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Abstract

Language models are increasingly applied to biological sequences like proteins
and mRNA, yet their default Euclidean geometry may mismatch the hierarchi-
cal structures inherent to biological data. While hyperbolic geometry provides
a better alternative for accommodating hierarchical data, it has yet to find a way
into language modeling for mRNA sequences. In this work, we introduce Hy-
perHELM, a framework that implements masked language model pre-training in
hyperbolic space for mRNA sequences. Using a hybrid design with hyperbolic
layers atop Euclidean backbones, HyperHELM aligns representations with biologi-
cal hierarchy defined by the relationship between mRNA and amino acids. Across
multiple multi-species datasets, it outperforms Euclidean baselines on 8 of 9 tasks
involving property prediction, with 10% improvement on average, and excels in
out-of-distribution generalization to long, low-GC sequences; for antibody region
annotation, it surpasses hierarchy-aware Euclidean models by 3% in annotation
accuracy. Our results highlight hyperbolic geometry as an effective inductive bias
for language modeling of mRNA sequences.

1 Introduction

Language models have been increasingly applied to biological sequence data, fueled by the growth of
large-scale omics datasets [40, |10, |5]. While originally designed for natural language, these models
demonstrate promising performance in capturing dependencies within DNA [83} 152} 511 5[], RNA
[10} 160, 78l [79], and protein sequences [40, [23]]. The biological sequences, however, are structured
differently from natural language, particularly in their hierarchical organization, where nucleotides
or amino acids form motifs that can be nested within larger functional groups [7]. In this work, we
take the rapidly expanding therapeutic domain of mRNA, where the tree of the codon—amino acid
hierarchy plays a key role in determining the biophysical properties of mRNA sequences and their
expressed proteins [18]], and we focus on encoding this hierarchy by leveraging the geometry of the
representation space of a bio-language model.

While standard language models rely on Euclidean geometry, the number of concepts in hierarchies
grows exponentially, outpacing the polynomial expansion of Euclidean volumes [46] 47]. This
can severely limit the representation capacity of a model and hinder the generalization [42]. In
contrast, the volume of the hyperbolic space expands exponentially, maintaining well-separated
representations across different branches of the hierarchy and reducing distortion in hierarchical
relationships. The advantages of hyperbolic geometry are demonstrated in graph representation
learning [12] and computer vision [48]], and are beginning to inform language modeling [33} 32,
though they have yet to be systematically applied to mRNA data.
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Figure 1: High-level overview of the HyperHELM method for MLM. The method consists of three
main components: 1) the language modeling of mRNA, where a sequence transformer is used to
obtain token representations, as shown in the left; 2) a hyperbolic embedding of the codon hierarchy
is generated to serve as prototypes for guiding the language model during pre-training, shown on the
right; and 3) hyperbolic hierarchical prototype learning, where the prototypes are used to predict the
true label of masked tokens, visualized in the center.

In this work, we present Hyperbolic Hierarchical Encoding for mRNA Language Modeling (Hy-
perHELM), a hyperbolic language-modeling framework for mRNA sequences. In HyperHELM,
we project token representations onto the Poincaré ball [S3] and pre-train a language model with
masked language modeling (MLM) objective directly in hyperbolic space (Figure[T). Rather than
making the entire model hyperbolic, we keep the backbone Euclidean and project only the final-layer
representations, thus retaining hardware efficiency while leveraging the hierarchical inductive bias of
hyperbolic geometry.

For hyperbolic MLM pre-training, we mask a portion of input tokens and use a modular hyperbolic
prediction head that scores candidates while respecting hierarchical relations. In particular, we
instantiate three head options for hyperbolic learning: hyperbolic multinomial logistic regression
(MLR) [25]], distance-to-prototype learning [28]], and prototype classifiers based on hyperbolic
entailment cones [24]. While [24] primarily introduces entailment cones as a means to model
hierarchical relations, our work extends this concept further by exploring the use of similarity
functions beyond hyperbolic distances, aiming to capture richer relational structures. Moreover,
the adaption of these hyperbolic heads for MLM pre-training of bio-language models has never
been explored before. The resulting hyperbolic latent space with hierarchy-aware MLM pre-training
aligns representation geometry with the codon—amino-acid structure, clustering synonymous codons
under their amino-acid parents and separating non-coding tokens (Figure [T). To our knowledge,
HyperHELM is the first systematic development of hyperbolic language models for mRNA sequence
data.

We conduct experiments to compare our HyperHELM with its standard Euclidean and hierarchical
language modeling counterparts. We keep the language model backbone architecture and pre-training
dataset fixed for all models, to isolate the impact of hyperbolic geometry on hierarchy learning.
We evaluate the pre-trained models on 10 diverse multi-species mRNA datasets for downstream
property prediction and region annotation tasks. Across 8 out of 9 property prediction tasks, the
hyperbolic approach consistently outperforms its Euclidean counterparts, even when the latter is
trained to be hierarchy-aware [78]], achieving an average improvement of 10%. We also observe
that in property prediction tasks, our hyperbolic language model generalizes exceptionally well
to out-of-distribution data, maintaining strong performance even on long sequences with low GC-
content, where standard bio-language models tend to struggle. Moreover, for the task of antibody
region annotation, HyperHELM surpasses another hierarchy-aware Euclidean baseline by 3%. Our



experimental results suggest that hyperbolic geometry provides a powerful inductive bias for capturing
hierarchical structures in mRNA sequences.

To sum up, we make the following contributions:

* We explore hierarchical learning for bio-language models through the lens of the hyperbolic
geometry, aiming to align the structure of its representation space with the hierarchical
structure of mRNA sequences.

* We adapt, implement, and evaluate multiple hyperbolic learning methods for masked lan-
guage pre-training of a language model on mRNA sequences.

* We experimentally demonstrate the benefits of the hyperbolic language model on down-
stream mRNA property prediction and antibody region annotation, where it outperforms
Euclidean models, and excels in out-of-distribution settings.

2 Related works

RNA and mRNA Language Models RNA and mRNA language models now enable diverse
downstream tasks in property prediction, annotation, and generation. RNA foundation models like
RNA-FM [14] and RiNALMo [59] pre-train on millions of sequences from varied RNA regions
to learn generalist representations. Specialized models such as SpliceBERT [[15]], UTRBERT [77],
and UTR-LM [[17] target specific sequence regions for tasks like splicing or UTR analysis. For
mRNA, codon-level models such as CodonBERT [39] use codon tokenization with MLLM to optimize
coding-region embeddings, while Helix-mRNA [75]] employs nucleotide level tokenization and
hybrid attention-state space architectures for improved sequence resolution and generation. Transfer
learning from DNA and protein models to mRNA has also proven effective [60} 49]. Most recent
works incorporate domain priors: Equi-mRNA [79] encodes codon symmetries via group-theoretical
approach, and HELM [[78]] promotes hierarchy learning in Euclidean space through specialized loss.
Meanwhile, joint geometry-language frameworks have been developed to link RNA sequences with
their secondary structures [S0]. Despite these advances, existing methods rely on Euclidean spaces;
to our knowledge, no prior work explores language-model pre-training in hyperbolic space for RNA
or mRNA.

Hyperbolic learning The exponential growth of hyperbolic space makes it a suitable domain
for learning on data with an inherent hierarchical structure [64} [11} |53]]. This realization has led
to a surge in the popularity of hyperbolic learning [38]]. Deep hyperbolic architectures have been
developed [25, 166} [16] alongside the algorithms for optimizing such networks [3, 2]. As a result,
hyperbolic geometry has seen successful applications across many areas of machine learning, such
as in computer vision [37, 142} 43 28, [71}, 48], graph learning [41} [12} (82| [76], NLP [69} 21]] and
multimodal learning 20, 56]. These have shown the potential of hyperbolic learning, particularly in
scenarios where the data has a clear hierarchical structure. While the structuring of mRNA is highly
hierarchical in nature, existing mRNA language modeling approaches do not leverage hyperbolic
geometry.

Prototype learning The prototype learning setting [[67]] has become a commonly used approach
for classification tasks, where each class is represented by a prototype, resembling in some way
the perfect instance of the class. Within hyperbolic learning, prototype learning approaches are
mostly distinguishable by their method of obtaining prototypes [48]. Many works follow the original
approach for generating prototypes based on labeled input data [37, 126l 27, [30]. Theses typically
create prototypes by aggregating features of labeled instances of the corresponding class using, for
example, the Fréchet mean. Another approach is to use prior knowledge of the label set to generate
prototypes. Examples are [28]] and [43]], which create prototypes using a known hierarchy over the
labels, or [80], which optimizes prototypes concurrently with their model through to use of known
hierarchical relations. While each of these works deals with an image classification setting, we instead
focus on masked language modeling. Moreover, unlike our work, none of these works explores
the use of similarity functions beyond hyperbolic distances, nor the use of recent low-distortion
embedding methods for generating prototypes from hierarchies.



3 Background on hyperbolic space

In this paper we make use of the n—dimensional Poincaré ball model (D7, g) of hyperbolic space
with curvature ¢ and Riemannian metric g, where
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with I,, being the n-dimensional identity matrix. For an extensive background on other isometric
models and on hyperbolic geometry in general, we refer the reader to [8,|1]. Here, we will introduce
the operations that will be used throughout the paper.

Using the Riemannian metric, one can compute the distances between any two points X,y € D" as
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Using the Mobius addition operation [70], defined as
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we can define exponential and logarithmic maps [25]]
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which are used to map tangent vectors from the tangent space 7xD! at x onto D7 and vice versa,
respectively.

[25] have generalized multinomial logistic regression (MLR) to the Poincaré ball model by interpret-
ing the MLR scores as signed distances to hyperplanes. The resulting hyperbolic MLR computes
scores as

l(x) = \[||zk|\ sinh™! ()\C <\/EX Tz > cosh(2y/erg) — (NS — 1) Sinh(2\/5rk)), 6)

where z;, and r; are the parameters corresponding to the k-th class. This MLR has been further
extended into a hyperbolic fully connected layer F¢ : D' — D" by [66], which is computed as
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where Z and r contain the learnable parameters.

4 HyperHELM

The setting that we consider is the pre-training of an mRNA sequence model through masked language
modeling (MLM) with the goal of obtaining a strong backbone for any downstream predictive task.
For our approach, we take the HELM method (mRNA model in Euclidean space for modeling
hierarchy) [78] as a starting point and make improvements to the classifier to help guide the backbone
model more effectively. More specifically, we replace the multinomial logistic regression classifier
by a prototypical classifier, inspired by works such as [67,80]. The prototypes are generated directly
from the codon-amino acid hierarchy which is shown in Figure|l|and, more clearly, in Figure |3|in
Appendix [A] A high-level overview of our method is given in Figure[T} Each individual component
will be discussed in detail in the following subsections.



4.1 Language Modeling of mRNA Sequences

Our goal is to train some sequence transformer model f of mRNA sequences through MLM. Fol-
lowing recent works [39, [78], we first apply codon-level tokenization to the mRNA sequences,
where each triplet of nucleotides is represented as a single token, giving 4> = 64 potential tokens,
excluding special tokens. During MM, we mask 15% of the tokens in sequences and feed these into
model f, which outputs a representation in R™ for each individual token. Then, we use a classifier
g : R™ — [64] to predict the true label of the masked tokens. Following the HELM approach [78]],
the hierarchical cross-entropy loss with respect to the codon hierarchy in Figure [I]is computed and
used to update f and g.

4.2 Hyperbolic embeddings of hierarchies

The manner in which mRNA encodes for proteins can be understood through a hierarchy defined
over the codons, visualized in Figure [T [78]] softly enforces this hierarchy onto their model in
Euclidean space by using the hierarchical cross-entropy loss. Here, we explicitly structure our token
representation space by directly embedding the hierarchy. A hierarchy typically consists of a tree
T = (V, E), where the nodes V' contain the relevant concepts and the edges E the relations between
these. Moreover, we denote the leaf nodes of the tree by L. The tree metric dr, resulting from 7T,
defined as the length of the path between 2 nodes, contains the information of how strongly related
any pair of concepts is. Therefore, the goal of embedding some hierarchy into a continuous space
is to keep this tree metric intact. More formally, we want an embedding ¢ : V' — M into some
connected Riemannian manifold M such that ¢ is approximately an isometry onto ¢(V), i.e.,

drr (¢(u), ¢(v)) ~ dr(u,v). 8)

The amount by which the metric is changed by the embedding is called the distortion. It can be shown
that Euclidean spaces are unsuitable as targets for embedding trees [64], generally leading to highly
distorted embeddings. Therefore, we opt to use hyperbolic space instead.

Several methods exist for embedding graphs or trees into hyperbolic space [[64, 53] 63 [72]. We
embed the codon hierarchy using the HS-DTE method [72], as it achieves the lowest distortion and
thus most effectively preserves the underlying hierarchical structure. We use the embeddings of the
leaf nodes obtained with HS-DTE, corresponding to individual codons, as prototypes within the
classifier g. A 2-dimensional embedding of the entire codon hierarchy obtained with HS-DTE is
shown in Figure

4.3 Prototype learning in hyperbolic space

From the hierarchy embedding, we have a set of prototypes ¢(L) C D"» where each prototype
corresponds to a particular codon and where n,, is the prototype dimension. Since the embedding ¢
respects the tree metric dr, these prototypes structure the space according to the hierarchy, without
having seen any sequence data. We want to define a classifier that uses these prototypes to generate
token-level predictions. Since our backbone model f outputs representations in R", these are first
projected onto D"» through two steps: 1) the representations are projected into hyperbolic space D"
and 2) A hyperbolic linear layer is used to project to D™». Following the convention in hyperbolic
learning [48]], the first step is performed by treating the representations as tangent vectors at the origin
and applying the corresponding exponential map. The second step is performed using the hyperbolic
linear layer 7 : D" — D"» from equation[7] So, the projection can be written as

z;, = ]-'C(expg(hi)), hi = f(t*)i, (9)
where t* is the masked token sequence.

Generally, to generate token-level predictions using prototypes, softmaxed pairwise similarities
between representations and prototypes are computed [67]]:

exp (8 - 5(zi, ¢(u)))
Yverexp (8- s(zi d(v)))’

where S > 0 is a temperature hyperparameter (set to 1.0), ¢; is the true i-th token and where
s: D™ x D" — R is some similarity function. Typically, negative distances s = —dp are used as

p(t; = u|t™) = (10)
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Figure 2: Hyperbolic prototype learning. The center part presents a Poincaré disk where either
distances (green) or entailment cone energies (blue) are used to predict the label of embedded tokens.
On the /left, a close up of a masked token representation with its closest prototype, together with the
geodesic between these is shown. The right part takes a closer look at one of the entailment cones,
showing the geometric interpretation of equations|TT} [T2]and T3}

similarities, which leads the model to simply assign the token to the closest prototype. This approach
is shown in Figure 2] left.

Alternatively, we can compute similarities using the hyperbolic entailment cone energy [24]. En-
tailment cones are a geometric approach to defining hierarchical relationships in hyperbolic space.
These are defined for any point z € D™» as the hyperbolic cone with z as its apex and with the axis
of symmetry being the Euclidean straight line segment from z perpendicular onto the boundary of the
manifold. The half aperture of the cone is

Y(z) = sin~! (W) (11)

where K is a hyperparameter which we set to K = 0.1. The hyperbolic entailment cone energy is
then computed as

E(x,y) = max(0, E(x,y) — n¢(x)), (12)
where 17 > 0 is a threshold hyperparameter [56] (set to 1.05) and where
1 2\ _ 2 1 2
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is the aperture required for y to be within the entailment cone at x. In other words, the hyperbolic
entailment cone energy is the angle by which y is removed from x’s entailment cone. Examples
of entailment cones and a visualization of the entailment cone energy are shown in Figure 2] rzght
The hyperbolic entailment cone energy has recently grown in popularity in areas such as vision-
language learning [20,56] for encoding hierarchical relations. We propose to use both distance-based
prototypes and energy-based prototypes. For both approaches, we set curvature ¢ = 1.0. We also
present a sensitivity analysis for the key hyperparameters in Appendix [D]

5 Experiments

In our experiments, we follow the pre-training guidelines established in HELM [[78]], adopting codon-
level tokenization and the masked language modeling (MLM) objective. We use the same curated
OAS pre-training corpus, codon vocabulary, and standard transformer backbone released in the
official HELM repository E], ensuring full comparability. The key difference lies in the MLM head:
we evaluate three hyperbolic variants: hyperbolic multinomial logistic regression, hyperbolic distance-
based prototypes, and hyperbolic prototypes based on entailment cones discussed in Sections [3]and {4}
We keep the rest of the method unchanged, allowing us to isolate the effect of learning the hierarchy
in hyperbolic space for mRNAs. For downstream tasks, we freeze the pre-trained backbone and
train a classification or regression head to perform probing experiments with pre-trained language

*https://github.com/johnsonandjohnson/HELM



model representations. Following prior works [311139/[78,149L|79] to assess representation quality and
transferability, we utilize TextCNN [38]] as a downstream head model. Further experimental details
can be found in Appendices [B]and|[C]

Datasets and evaluation metrics We use nine datasets: Abl [60] (1,200 antibody-encoding
mRNAs with protein expression labels); Ab2 [60] (3,442 antibody-encoding mRNAs from a different
experimental platform with protein expression labels); mRFP [54] (1,459 sequences with protein
production levels); COVID-19 Vaccine [73] (2,400 degradation-labeled sequences); Drosophila
melanogaster [55] (10,338 sequences with protein abundance); Saccharomyces cerevisiae [55] (4,937
sequences with protein abundance); Pichia pastoris [55]] (4,682 sequences with transcript abundance
labels); Fungal [74] (7,056 genes from fungal genomes with expression labels); and E. coli [22]]
(6,348 mRNA with low/medium/high protein expression labels). The E.Coli dataset is a classification
task while all other downstream datasets provide regression labels for evaluating the quality of mRNA
property prediction.

Similar to prior works [78} 139, [79, [75], we evaluate mRNA property prediction using Spearman
rank correlation for regression tasks and accuracy for classification tasks to assess the quality
and transferability of learned representations. For the Drosophila melanogaster, Saccharomyces
cerevisiae, and Pichia pastoris datasets, no predefined train/validation/test splits are available, so
we generate random splits. For all other datasets, we follow the pre-defined splits used in prior
works [78,[39].

Baselines We present the performance of HyperHELM variants against a non-hierarchical Trans-
former trained with cross-entropy loss (Transformer XE) and hierarchy-aware Euclidean transformer
HELM [32], which has recently been reported to achieve state-of-the-art results for mRNA property
prediction in multiple studies [[78, [75] when compared to other publicly available RNA language
models. Note that our HyperHELM and all baselines are pre-trained on the same dataset and use the
same backbone architecture with the same number of parameters, thus any performance difference is
attributed only to the methodology and the impact of hyperbolic learning.

5.1 HyperHELM improves downstream mRNA property prediction performance over
Euclidean models

Table[I] summarizes the performance of HyperHELM variants across 9 mRNA property prediction
datasets. On 8 out of 9 datasets, HyperHELM models outperform their Euclidean counterparts,
demonstrating the benefits of modeling hierarchical relationships in hyperbolic spaces for mRNA
sequences. Of these, HyperHELM with distance-based prototypes (Proto Dist) and HyperHELM with
entailment cones-based prototypes (Proto Entailment) achieve the best and second-best performance
on 7 out of 9 datasets. Compared to the non-hierarchical Transformer XE baseline, HyperHELM
improves downstream performance by 2.8-35.5%, with the largest gains observed for D. melanogaster
(35.5%) and S. cerevisiae (31.4%). When compared to HELM, performance improvements range
up to 32%, with particularly strong improvements on D. melanogaster (32.0%) and E. coli (10.9%)
datasets. Interestingly, simple hyperbolic MLR (HyperHELM MLR) only performs best on a single
S.cerevisiae dataset while underperforming on all other tasks relative to even the Euclidean models,
indicating that the combination of hyperbolic geometry with prototype-based heads is crucial for
capturing hierarchical structure in mRNA embeddings.

Table 1: Spearman rank correlation and accuracy (for E.coli.) performance of HyperHELM variants compared to
standard and hiearachy-aware Euclidean Transformer XE and HELM models. Bold indicates the best performing
model per dataset and underline indicates second best model.

Dataset Transformer XE HELM HyperHELM MLR HyperHELM (Proto Dist) HyperHELM (Proto Entailment)
Abl 0.701 0.714 0.650 0.713 0.751
Ab2 0.507 0.548 0.532 0.575 0.569
mRFP 0.825 0.848 0.744 0.819 0.802
COVID-19 0.757 0.775 0.411 0.785 0.807
D. melanogaster 0.332 0.341 0.374 0.394 0.450
S. cerevisiae 0.354 0.398 0.465 0.434 0.397
P. pastoris 0.596 0.620 0.605 0.676 0.671
Fungal 0.690 0.702 0.712 0.735 0.741
E. coli 44.7 45.8 40.0 50.8 48.4




5.2 HyperHELM improves Antibody Sequence Annotation

We further assess HyperHELM on the task of antibody (Ab) sequence region annotation, a benchmark
introduced in prior work [[78]], important for immunological studies [4]]. This task involves predicting
the identity of nucleotides in Ab-coding mRNA into one of four biologically meaningful regions:
signal peptides, V, DJ, or constant regions.

We use the same held-out test set of 2000 curated antibody sequences as used in [78] for this task and
compare our HyperHELM against the HELM model. As shown in Table 2{(a), both prototype- and
cones-based HyperHELM variants outperform Euclidean HELM, with the prototype distance model
achieving the best accuracy of 76.48%, and the prototype entailment variant being second best with
accuracy of 75.21%, compared to 73.48% achieved by HELM. The results highlight the advantage of
hierarchy-aware learning in hyperbolic space to effectively capture the structure of antibody mRNA
regions.

5.3 Impact of Sequence Length and GC Content on Model Performance

We examine model robustness across different bologically meaningful mRNA sequence characteristics
by stratifying datasets according to sequence length and GC content. The motivation for these strata
is twofold: (i) sequence length can strongly influence modeling difficulty, as longer sequences
often contain more complex structural dependencies and are often underrepresented in pre-training
corpora; and (ii) GC content variation significantly affects secondary structure formation, with
extremely high or low GC content posing additional modeling challenges [65,57]]. These factors
are biologically relevant for mRNA engineering [19} 81} |35]] and have been linked to differences in
model generalization [9, 61! 68]].

Sequence Length Analysis For the P. pastoris dataset, we divide sequences into three cate-
gories: short (30—-1000 nucleotides), medium (1000-2000 nucleotides), and long (2000-3000 nu-
cleotides). Typical mRNA vaccine sequences fall in the 1000-1500 nucleotide range [29]]. Our
pre-training dataset includes sequences with a maximum length of approximately 1400 nucleotides.
The sequences longer than this are hence not represented during pre-training and present an out-of-
distribution setting for evaluating the pre-trained models.

As shown in Table2[b), Euclidean HELM’s performance decreases with increasing length, particularly
for long sequences, consistent with prior findings that longer sequences are less effectively captured
by models pre-trained on shorter examples [78]. However, both HyperHELM variants not only
mitigate this drop but actually reverse it: performance increases for the long category compared
to medium-length sequences. The entailment-based variant achieves the highest score, reaching
a Spearman correlation of 0.70—a +-0.24 absolute improvement over HELM, while the distance-
based variant also attains a substantial improvement of +0.19. This indicates that HyperHELM’s
hyperbolic-space representation is beneficial even for out-of-distribution length shifts, a trend also
reported for hyperbolic models in other domains [34} 36].

GC Content Analysis For the COVID dataset, we categorize sequences based on GC content into:
low (GC < 47%), medium (47% < GC < 55%), and high (GC > 55%). These thresholds align with
widely used biological definitions, where GC content below 45% is considered low and above 56% is
high [6} [19].

Performance for both HELM and HyperHELM (shown in Table [2{c)) is reasonably high in the
low GC range but diminishes for high GC content sequences due to their relative scarcity in the
pre-training corpora. Notably, the entailment-based HyperHELM attains a Spearman rank correlation
of 0.62 in the high GC category compared to HELM’s 0.56, and achieves a strong Spearman rank
correlation of 0.73 in the medium GC category, a gain of +0.09 over HELM.

Overall, these results demonstrate that HyperHELM maintains strong performance across typical
conditions while providing notable improvements in more extreme sequence regimes, longer lengths,
and higher GC content, where conventional HELM shows more pronounced performance degradation.



Table 2: (a) Accuracy of antibody sequence region annotation. (b) Performance reported as Spearman rank
correlation across sequence length for P. pastoris. (c) Performance reported as Spearman rank correlation
across GC content for the COVID-19 dataset.

Model Acc. (%) Short Med. Long Low Med. High
HELM 73.48 HELM 054 058 046  HELM 0.78 0.64 0.56
HyperHELM (Dist)  76.48 HyperHELM (Dist) ~ 0.65 0.59 0.65  HyperHELM (Dist) 0.77 0.62 0.54
HyperHELM (Entail)  75.21 HyperHELM (Entail) 0.61 0.56 0.70  HyperHELM (Entail) 0.78 0.73 0.62
(a) Antibody annotation (b) Seq. length analysis (c) GC content analysis

6 Discussion

Our findings demonstrate that aligning model geometry with the inherent hierarchical structure of
RNA sequences provides tangible benefits for representation learning. Hyperbolic embeddings not
only improve downstream property prediction but also offer a more faithful reflection of codon-
amino-acid relationships, particularly in sequences with strong codon usage bias. This suggests that
geometry-aware modeling can mitigate challenges arising from imbalanced sequence distributions
and enhance generalization to out-of-distribution sequences.

The observed improvements highlight the potential of hybrid architectures, where Euclidean back-
bones are paired with hyperbolic heads, as a practical strategy to integrate hierarchical inductive
biases without incurring the computational overhead of fully hyperbolic networks. Moreover, the suc-
cess of hyperbolic entailment cones and prototype-based methods indicates that explicitly modeling
hierarchical relationships can be more effective than standard Euclidean hierarchy-aware approaches.

Limitations and Future Work In this work, we assume fixed prototypes for both of our Hyper-
HELM variants-distance based and entailment cones based, and it will be worth exploring mechanisms
to update these prototypes during the learning process itself in the future. Furthermore, extending
HyperHELM for Causal Language Modeling will enable generative applications of the proposed
techniques in future. Also our results open several avenues for future work. Extending hyperbolic
language models to other biological modalities, such as protein sequences or regulatory genomic
regions, could further exploit hierarchical patterns across scales. Additionally, investigating adaptive
curvature or mixed-geometry latent spaces may enhance the flexibility of representations for diverse
hierarchical structures. Overall, our study underscores the importance of considering latent space
geometry when designing models for complex biological sequence data.
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A Hierarchical relationship of codons and amino acids in mRNA

Amino acid
coding codons

Hierarchy

Figure 3: The codon hierarchy that is used for creating prototypes and structuring the representation
space.

B Pre-training details

All our experiments were run with a transformer backbone, consisting of 10 transformer layers with
an intermediate size of 2560 and a hidden size of 640, resulting in a total of ~50M parameters. All
models were pretrained for 40 epochs with a batch size of 1024 spread across 8 Nvidia A100 GPUs
using the hierarchical cross-entropy (HXE) loss with respect to the codon hierarchy shown in Figure

[3]following [78].

Sequences were tokenized using codon-level tokenization, resulting in vocabulary size of 70, including
special tokens. The maximum context-length was set to 444, which is enough to accommodate all
sequences in the pretraining dataset. However, the positional embedding layer was configured
to support up to 2048 tokens, as such longer sequences can appear in certain downstream tasks.
Positional embedding was applied following the strategy from GPT-2 [62].

Optimization was performed using the AdamW optimizer [44] with a weight decay of le-1. The
learning rate was scheduled using linear warmup, followed by cosine decay, using an initial learning
rate of le-4 which decayed to a minimum of le-5. Following [78]], the « of the HXE loss was set to
0.2.
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For the prototype classifiers, we used a prototype embedding dimension of 128 and used a scaling
factor 7 = 2.0 for the embedding with h-MDS [72]. A hyperbolic linear layer [66] was used to
project to the representation space. The temperature 5 was set to 10.

C Downstream tasks details

For downstream evaluation, we used a TextCNN [38] for each downstream task, following [45} 13
55,1311 [78]]. Our downstream configuration exactly matches that of [78]. So, we use a hidden size of
640 and 100 channels in the convolutions. The pretrained weights of the backbone are frozen during
training. For each model we perform a hyperparameter search on the grid spanned by learning rates
of 3e-4, le-4, le-5 and batch sizes 8, 16, 32, 64. The optimal hyperparameter configuration was
chosen based on an unseen validation set. The final reported performance is determined on a separate
test set. Each downstream dataset is split into 70% training, 15% validation and 15% test data.

D Sensitivity analysis with respect to choice of hyperparameters

To evaluate the robustness of our hyperbolic modeling approach, we performed a sensitivity analysis
examining variations in curvature and threshold hyperparameters. The results, summarized in Table
[ indicate that the model’s performance is relatively stable across the tested ranges.

Across most datasets, changes in hyperparameters lead to minor fluctuations in performance, demon-
strating that the model does not rely heavily on precise hyperparameter tuning within this scope.
For example, the performance on COVID-19, Abl, and Fungal, the performance varies by a few
percentage points across different hyperparameter settings.

Table 3: Sensitivity of model performance to hyperparameter variations.

Dataset c=0.20,n=1.05 ¢=0.50,7n=1.05 ¢=1.00,n=1.1 ¢=1.00,7=1.2 ¢=1.00, n=1.05

COVID-19 0.779 0.816 0.8 0.806 0.807
Abl 0.739 0.742 0.717 0.724 0.751
Ab2 0.593 0.584 0.578 0.583 0.569
Fungal 0.733 0.748 0.733 0.732 0.741
P. pastoris 0.667 0.65 0.678 0.68 0.671
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