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Abstract

Recent research has underscored the efficacy of Graph Neural Networks (GNNs)
in modeling diverse geometric structures within graph data. However, real-world
graphs typically exhibit geometrically heterogeneous characteristics, rendering the
confinement to a single geometric paradigm insufficient for capturing their intricate
structural complexities. To address this limitation, we examine the performance of
GNNs across various geometries through the lens of knowledge distillation (KD)
and introduce a novel cross-geometric framework. This framework encodes graphs
by integrating both Euclidean and hyperbolic geometries in a space-mixing fashion.
Our approach employs multiple teacher models, each generating hint embeddings
that encapsulate distinct geometric properties. We then implement a structure-wise
knowledge transfer module that optimally leverages these embeddings within their
respective geometric contexts, thereby enhancing the training efficacy of the stu-
dent model. Additionally, our framework incorporates a geometric optimization
network designed to bridge the distributional disparities among these embeddings.
Experimental results demonstrate that our model-agnostic framework more effec-
tively captures topological graph knowledge, resulting in superior performance of
the student models when compared to traditional KD methodologies.

1 Introduction

Graph Neural Networks (GNNs) have emerged as indispensable tools for analyzing relational data in
diverse domains, such as natural language processing [1, 2, 3], computer vision [4, 5], recommen-
dation systems [6, 7]. Their conventional approach of operating within Euclidean space encounters
limitations when confronted with datasets embodying non-Euclidean characteristics, such as power-
law distribution and hierarchical structures, prevalent in real-world applications [8]. Recognizing this
challenge, our community ventures into the realm of non-Euclidean Graph Neural Networks, seeking
to harness alternative geometries, notably hyperbolic space, for more adeptly capturing the intricate
topological features inherent in many real-world networks [9]. By synthesizing recent advancements
and empirical findings, we endeavor to elucidate the potential of non-Euclidean GNNs in effectively
modeling complex relational data structures, thereby paving the way for advancements in various
application domains [10, 11, 12, 13, 14, 15].

Unlike the constant and flat Euclidean geometry, hyperbolic geometry offers greater flexibility by
integrating curvature information, enabling better alignment with the characteristics of non-Euclidean
input graphs. This endeavor has rendered hyperbolic GNNs more accessible and comparable to their
Euclidean counterparts, resulting in promising performance and interpretability in graph representa-
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tion learning. Hyperbolic GNNs [16] extended the neighborhood aggregation operation by computing
centroids in the hyperbolic geometry. This approach effectively fuses the node features and hierarchi-
cal structure, thereby learning superior node representations. Furthermore, a full manifold-preserving
feature transformation operation has been developed in hyperbolic geometry [15], eliminating the
complicated transformations between hyperbolic and tangent spaces. With these essential operation,
hyperbolic GNNs can achieve comparable or even superior performance than Euclidean GNNs.

Question. Although there has been a surge of research on Euclidean and non-Euclidean GNNs in
the community, it remains unclear which geometry offers greater advantages. Real-world graphs
often exhibit geometrically structural heterogeneity, characterized by variations in clustering and
density among nodes [17, 18], as shown in Figure 1. The structural heterogeneity pose a challenge
when attempting to accurately model the graph structure using GNNs solely equipped with either
Euclidean or non-Euclidean geometry.

Motivation. According Local Subgraph Preservation Property [19], the properties of a node
largely depend on the properties of the local subgraph centered around it. Considering the
hyperbolic property of local subgraphs, i,e., hyperbolicity 1. Employing hyperbolic geometry
modeling achieves higher precision and minimal information loss when hyperbolicity is low.
Conversely, when hyperbolicity is elevated, opting for Euclidean geometry modeling results in
lower complexity and slightly superior performance compared to hyperbolic geometry. Conse-
quently, the primary limitation of existing graph neural networks is their inability to adaptively
select the appropriate geometry for representing nodes with different local structures [21, 22].

Inter-Class Distance
Intra-Class Distance

Figure 1: Visualization of the embedding of the
same graph in hyperbolic space (left) and Eu-
clidean space (right), with different colors rep-
resenting different class labels. Tree-like sub-
graphs maintain significant inter-class margins
in hyperbolic space, leading to improved classi-
fication boundaries, while intra-class nodes with
Euclidean properties may be overstretched due to
the utilization of hyperbolic metrics, hence em-
bedding in Euclidean space is preferred.

Our scheme. In this paper, we propose a cross-
geometric graph knowledge distillation frame-
work that encodes graphs utilizing both Eu-
clidean and hyperbolic geometry in a locally
space-mixing fashion. In contrast to traditional
methods that compute hyperbolicity for the over-
all graph and roughly analyze its applicability
to different geometries, our approach performs
fine-grained analysis on the local subgraphs sur-
rounding each node. This enables the selection of
embeddings in the most appropriate geometry for
local subgraphs, which is subsequently utilized
to transfer knowledge to the student model. Ad-
ditionally, we introduce a geometric embedding
optimization module to optimize the distribution
of embeddings produced by the teacher models.
To evaluate the performance of our proposed ap-
proach, we conduct distillation experiments on
node classification (NC) and link prediction (LP)
tasks across various types of graph data. The
experimental results demonstrate the superiority
of our approach in teaching student models com-
pared to other baseline methods. Our approach
highlights enhanced effectiveness and generaliza-
tion, ultimately achieving state-of-the-art perfor-
mance in graph data distillation tasks. The salient aspects of our contributions are as follows:

• Structured analysis reveals that both Euclidean and hyperbolic geometries demonstrate
commendable performance in graph processing, despite their inherent disparities and po-
tential geometric conflicts. This prompts scholarly inquiry into reconciling these divergent
geometric spaces within GNNs, inspiring new research avenues in geometry awareness.

• With heightened awareness, there’s potential to represent graph structures across dimensions,
transcending singular space limitations. We thus adapt and integrate teacher embeddings
from diverse geometries, transferring them to more effective cross-geometric space.

1Gromov’s δ-hyperbolicity [20] (See the appendix A.1 for the calculating process) measures a graph’s
tree-like structure, with lower δ values indicating higher hyperbolicity in a graph dataset, where δ = 0 represents
a tree.
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• Extensive experiments employing KD techniques on diverse graph datasets demonstrate that
cross-geometric methods significantly outperform traditional approaches in the context of
knowledge transfer. This is particularly evident in NC and LP tasks, thereby affirming the
superior efficacy of these methods.

2 Related Work

Graph Neural Networks. GNNs are neural network models that capture interdependencies between
nodes by propagating messages among them within a graph. The most representative model is
Graph Nonvolutional Network (GCN) [23, 24, 25], which can be regarded as a generalization of
convolutional neural networks to graph data. The GraphSAGE [26] employs a neighbor sampling
strategy to address graph data, enabling information aggregation based on the local neighborhood
structure of nodes. The attention-based GNN [27, 28, 29] model employs masked self-attention,
assigning diverse weights to node representations based on the varying features of neighboring nodes.
Notably, constructing GNNs in the hyperbolic space [13, 15, 30] significantly reduces embedding
distortions caused by the inability of Euclidean space to handle power-law distributions, particularly
in the case of tree-like or highly hierarchical data.

Knowledge Distillation. KD initially proposed by [31], is a model compression technique that
involves leveraging pre-trained teacher models to guide the training of a lightweight student model
[32, 33]. After that, [34] aligns student and teacher model intermediate features using a regressor
and a loss function to minimize feature differences. [35] employs attention mechanisms to extract
features from teacher model’s intermediate layers and transfer them to the student model. As GNNs
have demonstrated breakthrough performance in various deep learning tasks, a number of graph-
based KD frameworks have been proposed successively. [36] introduces a local structure preserving
module to extract knowledge from intermediate layers of the GNN model, guiding the student
model to optimize learned topological structures. [37] proposes a novel approach to effectively learn
multi-scale topological semantics from multiple GNN teacher models to guide student model. [38]
incorporates a VQ-VAE to learn a codebook that represents informative local structures, and uses
these local structures as additional information for distillation. However, all these methods rely
on the Euclidean geometry. Our proposed approach leverages both Euclidean and non-Euclidean
geometries to learn representations of highly hierarchical local structures, ensuring that the knowledge
transmitted to the student model is highly reliable.

3 Problem Definition and Preliminaries

3.1 Problem Definition

For the graph KD, given a graph G = (V, E), where V denotes the node set and E denotes the edge set.
Let N denotes the total number of nodes in the graph G, X denotes nodes’ feature matrix with each row
corresponding to the feature vector of a node, and A denotes graph’s N ×N adjacency matrix, where
Aij signifies whether there is an edge between nodes i and j. If Aij = 1, an edge exists; otherwise,
no edge is present. LetMT = {mT1

,mT2
, ...,mTR

} denotes the teacher models pre-trained on G, R
represents the number of geometries. Our fundamental objective is to extract information from G by
MT , and employing it to boost the training process of the student model, denoted as mS , which in
Euclidean space and has significantly smaller size. Let ZT = {ZT1 ,ZT2 , ...,ZTR

, } be the outputs of
the teacher models and ZS be the outputs of the student model. The optimization goal is to minimize
the disparity between predictions ofMT and mS on G, i.e.,

min
ms

1

N

∑N

i=1

∑R

j=1
βj · Fdis(zTj ,i||zS,i), (1)

where βj denotes the weight of the j-th teacher model, Fdis denotes disparity measurement function.

3.2 Preliminaries

In this paper, We focus on distillation performance of the teacher model individually in Euclidean,
hyperbolic, and spherical geometries, as well as across geometries. We give a necessary introduction
of hyperbolic geometry in this subsection, with other information available in Appendix A.

3



Hyperbolic geometry studies the properties of curved space with negative curvature. Hyperbolic
space can be modeled using five isometric models [39, 40], and in this paper, we adopt Poincaré
disk model. The Poincaré disk model evinces a distinctive property wherein distances from the
geometric center to the periphery undergo a non-linear augmentation as a function of layer depth[9].
This phenomenon engenders a nonlinear and multi-branch composite structure within the model’s
geometric framework.

Definition 3.1 (Poincaré Disk Model). A n-dimensional Poincaré disk model (Bn
c , g

B) is a complete
Riemannian manifold with a negative constant curvature c, which defined as

Bn
c :=

{
x ∈ Rn : −c∥x∥2 < 1

}
, gB = (λc

x)
2gE, λc

x =
2

1− c∥x∥2
(2)

where ∥ · ∥ denotes the Euclidean norm, g denotes the Riemannian metric, and The superscripts B and
E indicate that the vector or matrix resides in hyperbolic space and Euclidean space, respectively.

Definition 3.2 (Hyperbolic Operations). Given two points x,y ∈ Bn
c , the hyperbolic distance

between them is defined as

dc(x,y) =
2√
c
tanh−1

(√
c ∥−x⊕c y∥

)
, (3)

where ⊕c denotes Möbius addition, i.e.,

x⊕c y :=

(
1 + 2c⟨x,y⟩+ c∥y∥2

)
x+

(
1− c∥x∥2

)
y

1 + 2c⟨x,y⟩+ c2∥x∥2∥y∥2
. (4)

Definition 3.3 (Tangent Space). The tangent space at a point x in hyperbolic space, denoted as
TxBn

c , serves as the first-order approximation of the original space, a n-dimensional tangent space is
isomorphic to Euclidean space Rn. Representations between hyperbolic and tangent space can be
transformed via the exponential and logarithmic map as follows:

TxBn
c → Bn

c : expcx(v) = x⊕c

(
tanh

(√
c
λc
x∥v∥
2

)
v√
c∥v∥

)
,

Bn
c → TxBn

c : logcx(y) = dc(x,y)
−x⊕c y

λc
x ∥−x⊕c y∥

,

(5)

where v ∈ TxBn
c , y ∈ Bn

c and λc
x has same meaning in Eq. (2). Here we utilize the origin point o in

hyperbolic space as a reference point x to equalize errors across various directions.

4 Cross-Geometry Learning with KD

This section reveals three key aspects: why cross-geometry learning demonstrates superior perfor-
mance, why it is feasible, and how this superiority is achieved by employing KD. Thus, we analyze
our method from three perspectives: reasonableness, superiority, and trustworthiness.

4.1 Geometric Features of Local Subgraphs

Reasonableness: According local subgraph perservation peoperty theorem [19], nodes near the
central node strongly affect its features, while distant nodes typically have negligible impact. The
graph data in real-world often exhibits significant complexity, where diverse local subgraphs often
entail distinct geometric properties [17, 18], employing cross-geometry system can offer more
effective embedding selections for local graphs, thereby achieving performance beyond that of single
geometry methods.

Definition 4.1 (Subgraphs of Centroid p): For a given node p belonging to graph G, its corresponding
k-hops subgraph Gp comprises all nodes q ∈ V\{p} within a distance no greater than k from p,
along with their respective edges.

We employ the k-hops neighbors method to generate subgraphs. Hence, we determine the optimal
value of k through the statistical analysis of graph data in section 5.4. For each subgraph Gi, we
calculate their Gromov’s δ-hyperbolicity (See the appendix A.1 for the calculating process) based on
X , denoted as δGi

, which serves as a geometric characterization metric for the central node i.
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Figure 2: Illustration of our proposed cross-geometry graph KD framework. Structure-Wise
Knowledge Transfer (SWKT): Choosing embeddings in appropriate geometric spaces using δGi

of nodes, conveying local subgraph topological knowledge to the student model: Z
(i),E
T denotes

Euclidean teaching, and Z
(i),B
T denotes the hyperbolic teaching. GEO: Enhancing hint embeddings

from the teacher models, reducing the negative effects of inconsistencies between different geometries.

4.2 Geometric Teacher Models

Superiority: We leverage KD technology, utilizing its ability to transfer knowledge between different
model architectures, as a medium for interoperability between different geometries. Our proposed
KD framework is model-agnostic, making it applicable to various geometric models.

Herein, the framework will be explained using the GCN model [23]. To minimize disparities between
the intermediate layers of the teacher and student models, our method uses pre-activation node
embeddings z to guide the student model and constructs an embedding matrix Z for all nodes’
z. During the forward propagation process of a GCN layer in Euclidean space, the intermediate
embeddings of nodes in the l-th layer of GCN is given by

Z
(l),E
T = ÂH

(l−1),E
T W(l), (6)

where H
(l−1),E
T = activation(Z

(l−1),E
T ) denotes the node representation matrix from the output of

the (l − 1)-th GCN layer. Â denotes the symmetrically normalized adjacency matrix, W(l) denotes
the weight matrix.

For the i-th node in layer l, its embedding in hyperbolic space is denoted as z(l),B
T,i and its representation

is denoted as h(l),B
T,i . During the forward propagation process of a GCN layer in hyperbolic space, the

transformed feature is given by

f
(l),B
T,i = expco

[
W(l) logco

(
h
(l−1),B
T,i

)]
⊕c b

B, (7)

By performing neighborhood aggregation on these features, we obtain the hyperbolic intermediate
embeddings of i-th node in the l-th layer as follows:

z
(l),B
T,i = expc

f
(l),B
T,i

[∑
j:(i,j)∈E

wij log
c

f
(l),B
T,i

(
f
(l),B
T,j

)]
, (8)

where wij is the weight coefficient computed by f
(l),B
T,i and f

(l),B
T,j .

4.3 Structure-Wise Knowledge Transfer

Trustworthiness: To achieve a more fine-grained selection of embeddings in appropriate geometry,
we designed a Structure-Wise Knowledge Transfer (SWKT) module. This module determines suitable

5



geometric representations based on the geometric feature δGi of subgraphs and transfers them to the
student, facilitating more effective information extraction and guidance.

Specifically, we obtain representations of local subgraphs centered around each node based on the
l-th intermediate layer hint embeddings of the teacher model in different geometries. We denote i-th
local structure representation in hyperbolic geometry as u(l),B

T,i = {u(l),B
T,i1 , u

(l),B
T,i2 , ..., u

(l),B
T,ij , ..., u

(l),B
T,iN}.

Element u(l),B
T,ij in hyperbolic geometry can be computed as follows:

u
(l),B
T,ij =Fsub

(
logco(z

(l)
T,i), log

c
o(z

(l)
T,j)

)
=exp

(∥∥∥logco(z(l),B
T,i ), logco(z

(l),B
T,j )

∥∥∥2
)
/

∑
j:(j,i)∈E

(
exp

(∥∥∥logco(z(l),B
T,i ), logco(z

(l),B
T,j )

∥∥∥2
))

. (9)

Similarly, we can obtain representation set of i-th local structure in Euclidean geometry denoted as
u
(l),E
T,i . SWKT generates induced k-hops subgraphs centered at each node, computes their δGi as the

hierarchical level of the central node i, and obtains teacher models’ middle layer representations of
the i-th node in the l-th layer based on δGi

as follows:

u
(l)
T,i = u

(l),B
T,i · I(δGi

< λ) + u
(l),E
T,i · I(δGi

≥ λ) (10)

where I denotes indicator function, the threshold λ is a hyperparameter that is typically set to a
smaller value on graphs with higher δ-hyperbolicity values to achieve better performance.

In our method, embeddings of l-th guided middle layers of student model is Z
(l),E
S , and ap-

plying Eq. (9) likewise yields the student model i-th local structure representation u
(l)
S,i =

{u(l)
S,i1, u

(l)
S,i2, ..., u

(l)
S,iN}. For node i, the similarity between the local structures of the teacher model

and the student model is measured as:

P(l)
i = DKL

(
u
(l)
S,i||u

(l)
T,i

)
=
∑

j:(j,i)∈E
u
(l)
S,ij log

(
u
(l)
S,ij

u
(l)
T,ij

)
, (11)

where DKL represents the Kullback-Leibler divergence.

SWKT minimizes the local structure similarity P to transfer knowledge from hint embeddings in
different geometry to student model. Thus, the loss function for the SWKT module is

LSWKT =
1

L

1

N

∑L

l=1

∑N

i=1
P(l)
i , (12)

where L denotes the total number of intermediate layers used for distillation.

4.4 Geometric Embedding Optimization

Trustworthiness: Simply concatenating embeddings from Euclidean and hyperbolic teacher models
to teach student model can lead to confusion due to geometric inconsistencies. This confusion may
result in the student model performing worse than when learning from a single geometric teacher
model, as shown in section 5.2. To mitigate the negative effects caused by this inconsistency, we
propose a Geometric Embedding Optimization module (GEO) to optimize cross-geometric space.

Specifically, for a given node i from layer l, we have its local geometric information δGi and teacher
embeddings from different geometric spaces. We obtain an initial fused feature as follows:

e
(l)
T,i =

1

1 + exp(−(δGi
− λ))

· z(l),E
T,i +

exp(−(δGi
− λ))

1 + exp(−(δGi
− λ))

· z(l),B
T,i , (13)

where λ has the same meaning as Eq. (10).

Next, we use a single-layer GCN (which can be replaced by other sufficiently capable networks, such
as a Multi-Layer Perceptron (MLP)) to optimize the initially fused features e(l)T,i . The optimization
network should select loss functions based on the specific downstream task. In this study, we adopt the
triplet loss function [41] , which enlarges the distance between different-class nodes and reduces the
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distance between same-class nodes, to enhance node classification and link prediction performance.
To apply triplet loss to graph data, we organize triplets as follows: Given the hint embeddings from
teacher, we sample extensive sets of nodes, where each set includes an anchor node, a positive node
with the same label as the anchor, and a negative node with a different label.

Assuming Fe is corresponding function of a pre-trained GEO network with weight matrix We, the
elements of the local structure vector u(l)

T,i for the i-th node of layer l can be represented as

u
(l)
T,ij = Fsub(Fe(e

(l)
T,i;We),Fe(e

(l)
T,j ;We)), (14)

where Fsub has the same meaning as Eq. (9).

Subsequently, we can reference Eq. (11) to compute the structural similarity between the outputs of
GEO and the guided embeddings of l-th layer of the student model as:

LGEO =
1

N

∑N

i=1
DKL(u

(l)
T,i∥u

(l)
S,i). (15)

4.5 Distillation Framework

In our proposed graph KD approach, the teacher model’s early L− 1 layers guide the student model
using the SWKT module, while the L-th layer guides via the GEO module. Additionally, the student
model also learns the logits distribution of teacher models, i.e., outputs of GEO in last layer. Given
the logits yT from teacher models and the predicted logits yS from student model, our overall KD
loss is as follows:

L = LSWKT + LCE(yT ,yS) + βLGEO, (16)
where LCE denotes the cross-entropy loss function, β is a weight coefficient.

The space complexity is O(ND+ |E|+RNH+kN |E|), where N is the number of nodes, D is the
feature dimension, |E| is the number of edges, R is the number of teacher models, and k is the k-pop
parameter. For time complexity, forward propagation has a complexity of O(NH2 + |E|H), local
subgraph generation is O(kN |E|), the Structured-Wise Knowledge Transfer module is O(kNH),
similarity computation is O(kN), and the Geometric Embedding Optimization module contributes
O(NH2). Thus, the overall time complexity is O(NH2 + |E|H + kN(|E|+H)).

5 Experiments

In this section, we first give the experimental setup and baselines. Then we compare our graph KD
framework with some baselines on NC and LP tasks. Hyperparameters and ablation analysis also be
given. Further experimental results can be found in Appendix C.

5.1 Experimental Settings

Setups. We preform NC and LP tasks on citation network datasets Cora [42],Citeseer [43] and
Pubmed [44], wikipedia-based article hyperlink network dataset Wiki-CS [45], and Physics part of
the Coauthor dataset Co-Physics [46]. The student and teacher models are both GCN composed
of two hidden layers and one output layer. The hidden layer node dimensions are 8 for the student
and 128 for teachers. The model parameters are uniformly initialized using the Xavier’s uniform
initialization [47] method The optimizer uses Adam [48] or Riemannian Adam [49]. We set the value
of k for k-hops subgraphs to 4. To mitigate errors caused by randomness, each F1-score and ROC
AUC is the average of 10 experiments with different random seed values.

Baselines. To evaluate the performance of our method, we compare it with KD methods formulated
in single geometry, including the following methods. FitNet [34] utilizes a regressor to align the
intermediate features of the student model with those of the teacher model, quantifying the feature
discrepancy using L2 distance. AT [35] averages attention maps from both teacher and student models’
intermediate hidden layers, quantifying differences between them using a designed loss function.
LSP [36] extracts local structures from both teacher and student models’ intermediate feature maps
and measures their difference using KL divergence. MSKD [37] Utilizes diverse teacher models
with varying layers to guide the student model in capturing topology at different scales. VQG [38]
incorporates a VQ-VAE to learn a codebook that represents informative local structures, and uses
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Table 1: F1 scores(%)↑ and ROC AUC(%)↑ of student model distilled by all KD methods for NC and
LP tasks. E, B, S respectively denote the method being in Euclidean, hyperbolic, and spherical spaces,
with multiple symbols representing cross geometric space. δ represents the global hyperbolicity.

Method M
Wiki-CS
δ = 1.0

Co-Physics
δ = 2.5

Pubmed
δ = 3.5

Citeseer
δ = 4.0

Cora
δ = 11.0

NC LP NC LP NC LP NC LP NC LP

Teacher
E 79.94±0.16 93.77±0.17 96.75±0.18 95.27±0.08 82.56±0.25 94.91±0.32 73.97±0.09 95.27±0.05 86.98±0.08 92.22±0.27

B 81.83±0.09 95.11±0.27 97.02±0.19 98.14±0.03 86.24±0.05 94.67±0.10 81.83±0.13 94.34±0.12 90.90±0.18 91.98±0.26

S 81.61±0.60 85.30±0.08 96.98±0.57 97.74±0.04 86.14±0.38 94.63±0.11 80.37±0.07 94.43±0.29 89.43±0.24 92.52±0.15

FitNet
E 67.89±4.93 84.51±0.88 96.15±0.16 90.28±0.94 80.71±4.40 84.86±1.66 68.66±6.56 83.39±1.78 80.32±2.99 81.50±1.24

B 72.59±1.38 84.31±0.68 96.49±0.09 90.10±0.94 81.94±0.09 85.01±1.75 71.11±1.27 84.47±1.34 83.39±1.22 83.00±3.45

S 72.73±0.02 62.65±1.65 96.67±0.09 90.64±2.29 81.92±1.24 78.43±2.82 71.89±0.08 77.00±0.37 83.28±0.23 72.19±0.35

AT
E 72.80±1.39 84.53±0.59 96.48±0.10 90.60±0.60 81.20±0.13 70.24±2.59 69.44±2.74 82.49±2.73 80.49±1.61 61.06±0.31

B 71.93±1.26 84.76±0.41 96.58±0.01 89.72±0.97 81.31±2.13 71.30±1.95 71.08±1.25 83.25±2.01 82.46±0.82 83.81±2.75

S 70.71±0.05 62.72±0.26 96.07±0.07 89.55±1.91 81.56±3.25 78.73±2.59 71.95±0.07 76.06±0.31 83.08±0.17 72.72±0.30

LSP
E 69.52±0.79 84.71±0.60 96.52±0.06 90.79±0.55 81.73±1.73 87.26±0.52 71.42±0.98 83.81±2.57 83.34±1.06 83.96±1.41

B 69.52±0.79 84.21±0.98 96.50±0.08 90.44±0.81 81.72±0.35 86.48±0.58 71.44±0.84 84.17±1.24 82.70±1.00 82.21±1.86

S 69.13±0.70 63.00±0.26 96.27±0.07 89.05±2.89 82.14±0.23 78.86±3.91 71.88±0.07 77.03±0.30 82.48±0.29 72.89±0.30

MSKD
E 70.40±4.22 84.81±0.89 96.48±0.09 90.64±0.36 82.04±0.20 86.12±0.63 71.26±0.65 83.77±1.07 82.48±1.29 84.38±1.04

B 72.56±1.15 84.63±0.45 96.58±0.10 89.70±0.72 81.96±0.37 86.23±0.77 71.47±1.25 85.04±1.44 82.16±1.08 83.86±1.70

S 72.13±0.03 62.07±0.26 96.27±0.06 89.55±1.95 82.16±0.32 78.60±3.26 71.85±0.09 76.72±0.25 82.86±0.21 73.72±1.94

VQG
E 72.48±1.21 62.71±0.26 96.46±0.09 89.55±0.20 81.49±0.33 78.73±0.26 70.57±1.32 76.07±0.31 83.02±1.80 72.72±0.30

B 72.91±2.75 69.02±0.29 96.65±0.13 89.05±0.29 81.50±0.32 80.24±0.18 70.92±0.92 76.40±0.71 83.24±1.80 72.30±2.87

S 72.51±1.35 65.75±0.15 96.64±0.11 88.88±0.33 81.50±0.32 78.10±0.41 69.62±1.91 74.72±0.61 83.15±0.18 74.84±0.27

Cross
E,S 70.85±0.51 61.89±0.24 96.07±0.07 88.88±0.33 80.45±0.74 78.89±2.64 71.98±1.21 76.08±0.68 82.89±1.87 71.52±0.57

B,S 70.07±0.67 62.75±2.57 96.17±0.07 90.26±0.26 82.23±0.52 79.74±0.32 71.90±0.05 74.33±0.58 82.74±2.19 71.76±0.42

E,B,S 68.70±0.14 62.51±2.59 96.37±0.07 89.35±0.28 81.50±0.32 77.99±0.48 71.77±1.60 77.33±0.30 83.19±2.42 72.89±0.36

Our E,B 74.17±0.50 86.63±0.31 96.87±0.22 91.88±0.78 82.73±0.23 88.32±0.22 72.60±0.84 86.37±2.14 86.05±0.60 86.95±0.43

these local structures as additional information for distillation. To comprehensively demonstrate
the superiority of cross-geometry over individual geometry, we conducted experiments for each
method separately in Euclidean space E, hyperbolic space B, and spherical space S. Here, we adopt a
spherical space S with curvature of 1, for further details, please refer to the Appendix A.4. We further
conducted exploratory experiments on alternative geometric integration approaches based on that
proposed in section 4, as illustrated by Cross in Table 1.

5.2 Node Classification

We use F1 scores as the evaluation metric for node classification task and present results in Table 1.
In comparing LSPs across different geometries, we found a counterintuitive outcome. In datasets
with low δ-hyperbolicity, hyperbolic LSP was anticipated to outperform Euclidean LSP. However, it
performed worse, dropping by 3.05% (Wiki-CS). This suggests that even if a teacher model excels
in one geometry, its guidance may be less effective when the student model operates in a different
geometry. This highlights a significant gap between hint embeddings in different geometries. Despite
employing diverse geometries, our method obtains 1.11% average improvement over SOTA baselines
and especially 2.66% and 1.37% on Cora and Wiki-CS, indicating that our method excels on datasets
with lower δ-hyperbolicity. Besides, even in graph with high δ-hyperbolicity, where graph exhibit few
hierarchical levels, our method consistently achieves higher F1-score compared to student models
obtained by baseline KD methods in a single geometrc space.

With the rapid growth of information, real-world graph data is expanding in scale. To demonstrate
the effectiveness of our method on large-scale graphs, we evaluated the F1 scores of NC tasks using
distilled student models on larger datasets, Ogbn-Arxiv (1,166,243 edges, 169,343 nodes) and
Ogbn-Proteins (39,561,252 edges, 132,534 nodes) [50]. Results in Table 2 show that our method
consistently achieves superior distillation performance on these larger datasets.

5.3 Link Prediction

We use ROC AUC as the evaluation metric for link prediction task and present results in Table 1.
The average ROC AUC showed an improvement of 1.58%, with particularly notable enhancements
on datasets Wiki-CS and Cora, reaching 1.87% and 2.57%, respectively. Employing KD methods
solely based on hyperbolic geometry outperformed those exclusively utilizing Euclidean geometry,
particularly on the Citeseer. Our cross-geometry KD method outperformed SOTA baselines by
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Figure 3: δGi distribution of subgraphs (left), hyperparameters sensitivity analysis (middle), compari-
son of convergence rates (right) on the Cora (row 1) and Wiki-CS (row 2)

0.93% on average, underscoring the efficacy of geometry-specific methods in cross-geometry learning
for overall performance enhancement.

5.4 Hyperparameters Analysis

k of Subgraphs. A small radius k limits local hierarchical assessment, while a large k increases
computational complexity. We explored δi value distributions for local geometric properties across
k values (1 to 7) on Wiki-CS and Cora datasets, shown in Figure 3 (left). Stability in distributions
occurs at k ≥ 4, suggesting sufficient capture of geometric characteristics in subgraphs of this size.
Thus, we set k = 4 for our experiments.

We varied the hyperparameters on the Wiki-CS and Cora datasets to test the F1 scores for the NC
task, with λ ∈ {0.0, 0.5, 1.0, 1.5, 2.0, 2.5} , β ∈ {1, 2, 3, 4, 5, 10}. Here, λ denotes the threshold
value in Eq. (10) and Eq. (13). A larger λ leads to more local subgraphs being embedded in hyperbolic
space, while a smaller λ results in more subgraphs being embedded in Euclidean space. β denotes
the weight of the GEO module. The results from Figure 3 (middle) indicate that the hyperparameters
λ and β have a generally minimal impact on the outcomes. The combination of λ = 1.5 and β = 3.0
maintains optimal performance.

5.5 Distillation Efficiency

To evaluate the convergence efficiency of our proposed KD method, we have recorded the F1-scores
trends for student models guided by all KD methods during training epochs on the Cora and Wiki-CS
datasets in Figure 3 (right). As illustrated, our KD method consistently outperform other methods
within the same training epochs. Specifically, our KD method achieves state-of-the-art (SOTA)
performance before reaching 500 epochs, while the others are still undergoing training. These results
serve to validate the effectiveness and efficiency of our method. Due to their simpler architecture,
student models generally have faster inference speeds compared to teacher models. The speed-
up achieved by student models relative to teacher models is also an indicator of the efficiency of
distillation methods. The inference times (in milliseconds) of both teacher and student models,
measured on our device, are shown in Table 3. Results demonstrate that our method achieves an
average speed-up of approximately 232x.

In addition, we evaluated the training time for each method, the inference time for the corresponding
student models, and calculated the compression ratio of student model size relative to the teacher
model. The results can be found in Appendix C.

5.6 Ablation Study

To further validate the efficacy of cross-geometric learning and the two proposed modules, we
conducted additional experiments by adapting our method to operate on a single Euclidean or
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Table 2: F1 scores(%)↑ of student model distilled by all KD methods for NC on Arxiv and Proteins.

Teacher / E Teacher / B FitNet / E AT / E LSP / E MSKD / E VQG / E Our / E,B
Arxiv 71.91 ±0.06 73.21 ±0.19 67.56 ±1.79 67.48 ±0.25 69.53 ±0.03 69.27 ±0.21 68.59 ±0.11 70.89 ±0.53
Proteins 72.83 ±0.09 69.23 ±0.02 68.71 ±1.81 68.53 ±0.35 69.45 ±0.23 70.97 ±0.97 69.54 ±0.36 71.22 ±0.41

Table 3: Speed-up comparison.

Datasets Teacher Student Speed-up
Wiki-CS 906 ms 3.98 ms 227x
Co-Physics 3410 ms 12.0 ms 284x
Pubmed 914 ms 4.46 ms 204x
Citeseer 908 ms 4.01 ms 226x
Cora 975 ms 4.43 ms 220x

Average 1422 ms 4.22 ms 232x

Table 4: Ablation study results.

Method F1 scores (%) ROC AUC (%)
w/ Euclidean Teacher 72.84 ± 1.66 84.86 ± 1.02

w/ Hyperbolic Teacher 72.38 ± 1.83 84.55 ± 0.69
w/o SWKT module 73.40 ± 1.26 85.08 ± 0.55
w/o GEO module 73.39 ± 1.27 85.49 ± 0.97

Comprehensive Method 74.17 ± 0.50 86.63 ± 0.31

hyperbolic geometry. Additionally, we selectively excluded the SWKT and GEO modules. These
ablation experiments were conducted on the Wiki-CS dataset, and the results are presented in Table 4.
We have the following observations:

• Using only a single geometry, even with the GEO module optimizing embeddings, the
enhancement compared to the baseline is minimal.

• The cross-geometric approach consistently outperforms the single-geometric methods.
Whether excluding SWKT or GEO, the results are inferior to the comprehensive method,
indicating their crucial roles in optimizing geometric embedding distribution.

The overall results of ablation analysis further demonstrate the importance of cross-geometry learning
and our proposed two modules.

To demonstrate the model-agnostic nature of our framework, we alter the architecture and the number
of layers L in the teacher model. Due to page limitations, we only present key results above. For
more details on the dataset, experimental setup, and results, please refer to Appendix B and C.

6 Conclusion

Hyperbolic geometry has shown expressive non-Euclidean modeling in the graph community. Note-
worthy models, such as Poincaré and Lorentz models, facilitate vector projections between Euclidean
and hyperbolic neurons. Our investigation reveals that tree-like or power-law distributed graphs
exhibit multiple different hierarchical within locally connected structures. Consequently, training
across Euclidean and hyperbolic geometry intuitively emerges as a more flexible approach to graph
modeling, yielding significant enhancements in KD tasks. To this end, we introduce a novel KD
framework that models the hint embeddings of the teacher models across diverse geometries. By
leveraging δ-hyperbolicity, we transfer local subgraphs information to the student model. Our analysis
and experiments provide positive support for this innovative perspective on geometry modeling.
Limitations. Despite the performance improvements achieved by cross-geometry learning across
various tasks, it presents some potential issues. For instance, integrating different geometric informa-
tion introduces hyperparameters, making the task outcomes somewhat dependent on their selection,
thus affecting the method’s stability. Additionally, the distillation phase demands more complex
pre-trained models, increasing resource and time requirements. These limitations are critical areas
for future enhancement in cross-geometry learning.
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(a) c = 1.0 (b) c = 0 (c) c = −0.5 (d) c = −1

Figure 4: Spaces with different curvatures. (a) Spherical space with curvature c = 1.0. (b) Euclidean
space. (c) Hyperbolic space with curvature c = −0.5. (d) Hyperbolic space with curvature c = −1,
which have a faster grow rate of volume.

A Additional Theoretical Support

A.1 Gromov Hyperbolicity

Gromov’s δ-hyperbolicity [20] measures a graph’s tree-like structure, with lower δ values indicating
higher hyperbolicity in a graph dataset, where δ = 0 represents a tree. In this paper, we compute the
hyperbolicity of the k-hop subgraph Gi for each node i as the geometric feature information of the
local structure of that node. Here, we provide the detailed calculation process.

First, four nodes a, b, c, d are randomly sampled from the subgraph Gi. Let S1, S2 and S3 be defined
as follows:

S1 = dist(a, b) + dist(c, d),

S2 = dist(a, c) + dist(b, d),

S3 = dist(a, d) + dist(b, c),

(17)

where dist denotes shortest path length between two nodes.

Let M1 and M2 be the two largest values among S1, S2 and S3. We define

hyp(a, b, c, d) = M1 −M2. (18)

The hyperbolicity δGi of the graph Gi is the maximum of hyp over all possible 4-tuples (a, b, c, d)
divided by 2, i.e.,

δ(G) = max
a,b,c,d

hyp(a, b, c, d)

2
. (19)

In our paper, we calculate the δGi
for each k-hop subgraphs. For subgraphs with fewer than four

nodes, we label their δGi value as N/A.

A.2 Euclidean Geometry

Geometry is a branch of mathematics concerned with properties of space such as the distance, shape,
size and relative position of figures. In this paper, we analyze the modeling capabilities of graph
neural networks in Euclidean , hyperbolic and spherical geometries. Euclidean geometry studies
the properties of flat space with zero curvature, where parallel lines never meet, and angles of a
triangle sum to 180 degrees. In Euclidean geometry, the volume of space exhibits polynomial growth
associated with the dimensionality of the space. The majority of neural network models perform
inference operations in this space, where operations such as convolution, pooling, and activation are
based on the basic arithmetic operations of addition, subtraction, multiplication, and division.

Euclidean geometry is an axiomatic system, in which all theorems are derived from a small number
of simple axioms.

• To draw a straight line from any point to any point.

• To produce (extend) a finite straight line continuously in a straight line.
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• To describe a circle with any centre and distance (radius).
• That all right angles are equal to one another.
• [The parallel postulate]: That, if a straight line falling on two straight lines make the interior

angles on the same side less than two right angles, the two straight lines, if produced
indefinitely, meet on that side on which the angles are less than two right angles.

These axioms provide the fundamental mathematical framework for Euclidean space, allowing GNN
models to incorporate information about the absolute positions of nodes, properties of lines, and
spatial relationships.

A.3 Hyperbolic Geometry

Hyperbolic geometry is non-Euclidean geometry, also called Lobachevsky-Bolyai-Gauss geometry.
This geometry adheres to all of Euclid’s postulates, with the exception of the parallel postulate, which
has been substituted with:

• If a straight line intersects two other straight lines, and so makes the two interior angles on
one side of it together less than two right angles, then the other straight lines will meet at a
point if extended far enough on the side on which the angles are less than two right angles.

Hyperbolic space is a homogeneous space with constant negative curvature. In Euclidean space,
the curvature is zero, while in hyperbolic space, the curvature is a negative constant. Moreover,
smaller curvature leads to faster volume growth, as illustrated in Figure 4. The hyperbolic space
can be modelled using five isomorphic models which are the Lorentz model [51], the Poincaré ball
model and Poincaré half space model, and the Klein model. In this paper, we utilize a hyperbolic
geometric teacher model based on the Poincaré model. The Poincaré model B is a manifold equipped
with a Riemannian metric gB . This metric is conformal to the Euclidean metric gB . Formally, an n
dimensional Poincaré unit ball (manifold) is defined as

Bn = {x ∈ Rn : ∥x∥ < 1}, (20)

where ∥ · ∥ denotes the Euclidean norm. Formally, the distance between x, y ∈ Bn is defined as:

d(x, y) = arcosh(1 + 2
∥x− y∥2

(1− ∥x∥2)(1− ∥y∥2)
). (21)

The Möbius addition ⊕ for x and y in Bn is defined as

x⊕ y =

(
1 + 2⟨x, y⟩+ ∥y∥2

)
x+

(
1− ∥x∥2

)
y

1 + 2⟨x, y⟩+ ∥x∥2∥y∥2
. (22)

The Möbius scalar multiplication ⊗ is defined as

r ⊗ x =

{
tanh

(
r artanh(∥x∥) x

∥x∥ , x ∈ Bn

0, x = 0,
, (23)

where r is a scalar factor.

The Möbius vector multiplication M⊗(x) is defined as

M⊗(x) = tanh

(
∥Mx∥
∥x∥

actanh(∥x∥)
)

Mx

∥Mx∥
(24)

A.4 Spherical Geometry

Spherical geometry studies the properties of curved space with constant positive curvature, where
the angles of a triangle add up to exceeds 180 degrees. All lines in spherical geometry intersect, as
there are no parallel lines on a sphere. In the field of graph embedding, spherical geometry plays a
significant role as it provides a more realistic model, particularly applicable in geographic information
systems and computer graphics. Through spherical geometry, we can accurately describe features on
the surface of the Earth and construct data representations with spherical topological structures in
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Algorithm 1 Cross-Geometric Graph KD
Input: Graph G = {V, E}; Pre-trained teacherMT and GEO model; Initialization parameters θ of
student.
Parameter: Threshold λ; Weight β.
Output: Distilled model’s parameter θ′.

1: while student model not converged do
2: for l in {1, 2, ..., L} do
3: Update Z(l),E and Z(l),B, Z(l),E

T , Z(l),B
T ← Eq. (6), Eq. (8);

4: Select appropriate geometry for middle representations, u(l)
T ← Eq. (10):

5: Calculate structure similarity, P(l) ← Eq. (11);
6: Reduce geometries’ discrepancy, Optimize embeddings by Eq. (14);
7: LSWKT ,LGEO ← Eq. (12), (15);
8: end for
9: Calculate overall Loss by Eq.(16);

10: Update student model’s parameter, θ′ ← (16);
11: end while

Table 5: Statistics of datasets.
# Nodes # Edges # Features # Classes Global Hyperbolicity

Wiki-CS 11,701 431,726 300 10 1.0
Co-Physics 34,493 495,924 8,415 5 2.5
Pubmed 19,717 88,651 500 3 3.5
Citeseer 3,327 9,928 3,703 6 4.0
Cora 1,044 10,556 1,433 7 11.0

three-dimensional space, which is crucial for applications such as map-making, virtual reality, and
computer games. In graph embedding, concepts and algorithms of spherical geometry are utilized to
process data with spherical topological structures, such as mapping the Earth’s surface onto a two-
dimensional plane while preserving the correctness of geographic locations and spatial relationships.
Therefore, spherical geometry is not only a theoretical discipline but also an indispensable tool in
practical applications.

B Experiment Details

B.1 Algorithm

Given the graph data, we initially train teacher models in Euclidean, hyperbolic, and spherical spaces,
respectively. Subsequently, we train the MLP model of the GEO module, initializing the student
model randomly. By inputting learning parameters alongside hyperparameters λ and β, we employ
Algorithm 1 to obtain the distilled student model.

B.2 Datasets

Here, we present detailed information for each dataset in Table 5. Wiki-CS consists of 11,701 nodes
with 431,726 edges, each node characterized by a 300-dimensional feature, and the node labels are
categorized into 10 classes. Cora consists of 1,044 nodes with 10,556 edges, each node characterized
by a 1,433-dimensional feature, and the node labels are categorized into 7 classes. Pubmed consists of
19,717 nodes with 88,651 edges, each node characterized by a 500-dimensional feature, and the node
labels are categorized into 3 classes. Co-Physics consists of 34,493 nodes with 495,924 edges, each
node characterized by a 8,415-dimensional feature, and the node labels are categorized into 5 classes.
Citeseer consists of 3,327 nodes with 9,928 edges, each node characterized by a 3,703-dimensional
feature, and the node labels are categorized into 6 classes. To ensure fairness, we uniformly apply
standard splits (70%/15%/15%) for node classification tasks and standard splits (85%/5%/10%) for
link prediction tasks.
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Table 6: Parameter Settings in NC task.
Parameters Wiki-CS Co-Physics Pubmed Citeseer Cora

# layers 2 2 2 2 2
teacher hidden dim 128 128 128 128 128
student hidden dim 8 8 8 16 8
learning rate 0.01 0.01 0.01 0.05 0.01
weight decay 0.0000 0.0000 0.0005 0.0001 0.0000
dropout 0.00 0.00 0.00 0.00 0.00
λ 1.5 1.5 1.5 1.5 1.5
β 3.0 3.0 3.0 3.0 3.0

Table 7: Parameter Settings in LP task.
Parameters Wiki-CS Co-Physics Pubmed Citeseer Cora

# layers 2 2 2 2 2
teacher hidden dim 128 128 128 128 128
student hidden dim 8 8 8 8 8
learning rate 0.01 0.01 0.01 0.01 0.01
weight decay 0.0000 0.0000 0.0000 0.0000 0.0000
dropout 0.00 0.00 0.00 0.00 0.00
r (in fd decoder) 2.00 2.00 2.00 2.00 2.00
t (in fd decoder) 1.00 1.00 1.00 1.00 1.00
λ 1.5 1.5 1.5 1.5 1.5
β 3.0 3.0 3.0 3.0 3.0

B.3 Setups

For a fair comparison, all methods employ identical teacher and student model architectures on the
same dataset. All methods use GCN as the Euclidean teacher model and HGCN as the hyperbolic
teacher model. The teacher models consist of two hidden layers and one output layer, with a hidden
feature dimension of 128. The student GCN model has two hidden layers and one output layer,
with a hidden dimension of 8. During training, the optimizer uses Adam or Riemannian Adam, and
hyperparameters such as learning rate, weight decay, and hierarchy threshold are fine-tuned based on
the performance of student models on validation sets of different datasets, maintaining consistent
hyperparameters for different methods on the same dataset. The parameter configurations for NC
are detailed in Table 6, while those for LP are delineated in Table 7. The model parameters are
uniformly initialized using the Xavier’s uniform initialization method, with a random seed chosen
from the range of 0 to 1000. The geo model is trained for 300 epochs, and random sampling during
its optimization process involves extracting 100 sets of node pairs for each class.

Environments. The running environment includes an Intel Core Intel i7-13700KF CPU with a clock
speed of 3.40GHz, boasting 16 cores and 24 threads. A robust NVIDIA GeForce RTX 4070Ti GPU,
featuring 12GB of VRAM, encompasses 7680 CUDA cores. The system is equipped with 16GB of
RAM. The operating system is Windows 11, and Python 3.10 serves as the programming language.
For deep learning tasks, PyTorch version 1.13 is employed, while CUDA version 12.2 enhances GPU
acceleration. Package management is facilitated through the use of Anaconda. For large datasets,
Pubmed and CoauthorPhysics, experiments were conducted on a high-performance server with the
following specifications: 4 Intel Xeon Gold 5220 CPUs running at 2.20GHz, equipped with 72 cores
and 144 threads. The system features 4 Quadro RTX 6000 GPUs, each boasting 24GB of VRAM and
4608 CUDA cores. The system boasts 500GB of RAM and runs on Ubuntu 18.04.6.
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Table 8: F1 cores (%)↑ of student models distilled from GAT teacher models on the NC Task.

Method M Wiki-CS
δ = 1.0

Co-Physics
δ = 2.5

Pubmed
δ = 3.5

Citeseer
δ = 4.0

Cora
δ = 11.0

Teacher
E 80.52± 0.23 96.86± 0.17 84.78± 0.11 75.24± 0.18 90.07± 0.09
B 82.46± 0.27 97.13± 0.23 87.35± 0.16 82.99± 0.15 90.66± 0.05
S 81.96± 0.18 96.79± 0.14 87.31± 0.08 81.97± 0.23 89.97± 0.13

Cross
E,S 71.75 ± 0.12 96.13 ± 0.01 80.89 ± 0.55 72.11 ± 0.21 83.35 ± 0.16
B,S 71.27 ± 0.51 96.27 ± 0.07 82.25 ± 0.36 72.13 ± 0.15 83.74 ± 0.37
E,B,S 69.12 ± 0.37 96.21 ± 0.02 82.51 ± 0.42 72.25 ± 0.28 83.27 ± 0.25

Our E,B 74.52 ± 0.79 97.01 ± 0.04 83.46 ± 0.56 72.89 ± 0.08 86.75 ± 0.48

Table 9: F1 Scores (%)↑ of student models distilled from GTN teacher models on the NC Task.
Teacher GTN Student GCN Student
E B F1 Scores Inference Time F1 Scores Inference Time

Wiki-CS 82.74 81.83 82.48 15.34 ms 74.26 3.98 ms
Cora 87.87 90.90 86.37 17.67 ms 86.24 4.43 ms

C More Experiment Results and Analysis

C.1 Replacing Teacher Models

Our proposed framework is model-agnostic. To validate its universality and effectiveness, we
conducted experiments by replacing the teacher model from GCN to GAT. These experiments were
conducted across three geometries: Euclidean, hyperbolic, and spherical, for cross-geometry learning.
The experimental results are presented in Table 8. As depicted in the table, even when the teacher
model is replaced with other models, our framework consistently maintains a strong distillation effect,
with the combination of hyperbolic and Euclidean geometries still proving to be optimal. Moreover,
as the performance of the teacher model improves, there is a corresponding enhancement in the
performance of the student model.

We also replaced the Euclidean teacher model with the Graph Transformer Network [52]. The results
are shown in Table 9. GTN teacher has 4 layers and a hidden dimension of 128. Specifically, during
distillation, student model’s l layers match the last l layers of teacher accordingly. The GTN and
HGCN teacher output intermediate representations from each layer to the SWKT module for local
subgraph structure extracting and selection. These distributions are then optimized by GEO module.
Then, these features extracted from the optimized cross-geometric intermediate representations are
transferred to students via the corresponding loss function. Additionally, traditional KD loss is
computed from the logits output by both the teacher and student models.

C.2 Replacing Student Models

The student model can operate in other geometric spaces. At first, we chose a Euclidean student model
to combine hyperbolic accuracy benefits with Euclidean efficiency and stability. Our framework is
model-agnostic, allowing replacement of the student model with other neural networks.To validate
student on various geometric spaces, we tested NC F1 scores (%) on the Cora dataset in Table 10.
Euclidean and hyperbolic teachers’ F1 score is 86.98% and 90.90%.

we conducted experiments using student models with the same architecture as the teacher models in
our method. Following results are NC F1 scores (%) on the Cora dataset. Euclidean and hyperbolic
teachers’ F1 score is 86.98% and 90.90%. The results are shown in Table 11 Compared to the results
presented in Table 1 of our paper, student models now even outperform some teacher models, but
using the same architecture as the teacher makes student models larger and slower, limiting their
suitability for resource-constrained devices.
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Table 10: F1 cores (%)↑ of student models in different geometry on the NC Task.
FitNet AT LSP MSKD VQG Our

Euclidean Studnet 80.32 80.49 83.34 82.48 83.02 86.05
Hyperbolic Student 86.73 86.00 87.96 88.21 88.45 90.42
Spherical Student 75.92 83.54 84.77 85.26 83.54 86.73
Average 80.99 83.34 85.35 85.31 85.00 87.73

Table 11: F1 Scores (%)↑ of student models with the same architecture as the teacher models on the
NC Task.

FitNet AT LSP MSKD VQG Our

Student in paper 80.32 80.49 83.34 82.48 83.02 86.02
Euclidean student 86.73 86.24 86.98 86.98 86.49 87.47
Hyperbolic student N/A N/A N/A N/A N/A 90.42

C.3 Changing Teacher Layers

In addition to model-agnostic features, our framework demonstrates excellent scalability. All ex-
periments in this study were conducted with both teacher and student models having a hidden layer
depth of 2. To verify scalability, we configured four types of teacher models, varying their hidden
layer depths from 1 to 4, while keeping all other settings constant. By applying the SWKT and GEO
modules to each layer, we expanded our framework, as illustrated in Table 12. As observed in the
table, despite variations in the number of layers in the teacher models, our framework consistently
achieves effective distillation results, with the combination of hyperbolic and Euclidean components
remaining optimal. Furthermore, as the performance of the teacher models improves, there is a
corresponding enhancement in the performance of the student models.

C.4 Embeddings Optimization Results

We reduced the embeddings of student models to 2-dimensional space by t-SNE and visualized them
in Figure 5, our method yields a superior embedding distribution, which more suitable for NC task.

C.5 Hyperparameters Analysis

We conducted a more comprehensive hyperparameter analysis on the Co-Physics, Pubmed, and
CiteSeer datasets. By adjusting the hyperparameters, we evaluated the F1 scores for the NC
task, with λ ∈ 0.0, 0.5, 1.0, 1.5, 2.0, 2.5 and β ∈ 1, 2, 3, 4, 5, 10. The results, as shown in Figure 6,
indicate that the hyperparameters λ and β have a minimal overall impact on the outcomes. The
performance is generally optimal when β = 3, and λ shows better performance at intermediate
values.

C.6 Ablation Study

Following the ablation experiment strategy outlined in Section 5.2, we conducted NC experiments on
five other datasets. The results, presented in Table 13, reveal that the performance of the comprehen-
sive method consistently outperforms other conditions across all datasets.

Table 14: Training time spent per epoch (in ms) for NC task.
Datasets AT FitNet LSP MSKD VQG Our
Wiki-CS 5.25 5.50 5.18 5.27 5.26 5.16
Cora 5.22 6.38 6.09 6.03 6.01 5.81
Pubmed 5.43 6.16 5.94 6.01 5.21 6.31
Citeseer 5.39 6.89 5.78 5.78 5.56 5.95
Co-Physics 10.5 11.2 10.5 10.5 10.5 10.3
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Table 12: F1 cores (%)↑ of student models distilled from teacher models with different layers on the
NC Task.

Method M L× 1 L× 2 L× 3 L× 4

Teacher
E 68.42 ± 0.12 79.94 ± 0.16 81.22 ± 0.38 78.12 ± 0.35
B 70.04 ± 0.35 81.83 ± 0.09 82.73 ± 0.42 80.45 ± 0.18
S 70.15 ± 0.28 81.61 ± 0.60 82.51 ± 0.37 79.86 ± 0.33

Cross
E,S 51.42 ± 0.79 70.85 ± 0.51 71.32 ± 0.76 69.21 ± 1.18
B,S 52.43 ± 0.52 70.07 ± 0.67 70.72 ± 1.35 69.89 ± 1.21
E,B,S 52.72 ± 1.15 68.70 ± 0.14 69.28 ± 1.17 68.35 ± 0.48

Our E,B 58.12 ± 2.38 74.17 ± 0.50 74.22 ± 1.24 73.75 ± 1.18

(a) FitNet (b) AT (c) LSP

(d) MSKD (e) VQG (f) Our

Figure 5: t-SNE Visualization of embeddings obtained by student models.In contrast to baselines,our
method achieves embeddings that fully utilize the entire space, ensuring substantial inter-class
distances and thereby enhancing node classification performance.

C.7 Distillation Efficiency

In dataset Wiki-CS, we assessed the training and inference time per epoch and the ratio of the total
parameter count of the student model to that of the teacher model, as outlined in Table 15. Our
KD method achieves similar time efficiency in both training and inference stages compared to other
methods. Notably, our method achieves superior results at the highest compression level, thereby
further validating the efficacy of our KD method in generating compact yet high-performing student
models.

We provide an analysis of the time spent by each knowledge distillation (KD) method during the
training of student models on the network classification (NC) task, recorded for every epoch across
all datasets, as shown in Table 16. We also present the time taken for inference of the student models
on the NC task in Table 14. From the results, it is clear that in various scenarios, the time required for
our method is comparable to that of other methods, with no significant increase in time cost. This
suggests that our approach effectively balances performance and computational efficiency, making it
a practical choice for applications in this field.

20



0.0 0.5 1.0 1.5 2.0 2.5 3.0
Hyperparameter 

96.2

96.3

96.4

96.5

96.6

96.7

96.8

96.9

St
ud

en
t F

1 
Sc

or
es

=1
=2

=3
=4

=5
=10

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Hyperparameter 

80.5

81.0

81.5

82.0

82.5

St
ud

en
t F

1 
Sc

or
es

=1
=2

=3
=4

=5
=10

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Hyperparameter 

69.5

70.0

70.5

71.0

71.5

72.0

72.5

St
ud

en
t F

1 
Sc

or
es

=1
=2

=3
=4

=5
=10

Figure 6: Hyperparameters sensitivity analysis on Co-Physics (left), Pubmed (middle) and
Citeseer (right)

Table 13: Ablation experiments for NC task across all datasets, evaluated using F1 score(%)↑.
Method Wiki-CS Cora Pubmed Co-Physics Citeseer
w/ Euclidean Teacher 72.84± 1.66 84.55± 0.73 81.85± 0.26 96.50± 0.15 71.16± 1.13
w/ Hyperbolic Teacher 72.38± 1.83 84.43± 0.82 81.55± 1.71 96.56± 0.11 71.30± 1.64
W/o SWKT module 73.40± 1.26 84.16± 0.89 82.12± 0.41 96.68± 0.13 70.72± 2.62
w/o GEO module 73.39± 1.27 84.33± 0.73 82.26± 0.35 96.65± 0.13 71.24± 1.46

Comprehensive Method 74.17± 0.50 84.84± 0.60 82.61± 0.23 96.87± 0.22 72.60± 0.84

C.8 Failed Teachers

The failure of one or more teacher models could potentially impact the student model’s performance,
we have implemented several mechanisms in our method to mitigate this risk:

• Ensemble Learning: Using multiple teacher models that capture different geometric
properties provides redundancy and robustness. If one model fails, the others still contribute
valuable insights, minimizing the impact on the student model.

• Geometric Optimization Network:GEO dynamically adjusts the weight of information
from each teacher model based on the loss function, reducing the influence of any underper-
forming model and ensuring the student model receives the most reliable information.

We designed various experimental strategies to assess the impact of failing teachers on students:

• S1: Train student models without KD.

• S2: Train student models with the best-tuned teacher model.

• S3: Train student models with an underperforming teacher model.

• S4: Train student models with an untrained teacher model.

• S5: Train student models with all untrained teacher models.

Note: All methods except MSKD and ours use a single teacher model; thus, S5 is N/A.

Table 15: Time spent per epoch and compression ratio.

Method Training (ms) Inference (ms) Ratio (%)
NC LP NC LP

FitNet 5.50 305.7 3.98 22.92 4.47
AT 5.25 314.9 3.98 22.62 4.56
LSP 5.18 318.8 3.98 22.92 4.56
MSKD 5.27 311.4 3.98 23.94 2.67
VQG 5.23 312.5 3.98 22.60 4.47

Our 5.16 305.1 3.98 23.03 2.28
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Table 16: Inference time spent (in ms) for NC task.
Datasets AT FitNet LSP MSKD VQG Our
Wiki-CS 3.98 3.98 3.98 3.98 3.98 3.98
Cora 4.43 4.43 4.43 4.43 4.43 4.43
Pubmed 4.46 4.46 4.46 4.46 4.46 4.46
Citeseer 4.01 4.01 4.01 4.01 4.01 4.01
Co-Physics 12.0 12.0 12.0 12.0 12.0 12.0

Table 17: F1 scores(%)↑ of student model distilled by all KD methods for NC under failed teachers.
Methods S1 S2 S3 S4 S5 Std(S2-5)
Teacher(E) N/A 86.98 66.09 36.61 25.55 24.21
Teacher(B) N/A 90.90 64.86 52.58 30.13 21.94
FitNet 82.06 80.32 56.27 53.81 N/A 11.95
AT 82.06 80.49 63.39 51.11 N/A 12.04
LSP 82.06 83.34 71.33 56.57 N/A 10.86
MSKD 82.06 82.48 81.82 78.62 21.62 1.68
VQG 82.06 83.02 70.02 56.02 N/A 11.02

Our 82.06 86.05 85.26 81.33 22.85 2.06

NC f1 score (%) of student models on Cora under different experimental strategies are shown in
Table 17. Except S5, which teachers have an average performance of only 30%, our method’s distilled
student models consistently maintain stable performance even when some teacher models fail.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We have concisely written our motivation, contributions, and experimental
results in the abstract.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: In the final section, we have analyzed the drawbacks of our method and
proposed the existing limitations.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]

Justification: Our paper does not contain any theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have provided sufficient experimental details in the paper and appendix,
and we believe that the experiments in the paper can be replicated.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We submitted our code and datasets, and provided a replication guide.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We have provided detailed explanations of the experimental setup, dataset
partitioning, and hyperparameter sensitivity analysis in the core of paper and the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We have reduced the errors through repeated experiments, and used standard
deviation to represent the error range.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We have provided the details of the experimental environment in the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have confirmed that our code does not violate the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Our work can reduce resource consumption and have a positive impact on
society, without any negative effects.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our work does not have a high risk of misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have provided proper citations and acknowledgments for all the resources
we have utilized.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: Our work did not create any new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our work does not include any crowdsourcing experiments or research involv-
ing human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our work does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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