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Abstract

Large language models (LLMs) have
demonstrated remarkable performances in
various tasks. However, the performance of
LLMs heavily depends on the input prompt,
which has given rise to a number of recent works
on prompt optimization. However, previous
works often require the availability of a numeric
score to assess the quality of every prompt.
Unfortunately, when a human user interacts with
a black-box LLM, attaining such a score is often
infeasible and unreliable. Instead, it is usually
significantly easier and more reliable to obtain
preference feedback from a human user, i.e.,
showing the user the responses generated from
a pair of prompts and asking the user which
one is preferred. Therefore, in this paper, we
study the problem of prompt optimization with
human feedback (POHF), in which we aim to
optimize the prompt for a black-box LLM using
only human preference feedback. Drawing
inspiration from dueling bandits, we design a
theoretically principled strategy to select a pair
of prompts to query for preference feedback
in every iteration, and hence introduce our
algorithm named automated POHF (APOHF).
We apply our APOHF algorithm to various tasks,
including optimizing user instructions, prompt
optimization for text-to-image generative models,
and response optimization with human feedback
(i.e., further refining the response using a variant
of our APOHF). The results demonstrate that our
APOHF can efficiently find a good prompt using
a small number of preference feedback instances.
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1. Introduction
Large language models (LLMs) have shown impressive
performances in a variety of tasks (Google, 2023; OpenAI,
2023). However, the performances of LLMs are
significantly dependent on the prompt given to them (Zhou
et al., 2023). Unfortunately, finding the best prompt for
an LLM to perform a task is often challenging, especially
considering that the most powerful LLMs nowadays are
often black-box models to which only API access is
available (OpenAI, 2023). This challenge has given rise
to a number of recent works on prompt optimization for
black-box LLMs, which aim to efficiently find the best
prompt for a black-box LLM (Chen et al., 2023; Zhou et al.,
2023; Lin et al., 2024). These works have shown that prompt
optimization can dramatically improve the performances of
black-box LLMs in various tasks. However, these works
often impose a potentially unrealistic requirement on the
tasks: They usually require access to a numeric score to
evaluate the performance of every prompt. This significantly
limits their practicality in real-world use cases.

Specifically, some works on prompt optimization have
assumed the availability of a validation set, which can be
used to evaluate (the response generated from) a candidate
prompt (Chen et al., 2023; Hu et al., 2024; Lin et al.,
2024). Meanwhile, other works have used a separate LLM
(often referred to as the scorer LLM) to provide a score
indicating the efficacy of (the response produced by) a
prompt (Zhou et al., 2023; Yang et al., 2024). However,
when a human user directly interacts with a black-box
LLM to perform a task (i.e., the most common use cases of
LLMs nowadays), these methods to obtain a score are often
unrealistic. This is because in such use cases, a validation
set is usually unavailable and the scorer LLM is unlikely
to provide an accurate assessment of a prompt for the task
the user has in mind. Therefore, these previous prompt
optimization methods are inapplicable for such use cases.
In addition, directly asking a user for a numeric score to
assess (the response generated by) a candidate prompt is
usually infeasible and unreliable (Yue et al., 2012). Instead,
a human user is often significantly more willing to and
reliable at providing preference feedback, i.e., examining
the responses generated by a pair of prompts and indicating
which one is preferred (Yue et al., 2012). This naturally
begs the question: Can we achieve prompt optimization
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Figure 1. Illustration of our automated prompt optimization with
human feedback (APOHF).

using only human preference feedback? In this work, we
tackle this important problem, which we refer to as prompt
optimization with human feedback (POHF).

The significance of POHF can also be highlighted by
drawing an analogy to reinforcement learning with human
feedback (RLHF) (Ziegler et al., 2019). RLHF, as well as
its variants such as direct preference optimization (Rafailov
et al., 2024), uses a dataset of human preference feedback
to fine-tune the parameters of an LLM in order to align
the LLM with human values (Rafailov et al., 2024). The
tremendous success of RLHF is evidence of the advantage
of using human preference feedback to adapt LLMs. While
RLHF has relied on fine-tuning the model parameters
to adapt the response of an LLM (to align with human
values), our POHF aims to use prompt optimization to adapt
the response of an LLM to perform a task for a human.
Interestingly, our algorithm for POHF can be extended to
further refine the response of an LLM through response
optimization with human feedback (Sec. 4.3). Specifically,
for every received prompt, we can use the LLM to generate
a large pool of responses and then strategically select a pair
of responses from the pool to query for user preference
feedback (Dwaracherla et al., 2024). Our goal here is to
find the best response for every given prompt while using
only human preference feedback. This can be useful in
applications where we do not have the flexibility to choose
the prompt, but can sample a large number of responses
from the LLM. For example, it may be adopted by an LLM
provider to further refine its response to user prompts while
only collecting user preference feedback.

Similar to RLHF, in our POHF, it is of paramount
importance to find a good prompt using a small number of
human feedback instances. This is because collecting human
feedback can usually be expensive and time-consuming.
To achieve this, inspired by (Lin et al., 2024), we adopt
the embedding from a pre-trained language model as the
continuous representation of the prompts, and train a neural
network (NN), which takes the embedding as input, to
predict the performance (i.e., the latent score, see Sec. 3.1)
of different prompts. Based on the trained NN, we draw
inspiration from dueling bandits (Saha, 2021; Bengs et al.,
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Figure 2. Latent scores of different methods in user instruction
optimization, averaged over 30 tasks (Sec. 4.1).

2022) and design a theoretically principled strategy to select
the pair of prompts (to query for human feedback) in
every iteration. Specifically, we choose the first prompt
following a greedy strategy, i.e., by selecting the prompt
that is predicted to have the best performance by the trained
NN. Next, we select the second prompt based on the
principle of upper confidence bound, which allows us to
simultaneously exploit the performance prediction from
the NN and explore those prompts whose performance
prediction has large uncertainty. As a result of the accurate
performance prediction of the NN (thanks to the expressive
power of the pre-trained embedding and the NN) and our
principled prompt selection strategy, our algorithm, named
Automated POHF (APOHF), is able to find a good prompt
using only a small number of human preference feedback
instances.

Within our problem setting (illustrated in Fig. 1), our
APOHF algorithm acts as an interface between the user
and the LLM. To adopt our APOHF in practice, the user
only needs to provide (1) an initial task description (e.g.,
a few input-output exemplars or an initial prompt) and
subsequently (2) a series of preference feedback between
pairs of responses (more details in Sec. 3.3). We adopt a
number of tasks to validate the performance of our APOHF,
including optimizating user instructions (Sec. 4.1), prompt
optimization for text-to-image generative models (Sec. 4.2),
and response optimization with human feedback (Sec. 4.3).
In these tasks, our APOHF consistently achieves better
performances than baseline methods, demonstrating its
immense potential in real-world applications.

2. Problem Setting
In POHF, we aim to find a prompt x ∈ X that maximizes
an unknown function u, which we refer to as the latent
score/utility function. That is, we aim to solve the following
optimization problem: x⋆ = argmaxx∈X u(x) while only
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observing human preference feedback. In every iteration
t, we select a pair of prompts xt,1 and xt,2 to obtain their
corresponding LLM-generated responses and show them
to the user. Then, we collect a binary observation yt =
1(xt,1 ≻ xt,2), which is equal to 1 if the human user prefers
the response from xt,1 over that from xt,2 and 0 otherwise.
To model the preference feedback, we adopt the commonly
used Bradley-Terry-Luce (BTL) model (Hunter, 2004). That
is, for any pair of prompts x1 and x2, the probability that x1

is preferred over x2 is given by P(x1 ≻ x2) = σ(u(x1)−
u(x2)), in which σ(·) denotes the logistic function: σ(x) =
1/(1 + e−x). The binary observation yt is then sampled
from a Bernoulli distribution with probability P(x1 ≻ x2).
The stochastic nature of yt allows us to naturally account for
the noise in human preferences between a pair of prompts.
The noise may arise due to different sources of randomness,
such as the randomness in the LLM-generated response for
a given prompt, the variability in human decisions, among
others.

Following recent works on query-efficient prompt
optimization (Chen et al., 2023; Lin et al., 2024), we
convert POHF into a continuous optimization problem.
Specifically, for every prompt x ∈ X in the domain, we
extract the embedding from a pre-trained language model as
its continuous representation. Of note, the previous works
of (Chen et al., 2023) and (Lin et al., 2024) adopted a
separate white-box LLM so that the soft prompt (i.e., a
part of the input to the white-box LLM to generate the
prompt) can be used as the continuous representation of the
prompt. Therefore, compared to (Chen et al., 2023) and (Lin
et al., 2024), our method of adopting the embedding from
a pre-trained model removes the need for the white-box
LLM, and hence significantly reduces the complexity and
computational cost. To simplify notations, hereafter, we use
x to denote the continuous embedding of a prompt in the
domain. Before the beginning of our algorithm, we use the
initial task description from the user (Fig. 1) to generate the
discrete domain of prompts X , which we discuss in more
detail in Sec. 3.3.

3. Automated Prompt Optimization with
Human Feedback (APOHF)

Overview of APOHF (illustrated in Fig. 1). In every
iteration t of our APOHF algorithm (Algo. 1), we firstly
use the current history of preference observations Dt−1 =
{(xs,1, xs,2, ys)}s=1,...,t−1 to train a neural network (NN)
for score prediction (Sec. 3.1). Next, we leverage the
trained NN to select the next pair of prompts xt,1 and
xt,2 to query (Sec. 3.2). Then, the pair of prompts xt,1

and xt,2 are used to generate their respective responses,
which are shown to the human user who gives preference
feedback yt = 1(xt,1 ≻ xt,2) (Sec. 3.3). The newly
collected observation (xt,1, xt,2, yt) is then added to the

history, which is subsequently used to train the NN for the
next iteration t+ 1.

Algorithm 1 Automated Prompt Optimization with Human
Feedback (APOHF)

1: for t = 1, . . . , T do
2: Train NN using history Dt−1 =

{(xs,1, xs,2, ys)}s=1,...,t−1 by minimizing loss
function (1)

3: Choose the first prompt xt,1 by maximizing the NN
prediction

4: Choose the second prompt xt,2 by maximizing the
upper confidence bound in Eq. (2)

5: Obtain the responses from xt,1 and xt,2, and observe
user preference: yt = 1(xt,1 ≻ xt,2)

6: Train NN using entire history, report x∗
T =

argmaxx∈{xs,1,xs,2}s=1,...,T
h(x; θT ) as best prompt

3.1. Training the Neural Network for Latent Score
Prediction

In our APOHF, we adopt an NN (more specifically, a
multi-layer perceptron, or MLP) with parameters θ, denoted
as h(x; θ). The NN takes as input the pre-trained
embedding x of a prompt and predicts its latent score
u(x). Therefore, for a pair of prompts x1 and x2, we use
σ (h(x1; θ)− h(x2; θ)) to model the probability that x1 is
preferred over x2: P(x1 ≻ x2) = σ(u(x1)− u(x2)).

In iteration t, given the current history of preference
observations Dt−1 = {(xs,1, xs,2, ys)}s=1,...,t−1, we train
the NN using gradient descent to minimize the following
loss function:

lt(θ) = −
( t−1∑

s=1

[
ys log σ

(
h(xs,1; θ)− h(xs,2; θ)

)
+

(1− ys) log σ
(
h(xs,2; θ)− h(xs,1; θ)

)])
+ λ ∥θ∥22 .

(1)

Recall that ys = 1(xs,1 ≻ xs,2). Intuitively, minimizing
this loss function (1) corresponds to obtaining the maximum
log-likelihood estimate of the MLP parameters θ (with L2
regularization) using the preference dataset Dt−1. The
strong expressive power of the pre-trained embedding and
the NN helps us accurately estimate the latent score function
u, which is crucial for the strong performance of our
APOHF algorithm. After the NN is trained, the resulting
NN with parameters θt = argminθlt(θ) is used to select
the pair of prompts to query in iteration t (Sec. 3.2).

3.2. Selecting the Next Pair of Prompts
The prompt selection strategy of our APOHF is designed by
drawing inspirations from the theoretically principled linear
dueling bandits (Bengs et al., 2022; Saha, 2021). However,
note that instead of using a linear model to learn the score
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function (Bengs et al., 2022; Saha, 2021), we adopt an
NN (Sec. 3.1) to make our APOHF not only theoretically
grounded but also practically effective. As we verify in
Sec. 4, our APOHF substantially outperforms linear dueling
bandits in all our experiments. We also provide some
high-level theoretical justifications for our prompt selection
strategy in App. C.

We choose the first prompt greedily, i.e., by selecting
the one predicted to have the largest latent score using the
trained NN (Sec. 3.1): xt,1 = argmaxx∈X h(x; θt). Next,
after the first prompt xt,1 is selected, we choose the second
prompt xt,2 by maximizing an upper confidence bound:

xt,2 = argmax
x∈X

[
h(x; θt) +

ν ∥∇h(x; θt)−∇h(xt,1; θt)∥V −1
t−1

]
,

(2)

in which Vt =
∑t

s=1 φ
′
sφ

′⊤
s +λI, and φ′

s = ∇h(xs,1; θs)−
∇h(xs,2; θs). Our strategy to select the second prompt
(2) is able to balance the exploration-exploitation trade-off.
Specifically, the first term h(x; θt) allows us to exploit the
predicted score of the trained NN. Meanwhile, the second
term in (2) characterizes our uncertainty about the score of
x given (a) the prompts selected in the previous iterations
Xt−1 = {(xs,1, xs,2)}s=1,...,t−1 and (b) the first selected
prompt xt,1. Intuitively, a larger value of the second term
(i.e., a larger uncertainty) suggests that x is more different
from the previously queried prompts Xt−1 and the first
selected prompt xt,1. Therefore, maximizing the second
term in (2) helps us explore the domain of prompts by
promoting the selection of a prompt that is different from
the previously selected prompts (including those in Xt−1

and xt,1). Here, ν is a parameter that controls the trade-off
between exploration and exploitation.

In addition to being theoretically principled, another
advantage of our prompt selection strategy is that it provides
us with a natural method to choose the prompt to report as
the best prompt. In POHF, we only have access to binary
preference feedback between pairs of prompts and cannot
observe numeric scores indicating the efficacy of different
prompts. Therefore, it is non-trivial to choose which prompt
to recommend as the best prompt. Interestingly, our strategy
to select the first prompt provides a natural and principled
way to choose the prompt to recommend. Specifically, after
any iteration, we train the NN using the current history of
preference observations, and choose the prompt (among all
previously selected prompts) which maximizes the predicted
score of the trained NN to report as the best prompt (line 6
of Algo. 1). This is in fact analogous to a common practice
in Bayesian optimization, i.e., choosing the input (among
all previously queried inputs) that maximizes the predicted
function value (i.e., the Gaussian process posterior mean) to
report as the best input (Nguyen et al., 2021).

3.3. Collecting User Preference Feedback
After the pair of prompts xt,1 and xt,2 are selected, we
then separately pass them to the target black-box LLM to
produce their corresponding responses. Next, these two
responses are shown to the user, who then gives preference
feedback yt = 1(xt,1, xt,2) indicating which one of the
two responses (generated from xt,1 and xt,2) is preferred.
Then, the newly collected observation (xt,1, xt,2, yt) is
added to the history of preference observations to yield
Dt = {(xs,1, xs,2, ys)}s=1,...,t, after which we use the
updated history Dt to train our NN (Sec. 3.1) and proceed
to the next iteration t+ 1.

In addition to the above-mentioned preference feedback, at
the beginning of our APOHF, the user needs to provide some
initial task description (Fig. 1), which our APOHF algorithm
uses to generate the domain of prompts (Sec. 2). The initial
task description may be in the form of some input-output
exemplars for the task (we follow this in our experiments
in Sec. 4.1), which our APOHF algorithm can use as input
to a powerful LLM to produce the domain of prompts via
in-context learning (Lin et al., 2024). As another example,
the initial task description from the user may also be an
initial prompt for the task (we follow this in our experiments
in Sec. 4.2), and our APOHF algorithm uses a powerful LLM
(e.g., ChatGPT) to rephrase this initial prompt to produce
the domain of prompts. This renders our APOHF algorithm
highly flexible and versatile across a broad spectrum of
real-world applications.

4. Experiments
We test the performance of our APOHF using 3 sets of
tasks: optimization of user instructions (Sec. 4.1), prompt
optimization for text-to-image generative models (Sec. 4.2),
and response optimization with human feedback (Sec. 4.3).
To the best of our knowledge, our APOHF is the first
algorithm that is designed to efficiently solve the problem
of POHF. We compare our APOHF with 3 natural baseline
methods which we adapt to POHF. (1) Random Search
randomly selects a prompt in every iteration and hence
ignores the preference feedback. (2) Linear Dueling
Bandits (Bengs et al., 2022) uses a linear function to model
the latent score function u and adopts a strategy from (Bengs
et al., 2022) to select the pair of prompts (more details in
App. C). After every iteration, the prompt predicted by the
linear model to achieve the largest score is reported as the
best prompt. (3) Double Thompson Sampling (DoubleTS)
was recently applied to the problem of response optimization
with human feedback by (Dwaracherla et al., 2024) and
was shown to be the best-performing method. We follow
the implementation of DoubleTS from (Dwaracherla et al.,
2024): We choose the pair of prompts by independently
running Thompson sampling (TS) twice, in which the
reward/score uncertainty is modeled using Epistemic NNs
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(which consists of 10 individual MLPs). We also use TS
to choose the prompt to report as the best prompt after
every iteration. Note that DoubleTS incurs significantly
more computational costs than our APOHF, mainly because
DoubleTS needs to train 10 MLPs (in contrast to 1 MLP
needed by our APOHF) in every iteration.

4.1. Optimization of User Instructions

To begin with, we simulate real-world scenarios in which a
user aims to find the optimal instruction for a task while only
giving human preference feedback. We adopt 30 instruction
induction tasks from (Chen et al., 2023; Lin et al., 2024),
which have been commonly used by previous works on
instruction optimization for black-box LLMs (Chen et al.,
2023; Hu et al., 2024; Lin et al., 2024). For every task, a
dataset of input-output exemplars is available, which we use
to simulate the human preference feedback. Specifically, for
selecting every pair of instructions/prompts xt,1 and xt,2,
we use the validation dataset for this task to calculate the
validation accuracy achieved by both instructions, which
we adopt as their ground-truth latent score values: u(xt,1)
and u(xt,2). Then, we calculate the preference probability
P(x1 ≻ x2) = σ(u(x1) − u(x2)), and use it as the
probability in a Bernoulli distribution to sample the binary
preference observation yt = 1(xt,1 ≻ xt,2). This
also naturally allows us to report the validation accuracy
achieved by an instruction x as its corresponding latent score
value u(x), which we plot in our results (Fig. 2). Of note,
unlike the previous works (Chen et al., 2023; Hu et al., 2024;
Lin et al., 2024), the validation dataset for each task is not
used by our algorithm; instead, it is only used to simulate
the human preference feedback.

Here, we consider the scenario where the user provides
a small number of input-output exemplars as the initial
task description (Fig. 1), and we use these exemplars
to generate the domain of prompts for our APOHF via
in-context learning (Sec. 3.3). Specifically, to generate
each prompt/instruction in the domain, we randomly sample
5 exemplars from the dataset of 100 exemplars (which
are separate from the validation set), and ask ChatGPT to
generate the instruction that best describes the input-output
relationship of these 5 exemplars via in-context learning.
We provide the ChatGPT template used here in Example 1
(App. A.3). Fig. 2 displays the performances of different
methods averaged over 30 tasks. After each iteration,
every method reports a prompt as the best prompt, and
its corresponding latent score (i.e., validation accuracy in
this case) is plotted in Fig. 2. The figure shows that our
APOHF algorithm consistently and significantly outperforms
the other methods. We also demonstrate the progression of
the best instruction discovered by our APOHF in Table 1,
which illustrates the capability of our APOHF to efficiently
find good instructions using only preference feedback.

Table 1. The best instructions selected by our APOHF in different
iterations (Sec. 4.1). Full table can be found in Table 6.

Task Iter Instruction Score

antonyms
0 add the prefix "un-" to the given words to form

their opposites. 0.45

5 remove the "un-" prefix from each word. 0.45
10 provide the opposite of the given words. 0.70

larger
animal

0 choose the second animal in each pair, so the output
is the second animal in each pair. 0.30

60
choose the animal that is not a type of fish, and
if both animals are not fish, then choose the first
animal.

0.55

120
choose the animal that is larger in size, so the
output would be: wildebeest shark elk pit bull
manatee

1.00

sentiment
0 provide negative responses to the given inputs. 0.00
60 provide an output based on the given input. 0.00

120 provide the sentiment (positive/negative) of the
given inputs. 0.90

word
sorting

0 "Please alphabetize the following list of words." 0.40

30
rearrange the words in the list in alphabetical order
and the output provided is the rearranged list of
words.

0.75

60 rearrange the words in the list in alphabetical order
and output the sorted list. 0.85

4.2. Prompt Optimization for Text-to-Image Generative
Models

Modern text-to-image generative models, such as DALLE-3
(Betker et al., 2023), have shown remarkable capabilities in
generating visually appealing images (Chen et al., 2024a;
Rombach et al., 2022; Song et al., 2020a). These models
take a text prompt as input and generate a corresponding
image. When a user adopts DALLE-3 to generate an image,
they may need to manually try a number of different prompts
in order to obtain a desirable image. Interestingly, in such
applications, our APOHF algorithm can also be adopted to
efficiently find the best prompt for a user. Specifically,
in every iteration, we can use our APOHF algorithm to
select a pair of text prompts and generate two corresponding
images using DALLE-3, and then ask the user for preference
feedback between the two images. We simulate such
scenarios using the experiments in this section.

To begin with, we adopt an initial prompt that describes
a complex scene using several sentences (see App. 3 for
more details), and rephrase the initial prompt to produce
a large number of text prompts (more details in App. A).
These prompts are used as the domain of prompts for our
APOHF, and we select one of the prompts from the domain
as the ground-truth prompt. Our implicit assumption is
that the image generated by this ground-truth prompt is the
image which is most desirable by the user. Therefore, for
every candidate prompt x in the domain, we measure the
similarity of its generated image with the image generated
by the ground-truth prompt and use the similarity as the
latent score u(x) of this prompt. As a result, for every

5



Prompt Optimization with Human Feedback

pair of selected prompts xt,1 and xt,2, we can calculate their
preference probability using the BTL model: P(x1 ≻ x2) =
σ(u(x1) − u(x2)), and then sample a binary preference
observation yt from a Bernoulli distribution with probability
P(x1 ≻ x2). In this case, the goal of our APOHF is to
efficiently find a prompt to produce an image that is most
preferred by a user, while only requiring a small number of
user preference feedback instances.
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Figure 3. Performances in prompt optimization for image
generation in Sec. 4.2 (4 different scenes).

We repeat the experiment for 4 different scenes and report
the scores of different methods in Fig. 3. The results
show that our APOHF consistently outperforms the other
baselines across different scenes. That is, our APOHF is
able to efficiently discover a prompt to generate an image
that satisfies the user’s preferences. We also demonstrate
in Fig. 4 the evolution of the images generated by the
best prompts discovered by our APOHF across different
iterations. The results suggest that as more user feedback
is collected, our APOHF can efficiently produce images
which better align with the image the user has in mind.
Note that here we intend for the generated images to match
the high-level semantic information of the ground-truth
image rather than the image details, which are usually
uncontrollable due to the inherent randomness in image
generation. This experiment showcases the considerable
potential of our APOHF beyond text-generation tasks,
suggesting its applicability to a wide range of multi-modal
tasks where using human feedback is preferable.

4.3. Response Optimization with Human Feedback

In addition to adapting the response of an LLM by
optimizing the prompt (i.e., by solving POHF), our

APOHF algorithm can also be used to further refine the
response from the LLM by tackling the problem of response
optimization with human feedback (Sec. 1). Specifically,
given a prompt from a user, we can let the LLM generate
a large pool of responses and then try to choose the best
response from the pool. Similar to POHF, instead of
requesting the user for a numeric score, it is much easier
to ask the user for preference feedback between a pair of
responses (Sec. 1). This problem setting has also been
adopted by the recent work of (Dwaracherla et al., 2024).

This problem can be tackled by a contextual variant of our
APOHF. That is, every prompt p can be seen as a context,
and the pool of responses r’s generated from this prompt
can be considered the domain of actions. Here, we need to
make an important modification to our APOHF. That is, in
iteration t after receiving the prompt pt, every input x in the
domain is now the embedding of the concatenation of the
prompt pt and one of the LLM-generated responses r, which
we denote as x = [pt, r]. As an implication, the domain
Xt from which we choose a pair of inputs changes in every
iteration (as a result of the changing prompt pt). However,
the strategy for selecting the pair of inputs remains the same
(Sec. 3.2), except that the fixed domain X is now replaced
by the changing domain Xt.
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Figure 5. Scores for response optimization (Sec. 4.3).

To simulate the user preferences between different
responses, we adopt the same approach as (Dwaracherla
et al., 2024). That is, we use a reward model
which is pre-trained using the Anthropic Helpfulness and
Harmlessness datasets (Bai et al., 2022). Then, given
a user prompt pt, for every LLM-generated response r,
we use the output from the pre-trained reward model as
the latent score value u([pt, r]) for this prompt-response
pair. Then, for every pair of selected responses rt,1 and
rt,2 by our APOHF, we can calculate the preference
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Ground Truth Iteration 0 Iteration 30 Iteration 60 Iteration 90

Figure 4. Images generated by the best prompt discovered by our APOHF across different iterations.

probability following the BTL model P {rt,1 ≻ rt,2} =
σ(u([pt, rt,1]) − u([pt, rt,2])) and then use it to sample a
binary preference observation yt. The results are shown
in Fig. 5, in which our APOHF significantly outperforms
the other methods, including DoubleTS, which is found
to be the best-performing method in (Dwaracherla et al.,
2024). We also show an example of how the response
optimized by our APOHF is improved across iterations in
Table 2. The response discovered by our APOHF after only
20 iterations is both well organized (via a numbered list) and
detailed, which aligns well with human preferences. This
demonstrates the ability of our APOHF to further refine the
response of an LLM to make it more preferable for human
users, while only requiring human preference feedback.

5. Ablation Study
Here we perform ablation study of our APOHF using the
experiments in Sec. 4.3.

Effectiveness of Our Prompt Selection Strategy. Here,
we further verify the effectiveness of our theoretically
principled prompt selection strategy. We replace the strategy
of our APOHF to select a pair of prompts by uniform
random selection while keeping all other components of our
APOHF fixed. That is, after every iteration, we still train the
NN using the current history of observations as described in
Sec. 3.1, and report the prompt maximizing the prediction
of the NN as the best prompt. The results (Fig. 6) show
that randomly selecting the pair of prompts significantly
degrades the performance of our APOHF, further validating
the effectiveness of our prompt selection strategy (Sec. 3.2).

Impact of the Exploration Parameter. Here, we
examine the impact of the exploration parameter ν on our
APOHF algorithm. The results (Fig. 7) show that setting
ν = 0 (i.e., not performing any exploration) degrades the
performance of our APOHF. This is because it limits the
ability of our APOHF to sufficiently explore the space of
possible prompts. On the other hand, using a large value

7
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Table 2. The best responses selected by our APOHF across
iterations (Sec. 4.3). The prompt is “Human: What is there to
do in Atlantic City?”. We omit some words here (replaced by “..”)
for shorter display. Full table in App. 5.

Iter Response Score

0

There are many activities to do in Atlantic City! You
can visit the famous Atlantic City Boardwalk, try your
luck at the casinos, enjoy the beach and water activities,
shop at the outlets and specialty stores, dine at top-rated
restaurants, enjoy live entertainment and nightlife, visit
museums and historical sites, and attend events and
festivals throughout the year.

81.96

10

There are plenty of things to do in Atlantic City! You
can visit the famous boardwalk, try your luck at the
casinos, enjoy a show or concert at one of the many
entertainment venues, dine at a variety of restaurants,
shop at the outlets and specialty stores, relax on the
beach, or take a stroll through the historic district. There’s
something for everyone in Atlantic City!

91.46

20

There are many attractions and activities in Atlantic City,
including:
1. Casinos: Atlantic City is known for its many casinos,
where you can try your luck at slots, poker, blackjack, and
more. 2. Boardwalk: ... 3. Beach: .. 4. Steel Pier: ... 5.
Shows and concerts: ... 6. Nightlife: ... 7. Dining: ... 8.
Shopping: ...

180.14
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Figure 6. Comparison of our arm selection strategy with random
selection.

of ν = 10 does not significantly affect the performance of
APOHF. This is because although a large ν may result in
excessive exploration when selecting the second prompt,
the value of ν does not alter our strategy to choose the first
prompt. Therefore, a large exploration parameter ν does not
significantly diminish the ability of our APOHF to exploit
the prediction of the NN.

Impact of the Level of Noise in Preference Feedback.
Here, we study the impact of the level of noise in preference
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Figure 7. Comparison of the performance of our APOHF algorithm
with different values of ν (i.e., the exploration parameter).

feedback on the performance of different algorithms. We
alter the level of noise in preference feedback by adjusting
the scale of the latent score function u. A smaller scale
of the scores results in noisier preference observations and
hence leads to a more difficult optimization problem. This
is because according to the BTL model P(x1 ≻ x2) =
σ(u(x1)− u(x2)), a smaller scale of u(·) generally makes
the preference probability closer to 0.5. This renders the
resulting binary observation yt = 1(xt,1 ≻ xt,2) more
similar to a purely random sample (with a probability of
0.5) and hence noisier. The results (Fig. 8) verify that the
smaller the noise, the more pronounced the advantage of our
APOHF. Meanwhile, as the noise level becomes too large,
the problem becomes excessively difficult for all methods,
and eventually, all algorithms achieve similar performances.

6. Related Work
Prompt optimization, also referred to as instruction
optimization, has been gaining popularity thanks to its
ability to improve the performance of LLMs without
parameter fine-tuning. Earlier works aimed to optimize
the prompt for white-box LLMs, such as AutoPrompt (Shin
et al., 2020), FluentPrompt (Shi et al., 2023), as well as
other works based on soft prompt (Lester et al., 2021; Li &
Liang, 2021; Zhong et al., 2021). Recently, more focus has
been shifted to optimizing the prompt for black-box LLMs.
Among them, BBT (Sun et al., 2022b), BBTv2 (Sun et al.,
2022a) and Clip-Tuning (Chai et al., 2022) require access
to the input embedding and output logits of the black-box
LLM. Other recent works have removed this restriction. For
example, GRIPS (Prasad et al., 2023) and APO (Pryzant
et al., 2023) used edit-based operations to select candidate
prompts for prompt optimization. Other works have adopted
evolutionary algorithms (e.g., EvoPrompt (Guo et al., 2024)
and Promptbreeder (Fernando et al., 2023)), reinforcement
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Figure 8. Comparison of the performances of different algorithm under different levels of noise in human feedback. Here s controls the
level of noise, such that a larger s results in a higher noise level.

learning (e.g., BDPL (Diao et al., 2023) and PRewrite
(Kong et al., 2024)), and planning-based methods (e.g.,
PromptAgent (Wang et al., 2023b)) to achieve prompt
optimization for black-box LLMs. The work of (Zhou
et al., 2023) proposed APE, which generates candidate
instructions using an LLM and selects those high-scoring
candidates for further refinement. The OPRO algorithm
(Yang et al., 2024) was developed to use an LLM to solve
generic black-box optimization problems and was applied
to the problem of prompt optimization. The work of (Mañas
et al., 2024) introduced OPT2I, which uses an LLM to
sequentially revise the prompt for text-to-image generative
models to maximize a score measuring the consistency of
the generated image with the given prompt.

Some recent works have tackled prompt optimization
for black-box LLMs by converting it to a continuous
optimization problem. InstructZero (Chen et al., 2023)
adopted a separate white-box LLM to convert prompt
optimization to optimizing the soft prompt and used
Bayesian optimization to solve the resulting continuous
optimization problem. INSTINCT (Lin et al., 2024) used
neural bandits to sequentially select the instructions to
query and leveraged the strong expressive power of neural
networks to achieve better function modeling and hence
better prompt optimization. ZOPO (Hu et al., 2024)
adopted zeroth-order optimization (ZOO) while estimating
the gradient based on a neural network, and further
improved the performances of InstructZero and INSTINCT.
In addition, (Shi et al., 2024) demonstrated the potential
of drawing inspirations from best arm identification for
prompt optimization, and (Chen et al., 2024b) used neural
bandits for personalized content generation using white-box
LLMs. Importantly, to the best of our knowledge, these
previous works are not able to tackle the problem of POHF
considered in our work, because they require a numeric
score to evaluate the efficacy of each prompt.

RLHF has become the most widely used method for aligning
the responses of LLMs with human values (Dubois et al.,
2024; Ouyang et al., 2022; Ziegler et al., 2019). More

comprehensive discussions on RLHF can be found in recent
surveys (Casper et al., 2023; Chaudhari et al., 2024). More
recently, some methods have been developed to sidestep
the need for RL and directly use a preference dataset for
alignment, including direct preference optimization (DPO)
(Rafailov et al., 2024), SLiC (Zhao et al., 2023), as well
as other extensions (Amini et al., 2024; Azar et al., 2024;
Gou & Nguyen, 2024; Liu et al., 2024; Morimura et al.,
2024; Tang et al., 2024; Wang et al., 2023a). The recent
work of (Dwaracherla et al., 2024) has shown the potential
of efficient exploration methods to improve the response of
LLMs with human preference feedback.

7. Conclusion and Limitations
We have introduced the problem of POHF, in which
our goal is to optimize the prompt for black-box LLMs
while using only human preference feedback. To address
POHF, we have proposed the APOHF algorithm, which
uses a neural network trained using preference feedback
to model the latent score function, and chooses the pair of
prompts to query based on a principled strategy inspired
by dueling bandits. By using various tasks, including
user instruction optimization, prompt optimization for
text-to-image generative models, and response optimization
with human feedback, we empirically validate that our
APOHF is able to find a good prompt for a task using a small
number of human feedback instances. A potential limitation
of our APOHF is that it currently does not accommodate
the scenario where more than 2 prompts are selected in
every iteration, and the user provides feedback regarding
the ranking of the responses from these prompts. We
plan to tackle this in future work by developing novel and
theoretically principled strategies to choose more than 2
prompts to query.
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A. Addtional Details for Experiments
A.1. License for datasets

(1) Instruction induction dataset (Chen et al., 2023; Lin et al., 2024) for optimizing the user instruction: MIT License; (2)
Anthropic Helpfulness and Harmlessness datasets (Bai et al., 2022) for response optimization: MIT License.

A.2. Computational resources

All the experiments are run on a server with AMD EPYC 7763 64-Core Processor, 1008GB RAM, and 8 NVIDIA L40
GPUs.

A.3. Additional details on experimental settings

Hyper-parameters. We use an MLP with 2 hidden layers as the NN for the latent score prediction. Each hidden layer
has a width of 32. At each iteration of our APOHF we re-initialize the NN and train the NN using all available human
feedback data for 1000 epochs with Adam optimizer and a learning rate of 0.001. We run all algorithms for 150 iterations.
We normalize the score distributions for all applications to N (0, 100) such that the simulated feedback obtained by the BTL
model will not be too noisy. We use the hyper-parameters of ν = 1 and λ = 0.1 for our APOHF and Linear Dueling Bandits.
For the prompt optimization for text-to-image generative models, we use a larger ν = 10 for both algorithms for better
exploration. All the experiments are run at least 2 times to obtain the error bars and the average performances. For ChatGPT
queries used in all experiments, we use the specific version of “gpt-3.5-turbo-1106” API provided by OpenAI.

User instruction optimization. We generate a prompt domain with 200 prompts/instructions. The validation dataset has a
size of 20. The exemplar dataset provided by the user has a size of 100. The validation accuracy for a prompt/instruction is
evaluated by using the validation dataset and querying ChatGPT, which is the same as previous works (Chen et al., 2023;
Lin et al., 2024). We use MPNet (Song et al., 2020b) to obtain the representations of the prompts to be the inputs to our NN
for the latent score prediction.

Prompt optimization for text-to-image generative models. We generate a prompt domain with 200 prompts. Specifically,
we use the template in Example 2 to rephrase the initial prompt for each scene in Table 3 to obtain the ground-truth prompt.
We use the template in Example 2 to rephrase the initial prompt again to obtain 10 different prompts as good candidates in
the prompt domain. This is to make sure that the domain contains some prompts that are very close to the ground-truth
prompt. For the generation of the other 190 prompts in the domain, we first select a subset of sentences from the initial
prompt. Specifically, each sentence in the initial prompt is selected with a probability of 0.3 independently. This is to
simulate real-life scenarios where the prompts provided by the users may only contain a fraction of the information needed
to generate the ground-truth or ideal images. We combine the selected subset of sentences to form a new prompt and use the
template in Example 3 to rephrase it to obtain a new element in the prompt domain. We repeat the above procedures to
obtain the other 190 prompts. We use the DALLE-3 model with the generation quality as “standard” and the generation
size as “1024× 1024”. We use CLIP (Radford et al., 2021) to obtain the representations of the ground-truth image and the
generated images. We use the cosine similarity function to calculate the similarity score between the representations of the
ground-truth image and the generated image as the quality measure for the corresponding generated image. We use vision
transformer (Dosovitskiy et al., 2020) to obtain the representations of the generated images to be the inputs to the NN for
the latent score prediction. The reason for using a different representation model for the latent score prediction is to simulate
real-life scenarios in which we do not have prior knowledge about the ground-truth score function.

Response optimization with human feedback. We randomly select 10 questions from the test dataset of the Anthropic
Helpfulness dataset as the prompts. For each prompt, we generate 50 responses from ChatGPT. We set the temperature
parameter of ChatGPT to be 1.0 so that the generated responses are different from each other. We use a fine-tuned GPT-2
model (Radford et al., 2019) to obtain the ground-truth scores for prompt-response pairs. Specifically, the GPT-2 is fine-tuned
on Anthropic Helpfulness dataset (Bai et al., 2022) to determine the helpfulness of the response w.r.t. a prompt by outputting
a score. For each response, we concatenate its corresponding prompt as the prefix and input it to the fine-tuned GPT-2 model
to obtain the ground-truth score. We use MPNet to obtain the representations of the prompt-response pairs to be the inputs to
our NN for the latent score prediction. For each iteration of the algorithm, a prompt is selected in a round-robin fashion with
a fixed order. This is for the purpose of result visualization and fair comparison since different algorithms select responses
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Table 3. Initial prompts for generating images with different scenes.
Scene Prompt

Garden

In a vibrant garden, a grand marble fountain gushes clear water, dazzling in the
sunlight. Nearby, a centuries-old oak tree stands with sprawling, gnarled branches. A
vintage wrought iron bench with floral patterns offers a quaint seat. Beside the path, a
whimsical, brightly painted gnome statue holds a fishing rod towards a small pond. In
the pond, lily pads float with blooming white lilies.

Street

On a lively city street, a striking vintage red telephone booth pops against the muted
city colors. Nearby, a vibrant graffiti mural adds color to a plain brick wall, featuring
an abstract mix of urban elements. A futuristic bicycle with a shiny, aerodynamic
silver frame is locked to a lamppost. A small vendor’s stall on the sidewalk displays
handmade, colorful beaded jewelry, glistening in the afternoon sun. In the background,
an ornate old-fashioned street lamp emits a warm glow as dusk approaches.

Cafe

In a quaint cafe corner, a vintage espresso machine with polished brass fixtures and a
matte black body gleams under an antique lamp. A rustic wooden bookshelf, brimming
with well-worn books, stands against a distressed cream wall. A marble table at the
room’s center holds a delicate porcelain teapot with intricate blue flowers, from which
steam gently rises. Beside the table, a colorful glass mosaic cat sculpture perches on a
mismatched velvet chair, casting playful reflections around.

Sports

A sleek grand piano with a glossy black surface speckled with white spots stands at
the room’s center. On the wall, a colorful clock features a face marked by vibrant,
multicolored spots for each hour. Beside it, a tall floor lamp sports a leopard-spot
patterned lampshade in black and gold. A plush armchair in the corner showcases
bold red polka dots on a white background. On a nearby table, a delicate glass vase
captivates with swirling, iridescent spots that shimmer in the light.

for the same prompt in each corresponding iteration, and their performances are evaluated based on the same domain in
this way. The score for each algorithm in an iteration in Fig. 5 is calculated by using the trained latent score prediction
model in this iteration from each algorithm to select the best responses for each of the 10 prompts and evaluating these 10
prompt-response pairs with the ground-truth score function to obtain an average score.

Example Query 1: Instruction Induction Template

Input: [INPUT]
Output: [OUTPUT]

<More exemplars...>

Input: [INPUT]
Output: [OUTPUT]

The instruction was to:

Example Query 2: Image Generation Instruction Rephrasing Template 1

Rephrase the following description: [Initial instruction]
The rephrased description is:

14



Prompt Optimization with Human Feedback

Table 4. The best responses selected by our APOHF in different iterations. The prompt is “Human: Should you buy life insurance?
Assistant: I’m sure life insurance is useful for a lot of people. I can also tell you how you can get insurance, depending on your income
and needs. Human: Is term or whole life insurance better?”

Iter Response Score

0

It really depends on your individual circumstances and financial goals. Term life
insurance provides coverage for a specific period of time, while whole life insurance
provides coverage for your entire life and also has an investment component. It’s
important to carefully consider your financial situation and consult with a financial
advisor before making a decision.

45.54

10

Term life insurance is typically more affordable and provides coverage for a specific
period of time, while whole life insurance provides coverage for your entire life and
also includes a cash value component. The best option for you will depend on your
individual needs and financial situation. It’s important to carefully consider your
options and consult with a financial advisor or insurance expert.

100.96

20

Term life insurance is typically more affordable and provides coverage for a specific
period of time, while whole life insurance provides coverage for your entire life and
also includes a cash value component. The best option for you will depend on your
individual needs and financial situation. It’s important to carefully consider your
options and consult with a financial advisor or insurance expert.

100.96

Example Query 3: Image Generation Instruction Rephrasing Template 2

Modify the following description by rephrasing and changing some information: [Initial instruction]
The modified description is:

B. Addtional Experimental Results
Table 4 and Table 5 show the best responses selected by our APOHF in different iterations. An observation is that both
the response quality and the score increase when more iterations are performed. Specifically, for Table 4, the response in
iterations 10 and 20 include more information on the affordability of different kinds of insurance compared to iteration
0. For Table 5, as more iterations of our APOHF are performed, the response provides more details on the things to do in
Atlantic City. In iteration 20, the response even includes bullet points for the recommended activities for the users and hence
is the most useful response.

Table 6 shows the best instructions selected by our APOHF for different tasks. As more iterations are performed, the
instructions become more relevant to the tasks and hence have higher scores.

C. Theoretical Justifications for Our APOHF Algorithm
Here, we provide theoretical justifications for the prompt selection strategy of our APOHF algorithm, to show that our
APOHF algorithm is theoretically principled. Our goal here is to provide high-level intuitions rather than giving a complete
theoretical analysis.

Recall that as we have introduced in Sec. 3.2, our APOHF algorithm selects the first prompt greedily by maximizing the
predicted score (from the trained NN), and chooses the second prompt by maximizing upper confidence bound, which is a
weighted combination of the score prediction and an uncertainty term (2). This strategy is inspired by previous works on
linear dueling bandits (Bengs et al., 2022; Saha, 2021).

Here, we adopt the simplifying assumption that the utility/score function u is a linear function: u(x) = θ⊤x, ∀X with
unknown parameter θ. With this assumption, our prompt selection strategy can be seen as a modified version of the algorithm
from (Bengs et al., 2022). Therefore, we follow the notations from (Bengs et al., 2022) and present below the most important
modifications to the theoretical analysis of (Bengs et al., 2022). We use z1,2 to denote the difference between (the features
vectors of) a pair of prompts: z1,2 = x1 − x2 and use zt,1,2 = xt,1 − xt,2 to denote the difference between the pair of
selected prompts in iteration t. The matrix Mt =

∑t
s=1 z

⊤
t,1,2zt,1,2 intuitively characterizes the information collected up to

15



Prompt Optimization with Human Feedback

Table 5. The best responses selected by our APOHF in different iterations. The prompt is “Human: What is there to do in Atlantic City?”.

Iter Response Score

0

There are many activities to do in Atlantic City! You can visit the famous Atlantic City
Boardwalk, try your luck at the casinos, enjoy the beach and water activities, shop at the
outlets and specialty stores, dine at top-rated restaurants, enjoy live entertainment and
nightlife, visit museums and historical sites, and attend events and festivals throughout
the year.

81.96

10

There are plenty of things to do in Atlantic City! You can visit the famous boardwalk,
try your luck at the casinos, enjoy a show or concert at one of the many entertainment
venues, dine at a variety of restaurants, shop at the outlets and specialty stores, relax on
the beach, or take a stroll through the historic district. There’s something for everyone
in Atlantic City!

91.46

20

There are many attractions and activities in Atlantic City, including:
1. Casinos: Atlantic City is known for its many casinos, where you can try your luck at
slots, poker, blackjack, and more.
2. Boardwalk: Take a stroll on the iconic Atlantic City Boardwalk, lined with shops,
restaurants, and amusement attractions.
3. Beach: Enjoy a day of sun and sand at the Atlantic City beach, a popular spot for
swimming, sunbathing, and water sports.
4. Steel Pier: Visit this historic amusement park featuring rides, games, and
entertainment for the whole family.
5. Shows and concerts: Catch a live performance or concert at one of the many
entertainment venues in Atlantic City, including the Hard Rock Hotel & Casino and
the Borgata Hotel Casino & Spa.
6. Nightlife: Experience the vibrant nightlife of Atlantic City, with numerous bars,
nightclubs, and lounges offering live music, DJs, and dancing.
7. Dining: Indulge in a variety of dining options, from upscale restaurants to casual
eateries serving fresh seafood, steaks, and international cuisine.
8. Shopping: Explore the shops and boutiques in Atlantic City, offering everything
from designer fashions to unique souvenirs.

180.14

iteration t.

With these notations, θ̂⊤z represents the predicted reward difference between a pair of prompts x1 and x2, which in our
case, corresponds to h(x1; θt)− h(x2; θt). Then, θ⊤z represents the ground-truth reward difference. Following the standard
practice of the analysis of bandit algorithms (Bengs et al., 2022), we assume that the validity of the confidence bound
providing a theoretical guarantee on the quality of reward difference estimation: |θ⊤z − θ̂⊤z| ≤ ν ∥z∥M−1

t
. With these, the

regret incurred in iteration t can be analyzed as:

2rt = u(x∗)− u(xt,1) + u(x∗)− u(xt,2)

(a)
= θ⊤(x∗ − xt,1) + θ⊤(x∗ − xt,2)

(b)
= θ⊤z∗t,1 + θ⊤z∗t,2

= (θ − θ̂t)
⊤z∗t,1 + θ̂⊤t z

∗
t,1 + (θ − θ̂t)

⊤z∗t,2 + θ̂⊤t z
∗
t,2

(c)

≤ θ̂⊤t z
∗
t,1 + ν

∥∥z∗t,1∥∥M−1
t

+ θ̂⊤t z
∗
t,2 + ν

∥∥z∗t,2∥∥M−1
t

(d)

≤ 2θ̂⊤t (x
∗ − xt,1) + 2ν ∥x∗ − xt,1∥M−1

t
+ θ̂⊤t zt,1,2 + ν ∥zt,1,2∥M−1

t

(e)

≤ 2θ̂⊤t (xt,2 − xt,1) + 2ν ∥xt,2 − xt,1∥M−1
t

+ θ̂⊤t (xt,1 − xt,2) + ν ∥xt,1 − xt,2∥M−1
t

≤ θ̂⊤t (xt,2 − xt,1) + 3ν ∥zt,1,2∥M−1
t

(f)

≤ 3ν ∥zt,1,2∥M−1
t

.

(3)
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Step (a) follows because here we have assumed that the score function u is a linear function; in step (b), we have defined
z∗t,1 = x∗ − xt,1 and z∗t,2 = x∗ − xt,2; step (c) follows because we have assumed the validity of the confidence bound as
described above; step (d) follows simply because z∗t,2 = x∗ − xt,2 = x∗ − xt,1 + xt,1 − xt,2 = z∗t,1 + zt,1,2 (we have also
made use of the triangle inequality).

Selection of the Second Prompt. Step (e) follows from the way the second prompt is selected: xt,2 = argmaxx∈X θ̂⊤t x+
ν ∥x− xt,1∥M−1

t
. This, importantly, is analogous to the way in which our APOHF algorithm selects the second prompt

using Eq. (2). Note that we have replaced the linear score prediction θ̂⊤t x by the prediction from our NN: h(x; θt). We
have also used the gradient ∇h(x; θt) to replace the original feature vector x, which is justified by the theory of the neural
tangent kernel (NTK), which has shown that ∇h(x; θt) can be used to approximate the random Fourier features for the NTK
(Jacot et al., 2018). Also note that compared to the theory of NTK, we have designed our APOHF algorithm to be more
practical following the common practice of neural bandits (Zhang et al., 2021; Zhou et al., 2020). Specifically, in the loss
function to train our NN (1), for the regularization parameter, we have replaced the theoretical choice of 1

2mλ ∥θ − θ0∥22
(m is the width of the NN) by simply λ ∥θ∥22; regarding the random features of the NTK, we have replaced the theoretical
choice of 1√

m
∇h(x; θt) by simply ∇h(x; θt).

Selection of the First Prompt. Step (f) results from the way in which the first prompt is chosen: xt,1 = argmaxx∈X θ̂⊤t x.
This is analogous to the way in which our APOHF algorithm selects the first prompt: xt,1 = argmaxx∈X h(x; θt).

The subsequent analysis follows from standard analysis techniques for linear dueling bandits (Bengs et al., 2022). Therefore,
our strategy to select the two prompts is theoretically principled.

Note that in this section, we have provided some high-level theoretical justifications for the prompt selection strategy of our
APOHF algorithm. Our prompt selection strategy can, in fact, be seen as a variant of neural dueling bandit algorithms.

D. Broader Impacts
We expect our work to have important positive societal impacts. Specifically, our algorithm can be used to automatically
optimize the prompt for LLMs while requiring only preference feedback from the human user. So, our algorithm is likely to
make LLMs easier to use for users and hence contribute to the easier and wider adoption of LLMs as well as other advanced
AI algorithms. This is expected to positively impact society by improving productivity at both the individual and the societal
levels. On the other hand, a potential negative societal impact is that our algorithm may be adopted by malicious users.
These users could intentionally provide misleading preference feedback to the LLM, in order to find inappropriate prompts
for tasks associated with malicious intents. For example, malicious attackers could use our algorithm to find prompts for
jailbreaking LLMs. Developing effective safeguarding methods to prevent such potential malicious use presents interesting
future research topics.
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Table 6. The best instructions selected by our APOHF in different iterations.
Task Iter Instruction Score

antonyms
0 add the prefix "un-" to the given words to form their opposites. 0.45
5 remove the "un-" prefix from each word. 0.45
10 provide the opposite of the given words. 0.70

informal
to formal

0
rephrase the given sentences, so I have provided the rephrased
versions of the input sentences as output. If this is not what you
were looking for, please provide more specific instructions.

0.39

5 rephrase the given sentences using formal language. 0.44
10 rephrase each input sentence using a more formal or polite tone. 0.47

larger
animal

0 choose the second animal in each pair, so the output is the second
animal in each pair. 0.30

60 choose the animal that is not a type of fish, and if both animals
are not fish, then choose the first animal. 0.55

120 choose the animal that is larger in size, so the output would be:
wildebeest shark elk pit bull manatee 1.00

orthography
starts with

0

identify the word in the sentence that is in Russian, and for the
first three sentences, the word "Russian" was correctly identified.
However, for the last two sentences, there were no words in
Russian, so the output should have been "N/A" or "none."

0.00

20 identify the adjective in each sentence. 0.15
40 provide the word that starts with the given letter. 0.80

rhymes
0 change the first letter of the word to "inv" and then add the rest of

the word. 0.00

4 find a word that is an anagram of the given word. 0.00

8 change the word to a new word that rhymes with the original
word. 0.40

second
word letter

0 "Provide the index of the first occurrence of the letter ’a’ in each
word." 0.00

2 "Provide the index of the first occurrence of the letter ’a’ in each
word." 0.00

4 "Output the second letter of each word." 1.00

sentiment
0 provide negative responses to the given inputs. 0.00
60 provide an output based on the given input. 0.00

120 provide the sentiment (positive/negative) of the given inputs. 0.90

taxonomy
animal

0 rearrange the words in alphabetical order, so the output for each
input would be the words listed in alphabetical order. 0.00

30 rearrange the words in alphabetical order, so the output lists the
words in alphabetical order. 0.00

60 "Output the animals from the given list." 0.95

word
sorting

0 "Please alphabetize the following list of words." 0.40

30 rearrange the words in the list in alphabetical order and the output
provided is the rearranged list of words. 0.75

60 rearrange the words in the list in alphabetical order and output
the sorted list. 0.85
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