, and Zhenguo Li. Pixart- α : Fast training of diffusion transformer
575 for photorealistic text-to-image synthesis, 2023.

576 Junsong Chen, Chongjian Ge, Enze Xie, Yue Wu, Lewei Yao, Xiaozhe Ren, Zhongdao Wang, Ping
577 Luo, Huchuan Lu, and Zhenguo Li. Pixart- σ : Weak-to-strong training of diffusion transformer
578 for 4k text-to-image generation, 2024.

579 Rewon Child et al. Generating long sequences with sparse transformers. In *Advances in Neural
580 Information Processing Systems (NeurIPS)*, 2019.

581 Krzysztof Choromanski et al. Rethinking attention with performers. In *International Conference on
582 Learning Representations (ICLR)*, 2021.

583 Xiangxiang Chu, Zhi Tian, Bo Zhang, Xinlong Wang, and Chunhua Shen. Conditional positional
584 encodings for vision transformers. *arXiv preprint arXiv:2102.10882*, 2021.

585 Tri Dao. FlashAttention-2: Faster attention with better parallelism and work partitioning. In *Inter-
586 national Conference on Learning Representations (ICLR)*, 2024.

587 Tri Dao and Albert Gu. Transformers are SSMs: Generalized models and efficient algorithms
588 through structured state space duality. In *International Conference on Machine Learning (ICML)*,
589 2024.

594 Tri Dao et al. Flashattention: Fast and memory-efficient exact attention with io-awareness. In
 595 *Advances in Neural Information Processing Systems (NeurIPS)*, 2022.
 596

597 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
 598 erarchical image database. In *2009 IEEE conference on computer vision and pattern recognition*,
 599 pp. 248–255. Ieee, 2009.

600 Yichuan Deng, Zhao Song, and Tianyi Zhou. Superiority of softmax: Unveiling the performance
 601 edge over linear attention. *arXiv preprint arXiv:2310.11685*, 2023.
 602

603 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
 604 bidirectional transformers for language understanding. *arXiv preprint arXiv:1810.04805*, 2018.

605 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
 606 bidirectional transformers for language understanding. *NAACL*, 2019.
 607

608 Alexey Dosovitskiy et al. An image is worth 16x16 words: Transformers for image recognition at
 609 scale. In *International Conference on Learning Representations (ICLR)*, 2021.
 610

611 Patrick Esser, Robin Rombach, and Björn Ommer. Taming transformers for high-resolution image
 612 synthesis. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, 2021.

613 Qihang Fan, Huaibo Huang, Xiaoqiang Zhou, and Ran He. Lightweight vision transformer with
 614 bidirectional interaction. In *Proceedings of the 37th International Conference on Neural Infor-
 615 mation Processing Systems*, NIPS '23, Red Hook, NY, USA, 2023. Curran Associates Inc.

616 Qihang Fan, Huaibo Huang, Yuang Ai, and Ran He. Rectifying magnitude neglect in linear attention.
 617 In *ICCV*, 2025a.
 618

619 Qihang Fan, Huaibo Huang, and Ran He. Breaking the low-rank dilemma of linear attention. In
 620 *CVPR*, 2025b.
 621

622 Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. *arXiv
 623 preprint arXiv:2312.00752*, 2023.

624 Dongchen Han, Xuran Pan, Yizeng Han, Shiji Song, and Gao Huang. Flatten transformer: Vi-
 625 sion transformer using focused linear attention. In *Proceedings of the IEEE/CVF International
 626 Conference on Computer Vision (ICCV)*, pp. 5961–5971, October 2023.
 627

628 Dongchen Han, Yifan Pu, Zhuofan Xia, Yizeng Han, Xuran Pan, Xiu Li, Jiwen Lu, Shiji Song, and
 629 Gao Huang. Bridging the divide: Reconsidering softmax and linear attention. In *NeurIPS*, 2024.

630 Ali Hassani, Steven Walton, Jiachen Li, Shen Li, and Humphrey Shi. Neighborhood attention trans-
 631 former. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
 632 (CVPR)*, pp. 6185–6194, June 2023.
 633

634 Ali Hatamizadeh and Jan Kautz. Mambavision: A hybrid mamba-transformer vision backbone.
 635 In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 25261–25270,
 636 2025.

637 Qibin Hou, Daquan Zhou, and Jiashi Feng. Coordinate attention for efficient mobile network design.
 638 In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp.
 639 13713–13722, 2021.
 640

641 Weizhe Hua, Zihang Dai, Hanxiao Liu, and Quoc Le. Transformer quality in linear time. In *Inter-
 642 national conference on machine learning*, pp. 9099–9117. PMLR, 2022.

643 Angelos Katharopoulos et al. Transformers are rnns: Fast autoregressive transformers with linear
 644 attention. In *International Conference on Machine Learning (ICML)*, 2020.
 645

646 Weijie Kong, Qi Tian, Zijian Zhang, Rox Min, Zuozhuo Dai, Jin Zhou, Jiangfeng Xiong, Xin Li,
 647 Bo Wu, Jianwei Zhang, et al. Hunyuanyvideo: A systematic framework for large video generative
 648 models. *arXiv preprint arXiv:2412.03603*, 2024.

648 Yue Liu, Yunjie Tian, Yuzhong Zhao, Hongtian Yu, Lingxi Xie, Yaowei Wang, Qixiang Ye, and
 649 Yunfan Liu. Vmamba: Visual state space model. *arXiv preprint arXiv:2401.10166*, 2024.
 650

651 Ze Liu et al. Swin transformer: Hierarchical vision transformer using shifted windows. In *International*
 652 *Conference on Computer Vision (ICCV)*, 2021.

653 William Peebles and Saining Xie. Scalable diffusion models with transformers. In *Proceedings of*
 654 *the IEEE/CVF international conference on computer vision*, pp. 4195–4205, 2023.
 655

656 Guilherme Penedo, Hynek Kydlíček, Loubna Ben allal, Anton Lozhkov, Margaret Mitchell, Colin
 657 Raffel, Leandro Von Werra, and Thomas Wolf. The fineweb datasets: Decanting the web for the
 658 finest text data at scale, 2024. URL <https://arxiv.org/abs/2406.17557>.
 659

660 Bo Peng, Eric Alcaide, Quentin Anthony, Alon Albalak, Samuel Arcadinho, Stella Biderman,
 661 Huanqi Cao, Xin Cheng, Michael Chung, Matteo Grella, et al. Rwkv: Reinventing rnns for
 662 the transformer era. *arXiv preprint arXiv:2305.13048*, 2023.

663 Bo Peng, Daniel Goldstein, Quentin Anthony, Alon Albalak, Eric Alcaide, Stella Biderman, Eugene
 664 Cheah, Xingjian Du, Teddy Ferdinand, Haowen Hou, et al. Eagle and finch: Rwkv with matrix-
 665 valued states and dynamic recurrence. *arXiv preprint arXiv:2404.05892*, 2024.
 666

667 Hao Peng et al. Random feature attention. In *International Conference on Learning Representations*
 668 (*ICLR*), 2021.

669

670 Zhen Qin, Xiaodong Han, Weixuan Sun, Dongxu Li, Lingpeng Kong, Nick Barnes, and Yiran
 671 Zhong. The devil in linear transformer. *arXiv preprint arXiv:2210.10340*, 2022.

672 Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
 673 models are unsupervised multitask learners. 2019.

674

675 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 676 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF confer-*
 677 *ence on computer vision and pattern recognition*, pp. 10684–10695, 2022.

678 Chitwan Saharia et al. Photorealistic text-to-image diffusion models with deep language under-
 679 standing. In *Advances in Neural Information Processing Systems (NeurIPS)*, 2022.

680

681 Zhiqiang Shen, Tianhua Tao, Liqun Ma, Willie Neiswanger, Zhengzhong Liu, Hongyi Wang, Bowen
 682 Tan, Joel Hestness, Natalia Vassilieva, Daria Soboleva, and Eric Xing. Slimpajama-dc: Under-
 683 standing data combinations for llm training, 2024. URL <https://arxiv.org/abs/2309.10818>.
 684

685

686 Zhuoran Shen et al. Efficient attention: Attention with linear complexities. In *WACV*, 2021.

687

688 Yuheng Shi, Minjing Dong, and Chang Xu. Multi-scale vmamba: Hierarchy in hierarchy visual
 689 state space model. *Advances in Neural Information Processing Systems*, 37:25687–25708, 2024.

690

691 Yutao Sun, Li Dong, Shaohan Huang, Shuming Ma, Yuqing Xia, Jilong Xue, Jianyong Wang, and
 692 Furu Wei. Retentive network: A successor to Transformer for large language models. *ArXiv*,
 693 abs/2307.08621, 2023.

694

695 Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and
 696 Hervé Jegou. Training data-efficient image transformers amp; distillation through attention. In
 697 *International Conference on Machine Learning*, volume 139, pp. 10347–10357, July 2021.

698

699 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
 700 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
 701 efficient foundation language models. *arXiv preprint arXiv:2302.13971*, 2023.

702

703 Ashish Vaswani et al. Attention is all you need. In *Advances in Neural Information Processing*
 704 *Systems (NeurIPS)*, 2017.

702 Jiahao Wang, Ning Kang, Lewei Yao, Mengzhao Chen, Chengyue Wu, Songyang Zhang, Shuchen
 703 Xue, Yong Liu, Taiqiang Wu, Xihui Liu, Kaipeng Zhang, Shifeng Zhang, Wenqi Shao, Zhenguo
 704 Li, and Ping Luo. Lit: Delving into a simple linear diffusion transformer for image generation,
 705 2025. URL <https://arxiv.org/abs/2501.12976>.

706 Sinong Wang et al. Linformer: Self-attention with linear complexity. In *Advances in Neural Infor-*
 707 *mation Processing Systems (NeurIPS)*, 2020.

709 Enze Xie, Junsong Chen, Junyu Chen, Han Cai, Haotian Tang, Yujun Lin, Zhekai Zhang, Muyang
 710 Li, Ligeng Zhu, Yao Lu, and Song Han. Sana: Efficient high-resolution image synthesis with
 711 linear diffusion transformers, 2024. URL <https://arxiv.org/abs/2410.10629>.

712 Yunyang Xiong et al. Nyströmformer: A nyström-based algorithm for approximating self-attention.
 713 In *AAAI Conference on Artificial Intelligence*, 2021.

715 Songlin Yang, Bailin Wang, Yikang Shen, Rameswar Panda, and Yoon Kim. Gated linear atten-
 716 tion transformers with hardware-efficient training, 2024. URL <https://arxiv.org/abs/2312.06635>.

718 Songlin Yang, Jan Kautz, and Ali Hatamizadeh. Gated delta networks: Improving mamba2 with
 719 delta rule. In *The Thirteenth International Conference on Learning Representations*, 2025. URL
 720 <https://openreview.net/forum?id=r8H7xhYPwz>.

722 Manzil Zaheer et al. Big bird: Transformers for longer sequences. In *Advances in Neural Infor-*
 723 *mation Processing Systems (NeurIPS)*, 2020.

724 Zhisong Zhang, Yan Wang, Xinting Huang, Tianqing Fang, Hongming Zhang, Chenlong Deng,
 725 Shuaiyi Li, and Dong Yu. Attention entropy is a key factor: An analysis of parallel context
 726 encoding with full-attention-based pre-trained language models, 2025. URL <https://arxiv.org/abs/2412.16545>.

729 Daquan Zhou, Bingyi Kang, Xiaojie Jin, Linjie Yang, Xiaochen Lian, Zihang Jiang, Qibin Hou,
 730 and Jiashi Feng. Deepvit: Towards deeper vision transformer. *arXiv preprint arXiv:2103.11886*,
 731 2021.

732 Daquan Zhou, Weimin Wang, Hanshu Yan, Weiwei Lv, Yizhe Zhu, and Jiashi Feng. Magicvideo:
 733 Efficient video generation with latent diffusion models. *arXiv preprint arXiv:2211.11018*, 2022.

735 Yupeng Zhou, Daquan Zhou, Ming-Ming Cheng, Jiashi Feng, and Qibin Hou. Storydiffusion: Con-
 736 sistent self-attention for long-range image and video generation. *Advances in Neural Information
 737 Processing Systems*, 37:110315–110340, 2024.

738 Lianghui Zhu, Zilong Huang, Bencheng Liao, Jun Hao Liew, Hanshu Yan, Jiashi Feng, and Xing-
 739 gang Wang. Dig: Scalable and efficient diffusion models with gated linear attention. In *Pro-
 740 ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp.
 741 7664–7674, June 2025.

742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755

756 **PAPER APPENDIX FOR MHLA: RESTORING EXPRESSIVITY OF**
 757 **LINEAR ATTENTION VIA TOKEN-LEVEL MULTI-HEAD**
 758

759 **A FULL RELATED WORKS**
 760

761 **Transformer.** Since the introduction of the Transformer architecture (Vaswani et al., 2017), self-
 762 attention has become the dominant mechanism across a wide range of domains, including natural
 763 language processing (Devlin et al., 2019; Brown et al., 2020), computer vision (Dosovitskiy et al.,
 764 2021; Liu et al., 2021; Hou et al., 2021; Zhou et al., 2021), and generative modeling (Esser et al.,
 765 2021; Saharia et al., 2022). The expressive power of self-attention stems from its ability to model
 766 pairwise interactions among all tokens, but this comes at a quadratic cost in both computation and
 767 memory. This limitation becomes particularly pronounced in large-scale or real-time applications,
 768 motivating the exploration of more efficient attention mechanisms. A broad spectrum of strategies
 769 has been proposed, such as sparse attention (Child et al., 2019; Beltagy et al., 2020; Zaheer et al.,
 770 2020), low-rank approximations (Wang et al., 2020; Xiong et al., 2021), and hardware-optimized
 771 variants such as FlashAttention (Dao et al., 2022; Dao, 2024). Despite these advances, designing ef-
 772 ficient attention mechanisms that maintain both scalability and accuracy remains an open challenge.
 773

774 **Linear Attention.** Linear attention has emerged as a prominent direction for addressing the
 775 quadratic complexity of standard self-attention. Early works reformulated the softmax operation
 776 with kernel-based feature mappings, enabling linear-time complexity in both training and inference
 777 (Katharopoulos et al., 2020; Choromanski et al., 2021; Peng et al., 2023; 2024; Yang et al.,
 778 2024). While these approaches make Transformers scalable to long sequences, they often suffer
 779 from reduced representational power compared to full softmax attention, leading to accuracy drops
 780 in challenging tasks such as vision and generative modeling. To bridge this gap, subsequent research
 781 has incorporated additional modules to enrich the expressiveness of linear attention. For example,
 782 convolutional layers have been introduced to capture local context (Peng et al., 2021; Shen et al.,
 783 2021; Han et al., 2023; Fan et al., 2025b), gating mechanisms have been proposed to better control
 784 information flow. More recently, state space models such as Mamba (Gu & Dao, 2023; Dao & Gu,
 785 2024) and its variants (Shi et al., 2024; Liu et al., 2024) have also been explored as efficient
 786 alternatives to linear attention, showing strong scalability on long sequences and competitive
 787 accuracy. However, these methods still face two fundamental limitations: (1) when applied in a
 788 unidirectional form to tasks requiring bidirectional attention, they exhibit substantial performance
 789 degradation; and (2) when augmented with extra modules (e.g., convolutional layers or additional
 790 self-attention blocks), they inevitably incur higher computational overhead and remain vulnerable
 791 to *global context collapse* (see Sec. 2.2), where the global summary loses representational diversity
 792

793 **Sparse Attention.** In addition to linear attention, sparse attention mechanisms have been another
 794 major approach to addressing the computational bottleneck in Transformers. Methods such as Long-
 795 former (Beltagy et al., 2020) and BigBird (Zaheer et al., 2020) introduce sparse attention patterns,
 796 where each token only attends to a subset of the other tokens, reducing the overall number of attention
 797 operations. These methods exploit structural sparsity (e.g., local or global attention patterns) to
 798 maintain efficiency while still capturing global context in long sequences. Other techniques, such
 799 as the Performer (Choromanski et al., 2021), propose using kernel approximations to achieve sparse
 800 attention while preserving the model’s expressive power. Although sparse attention mechanisms im-
 801 prove scalability, they often introduce trade-offs in terms of accuracy, especially in tasks requiring
 802 full token interactions.

803 **Applications of Linear and Sparse Attention.** Linear and sparse attention mechanisms have been
 804 successfully applied across various domains, including NLP, CV, and generative modeling. In NLP,
 805 linear attention has been used to scale models like BERT (Devlin et al., 2018) and GPT (Radford
 806 et al., 2019) to longer sequences, enabling better handling of long documents and improving ef-
 807 ficiency in language models (Devlin et al., 2019; Brown et al., 2020). In computer vision, linear
 808 attention methods have been applied to vision transformers to improve efficiency when processing
 809 large images, as seen in works like Swin Transformer (Liu et al., 2021) and DeiT (Touvron et al.,
 810 2021). These applications demonstrate the broad utility of linear and sparse attention mechanisms,
 811 but also highlight the need for continued development to balance efficiency with the expressive
 812 power required by complex tasks like image generation and video understanding.

810 B QUERY-CONDITIONED SELECTIVITY IN SOFTMAX ATTENTION 811

812 A key advantage of softmax self-attention is its *query-conditioned selectivity*. Recall the standard
813 attention formulation:

$$814 \quad \text{Attn}(Q, K, V)_i = \sum_{j=1}^N \alpha_{ij} v_j, \quad \alpha_{ij} = \frac{\exp(q_i^\top k_j)}{\sum_{t=1}^N \exp(q_i^\top k_t)}.$$

815 Two properties are crucial: (i) **Query-conditioned weighting**: each query q_i produces its own
816 distribution $\{\alpha_{ij}\}_{j=1}^N$, so the relative importance of token k_j is fully dependent on q_i ; (ii) **Per-
817 token weighting**: the weights act directly on each v_j , without collapsing V into a global summary.
818 Together, these properties give softmax attention the ability to produce highly adaptive, sharply
819 concentrated context vectors.

820 By contrast, *global linear attention* aggregates all tokens into a single summary matrix $S^{\text{global}} =$
821 $\sum_{j=1}^N \tilde{K}_j V_j^\top$ shared by all queries, yielding

$$822 \quad \text{Attn}_{\text{lin}}(Q, K, V)_i = \frac{\tilde{q}_i^\top S^{\text{global}}}{\tilde{q}_i^\top (\sum_{j=1}^N \tilde{K}_j)},$$

823 where the per-token contributions are no longer explicitly separable by i . As a result, different
824 queries obtain nearly identical context vectors, losing query-conditioned selectivity.

825 **MHLA restores query-conditioned selectivity.** MHLA bridges this gap by introducing a learn-
826 able coefficient matrix \mathcal{M}_c that forms *query-block-specific mixtures* of local summaries:

$$827 \quad \tilde{S}_i = \sum_{b=1}^M m_{i,b} S_b \quad \Rightarrow \quad \text{Attn}_{\text{MHLA}}(Q, K, V)_i = \tilde{q}_i^\top \tilde{S}_i.$$

828 Because $m_{i,b}$ varies with the query block i , MHLA assigns different effective weights to the same
829 token depending on the querying block. Expanding S_b into its token-level definition gives

$$830 \quad \tilde{q}_i^\top \tilde{S}_i = \sum_{t=1}^N m_{i,b(t)} (\tilde{q}_i^\top \tilde{K}_t) V_t^\top,$$

831 revealing a two-stage weighting mechanism: (i) block-level selection $m_{i,b(t)}$ that is query-
832 conditioned, followed by (ii) within-block token reweighting via the kernel inner product $\tilde{q}_i^\top \tilde{K}_t$.
833 This design reintroduces query-conditioned selectivity and per-token weighting while preserving
834 the linear-time complexity of kernelized attention.

835 C MHLA FOR AUTOREGRESSIVE MODELING

836 In autoregressive modeling, the causal mask prevents each token from attending to future tokens.
837 While linear attention normally achieves $O(Nd^2)$ complexity by reusing a global key-value sum-
838 mary, under causal masking the summary must be recomputed or updated for each prefix, which
839 naively results in $O(N^2d)$ cost over the full sequence. To avoid this quadratic overhead, a widely
840 adopted solution for linear attention is *chunkwise parallel training* (Sun et al., 2023), which splits
841 the sequence into blocks of size C and processes them in parallel to avoid the quadratic cost of
842 recomputing attention over all past tokens. For block b , a local key-value summary is computed as
843 $S_b = \sum_{j \in b} \tilde{K}_j V_j^\top \in \mathbb{R}^{d \times d}$, and the global summary is updated recursively:

$$844 \quad S_i^{\text{global}} = S_{i-1}^{\text{global}} + S_i, \quad H_i = Q_i S_{i-1}^{\text{global}} + (Q_i \tilde{K}_i^\top) V_i.$$

845 Here, the first term propagates context from preceding blocks via the prefix summary S_{i-1}^{global} , while
846 the second term captures intra-block attention. This chunkwise scheme preserves causality and
847 allows block-parallel training with per-block complexity $O(Cd^2 + C^2d)$, leading to an overall cost
848 $O(\frac{L}{C}(Cd^2 + C^2d))$ for a sequence of length L .

864 **MHLA with chunkwise parallel training.** MHLA extends this scheme by replacing the single
 865 global summary with *query-conditioned mixtures* of local summaries. Specifically, for block i we
 866 form a mixed summary
 867

$$868 \quad \tilde{S}_i = \sum_{b \leq i} m_{i,b} S_b, \quad H_i = Q_i \tilde{S}_{i-1} + m_{i,b} (Q_i \tilde{K}_i^\top) V_i.$$

$$869$$

870 where $m_{i,b}$ are the learnable mixing coefficients from the causal coefficient matrix $\mathcal{M}_c^{\text{causal}}$ (upper-
 871 triangular entries masked to enforce causality). Queries in block i then interact only with \tilde{S}_i , yielding
 872 block-specific, query-adaptive context representations rather than a shared global one. Because
 873 the mixing is performed once per block and reused for all tokens in that block, the asymptotic
 874 complexity matches that of chunkwise linear attention.
 875

876 **Causal inference.** At inference time, we maintain the set of past local summaries $\{S_1, \dots, S_{i-1}\}$
 877 and incrementally update the current block summary S_i as new tokens arrive. When a block is
 878 complete, its contribution to future mixtures is fixed and cached. For a new token in block i , we
 879 simply update $S_i \leftarrow S_i + \tilde{K}_t V_t^\top$ and recompute the block’s mixed summary \tilde{S}_i by applying $m_{i,i}$
 880 to the incremental update. This avoids recomputation over previous blocks and keeps per-token
 881 complexity $O(d^2)$.
 882

883 D DATASET

884
 885 To assess the effectiveness of our approach, we conduct extensive experiments on four tasks: image
 886 classification, class-to-image (C2I) generation, text-to-image (T2I) generation and natural language
 887 processing. Following prior works (Fan et al., 2025a;b; Han et al., 2023), we train classification
 888 and C2I models on ImageNet-1K (Deng et al., 2009) and evaluate them on the standard validation
 889 set. For T2I generation, we finetune a pretrained model using a relative small collection of 31,292k
 890 images gotten from the internet. For natural language processing, we train models with a subset of
 891 SlimPajama (Shen et al., 2024) with 5B tokens.
 892

893 E EXTRA IMPLEMENTATION DETAILS

894
 895 **Image Classification.** For training of DeiT, we replace the class token with average pooling and
 896 train all baselines under identical settings to ensure fair comparison. We additionally add CPE (Chu
 897 et al., 2021) with kernel size of 3 following previous works for a fair comparison. For VLT, we
 898 strictly follow the setup in (Fan et al., 2025b). All models are trained for 300 epochs with a batch
 899 size of 1024 and a peak learning rate of 1e-3. For models with input size of 224, we pad the input
 900 size to 256 for better splitting of heads. The head number M is set to 16 for DeiT modes. For
 901 VLT models, the sequence length for the two linear attention layer is {3136, 784}. So we set head
 902 number M to {49, 16} for the two layers respectively.
 903

904 F COMPLETE EXPERIMENTAL RESULTS

905 F.1 IMAGE GENERATION

906 We illustrate the complete results on DiT and DiG models in Tab. 10 and Tab. 9. We provide more
 907 generation results of SANA-MHLA in Fig. 7.
 908

911 Table 9: Fast adaptation results on DiT-XL/2 with MHLA, with and without guidance.
 912

913 Model	914 Attention Type	915 Resolution	916 FID \downarrow	917 IS \uparrow	918 sFID \downarrow	919 Precision \uparrow	920 Recall \uparrow
921 DiT-XL/2	922 Self Attention	923 256	9.62	121.50	6.85	0.67	0.67
	924 MHLA (Ours)	925 256	8.34	121.27	5.52	0.69	0.65
926 DiT-XL/2(G)	927 Self Attention	928 256	2.27	278.24	4.60	0.83	0.57
	929 MHLA (Ours)	930 256	2.54	252.07	4.67	0.83	0.56

918
919
Table 10: Comparison of different attention types across models.

920 Model	921 Attention Type	922 Resolution	923 FID \downarrow	924 IS \uparrow	925 sFID \downarrow	926 Precision \uparrow	927 Recall \uparrow
928 DiT-S/2	Self Attention	256	68.40	—	—	—	—
	Linear Attention	256	89.72	15.24	21.87	0.28	0.41
	MHLA (Ours)	256	59.80	23.49	10.16	0.39	0.56
	Self Attention	512	84.54	15.53	17.02	0.36	0.49
	Linear Attention	512	125.33	33.11	11.64	0.22	0.29
	MHLA (Ours)	512	78.63	13.11	18.50	0.40	0.49
929 DiG-S/2	930 GLA (Yang et al., 2024)	256	62.06	—	—	—	—
	931 GLA	512	99.04	—	—	—	—
	MHLA (Ours)	256	59.49	24.04	11.51	0.40	0.57
932 DiT-B/2	933 Self Attention	256	43.47	—	—	—	—
	934 Linear Attention	256	60.47	24.27	13.69	0.39	0.57
	MHLA (Ours)	256	37.47	38.79	7.35	0.51	0.63
935 DiT-L/2	936 Self Attention	256	23.33	—	—	—	—
	937 Linear Attention	256	32.35	45.57	8.55	0.54	0.62
	MHLA (Ours, w/None)	256	25.37	54.38	6.06	0.59	0.61
	MHLA (Ours, w/ CPE)	256	24.21	57.62	6.12	0.59	0.62
	MHLA (Ours, w/ CPE+Gating)	256	21.37	63.47	5.80	0.61	0.62
940 DiT-XL/2	941 Self Attention	256	19.47	—	—	—	—
	942 Linear Attention	256	28.63	51.15	8.23	0.57	0.62
	MHLA (Ours, w/ None)	256	20.32	65.95	6.01	0.61	0.62
	MHLA (Ours, w/ CPE)	256	22.79	61.80	5.53	0.60	0.62
	MHLA (Ours, w/ CPE+Gating)	256	19.17	68.97	5.70	0.63	0.62

941
942 Table 11: Comparison with LiT. We report the FID scores (mean \pm std) over three independent runs
943 for MHLA to demonstrate result stability.

944 Model	945 FID (mean \pm std)
946 LiT-S/2	947 63.21
948 DiT-S/2 with MHLA	949 59.744 ± 0.100
950 LiT-B/2	951 40.86
952 DiT-B/2 with MHLA	953 37.519 ± 0.039
954 LiT-L/2	24.04
955 DiT-L/2 with MHLA	21.426 ± 0.051
956 LiT-XL/2	20.66
957 DiT-XL/2 with MHLA	19.164 ± 0.031

958 We additionally provide more comprehensive comparisons against other recent linear attention
959 method on image generation tasks (Wang et al., 2025), and report the mean and standard deviation
960 of MHLA over three independent runs to demonstrate the stability of our results. The corresponding
961 results are summarized in Tab. 11.

962
963 F.2 ABLATION OF CPE AND OUTPUT GATING.

964 We conducted a detailed analysis of the effects of CPE and Output
965 Gating when combined with MHLA in the DiT-S model as shown
966 in Tab. 12. Our findings show that, in smaller models, CPE and Out-
967 put Gating serve as orthogonal optimizations of MHLA, effectively
968 enhancing the expressive ability when the model size is insufficient.
969 However, our experiments in Tab. 3a indicate that the performance
970 gains from CPE and Output Gating diminish as the model size in-
971 creases. In the DiT-XL model, adding CPE alone actually leads to
972 a performance decrease. In contrast, MHLA consistently provides
973 significant improvements in expressivity, regardless of model size.

974
975 Table 12: Ablation study of
976 MHLA with CPE and output
977 gating.

978 Setting	979 FID
980 Linear Attention	89.7
981 MHLA w/ None	76.4
982 MHLA w/ CPE	64.0
983 MHLA w/ Gating	68.5
984 MHLA w/ CPE+Gating	59.8

972 Table 14: Profiling results of MHLA under varying sequence length N and token-level head number
 973 M . Left: DiT-S/2. Right: DeiT-S/16.

M\N	256	1024	4096	M\N	256	1024
4	42ms 3.7G	52ms 7.1G	147ms 20.8G	4	129 imgs/s 3.4G	124 imgs/s 8.9G
16	40ms 3.9G	51ms 7.2G	145ms 21.0G	16	118 imgs/s 3.8G	118 imgs/s 9.4G
64	39ms 4.8G	52ms 8.0G	148ms 21.7G	64	150 imgs/s 5.7G	104 imgs/s 11.0G
256	—	61ms 12.0G	157ms 25.4G	256	—	89 imgs/s 18.0G
1024	—	—	219ms 40.0G			

979 Figure 7: More generation results from our fine-tuned SANA-MHLA model.

994 F.3 CLASSIFICATION RESULTS ON HIGHER RESOLUTIONS

995 We further conducted additional experiments at resolutions of 384×384 and 512×512 , using the DeiT-T model
 996 to verify the effectiveness of MHLA on high-resolution
 997 classification tasks. Results are shown in Tab. 13.

998 Table 13: High-resolution classification
 999 accuracy of DeiT-T with and without
 1000 MHLA.

Model	Resolution	ACC
DeiT-T	384×384	74.4
DeiT-T + MHLA	384×384	77.5
DeiT-T	512×512	75.3
DeiT-T + MHLA	512×512	78.3

1000 F.4 SCALING ANALYSIS

1001 In this section, we conduct empirical studies to evaluate the throughput of MHLA across different tasks under
 1002 varying sequence lengths N and token-level head numbers M . The results in Tab. 14 show that when $M^2 < N$ is satisfied, MHLA introduces only negligible overhead, whereas larger M leads to
 1003 more noticeable overhead. However, our ablation studies in Tab. 8b have already demonstrated that
 1004 choosing M such that $M^2 < N$ is sufficient to achieve strong performance.

1005 G CLARIFICATION ON TERMINOLOGY AND COMPUTATIONAL CONCEPTS

1006 In this section, we provide formal definitions for the terminology used in our method. These terms
 1007 describe novel computational behaviors in MHLA that lack direct analogues in prior linear attention
 1008 formulations.

1009 G.1 CONCEPT 1: *query-conditioned*

1010 The phrase “query-conditioned” describes a mechanism where the aggregation of contextual information
 1011 is dynamic and specific to each query instance, distinct from the fixed recurrence found in
 1012 standard linear attention.

1013 Specifically, the process operates as follows:

1014

- 1015 • Each query token is associated with a unique vector of mixing coefficients.
- 1016 • These coefficients are used to weight and aggregate all local KV summaries independently for
 1017 every query position.

1018 Consequently, the adaptation occurs *per query*, rather than globally or via a shared recursive rule.

1026
1027G.2 CONCEPT 2: *KV Summary vs. Hidden States*1028
1029
1030
1031

We introduce the term KV Summary to strictly distinguish our approach from the Hidden State found in traditional linear attention papers. While KV summary may seemingly resemble Hidden States in notation, the underlying computation and dependency graphs are structurally different in two key aspects:

1032
1033
1034
1035
1036
1037
1038

- Unlike the strict recursive chain in traditional linear attention where h_t relies on h_{t-1} , MHLA computes each Global KV Summary (S_g) independently, eliminating state propagation across positions.
- While traditional states are derived via a one-to-one update from the previous step, MHLA follows a many-to-one aggregation pattern, where each S_g is computed from *all* local summaries using specific mixing coefficients.

1039
1040
1041

By avoiding the rigid inheritance of history inherent to hidden states, MHLA’s KV summaries achieve greater expressivity and flexibility.

1042
1043

H LLM USAGE.

1044
1045
1046
1047
1048
1049
1050

We used large language models (LLMs) solely as a writing aid to polish the clarity and readability of the manuscript. Specifically, we employed LLM-based tools to (i) refine grammar and phrasing for academic style consistency, (ii) improve logical flow between sections, and (iii) condense overly verbose passages. No new research ideas, experimental designs, or results were produced by the LLM; all scientific contributions, methodology development, and experimental analyses were conceived and executed by the authors.

1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079