
Fast Best-of-N Decoding via Speculative Rejection

Hanshi Sun1∗ , Momin Haider2∗†, Ruiqi Zhang3∗ , Huitao Yang5, Jiahao Qiu4,
Ming Yin4, Mengdi Wang4, Peter L. Bartlett3,6, Andrea Zanette1∗
1Carnegie Mellon University, 2University of Virginia, 3UC Berkeley

4Princeton University, 5Fudan University, 6Google DeepMind
{hanshis,azanette}@andrew.cmu.edu, {rqzhang,peter}@berkeley.edu
{jq3984,my0049,mengdiw}@princeton.edu, htyang21@m.fudan.edu.cn

Abstract

The safe and effective deployment of Large Language Models (LLMs) involves a
critical step called alignment, which ensures that the model’s responses are in ac-
cordance with human preferences. Prevalent alignment techniques, such as DPO,
PPO and their variants, align LLMs by changing the pre-trained model weights
during a phase called post-training. While predominant, these post-training meth-
ods add substantial complexity before LLMs can be deployed. Inference-time
alignment methods avoid the complex post-training step and instead bias the gen-
eration towards responses that are aligned with human preferences. The best-
known inference-time alignment method, called Best-of-N, is as effective as the
state-of-the-art post-training procedures. Unfortunately, Best-of-N requires vastly
more resources at inference time than standard decoding strategies, which makes
it computationally not viable. In this work, we introduce SPECULATIVE REJEC-
TION, a computationally-viable inference-time alignment algorithm. It generates
high-scoring responses according to a given reward model, like Best-of-N does,
while being between 16 to 32 times more computationally efficient.

1 Introduction

Large Language Models (LLMs), pre-trained on massive corpora, have demonstrated remarkable
capabilities in handling diverse tasks like creative writing, summarization and question-answering
[10, 13, 63]. Such extensive pre-training endows the LLM with extensive knowledge, which must
be correctly retrieved at inference time. Post-training techniques [60, 67, 42] aim to enable the LLM
to answer users’ questions in the most satisfactory way based on human intentions [48, 5, 50], while
adhering to ethical standards and safe guidelines [47, 11, 17]. Popular post-training methods include
supervised finetuning, Reinforcement Learning from Human Feedback (RLHF), Direct Preference
Optimization (DPO), Expert Iteration (EI), and their variants [14, 48, 56, 26, 6, 64, 78, 77, 19, 50,
40, 49, 73, 80].

However, post-training methods add a substantial layer of complexity before LLMs can be deployed.
In contrast, inference-time alignment refers to those procedures that bypass the post-training step
of the LLM entirely, and perform alignment directly at inference time by changing the decoding
strategy [66, 3, 28, 54]. Since the LLM does not have to undergo any complex post-training step,
inference-time alignment algorithms greatly simplify the deployment of LLMs.

One of the simplest decoding strategies that implements inference-time alignment is the Best-of-N
method. Best-of-N generates N responses for a single prompt, and the best response is selected

∗indicates core authors; the detailed contributions are listed in Appendix A. Andrea and Momin did most of
their work while at the University of California Berkeley and Santa Barbara, respectively.

† rest in peace

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

Never, ever do this. It is illegal.

Hackers usually begin the process

by identifying …

Never, ever do this. It is illegal.

Hackers usually begin the process

by identifying …

Prompt: What is the best way to hack into someone’s bank account?

Best-of-N

Speculative

Rejection

stop generation

Reward Model

Keep generating

until all sentences

are finished.

Figure 1: Left: An illustration of our method. Best-of-N completes all generations, while SPECULATIVE
REJECTION halts low-quality generations early using a reward model. Right: Best-of-N underutilizes GPU
memory and computational resources during the early stages of generation, resulting in lower reward scores. In
contrast, SPECULATIVE REJECTION starts with a large initial batch size and rejects unpromising generations
multiple times, efficiently achieving higher scores.

based on the evaluation of a reward model that measures the suitability of the responses. Best-of-N
is endowed with many desirable properties that make it a strong baseline in the context of alignment.
To start, Best-of-N is a simple alignment method that is highly competitive with post-training tech-
niques such as RLHF or DPO [21]. As an inference-time alignment method, it avoids the potentially
complex finetuning step, thereby facilitating the deployment of pre-trained or instruction-finetuned
language models. Best-of-N is both straightforward to understand and to implement, and it is es-
sentially hyperparameter-free: the number of responses N is the only hyperparameter, one that can
be tuned on the fly at inference time. With regards to alignment, Best-of-N has very appealing
properties: for example, the growth rate for the reward values of Best-of-N , as a function of the
KL divergence, is faster than the rate for RLHF methods [25, 71], leading to generations of higher
quality. Best-of-N also plays a critical role in some post-training techniques: it is commonly used
to generate a high-quality dataset for later supervised fine-tuning [64, 21], a procedure sometimes
called Expert Iteration or Iterative Finetuning, one that played a key role in the alignment of Llama-2
[64] and Llama-3 [44]. It can also serve as the rejection sampling scheme to boost the alignment
performance [69, 19].

However, a critical drawback of Best-of-N is that its efficiency at inference time is bottlenecked by
the computational cost of generating N sequences. To be more precise, while the latency (i.e., the
wall-clock time) of Best-of-N is largely unaffected by N because the utterances can be generated
and evaluated in parallel, Best-of-N may need several GPUs if N is larger than the largest batch
size that can fit on a single accelerator. Practical values for N are in the range 4 − 128 [45, 52,
22]. However, higher values of N , such as 1000 − 60000 [21, 25], may be needed in order to be
competitive with the state-of-the-art post-training methods, but these are not computationally viable,
because they require dozens, if not hundreds, of accelerators.

In this work, we take a first step towards developing an inference-time alignment algorithm with
performance comparable to that of Best-of-N for large values of N (i.e., N > 1000) using only
a single accelerator at inference time and with a similar latency as that of Best-of-N . Our method
is based on the observation that the reward function used for scoring the utterances can distinguish
high-quality responses from low-quality ones at an early stage of the generation, which is detailed in
Section 4.1. In other words, we observe that the scores of partial utterances are positively correlated
to the scores of full utterances. As illustrated in Figure 1, this insight enables us to identify, during
generation, utterances that are unlikely to achieve high scores upon completion, allowing us to halt
their generation early.

Building on this insight, we introduce SPECULATIVE REJECTION in Section 4.2, with an illustration
provided in Figure 1. Our algorithm begins with a very large batch size, effectively simulating the
initial phases of Best-of-N with a large N (e.g., 5000) on a single accelerator. This increases the
likelihood that the initial batch will contain several generations that lead to high-quality responses
as they are fully generated. However, such a large batch size would eventually exhaust the GPU

2

memory during the later stages of auto-regressive generation. To address this, SPECULATIVE RE-
JECTION queries the reward model multiple times throughout the generation process, attempting to
infer which responses are unlikely to score high upon completion. Using this information, it halts
the generation of unpromising responses. As a result, SPECULATIVE REJECTION dynamically re-
duces the batch size during generation, preventing memory exhaustion while ensuring that only the
most promising responses are fully generated.

Empirically, we conduct extensive experiments to demonstrate the effectiveness and efficiency of
SPECULATIVE REJECTION. We evaluate it on the AlpacaFarm dataset using a variety of gen-
erative and reward models. Our results show that SPECULATIVE REJECTION is so efficient that
Best-of-N requires between 16 and 32 GPUs to achieve a reward comparable to that gener-
ated by SPECULATIVE REJECTION on a single GPU, with similar latency (see Section 5). To
further validate the generation quality, in Section 5.2, we evaluate the win-rate and the length-
controlled win-rate in comparison to Best-of-N using GPT-4-Turbo, with N ranging from 120
to 3840. In order to demonstrate that SPECULATIVE REJECTION serves as a general-purpose
framework for accelerating score-based LLM decoding, in Section 5.3 we evaluate its effective-
ness at maximizing the probability of the generated utterances. The code is available at https:
//github.com/Zanette-Labs/SpeculativeRejection.

2 Related Literature

Early Stopping Algorithms. Using early exit/stopping for fast inference has been leveraged for
applications such as vision [31, 62] and language [41, 53, 29] tasks. The key idea relies on adding
classifiers to the internal Neural Network / Transformer layers and using it to construct confidence-
based early exit rules to decide whether to output intermediate generation without traversing subse-
quent layers. Yet, those methods are tailor-designed for the respective models such as Shallow-Deep
Network [31] and FastBERT [41], making them model-specific. In contrast, our proposed paradigm
is not confined to specific models, offering versatility and applicability across several scenarios.

Our method shares some similarities with beam search, a heuristic search algorithm that explores
the completion graph by expanding the most promising responses in a limited set. We instead start
with a certain number, N , of utterances and only choose to complete a fraction of them. Such a
choice is more suitable in our context, given the linear memory consumption of the KV cache and
the quadratic cost of evaluating the reward model as the number of generated tokens increases [65].

Inference Efficiency in LLMs. There are different approaches to improve the efficiency of LLMs
including efficient structure design, model compression (e.g., quantization via QLoRA [18], Spar-
sification via Sparse Attention [61]), inference engine optimization (e.g. speculative decoding) and
serving system (e.g. PagedAttention/vLLM [34]). See survey [81] for a thorough overview. Among
the methods, speculative decoding [12, 35, 59, 1, 58] also incorporates rejection sampling. It em-
ploys fast small models for speculative execution and uses large models as verifiers for accelerated
generation. These methods are orthogonal to SPECULATIVE REJECTION and can be seamlessly
combined with our method for reward maximization.

Alignment and Use of Best-of-N . Best-of-N is a well known alignment strategy. There are two
primary categories of reward alignment approaches: (1) LLM fine-tuning. This method involves
updating the weights of the base model. Techniques within this category include reinforcement
learning from human feedback (RLHF) [48, 14, 51], direct preference optimization (DPO) [50],
and their respective variants [23, 76, 4, 72, 55, 78, 77, 36, 45]. (2) Decoding-time alignment. In
this approach, the base model weights remain frozen. Examples of this category include ARGS
[32], controlled decoding [45], Best-of-N , and associated applications such as Expert Iteration [21,
25, 64]. The Best-of-N method was initially proposed as an inference-time baseline alignment
method [46]. Building upon this foundation, Llama-2 used the best-sampled response to fine-tune
the model [64]. [25, 45, 22] collectively demonstrated the robustness and efficacy of Best-of-N .
Their investigations consistently revealed compelling reward-KL tradeoff curves, surpassing even
those achieved by KL-regularized reinforcement learning techniques and other complex alignment
policies. Theoretically, there is a simple estimate for the KL divergence between the output policy
of Best-of-N and the base model for small N [15, 25, 27], and [8] improved this formula for all
N. [71] showed that Best-of-N and KL-regularized RL methods enjoy equal asymptotic expected

3

https://github.com/Zanette-Labs/SpeculativeRejection
https://github.com/Zanette-Labs/SpeculativeRejection

reward and their KL deviation is close. Furthermore, there are frameworks that integrate Best-of-N
with RLHF, such as RAFT [19], along with rejection sampling-based DPO approaches [40].

Pruning in Games. Our technique bears some similarity with pruning in games. Traditional pro-
grams that play games such as chess must search very large game trees, and their efficiency can
be greatly enhanced through pruning techniques, the mechanisms designed to halt the exploration
of unpromising continuations [43]. The renowned α-β algorithm [24, 7, 57] capitalizes lower (α)
and upper (β) bounds on the expected value of the tree, significantly diminishing the computational
complexity inherent in the basic minimax search. Our idea of early stopping is similar to pruning
by rejecting suboptimal trajectories. Our setup has a different structure because of the lack of an
adversary; the goal is also different, as we aim at preserving the generation quality of a reference
algorithm (Best-of-N).

Monte-Carlo Tree Search [33] has recently been applied to LLMs [38, 9, 79, 70], but it can also
increase the latency. Our approach is potentially simpler to implement, and focuses on preserving
the generation quality of Best-of-N . There are also more works recently on applying MCTS to LLM
alignment, [75, 74, 39], though these needs training.

3 Preliminaries

Let p be a language model. When provided with a prompt X, the language model predicts a response
Y = (Y 1, Y 2, ..., Y T), where Y i represents the i-th token in the response and T is the total number
of tokens in the response sequence. More precisely, the generation is auto-regressive, meaning that
given the prompt X and the tokens Y ≤k = (Y 1, Y 2, ..., Y k) generated so far, the next token Y k+1

is generated from the conditional model

Y k+1 ∼ p(· | X,Y ≤k). (1)
The auto-regressive generation stops when the language model p outputs the end-of-sequence (EOS)
token. Therefore, if Y = (Y 1, Y 2, ..., Y T) is a full response, Y T is always the EOS token. With a
little abuse of notation, we also let Y ∼ p(· | X) denote the process of sampling the full response
Y = (Y 1, Y 2, ..., Y T) from the model p via auto-regressive sampling according to Equation (1).

Inference-time Alignment. In order to evaluate the quality of the responses generated from an
LLM, a real-valued score function s(X,Y) 7→ R, often called reward model, can be utilized. It is
typically trained on paired preference data or adapted from a language model, to assess the response
based on desired qualities like helpfulness, harmlessness, coherence, relevance, and fluidity relative
to the prompt [48, 21, 30]. The reward model depends on both the prompt X and the response Y.
For simplicity, when considering the rewards for a single prompt, we simply write s(Y).

Given a prompt X , inference-time alignment refers to the process of using an auto-regressive
model p to generate a response Y whose score s(X,Y) is as high as possible. The most popu-
lar inference-time alignment method is, to our knowledge, the Best-of-N algorithm. For a given
prompt X , Best-of-N generates N i.i.d. responses Y1, . . . , YN ∼ p(· | X), scores them to obtain
{s(Y1), . . . , s(YN)} and finally returns the highest-scoring one, i.e., argmaxY {s(Y1), . . . , s(YN)}.
Written concisely, Best-of-N ’s response is

YBest-of-N = argmax
Y ∈{Yk∼p(·|X)}N

k=1

s(Y).

As noted in the introduction and related literature, this simple decoding strategy is extremely effec-
tive, but it is computationally impractical even for moderate values of N .

4 SPECULATIVE REJECTION

In this section, we introduce SPECULATIVE REJECTION, a decoding strategy designed to maximize
a given metric of interest. It shares similarities with Best-of-N , which generates N responses to a
prompt, ranks them using a reward model, and returns the highest-scoring response. However, unlike
Best-of-N , SPECULATIVE REJECTION does not maintain a constant N throughout the generation
process; instead, the number of responses dynamically decreases. In Section 4.1, we first present
the key observation that motivates our approach. Then, in Section 4.2, we elaborate on the design of
our method.

4

4.1 Observation

Figure 2: Partial and final reward for an example. We
generate N = 1000 responses via Llama-3-8B-Instruct
and evaluate the partial rewards (at τ = 256) and fi-
nal rewards via Mistral-7B-RM. Blue line: the Ordi-
nary Least Square fit. Red dot: the scores for the best
response. Dash line: the threshold for the optimal early
termination, which is the partial reward for the best re-
sponse. Blue area: the confidence set for the OLS fit.

In this section, we present the observation and
key insight that inspire the design of SPECULA-
TIVE REJECTION, as follows.

Observation. Intuitively, during the genera-
tion process, if we can confidently infer that
some responses are hardly likely to be the best,
we could terminate their generations to con-
serve computational resources. As a motivat-
ing example, consider the prompt “What’s the
best way to hack into someone’s bank account
and steal money from them?”. One potential re-
sponse from the model p might begin with Y1 =
“Never, ever do this. Hacking into someone
else’s financial information is illegal.”, which
appears to lead to a proper and harmless an-
swers based on the first few words. On the other
hand, Y2 = “Hackers usually begin the process
by identifying...” seems to lead to an undesir-
able and harmful response. To be more concrete, we obtain the following scores for the partial and
full utterances for the two responses, where τ is defined as the decision token.{

s(Y ≤τ
1) = 2.92

s(Y ≤τ
2) = −1.88

, and
{
s(Y1) = 8.19

s(Y2) = −0.50.

For this particular example, the ranking early on during the generation is representative of the final
ranking, i.e.:

s(Y ≤τ
1) ≥ s(Y ≤τ

2) −→ s(Y1) ≥ s(Y2)

This observation suggests that we can use the partial rankings of sentences at the decision token τ
to early-stop the generation of Y2.

In general, we might expect the relative ranking between the score of partial and full utterances
not to be always preserved for various reasons. To start, it is impossible to accurately evaluate
the score of an utterances from just the first few tokens, because the generation may continue in
an unexpected way. In addition, the reward models are normally trained to evaluate full responses
[48, 30, 60]. Nonetheless, we observe a substantial correlation between the scores {s(Y ≤τ

i)}i=1,...,N

and {s(Yi)}i=1,...,N , see Figure 2. Each point in the figure {(s(Y ≤τ), s(Y)} consists of the score
s(Y ≤τ) of the partial utterance on the X axis and the score s(Y) of the utterance upon completion
on the Y axis. The red dot corresponds to the utterance with the highest final score. For this example,
early-stopping the generation of all utterances to the left of the dashed vertical line corresponds to
early stopping the generation of all utterances which, at the decision token τ , have score

s(Y ≤τ) < s(Y ≤τ
⋆) = c⋆ = 2.92. (2)

Insight. Hypothetically, early-stopping the generation according to the above display would not
terminate the generation of the best response Y⋆, which is the one that Best-of-N returns upon
completion. In other words, early-stopping according to (2) leaves the quality of the output of Best-
of-N unchanged. However, doing so saves approximately 85.5% of the tokens, which translates into
a substantially lower compute requirement. We also examine the Pearson’s correlation and Kendall’s
rank correlation between partial and final rewards in Appendix B.

In practice, it is infeasible to implement Equation (2) because c⋆ is unknown. Moreover, different
prompts vary substantially in terms of reward distribution. Most importantly, this discussion does
not describe how to find the decision token, whose choice has a great impact in terms of efficient
hardware utilization. SPECULATIVE REJECTION, described in the next section, adjusts the batch
size dynamically during the auto-regressive generation. It does so by automatically determining the
decision tokens based on GPU memory capacity during decoding, ensuring an efficient hardware
utilization. It then continues the generation only for the most promising utterances beyond that
point until either the next decision token is reached, or the auto-regressive generation is complete.

5

Algorithm 1 SPECULATIVE REJECTION

Input: An auto-regressive generative model p, a reward model s, stopping fraction α ∈ (0, 1), a
prompt X.

1: Decide the initial batch size as binit based on the GPU memory capacity and the prompt length.
2: b← binit, I = ∅.
3: while b > 0 do
4: For 1 ≤ k ≤ b, generate

(
Y 1
k , Y

2
k , ..., Y

τk
k

)
from model p and τk := min{τ, ℓk}, where τk

is the number of generated tokens before OOM and ℓk is the number of tokens in Yk.
5: Evaluate all partial rewards (3) from s and compute the cutoff threshold via (4).
6: Compute the set of accepted index Iaccepted via (5), add completed sequences to I.
7: Update the batch size using Iaccepted: b← |Iaccepted|.
8: end while

Output: YSR = Yk∗ with k∗ = argmaxk∈I s(Yk).

4.2 Algorithm

Building on the insight from the previous section, we present SPECULATIVE REJECTION, as il-
lustrated in Figure 1. We plot the memory usage during generation with the Best-of-N decoding
strategy and observe that a significant fraction of GPU memory remains underutilized in the early
stages of auto-regressive generation. Moreover, since auto-regressive generation with small batch
sizes tends to be memory-bound [16, 35], part of the accelerator’s computational capacity is left
unused. Together with the insight from Section 4.1, these observations present an opportunity to de-
sign an algorithm that more effectively utilizes available GPU memory and computational resources
to generate a set of candidate responses for ranking with a reward model.

Our approach is straightforward: we begin by running Best-of-N with a high N , one so large that
it would normally cause the accelerator to run out of memory (OOM) after generating only a few
tokens. When the accelerator is about to run out of memory, we rank the incomplete utterances ac-
cording to the reward model and halt the generation of a fraction, α, of the lowest-scoring responses.
This effectively prevents memory exhaustion by dropping the less promising utterances and contin-
uing generation only for the top candidates. A rejection round occurs each time the GPU approaches
its memory limit. The complete procedure is detailed in Algorithm 1. Specifically, each rejection
round consists of three phases, as outlined below.

1. Early Generation. Algorithm 1 generates b sequences until OOM, where τ is the max number
of generated tokens. If, for some sequence, the EOS token is reached before the τ -th token, we
only generate the tokens up to the EOS token. Therefore, the actual stopping time for the early
generation phase for prompt yk is τk := min{τ, ℓk}.

2. SPECULATIVE REJECTION. We then evaluate the reward value for the concatenation of the
prompt and the partial response using a reward model s. The set of partial rewards is defined as

Rpartial :=
{
s
(
Y ≤τk
k

)
: k = 1, 2, ..., b

}
, (3)

where Y ≤τk
k = (Y 1

k , Y
2
k , ..., Y

τk
k) is the first τk tokens of response Yk. For sequences that have

been completed, we evaluate the reward value up to the EOS token. In this case, the partial and
final rewards are the same. Next, we compute a prompt-dependent cutoff threshold as a quantile
of all partial rewards:

rcut := qα (Rpartial) , (4)
where α ∈ [0, 1] is the rejection rate, a hyperparameter that controls the fraction of trajectories to
terminate, and qα(·) represents the α-th lower quantile.

3. Promising Utterances for Next Round. For all generations, we continue generating the top (1−
α) proportion of remaining sequences up to the EOS token (or the maximum allowed generation
length) if its partial reward exceeds rcut. Otherwise, we terminate this sequence. More formally,
the index set for accepted sequences is denoted as:

Iaccepted =
{
k : 1 ≤ k ≤ b, s

(
Y ≤τk
k

)
≥ rcut

}
. (5)

If Iaccepted is not empty, we will update the new batch size for the next rejection round.

6

We finally output the utterance with the highest final reward among those not halted in the middle.
Mathematically, the returned response is

YSR = Yk∗ , where k∗ := argmax
k∈I

{s(Yk) | Yk ∼ p(· | X)}. (6)

In effect, this procedure “simulates” Best-of-N with a higher N during the initial phase and dynam-
ically reduces the batch size to prevent OOM. As illustrated in Figure 1, SPECULATIVE REJECTION
utilizes the available GPU memory far more efficiently than Best-of-N . Given the minimal increase
in latency, we can also conclude that the GPU’s compute capacity is utilized much more effectively.

5 Experiments

In this section, we evaluate the effectiveness of SPECULATIVE REJECTION. We begin by describing
the core performance metrics, such as the relative GPU compute, average speedup, and normalized
score. Next, in Section 5.1, we demonstrate that our method achieves a reward score that would
require Best-of-N to use between 16 and 32 GPUs. In Section 5.2 we verify the generation quality
using win-rate metrics with GPT-4-Turbo as annotator. Finally, in Section 5.3, we explore how
SPECULATIVE REJECTION can be applied to accelerate Best-of-N decoding beyond alignment, for
instance to maximize other objectives such as the probability of the generated utterance.

Setup. For SPECULATIVE REJECTION to be a practical reward-maximizing decoding strategy, it
must generate high-reward responses with a reasonable hardware requirement and latency (i.e., wall-
clock time). To evaluate this, we run SPECULATIVE REJECTION on a single GPU and compute the
maximum reward s(YSR) for the response YSR it generates. In contrast, we use let #GPUs denote
the number of GPUs used by Best-of-N . We use AlpacaFarm [37] as the test dataset, running both
BoN and our method on a DGX node with H100 GPUs. Our implementation, based on PyTorch,
features an efficient inference system that automatically determines the maximum number of tokens
to generate before running out-of-memory and pre-allocates the corresponding KV cache.

Baselines. We run the Best-of-N algorithm on the same prompts to generate a response YBest-of-N
with a score s(YBest-of-N). We incrementally increase the value of N in Best-of-N until the reward
value s(YBest-of-N) matches that of SPECULATIVE REJECTION. To ensure that Best-of-N utilizes the
GPU memory efficiently, we determine the maximum batch size that allows Best-of-N to complete
the generation without running out of memory on a single H100 GPU, which we found to be 120.
Starting from Best-of-120, we progressively double the value of N to 240, 480, 960, 1920, and 3840.
Each time N doubles, the number of GPUs required by Best-of-N also doubles—Best-of-120 runs
on #GPUs = 1, but Best-of-480 requires2 #GPUs = 4. For simplicity, we utilize the standard
generate() function in HuggingFace transformers [68] for the baseline implementation3.

Performance Metrics. We define the relative GPU compute, the speedup, and the improvement
score to assess the performance of the algorithm. The definition of the relative GPU compute is a
natural one: given a prompt X , the relative GPU compute is the wall-clock time T 4 divided by the
wall-clock time of Best-of-Nmin (e.g., Nmin = 120). On the other hand, the speedup is similar to rel-
ative GPU compute, but is defined as the speedup compared to the maximum N (e.g., Nmin = 3840).
The improvement score is defined as the relative reward value achieved by BoN and SPECULATIVE
REJECTION. Since different reward models and language models define very different reward distri-
butions, we normalized the score by the reward range of Best-of-Nmin. Mathematically, we denote
the responses generated via SPECULATIVE REJECTION as YSR and the utterances generated via

2It is possible to use a single GPU to run Best-of-480 by generating 4 batches of 120 responses, but this
increases latency by a factor of 4. For values of N requiring more than 8 GPUs, we use 8 GPUs and run the
algorithm multiple times with different random seeds, and take the response with highest score.

3Note that the efficiency of this function varies depending on the model being used.
4TBoN ×#GPUs for Best-of-N and TSpecRej for SPECULATIVE REJECTION

7

0.2 0.5 1.0 2.0 4.0 8.0 16.0 32.0
Relative GPU Compute

100

105

110

115

120

125

Im
pr

ov
em

en
t S

co
re

120

240

480

960

1920

3840
0.9

0.7
0.5 0.3 0.1

Mistral-7B-v0.3 w/ RM-Mistral-7B

BoN
Speculative Rejection

0.2 0.5 1.0 2.0 4.0 8.0 16.0 32.0
Relative GPU Compute

100

105

110

115

120

125

Im
pr

ov
em

en
t S

co
re

120

240

480

960

1920

3840

0.9 0.70.5
0.3

0.1

Mistral-7B-v0.3 w/ FsfairX-LLaMA3-RM

BoN
Speculative Rejection

0.2 0.5 1.0 2.0 4.0 8.0 16.0 32.0
Relative GPU Compute

100.0

102.5

105.0

107.5

110.0

112.5

115.0

117.5

Im
pr

ov
em

en
t S

co
re

120

240

480

960

1920

3840

0.9

0.7
0.5

0.3 0.1

Mistral-7B-v0.3 w/ ArmoRM-Llama3-8B

BoN
Speculative Rejection

1.0 2.0 4.0 8.0 16.0 32.0
Relative GPU Compute

100

105

110

115

120

125

Im
pr

ov
em

en
t S

co
re

120

240

480

960

1920

3840

0.9
0.7 0.5

0.3
0.1

Llama-3-8B w/ RM-Mistral-7B

BoN
Speculative Rejection

0.5 1.0 2.0 4.0 8.0 16.0 32.0
Relative GPU Compute

100

105

110

115

120

125

Im
pr

ov
em

en
t S

co
re

120

240

480

960

1920

3840

0.9
0.7 0.5

0.3
0.1

Llama-3-8B w/ FsfairX-LLaMA3-RM

BoN
Speculative Rejection

0.5 1.0 2.0 4.0 8.0 16.0 32.0
Relative GPU Compute

100

105

110

115

120

Im
pr

ov
em

en
t S

co
re

120

240

480

960

1920

3840

0.9
0.70.5

0.3 0.1

Llama-3-8B w/ ArmoRM-Llama3-8B

BoN
Speculative Rejection

1.0 2.0 4.0 8.0 16.0 32.0
Relative GPU Compute

98
100
102
104
106
108
110
112
114

Im
pr

ov
em

en
t S

co
re

120

240

480

960

1920

3840

0.9

0.7
0.5

0.3 0.1

Llama-3-8B-Instruct w/ RM-Mistral-7B

BoN
Speculative Rejection

1.0 2.0 4.0 8.0 16.0 32.0
Relative GPU Compute

100.0

102.5

105.0

107.5

110.0

112.5

115.0

Im
pr

ov
em

en
t S

co
re

120

240

480

960

1920

3840

0.9

0.7
0.5

0.3

0.1

Llama-3-8B-Instruct w/ FsfairX-LLaMA3-RM

BoN
Speculative Rejection

1.0 2.0 4.0 8.0 16.0 32.0
Relative GPU Compute

98
100
102
104
106
108
110
112
114

Im
pr

ov
em

en
t S

co
re

120

240

480

960

1920

3840

0.9
0.7

0.5 0.3 0.1

Llama-3-8B-Instruct w/ ArmoRM-Llama3-8B

BoN
Speculative Rejection

Figure 3: We evaluate our efficient implementation of SPECULATIVE REJECTION on the AlpacaFarm-Eval
dataset using various generative models and reward models. The numbers indicate N for Best-of-N and re-
jection rate α for SPECULATIVE REJECTION. SPECULATIVE REJECTION consistently achieves higher reward
scores with fewer computational resources compared to Best-of-N .

Best-of-Nmin as Z1, Z2, ..., ZNmin . With this notation, for a given prompt X , we have

Relative GPU Compute :=
T

TBoNmin

, Speedup :=
TBoNmax

T
, (7)

Improvement Score :=

(
1−

max
k∈[Nmin]

s (Zk)− s (YSR)

max
k∈[Nmin]

s (Zk)− min
k∈[Nmin]

s (Zk)

)
× 100. (8)

We report their average across prompts. Notice that an improvement score equal to 100 indicates
that the method achieves the same reward score as Best-of-Nmin on average.

5.1 Efficiency Evaluation

We report the relative GPU compute and the improvement score for Best-of-N and SPECULATIVE
REJECTION in Figure 3. For SPECULATIVE REJECTION, we additionally report the rejection rate
α , while for Best-of-N we report the value of N . We set Best-of-120 as the baseline because
it can run on a single 80GB GPU, producing all utterances concurrently without running out of
memory. Figure 3 highlights the efficiency of our procedure: SPECULATIVE REJECTION utilizes
fewer GPU resources to achieve higher scores compared to Best-of-N . Specifically, with Llama-
3-8B and reward model RM-Mistral-7B, Speculative Rejection achieves a reward score that would
require Best-of-N to use between 16 and 32 GPUs. While the precise performance may vary across
different generative model and reward model pairs, the overall trend remains consistent. Notably,
SPECULATIVE REJECTION provides less improvement for Llama-3-8B-Instruct compared to the

8

Table 1: Win-rate results across various settings for the Mistral-7B, Llama-3-8B, and Llama-3-8B-Instruct
models, scored by the reward model ArmoRM-Llama-3-8B and evaluated using GPT-4-Turbo. “WR” refers to
win-rate, and “LC-WR” refers to length-controlled win-rate.

Methods Mistral-7B Llama-3-8B Llama-3-8B-Instruct Average
WR LC-WR WR LC-WR WR LC-WR WR LC-WR

Bo120 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00
Bo240 60.69 60.07 50.45 50.27 49.92 52.89 53.69 54.41
Bo480 61.28 61.84 58.90 59.93 50.49 53.11 56.89 58.29
Bo960 67.50 68.07 59.20 60.26 50.39 51.64 59.03 59.99

Bo1920 75.20 76.27 60.57 61.05 51.86 53.13 62.54 63.48
Bo3840 76.13 77.21 59.19 57.91 53.36 54.01 62.89 63.04

Ours (α = 0.5) 69.42 73.31 73.60 77.91 55.50 58.80 66.17 70.01

base models like Mistral-7B and Llama-3-8B. This is because Llama-3-8B-Instruct is more aligned
and tends to generate shorter responses, resulting in fewer rejection rounds.

Effect of the Rejection Rate. The value of N is the only hyper-parameter that determines the
alignment effectiveness of Best-of-N . Such a value is replaced by the rejection rate, α, for SPEC-
ULATIVE REJECTION. Both algorithms additionally require an (initial) batch size to be specified to
use the accelerator effectively. Notice that running our method with α = 0 and an initial batch size
of N is equivalent to running Best-of-N , and so our method is more general than Best-of-N .

A high value of α implies that the rejection is very aggressive and several responses are eliminated
at each rejection round; in such case, only a few rejection rounds occur during the generation. On
the other hand, a low value for the rejection rate only halts the generation of those responses that
exhibit very low score amid the generation. Since in this case SPECULATIVE REJECTION only
rejects responses that are clearly sub-optimal, it maintains a larger pool of responses at any given
point during the generation, some of which are likely to score very high upon termination, and so the
final score is higher than what it would be for larger α. However, as illustrated in Figure 3, a small
α increases the latency slightly, due to the computational cost required through the reward model,
as well as to the generally higher batch size at any point of the generation.

5.2 Win-rate Evaluation

To further validate the generation quality, we evaluate both the win-rate [37] and the length-
controlled (LC) win-rate [20] using GPT-4-Turbo based on the generations from the prior section.
For each measurement, the win-rate baseline is Bo120. As shown in Table 1, SPECULATIVE RE-
JECTION maintains generation quality while achieving a notable speedup in most combinations.

5.3 Maximization of the Probability of the Generated Utterances

SPECULATIVE REJECTION is a general purpose reward-maximizing decoding strategy that can be
applied with any rejection policy. In the previous sections, we demonstrated its effectiveness with
scores evaluated by reward models. In this section, we evaluate its performance using the probability
of the generated utterances as the reward function.

We test Best-of-N and SPECULATIVE REJECTION on the AlpacaFarm-Eval dataset. Specifically,
Best-of-N samples N responses from the generative model and selects the one with the highest
average probability measured by the model itself. To be more precise,x given the prompt X and the
utterances {Yk | Yk ∼ p(· | X)}, the reward function is defined as s(Yk) = 1

len(Yk)
ln p(Yk | X)

where len(Yk) is the numbers of tokens in the response Yk. SPECULATIVE REJECTION rejects the
top α fraction of responses with the lowest average probability during each rejection round. As
shown in Table 2, our method outperforms Best-of-N , consistently producing responses with higher
probability under the language model p and achieving remarkable speedup.

9

Table 2: Perplexity (PPL) results across various settings for a range of models show that SPECULATIVE RE-
JECTION is faster than Best-of-N , while consistently generating responses with lower perplexity. Notably, the
unexpected speedup observed with Mistral-7B is partially due to the inefficient implementation of grouped-
query attention (GQA) in HuggingFace transformers [2].

Methods Mistral-7B Llama-3-8B Llama-3-8B-Instruct Average
PPL Speedup PPL Speedup PPL Speedup PPL Speedup

Bo120 2.316 33.3× 2.020 31.9× 2.885 29.5× 2.407 31.6×
Bo240 2.143 15.9× 1.775 16.0× 2.718 15.9× 2.212 15.9×
Bo480 1.919 8.0× 1.595 8.1× 2.618 7.6× 2.044 7.9×
Bo960 1.744 4.0× 1.506 4.0× 2.533 4.1× 1.928 4.0×
Bo1920 1.637 2.0× 1.394 2.0× 2.449 2.0× 1.827 2.0×
Bo3840 1.488 1.0× 1.288 1.0× 2.318 1.0× 1.698 1.0×

Ours (α = 0.5) 1.476 76.9× 1.299 30.6× 1.887 12.1× 1.554 39.9×

6 Limitations and Conclusions

SPECULATIVE REJECTION is a general purpose techique to accelerate reward-oriented decoding
from LLMs. The procedure is simple to implement while yielding substantially speedups over the
baseline Best-of-N . We now discuss the limitations and some promising avenues for future research.

Prompt-dependent Stopping. Our implementation of speculative rejection leverages statistical
correlations to early stop trajectories that are deemed unpromising. However, it is reasonable to
expect that the correlation between partial and final rewards varies prompt-by-prompt. For a target
level of normalized score, early stopping can be more aggressive in some prompts and less in others.
This consideration suggests that setting the rejection rate adaptively can potentially achieve higher
speedup and normalized score on different prompts. We leave this opportunity for future research.

Reward Models as Value Functions. Our method leverages the statistical correlation between the
reward values at the decision tokens and upon termination. Concurrently, recent literature [49, 73,
80] also suggest training reward models as value functions. Doing so would enable reward models
to predict the expected score upon completion at any point during the generation and thus be much
more accurate models for our purposes. In fact, our main result establishes that this would lead to
an optimal speedup, and it would be interesting to conduct a numerical investigation.

Acknowledgments

We thank Yiqi Wang for briefly working with us at the beginning. We acknowledge the Princeton and
CMU ECE compute cluster and staff to support the experiments. Andrea acknowledges a Researcher
Access program from OpenAI. Peter gratefully acknowledges the support of the NSF through grants
DMS-2023505 and DMS-2031883, the Simons Foundation through award #814639, and the ONR
through MURI award N000142112431.

References
[1] Kwangjun Ahn, Ahmad Beirami, Ziteng Sun, and Ananda Theertha Suresh. Spectr++: Im-

proved transport plans for speculative decoding of large language models. In NeurIPS 2023
Workshop Optimal Transport and Machine Learning, 2023.

[2] Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico Lebrón, and
Sumit Sanghai. Gqa: Training generalized multi-query transformer models from multi-head
checkpoints. arXiv preprint arXiv:2305.13245, 2023.

[3] Afra Amini, Tim Vieira, and Ryan Cotterell. Variational best-of-n alignment. arXiv preprint
arXiv:2407.06057, 2024.

[4] Mohammad Gheshlaghi Azar, Zhaohan Daniel Guo, Bilal Piot, Remi Munos, Mark Rowland,
Michal Valko, and Daniele Calandriello. A general theoretical paradigm to understand learning

10

from human preferences. In International Conference on Artificial Intelligence and Statistics,
pages 4447–4455. PMLR, 2024.

[5] Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy
Jones, Anna Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, et al. Constitutional
ai: Harmlessness from ai feedback. arXiv preprint arXiv:2212.08073, 2022.

[6] Michiel Bakker, Martin Chadwick, Hannah Sheahan, Michael Tessler, Lucy Campbell-
Gillingham, Jan Balaguer, Nat McAleese, Amelia Glaese, John Aslanides, Matt Botvinick,
et al. Fine-tuning language models to find agreement among humans with diverse preferences.
Advances in Neural Information Processing Systems, 35:38176–38189, 2022.

[7] Gérard M Baudet. On the branching factor of the alpha-beta pruning algorithm. Artificial
Intelligence, 10(2):173–199, 1978.

[8] Ahmad Beirami, Alekh Agarwal, Jonathan Berant, Alexander D’Amour, Jacob Eisenstein,
Chirag Nagpal, and Ananda Theertha Suresh. Theoretical guarantees on the best-of-n align-
ment policy. arXiv preprint arXiv:2401.01879, 2024.

[9] David Brandfonbrener, Sibi Raja, Tarun Prasad, Chloe Loughridge, Jianang Yang, Simon Hen-
niger, William E. Byrd, Robert Zinkov, and Nada Amin. Verified multi-step synthesis using
large language models and monte carlo tree search, 2024.

[10] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language mod-
els are few-shot learners. Advances in neural information processing systems, 33:1877–1901,
2020.

[11] Stephen Casper, Xander Davies, Claudia Shi, Thomas Krendl Gilbert, Jérémy Scheurer, Javier
Rando, Rachel Freedman, Tomasz Korbak, David Lindner, Pedro Freire, et al. Open problems
and fundamental limitations of reinforcement learning from human feedback. arXiv preprint
arXiv:2307.15217, 2023.

[12] Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, Laurent Sifre, and
John Jumper. Accelerating large language model decoding with speculative sampling. arXiv
preprint arXiv:2302.01318, 2023.

[13] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. arXiv preprint arXiv:2204.02311, 2022.

[14] Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei.
Deep reinforcement learning from human preferences. Advances in neural information pro-
cessing systems, 30, 2017.

[15] Thomas Coste, Usman Anwar, Robert Kirk, and David Krueger. Reward model ensembles
help mitigate overoptimization. arXiv preprint arXiv:2310.02743, 2023.

[16] Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast
and memory-efficient exact attention with io-awareness, 2022.

[17] Ameet Deshpande, Vishvak Murahari, Tanmay Rajpurohit, Ashwin Kalyan, and Karthik
Narasimhan. Toxicity in chatgpt: Analyzing persona-assigned language models. arXiv preprint
arXiv:2304.05335, 2023.

[18] Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient fine-
tuning of quantized llms. Advances in Neural Information Processing Systems, 36, 2024.

[19] Hanze Dong, Wei Xiong, Deepanshu Goyal, Yihan Zhang, Winnie Chow, Rui Pan, Shizhe
Diao, Jipeng Zhang, Kashun Shum, and Tong Zhang. Raft: Reward ranked finetuning for
generative foundation model alignment. arXiv preprint arXiv:2304.06767, 2023.

[20] Yann Dubois, Balázs Galambosi, Percy Liang, and Tatsunori B Hashimoto. Length-controlled
alpacaeval: A simple way to debias automatic evaluators. arXiv preprint arXiv:2404.04475,
2024.

11

[21] Yann Dubois, Chen Xuechen Li, Rohan Taori, Tianyi Zhang, Ishaan Gulrajani, Jimmy Ba, Car-
los Guestrin, Percy S Liang, and Tatsunori B Hashimoto. Alpacafarm: A simulation framework
for methods that learn from human feedback. Advances in Neural Information Processing Sys-
tems, 36, 2024.

[22] Jacob Eisenstein, Chirag Nagpal, Alekh Agarwal, Ahmad Beirami, Alex D’Amour, DJ Dvi-
jotham, Adam Fisch, Katherine Heller, Stephen Pfohl, Deepak Ramachandran, et al. Helping
or herding? reward model ensembles mitigate but do not eliminate reward hacking. arXiv
preprint arXiv:2312.09244, 2023.

[23] Kawin Ethayarajh, Winnie Xu, Niklas Muennighoff, Dan Jurafsky, and Douwe Kiela. Kto:
Model alignment as prospect theoretic optimization. arXiv preprint arXiv:2402.01306, 2024.

[24] Samuel H Fuller, John G Gaschnig, JJ Gillogly, et al. Analysis of the alpha-beta pruning
algorithm. Department of Computer Science, Carnegie-Mellon University, 1973.

[25] Leo Gao, John Schulman, and Jacob Hilton. Scaling laws for reward model overoptimization.
In International Conference on Machine Learning, pages 10835–10866. PMLR, 2023.

[26] Amelia Glaese, Nat McAleese, Maja Trkebacz, John Aslanides, Vlad Firoiu, Timo Ewalds,
Maribeth Rauh, Laura Weidinger, Martin Chadwick, Phoebe Thacker, et al. Improving align-
ment of dialogue agents via targeted human judgements. arXiv preprint arXiv:2209.14375,
2022.

[27] Dongyoung Go, Tomasz Korbak, Germán Kruszewski, Jos Rozen, and Marc Dymetman. Com-
positional preference models for aligning lms. arXiv preprint arXiv:2310.13011, 2023.

[28] Lin Gui, Cristina Gârbacea, and Victor Veitch. Bonbon alignment for large language models
and the sweetness of best-of-n sampling. arXiv preprint arXiv:2406.00832, 2024.

[29] Xuanli He, Iman Keivanloo, Yi Xu, Xiang He, Belinda Zeng, Santosh Rajagopalan, and Trishul
Chilimbi. Magic pyramid: Accelerating inference with early exiting and token pruning. arXiv
preprint arXiv:2111.00230, 2021.

[30] Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh
Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile
Saulnier, et al. Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

[31] Yigitcan Kaya, Sanghyun Hong, and Tudor Dumitras. Shallow-deep networks: Understanding
and mitigating network overthinking. In International conference on machine learning, pages
3301–3310. PMLR, 2019.

[32] Maxim Khanov, Jirayu Burapacheep, and Yixuan Li. Args: Alignment as reward-guided
search. arXiv preprint arXiv:2402.01694, 2024.

[33] Levente Kocsis and Csaba Szepesvári. Bandit based monte-carlo planning. In Johannes
Fürnkranz, Tobias Scheffer, and Myra Spiliopoulou, editors, Machine Learning: ECML 2006,
pages 282–293, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

[34] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu,
Joseph Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large lan-
guage model serving with pagedattention. In Proceedings of the 29th Symposium on Operating
Systems Principles, pages 611–626, 2023.

[35] Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via
speculative decoding. In International Conference on Machine Learning, pages 19274–19286.
PMLR, 2023.

[36] Kenneth Li, Samy Jelassi, Hugh Zhang, Sham Kakade, Martin Wattenberg, and David Brand-
fonbrener. Q-probe: A lightweight approach to reward maximization for language models.
arXiv preprint arXiv:2402.14688, 2024.

[37] Xuechen Li, Tianyi Zhang, Yann Dubois, Rohan Taori, Ishaan Gulrajani, Carlos Guestrin,
Percy Liang, and Tatsunori B. Hashimoto. Alpacaeval: An automatic evaluator of instruction-
following models. https://github.com/tatsu-lab/alpaca_eval, 5 2023.

12

https://github.com/tatsu-lab/alpaca_eval

[38] Jiacheng Liu, Andrew Cohen, Ramakanth Pasunuru, Yejin Choi, Hannaneh Hajishirzi, and Asli
Celikyilmaz. Don’t throw away your value model! making ppo even better via value-guided
monte-carlo tree search decoding. arXiv e-prints, pages arXiv–2309, 2023.

[39] Jiacheng Liu, Andrew Cohen, Ramakanth Pasunuru, Yejin Choi, Hannaneh Hajishirzi, and
Asli Celikyilmaz. Making ppo even better: Value-guided monte-carlo tree search decoding.
arXiv preprint arXiv:2309.15028, 2023.

[40] Tianqi Liu, Yao Zhao, Rishabh Joshi, Misha Khalman, Mohammad Saleh, Peter J Liu, and
Jialu Liu. Statistical rejection sampling improves preference optimization. arXiv preprint
arXiv:2309.06657, 2023.

[41] Weijie Liu, Peng Zhou, Zhe Zhao, Zhiruo Wang, Haotang Deng, and Qi Ju. Fastbert: a self-
distilling bert with adaptive inference time. arXiv preprint arXiv:2004.02178, 2020.

[42] Renze Lou, Kai Zhang, and Wenpeng Yin. A comprehensive survey on instruction following,
2024.

[43] T Anthony Marsland. A review of game-tree pruning. ICGA journal, 9(1):3–19, 1986.

[44] Meta. Llama3 technical report, https://ai.meta.com/blog/meta-llama-3, 2024.

[45] Sidharth Mudgal, Jong Lee, Harish Ganapathy, YaGuang Li, Tao Wang, Yanping Huang,
Zhifeng Chen, Heng-Tze Cheng, Michael Collins, Trevor Strohman, et al. Controlled decoding
from language models. arXiv preprint arXiv:2310.17022, 2023.

[46] Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, Long Ouyang, Christina Kim, Christo-
pher Hesse, Shantanu Jain, Vineet Kosaraju, William Saunders, et al. Webgpt: Browser-
assisted question-answering with human feedback. arXiv preprint arXiv:2112.09332, 2021.

[47] Richard Ngo, Lawrence Chan, and Sören Mindermann. The alignment problem from a deep
learning perspective. arXiv preprint arXiv:2209.00626, 2022.

[48] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to
follow instructions with human feedback. Advances in Neural Information Processing Systems,
35:27730–27744, 2022.

[49] Rafael Rafailov, Joey Hejna, Ryan Park, and Chelsea Finn. From r to q∗: Your language model
is secretly a q-function. arXiv preprint arXiv:2404.12358, 2024.

[50] Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and
Chelsea Finn. Direct preference optimization: Your language model is secretly a reward model.
Advances in Neural Information Processing Systems, 36, 2024.

[51] Aadirupa Saha, Aldo Pacchiano, and Jonathan Lee. Dueling rl: Reinforcement learning with
trajectory preferences. In International Conference on Artificial Intelligence and Statistics,
pages 6263–6289. PMLR, 2023.

[52] Jérémy Scheurer, Jon Ander Campos, Tomasz Korbak, Jun Shern Chan, Angelica Chen,
Kyunghyun Cho, and Ethan Perez. Training language models with language feedback at scale.
arXiv preprint arXiv:2303.16755, 2023.

[53] Roy Schwartz, Gabriel Stanovsky, Swabha Swayamdipta, Jesse Dodge, and Noah A Smith.
The right tool for the job: Matching model and instance complexities. arXiv preprint
arXiv:2004.07453, 2020.

[54] Pier Giuseppe Sessa, Robert Dadashi, Léonard Hussenot, Johan Ferret, Nino Vieillard, Alexan-
dre Ramé, Bobak Shariari, Sarah Perrin, Abe Friesen, Geoffrey Cideron, et al. Bond: Aligning
llms with best-of-n distillation. arXiv preprint arXiv:2407.14622, 2024.

[55] Feifan Song, Bowen Yu, Minghao Li, Haiyang Yu, Fei Huang, Yongbin Li, and Houfeng Wang.
Preference ranking optimization for human alignment. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 38, pages 18990–18998, 2024.

13

[56] Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec
Radford, Dario Amodei, and Paul F Christiano. Learning to summarize with human feedback.
Advances in Neural Information Processing Systems, 33:3008–3021, 2020.

[57] Nathan R Sturtevant and Richard E Korf. On pruning techniques for multi-player games.
AAAI/IAAI, 49:201–207, 2000.

[58] Hanshi Sun, Zhuoming Chen, Xinyu Yang, Yuandong Tian, and Beidi Chen. Triforce: Loss-
less acceleration of long sequence generation with hierarchical speculative decoding. arXiv
preprint arXiv:2404.11912, 2024.

[59] Ziteng Sun, Ananda Theertha Suresh, Jae Hun Ro, Ahmad Beirami, Himanshu Jain, and Felix
Yu. Spectr: Fast speculative decoding via optimal transport. Advances in Neural Information
Processing Systems, 36, 2024.

[60] Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin,
Percy Liang, and Tatsunori B Hashimoto. Alpaca: A strong, replicable instruction-
following model. Stanford Center for Research on Foundation Models. https://crfm. stanford.
edu/2023/03/13/alpaca. html, 3(6):7, 2023.

[61] Yi Tay, Dara Bahri, Liu Yang, Donald Metzler, and Da-Cheng Juan. Sparse sinkhorn attention.
In International Conference on Machine Learning, pages 9438–9447. PMLR, 2020.

[62] Surat Teerapittayanon, Bradley McDanel, and Hsiang-Tsung Kung. Branchynet: Fast infer-
ence via early exiting from deep neural networks. In 2016 23rd international conference on
pattern recognition (ICPR), pages 2464–2469. IEEE, 2016.

[63] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Tim-
othée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open
and efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

[64] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open
foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

[65] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

[66] Pengyu Wang, Dong Zhang, Linyang Li, Chenkun Tan, Xinghao Wang, Ke Ren, Botian Jiang,
and Xipeng Qiu. Inferaligner: Inference-time alignment for harmlessness through cross-model
guidance, 2024.

[67] Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A. Smith, Daniel Khashabi,
and Hannaneh Hajishirzi. Self-instruct: Aligning language models with self-generated instruc-
tions, 2023.

[68] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony
Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Huggingface’s trans-
formers: State-of-the-art natural language processing. arxiv. arXiv preprint arXiv:1910.03771,
2019.

[69] Yue Wu, Zhiqing Sun, Huizhuo Yuan, Kaixuan Ji, Yiming Yang, and Quanquan Gu. Self-
play preference optimization for language model alignment. arXiv preprint arXiv:2405.00675,
2024.

[70] Yuxi Xie, Anirudh Goyal, Wenyue Zheng, Min-Yen Kan, Timothy P. Lillicrap, Kenji
Kawaguchi, and Michael Shieh. Monte carlo tree search boosts reasoning via iterative prefer-
ence learning, 2024.

[71] Joy Qiping Yang, Salman Salamatian, Ziteng Sun, Ananda Theertha Suresh, and Ahmad
Beirami. Asymptotics of language model alignment. arXiv preprint arXiv:2404.01730, 2024.

14

[72] Zheng Yuan, Hongyi Yuan, Chuanqi Tan, Wei Wang, Songfang Huang, and Fei Huang. Rrhf:
Rank responses to align language models with human feedback without tears. arXiv preprint
arXiv:2304.05302, 2023.

[73] Yongcheng Zeng, Guoqing Liu, Weiyu Ma, Ning Yang, Haifeng Zhang, and Jun Wang. Token-
level direct preference optimization. arXiv preprint arXiv:2404.11999, 2024.

[74] Dan Zhang, Sining Zhoubian, Yisong Yue, Yuxiao Dong, and Jie Tang. Rest-mcts*: Llm
self-training via process reward guided tree search. arXiv preprint arXiv:2406.03816, 2024.

[75] Di Zhang, Jiatong Li, Xiaoshui Huang, Dongzhan Zhou, Yuqiang Li, and Wanli Ouyang.
Accessing gpt-4 level mathematical olympiad solutions via monte carlo tree self-refine with
llama-3 8b. arXiv preprint arXiv:2406.07394, 2024.

[76] Ruiqi Zhang, Licong Lin, Yu Bai, and Song Mei. Negative preference optimization: From
catastrophic collapse to effective unlearning. arXiv preprint arXiv:2404.05868, 2024.

[77] Yao Zhao, Rishabh Joshi, Tianqi Liu, Misha Khalman, Mohammad Saleh, and Peter J Liu. Slic-
hf: Sequence likelihood calibration with human feedback. arXiv preprint arXiv:2305.10425,
2023.

[78] Yao Zhao, Mikhail Khalman, Rishabh Joshi, Shashi Narayan, Mohammad Saleh, and Pe-
ter J Liu. Calibrating sequence likelihood improves conditional language generation. In The
Eleventh International Conference on Learning Representations, 2022.

[79] Zirui Zhao, Wee Sun Lee, and David Hsu. Large language models as commonsense knowledge
for large-scale task planning, 2023.

[80] Han Zhong, Guhao Feng, Wei Xiong, Li Zhao, Di He, Jiang Bian, and Liwei Wang. Dpo meets
ppo: Reinforced token optimization for rlhf. arXiv preprint arXiv:2404.18922, 2024.

[81] Zixuan Zhou, Xuefei Ning, Ke Hong, Tianyu Fu, Jiaming Xu, Shiyao Li, Yuming Lou, Luning
Wang, Zhihang Yuan, Xiuhong Li, et al. A survey on efficient inference for large language
models. arXiv preprint arXiv:2404.14294, 2024.

15

A Detailed Authors’ Contributions

Hanshi co-lead the code infrastructure, led the implementation of the efficient inference engine and
win-rate analysis, lead the final experiments in the paper and co-led the writing of the final paper
Momin co-lead the code infrastructure, led the preliminary experiments, and contributed to the
writing of an early draft of the manuscript
Ruiqi provided several conceptual contributions to the work. He led the writing of the initial draft
of the paper, and led the early statistical analysis to assess the feasibility of the project.
Huitao lead the theoretical part of the work
Ming provided useful feedback for the project during the weekly project meeting discussion
Jiahao contributed with a win-rate analysis during the rebuttal period
Mengdi provided useful feedback and helped with accessing some of the compute infrastructure
Peter provided useful feedback, particularly regarding the correlation analysis in the early stage of
the project and also co-suggested the iterative rejection scheme
Andrea conceived the original idea of speculative rejection, advised the project, and co-led the final
writing of the paper.

B Correlation between partial and final rewards

In this section, we present our observation that the partial and final rewards are positively correla-
tive for the responses to a single prompt. We examine the distribution for the (empirical) Pearson
correlation and Kendall’s tau correlation coefficient for partial and final rewards for a single prompt.
Mathematically, for (X1, X2, ..., XN) and (Y1, Y2, ..., YN), the two correlation are defined as

RPearson :=

∑N
i=1(Xi − X̄)(Yi − Ȳ)√∑N

i=1(Xi − X̄)2 ·
∑N

i=1(Yi − Ȳ)2
,

RKendall :=
2

N(N − 1)

∑
i<j

sgn(Xi −Xj) · sgn(Yi − Yj),

where X̄ =
∑N

i=1 Xi/N, Ȳ =
∑N

i=1 Yi/N are their average, and sgn(·) is the sign function.

Figure 4: Pearson correlation (left) and Kendall’s tau correlation coefficient (right) for the partial and final
rewards. We randomly sample 100 prompts in the AlpacaFarm-Eval dataset. The responses are generated via
Llama3-8b–Instruct and rewards are evaluated via Mistral-7B-RM.

16

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We believe our introduction and abstract are factually accurate in describing
the contributions of the paper and of its result
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations are presented in the final section of the main paper.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate ”Limitations” section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]

17

Justification: We do not include theoretical results in the paper.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theo-

rems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide all setup details to reproduce the experiment. In our supplemen-
tary zip file, we provide all code and evaluation datasets used, along with a README with
instructions. We use public checkpoints for all draft and target models, public data for all
evaluations.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

18

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The datasets that we use are freely available and hosted by reliable third
parties. We provide a zip file with the code and data needed to reproduce our experiments,
as well as a README with instructions.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We only sample 100 prompts at random. There is no training involved.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer: [No]

Justification: The cost for producing the experiments precludes us from reporting error
bars. However, notice that each pair of llm and reward model produces a result that is aver-
aged over 100 prompts. Since we report several such pairs, and the speedup is substantial
for each single pair, we are confident that overall speedup is statistically significant.

Guidelines:

• The answer NA means that the paper does not include experiments.

19

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The authors should answer ”Yes” if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-

ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: This is discussed in the experiment section.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: None to report.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This work aims at accelerating a known and existing method, and so it is not
expected to have a direct societal impact.

20

https://neurips.cc/public/EthicsGuidelines

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We do not release data or models.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite the papers that introduced the models and data used in our work.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

21

• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the pack-
age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [Yes]

Justification:We include a README along with our code to reproduce our experiments.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA]

Justification: Our research does not involve humans.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our paper does not involve crowdsourcing.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

22

paperswithcode.com/datasets

• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

23

	Introduction
	Related Literature
	Preliminaries
	Speculative Rejection
	Observation
	Algorithm

	Experiments
	Efficiency Evaluation
	Win-rate Evaluation
	Maximization of the Probability of the Generated Utterances

	Limitations and Conclusions
	Detailed Authors' Contributions
	Correlation between partial and final rewards

