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Abstract

Entropy and mutual information in neural
networks provide rich information on the
learning process, but they have proven diffi-
cult to compute reliably in high dimensions.
Indeed, in noisy and high-dimensional data,
traditional estimates in ambient dimensions
approach a fixed entropy and are pro-
hibitively hard to compute. To address these
issues, we leverage data geometry to access
the underlying manifold and reliably com-
pute these information-theoretic measures.
Specifically, we define diffusion spectral
entropy (DSE) in neural representations
of a dataset as well as diffusion spectral
mutual information (DSMI) between dif-
ferent variables representing data. First,
we show that they form noise-resistant
measures of intrinsic dimensionality and
relationship strength in high-dimensional
simulated data that outperform classic
Shannon entropy, nonparametric estimation,
and mutual information neural estimation
(MINE). We then study the evolution of
representations in classification networks

Extended from a non-archival workshop version (Topology,
Algebra, and Geometry in Machine Learning) presented at
40th International Conference on Machine Learning, Hon-
olulu, Hawaii, USA. [Liao et al., 2023].

with supervised learning, self-supervision,
or overfitting. We observe that (1) DSE
of neural representations increases during
training; (2) DSMI with the class label
increases during generalizable learning but
stays stagnant during overfitting; (3) DSMI
with the input signal shows differing trends:
on MNIST it increases, while on CIFAR-10
and STL-10 it decreases. Finally, we show
that DSE can be used to guide better
network initialization and that DSMI can
be used to predict downstream classification
accuracy across 962 models on ImageNet.
The official implementation is available
at https://github.com/ChenLiu-1996/

DiffusionSpectralEntropy.

1 Introduction

Deep neural networks have emerged as a major break-
through in data science, mainly because of their abil-
ity to learn increasingly meaningful representations
of data. Neural networks function by transforming
data through a series of nonlinear operations, so that
each layer learns a new representation of the data.
Although the representation vectors reside in high-
dimensional spaces, they are in fact located in lower-
dimensional manifolds [Fefferman et al., 2016]. Assess-
ing the properties of this manifold therefore is key to
better understanding the neural network.

smita.krishnaswamy@yale.edu
https://github.com/ChenLiu-1996/DiffusionSpectralEntropy
https://github.com/ChenLiu-1996/DiffusionSpectralEntropy
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The information bottleneck principle [Tishby and Za-
slavsky, 2015] proposed a framework to measure mu-
tual information between layers within a neural net-
work. While this sheds light on the inner workings of
neural networks, these quantities are historically diffi-
cult to compute [Paninski, 2003] and often fail when
the data dimension increases [Gao et al., 2015,Belghazi
et al., 2018], which we refer to as the curse of dimen-
sionality. Specifically, as the dimension D increases,
the number of bins in a histogram used to calculate
the probabilities increases exponentially in D, that is,
bD where b is the number of bins in each dimension.
Indeed, recent investigations along this line are often
restricted to small toy models: e.g., in [Saxe et al.,
2018, Saxe et al., 2019], most experiments were per-
formed on a 7-layer network of width 12-10-7-5-4-3-2.

Here, we use a powerful manifold learning paradigm,
diffusion geometry, to present an alternative approach
to quantifying entropy and mutual information. Dif-
fusion geometry is known for its ability to access the
underlying manifold of data representations [Coifman
and Lafon, 2006], a property that is highly suitable
for neural networks. With diffusion geometry, we can
separate the noise dimensions from the signal dimen-
sions and compute the entropy within the intrinsic di-
mensions of the manifold. By defining entropy on the
eigenspectrum of the diffusion matrix, the problems
incurred by the prohibitively high spatial dimension
are mitigated. Further, by powering the matrix, we
are able to low-pass filter the eigendimensions of the
data, i.e., count noise dimensions with small eigen-
values proportionally less than dimensions with larger
eigenvalues that explain more variance in diffusion co-
ordinates.

A key contribution of this work is introducing diffusion
spectral entropy (DSE), or spectral entropy of the dif-
fusion operator, as a robust quantifier of the intrinsic
information measure of the representation of data in
the presence of noise. Furthermore, we extend the dif-
fusion spectral entropy to a diffusion spectral mutual
information (DSMI) in order to ascertain the informa-
tion the embedding manifold has on the class labels or
the raw input data from the dataset.

Our main contributions include the following.

• Introducing diffusion spectral entropy (DSE), i.e.,
entropy of the diffusion operator spectrum as
a measure of information in a data representa-
tion. Defining diffusion spectral mutual informa-
tion (DSMI) to assess the relationships between
different layers of information in a neural network.

• Demonstrating that DSE and DSMI remain de-
scriptive on very high-dimensional data and hence
are suitable to modern-sized neural networks.

• Utilizing DSE and DSMI to assess the evolution
of neural representations during training.

• Demonstrating two ways to utilize DSE and
DSMI. Specifically, using DSE to guide network
initialization and using DSMI to predict down-
stream performance without full evaluation.

2 Background

2.1 Manifold learning and diffusion geometry

A useful assumption in representation learning is that
high-dimensional data, commonly used in deep learn-
ing, originate from an intrinsic low-dimensional man-
ifold that is mapped via nonlinear functions to ob-
servable high-dimensional measurements. This is com-
monly known as the manifold assumption [Fefferman
et al., 2016]. Let Md be a hidden d dimensional
manifold that is only observable via a collection of
n ≫ d nonlinear functions f1, . . . , fn : Md → R that
enable its immersion in a high dimensional ambient
space as F (Md) = {f(z) = (f1(z), . . . , fn(z))

T : z ∈
Md} ⊆ R

n from which data are collected. Conversely,
given a dataset X = {x1, . . . , xN} ⊂ R

n of high-
dimensional observations, manifold learning methods
assume that the data points originate from a sam-
pling Z = {zi}Ni=1 ∈ Md of the underlying manifold
through xi = f(zi), i = 1, . . . , n and aim to learn a
low-dimensional intrinsic representation that approxi-
mates the manifold geometry of Md.

A paradigm that has emerged in manifold learning
in recent years is diffusion geometry [Coifman and
Lafon, 2006, Van Dijk et al., 2018, Burkhardt et al.,
2019, Huguet et al., 2022]. It models data based on
transition or random walk probabilities through the
data and has been shown to be noise-tolerant. It has
produced methods such as tSNE [Van der Maaten and
Hinton, 2008], PHATE [Moon et al., 2019] and dif-
fusion maps [Coifman and Lafon, 2006]. The geom-
etry of the manifold can be learned with data diffu-
sion by first computing the local similarities defined
via a kernel K. A popular choice is a Gaussian kernel
e−∥z1−z2∥2/σ, where σ > 0 is interpreted as a user-
configurable neighborhood size. To construct a diffu-
sion geometry that is robust to sampling density vari-
ations, one would typically use an anisotropic kernel

K(z1, z2) =
G(z1, z2)

∥G(z1, ·)∥α1 ∥G(z2, ·)∥α1
, where

G(z1, z2) = e−
∥z1−z2∥2

σ

(1)

as proposed in [Coifman and Lafon, 2006]. 0 ≤ α ≤
1 controls the separation of geometry from density.
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Next, the similarities encoded by K are normalized to

define the transition probabilities p(z1, z2) =
K(z1,z2)
∥K(z1,·)∥1

that are organized in an n× n row stochastic matrix

Pi,j = p(zi, zj) =
K(z1, z2)

∥K(z1, ·)∥1
(2)

which describes a Markovian diffusion process on the
intrinsic geometry of the data.

2.2 Entropy and mutual information

Entropy Entropy quantifies the amount of uncer-
tainty or “surprise” when given the value of a random
variable. If the variable is distributed with a distribu-
tion that has a spread-out probability mass, such as
a uniform distribution, then the entropy is high. On
the other extreme, if there is no uncertainty in the
quantity of the variable, i.e., it is deterministic, then
the entropy is 0. The Shannon entropy is computed as
follows.

H(X) = E[− log p(X)] = −
∑
x∈X

p(x) log p(x) (3)

The von Neumann entropy [von Neumann, 2018] from
the quantum information domain extends the entropy
measure to the quantum mechanics context and oper-
ates on density matrices. If a density matrix ρ has a
set of eigenvalues {ηi}, the von Neumann entropy is
defined as H(ρ) = −tr(ρ log ρ) = −

∑
i ηi log ηi.

Here, von Neumann entropy is considered to be an
extension of Gibbs entropy, which is a measure of the
spread of a distribution on the microstates of a classical
system. Classical systems can only exist in pure states
or standard basis states. However, quantum systems
can exist in superposition states, and depending on
the distribution of superposition states, the stable or
ground states can be redefined as the eigenfunctions
of a density operator that describes the probabilities
of superpositions.

This notion has subsequently been extended to graph
spectra in several works. These methods generally
compute the entropy of normalized eigenvalues of a
graph adjacency matrix and have been used in biol-
ogy and other fields to compare graphs [Su et al.,
2022, de Siqueira Santos et al., 2016,Takahashi et al.,
2012,Merbis and de Domenico, 2023,Villafañe-Delgado
and Aviyente, 2016].

Mutual information Mutual information is de-
fined as a function of entropy. There are many equiva-
lent formulations of mutual information that are equiv-

alent. The most useful formulation here is as the differ-
ence between the (unconditional) entropy of a variable
and the entropy of a variable conditioned on the other
variable. The conditional entropy is computed as a
weighted sum over discrete categories.

I(X;Y ) = H(X)−H(X|Y )

= H(X)−
∑
i

p(Y = yi)H(X|Y = yi)
(4)

2.3 The information bottleneck theory

The information bottleneck theory [Tishby and Za-
slavsky, 2015] views a neural network with sequentially
placed layers as a multistage information compressor.
If we denote the neural representation of any layer as
Z, the input signals as X and the ground truth labels
as Y , the theory concludes that I(Z;X) will decrease
while I(Z;Y ) will increase during training. Addition-
ally, the theory claims that the optimal representation
can be achieved by minimizing I(Z;X)− βI(Z;Y ).

3 Related Work

In efforts to quantify information in neural networks,
in [Tishby and Zaslavsky, 2015], the authors binned
the vectors along each feature dimension to form a
probability distribution and computed the Shannon
entropy and mutual information. The main limitation
of their method is the curse of dimensionality in the
binning process that makes it impractical to analyze
layers with more than a dozen neurons, which lag mod-
ern deep neural networks by orders of magnitude (see
Supplement A).

Researchers proposed using kernel density estimators,
Kraskov estimators, as well as other nonparametric
or parametric estimators [Saxe et al., 2018,Kolchinsky
and Tracey, 2017,Kraskov et al., 2004,Fraser and Swin-
ney, 1986, Darbellay and Vajda, 1999, Suzuki et al.,
2008, Kwak and Choi, 2002, Moon et al., 1995, Gao
et al., 2015] for mutual information estimation, yet
these methods require assumptions on the distribu-
tions of hidden layer activation or do not generalize
well on high-dimensional data [Belghazi et al., 2018].

Among them, the nonparametric estimation tool-
box [Ver Steeg, 2000,Kraskov et al., 2004] locally esti-
mates the log probability density at each sample point
and averages them for a holistic estimate. Mutual in-
formation neural estimation (MINE) [Belghazi et al.,
2018] uses a neural network, optimized by gradient
descent, to approximate a lower bound of mutual in-
formation. In contrast, our proposed method does not
assume a specific distribution on hidden-layer activa-
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tions and remains descriptive in high dimensions.

4 Methods

The main difficulty in entropy and mutual information
quantification in neural networks is the prohibitively
high dimensionality. Binning and quantization fail
quickly when we increase the dimension of the data
(Supplement A). We leverage concepts from diffusion
geometry to access the underlying manifold and com-
pute these quantities reliably at high dimensions.

4.1 Our definitions using diffusion geometry

While spectral entropy has often been used to measure
entropy on graphs, it has not been used often to com-
pute the entropy of data. Here, we make a particular
choice to compute a data-centric affinity matrix and
then a spectral entropy from that matrix. In particu-
lar, we utilize the anisotropically normalized diffusion
operator from Eqn 2.

We define the symmetric matrix K by organizing the
anisotropic kernel K in Eqn 1 with α = 1

2

Ki,j = K(zi, zj) (5)

The row stochastic matrix P computed using Eqn 2
with this K is our diffusion matrix/operator.

When we compute the diffusion operator on the
dataset X, we utilize the additional notation PX .

We define diffusion spectral entropy, with respect to a
particular value of diffusion time t as follows.

Definition 4.1. We define diffusion spectral en-
tropy (DSE) as an entropy of the eigenvalues of the
diffusion operator PX calculated on a dataset X where
x ∈ X is a multidimensional vector [x1, x2 . . . xd]

T :

SD(PX , t) := −
∑
i

αi,t log(αi,t) (6)

where αi,t :=
|λt

i|∑
j |λt

j |
, and {λi} are the eigenvalues of

the diffusion matrix PX .

In the matrix P each data point is encoded accord-
ing to its probability of transition to every other data
point if a random walk on the data is made. Thus, if
a data point is disconnected or far away from others,
then a random walk starting at the data point is likely
to remain at the data point. In this setting, the eigen-
vectors of the diffusion operator are paths through the
data that are stable states of the transition operator.
Thus, the entropy of the transition operator can be
measured over the eigenbasis diffusion operator. Since

rows of this matrix can also be viewed as represen-
tations of the data, this is also a measure of the in-
trinsic dimensionality of the dataset. Note that the
parameter t that parameterizes the entropy also gives
us the capability to separate the noise from the true
entropy of the signal. As the value of t increases, the
eigenspectrum shifts towards the low-frequency eigen-
vectors (which move slowly over the graph) because
the eigenvalues |λi| < 1 diminish at a rate inversely
proportional to their value when they are raised to a
power t. In fact, Pt has identical eigenvectors and
powered eigenvalues as P, which achieves a low-pass
filtering of data values on the affinity graph [Van Dijk
et al., 2018]. We note that a similar measure was used
in the supplement of [Moon et al., 2019] to select pa-
rameters, but the diffusion spectral entropy was not
defined or discussed there.

Figure 1: Intuition for DSE and DSMI. X: data,
Y : class label. Colors represent classes. (A) sketch,
(B) simulation, (C) DSE, (D) DSMI. In all panels,
Left: X forms k clusters and Y corresponds to clus-
ters. SD(PX , t) ≈ log(k) at sufficiently large t and
ID(X;Y ) > 0. Right: X forms a single cluster and
Y is randomly distributed over X. SD(PX , t) ≈ 0 at
sufficiently large t and ID(X;Y ) ≈ 0.

An important remark is that, since DSE is computed
on the eigenspectrum of the diffusion geometric repre-
sentation of the data manifold, diffusion spectral en-
tropy essentially counts information in terms of the
number of eigendirections with non-trivial eigenvalues.
In other words, DSE is more sensitive to the underly-
ing dimension and structures (e.g., number of branches
or clusters) than to the spread or noise in the data it-
self, which is contracted to the manifold by raising the
diffusion operator to the power of t. For an illustra-
tion of this phenomenon, see Figure 1(C), where as t
increases, the DSE converges to the log of number of
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distinct structures in the data. This is a highly valu-
able trait in the analysis of neural network representa-
tions, which often occurs on very noisy data. Indeed,
neural representations that classify well create clear
separations of the data into different eigendirections.

We further extend the diffusion spectral entropy to
define mutual information for understanding the in-
formation that some variables of a data representation
have on others, for example the information that neu-
rons in a hidden layer have about the primary output.

Definition 4.2. We define Diffusion Spectral Mu-
tual Information (DSMI) as the difference between
unconditional and conditional diffusion spectral en-
tropy, similar to the definition in Eqn 4:

ID(X;Y ) =SD(PX , t)

−
∑
yi∈Y

p(Y = yi)SD(PX|Y=yi
, t) (7)

PX|Y=yi
is the transition matrix computed on the sub-

set of X that has class label Y . To avoid the nu-
meric issues involved in comparing spectra of different
sizes of matrices, we also computed SD(PX , t) after
subsampling X to the size of each class in Y . Since
uniform subsampling maintains distributions, the sam-
pled entropy would be the same as the total entropy
as shown in our experiments (see Supplement H).

Figure 1 provides some insight into DSE and DSMI.
In cases where the dataset X forms k clusters and the
class label coincides exactly with well-separated clus-
ters, DSE approaches log(k) with increasing t, because
it counts the number of structures of the manifold in-
stead of the data variance in the ambient space (panel
(C) left). For DSMI, based on Proposition 4.4, the
unconditional entropy with multiple clusters shall be
greater than the conditional entropy within a single
cluster, so DSMI will be positive (panel (D) left). In
the second case, where X forms a single cluster and
class labels are evenly distributed across the manifold,
DSE approaches log(1) = 0 with increasing t as there
is only one structure (panel (C) right). For DSMI, the
conditional entropy SD(X|Y ) and unconditional en-
tropy SD(X) would be similar. As a result, DSMI shall
be close to zero or even slightly negative for numerical
reasons but, nonetheless, indicates low MI (panel (D)
right). See Supplement G and H for additional results.

4.2 Properties and propositions

Here we discuss some properties of DSE and DSMI,
with proofs in Supplement B. First, we provide the
lower bound and the upper bound of SD when t → ∞,
and we explain the conditions when they are reached.

Proposition 4.1. SD achieves a minimal entropy of 0
when the diffusion operator defines an ergodic Markov
chain, and is in steady state (as t → ∞).

Note that this also implies that if all data points are
very similar and all points can easily transition to any
other point, then it has minimal entropy.

Proposition 4.2. As t → ∞, SD(PX , t) on data with
k well-separated clusters is log(k).

This shows that SD will reach its maximum value when
the points are spread out very far apart.

Next, we examine the expected value of SD.

Proposition 4.3. Let X ∈ Rn×d be a dataset of
n independent and identically distributed multivariate
Gaussian vectors in Rd, where xi ∼ N (0, Id). Then,
using K as defined in Eqn 1 with α = 1/2,

E[SD(PX , t = 1)]

⪅ log(
n

1− β
)−

(
1

n
+

(
n− 1

n

)
β

)
log

(
1 +

βn

1− β

)
where β =

(
1 +

4

σ

)− d
2

This establishes a theoretical upper bound1 on the
DSE at any given layer. Since independence is not nec-
essarily assumed in general, the DSE for any dataset
in practice should be less than this bound. Further-
more, this bound intuitively reinforces that for large
d, β ≈ 0, so E[SD(PX , t = 1)] ≈ log(n).

Our last proposition on DSE relates DSE of a single
cluster to that of multiple clusters. This has implica-
tions for classifier training.

Proposition 4.4. Take n to be arbitrarily large. Let
X ∈ Rn×d be a matrix of i.i.d. random values xij ∼ f .
Let Y ∈ Rn×d be a matrix of i.i.d. random values yij ∼
f , but in k ∈ N distinct clusters such that when the
anisotropic probability matrix is computed for α = 1/2,
the probability of diffusion between points of different
clusters is arbitrarily small. Then, using β as defined
in Proposition 4.3, the approximate upper bound on
DSE increases by β log(k).

Recall the learning process of a classification network.
As the model learns, it separates latent representations
into distinct clusters throughout the process. Propo-
sition 4.4 elucidates that the expected upper bound of
SD will increase during the training of a classifier.

1It is also worth noting that the above bound remains
valid for any distribution where ∥xi − xj∥22 ∼ f for i ̸= j,
where f has the real-valued moment generating function
M(t). Then, we simply set β = M(− 1

σ
).
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Figure 2: Data processing to obtain the diffusion matrix of an embedding manifold. Each data point
is embedded by the network as a vector on a D-dimensional embedding manifold. This yields a point cloud that
can be converted into a graph. We can compute its diffusion matrix, which allows for further analysis.

DSMI has a minimal value of 0, achieved when the ran-
dom variables are mutually independent. On the other
hand, its maximal value can be bounded as follows.

Proposition 4.5. As t → ∞ in a hidden layer X with
k well-separated clusters and class labels Y perfectly
indicating clusters, we will have ID(X;Y ) = log(k).

4.3 Efficiently computing DSE and DSMI

To compute DSE and DSMI on neural network rep-
resentations, we pass the training data X to the de-
sired layer L of a neural network. At this layer, we
collect the activations of each neuron into a vector
L(xi) = [L1(xi), . . . , Ln(xi)], where Lj is the j-th neu-
ron of the L-th layer. L(xi) is a n-dimensional repre-
sentation. If the activation is a multidimensional ten-
sor, we can flatten it into a vector. We then compute
PL(X) and proceed to compute DSE and DSMI. This
process is illustrated in Figure 2.

The calculation of eigenvalues via complete eigen-

decomposition is known to have a time complexity
O(n3). However, we take advantage of two charac-
teristics to provide a faster method: 1) we do not need
the eigenvectors, 2) P has the same eigenvalues as the
real symmetric matrix K defined in Eqn 5 as shown
in [Coifman and Lafon, 2006]. Thus, we can compute
the DSE efficiently using QR decomposition since we
only need the eigenvalues of a real symmetric matrix.

5 Results

5.1 Toy test cases for DSE and DSMI

To demonstrate the behavior of DSE, we first per-
formed several simulations as shown in Figure 3(A).
The left panel indicates that, for an arbitrary real sym-
metric matrix, the closer it gets to an identity matrix,
the higher its DSE — since an n × n identity matrix
represents n distinct clusters/states. The two other
panels show that DSE in general increases as the in-
trinsic dimensionality of the data manifold increases.

Figure 3: Diffusion Spec-
tral Entropy (DSE) and
Diffusion Spectral Mutual
Information (DSMI) on
toy data. (A) DSE in-
creases as intrinsic dimension
grows, while classic Shannon
entropy (CSE) saturates to
log(n) = log2(500) = 8.966
due to curse of dimensional-
ity. (B) When two random
variables are dependent, DSMI
negatively correlates with
the level of data corruption,
while classic Shannon mutual
information (CSMI) does not
capture this trend. See full
description in Supplement C.
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Figure 4: Mutual information estimation on Gaussian blobs. Figure 5: Runtime comparison.

To demonstrate the behavior of DSMI, we performed
similar simulations as shown in Figure 3(B). In these
toy test cases, we gradually corrupt the class label
on the simulated tree branches. Just as expected,
DSMI starts high when the association between the
data point and the class label is high (i.e., when each
branch is assigned a distinct label), and drops to zero
as the corruption gradually brings the label to com-
plete noise.

We also computed the classic Shannon entropy (CSE)
and classic Shannon mutual information (CSMI) for
comparison using the method from [Tishby and Za-
slavsky, 2015]. Our proposed method outperforms the
classic Shannon version in high-dimensional spaces. In
Figure 3(A), DSE consistently captures entropy trends
while CSE saturates to log(n). In Figure 3(B), DSMI
follows the expected trend, while CSMI does not.

5.2 DSMI at very high dimensions

In this section, we show how DSMI better scales to
high dimensions compared to existing methods. We
ran mutual information estimators (DSMI, CSMI, a
nonparametric entropy and mutual information esti-
mation toolbox (NPEET) [Ver Steeg, 2000, Kraskov
et al., 2004] and mutual information neural estimation
(MINE) [Belghazi et al., 2018]) on labeled Gaussian
blobs of various dimensions. The left and middle pan-
els of Figure 4 show that all methods generally obey
the expected behavior as they show positive mutual
information when the label is clean and gradually de-
grade to zero when the label is fully corrupted. The
right panel indicates that CSMI, NPEET, and MINE
fail as the dimension gets large, while DSMI remains
significant.

Moreover, DSMI scales better in runtime (Figure 5).
This is expected since the time complexity for DSMI
is O(n2 ·D + n3) due to the cost of pairwise distance
computation and eigendecomposition (without consid-
ering optimization), while that for CSMI is O(2D) due
to the cost of computing exponentially many data bins.

5.3 Evolution of DSE and DSMI during
training

To analyze DSE and DSMI on real data, we trained
common vision networks and assessed the penultimate
layer of each network at the end of each epoch. To
cover the variety of model architectures, we experi-
mented with 3 convolutional neural networks and 3
vision transformers. See supplementary D for details.

We specifically investigated the penultimate layer be-
cause it is usually believed that the representations in
this layer reflect the learning of the entire network. As
a reference, it is common practice to directly use the
penaltimate layer to evaluate the overall representa-
tion power of the network, e.g., linear probing [Chen
et al., 2020]. Although our experiments mainly focus
on this layer, our evaluation framework can be easily
adapted to other layers in the network.

We trained the vision backbones under three condi-
tions: supervised learning, contrastive learning, and
intentional overfitting on randomized nonsense labels,
repeated under 3 random seeds. More details can be
found in Supplement D. For all of the DSE and DSMI
experiments below, results of the classic Shannon ver-
sion can be found in Supplement A, and the raw results
for each network are included in Supplement E.

DSE of a hidden layer We can observe from Fig-
ure 6 that DSE in proper learning (i.e. supervised
or contrastive learning on correct labels) increases
as the model performs better on the classification
task. When the model is forced to memorize random
nonsense labels, the entropy increases similarly even
though the classification performance is stagnant.

DSMI of a hidden layer with the class label
In Figure 7, it can be seen that DSMI ID(Z;Y ) in-
creases consistently during proper learning. In many
cases, DSMI climbs more slowly in contrastive learn-
ing compared to supervised learning and ends up at a
lower terminal value. This may be attributed to the
fact that contrastive learning lacks direct supervision
from explicit class labels. However, since class labels
relate to the data geometry, self-supervised learning
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Figure 6: DSE SD(Z) of representation Z.

Figure 7: DSMI ID(Z;Y ) between representation Z
and the class label Y .

Figure 8: DSMI ID(Z;X) between Z and input X.

on the data alone still yields some mutual information
with labels. In nonsense memorization, DSMI quickly
converges to around zero. This aligns well with the
expectation, since a classifier that essentially performs
random guessing has zero mutual information with the
class label, whereas a functioning classifier corresponds
to positive mutual information.

DSMI of a hidden layer with the input We also
show DSMI with the input signal in Figure 8. Dur-
ing proper learning, the information bottleneck the-
ory would suggest ID(Z;X) should decrease [Tishby

and Zaslavsky, 2015] while counterarguments have also
been provided in [Saxe et al., 2018]. Our results sug-
gest that both may be correct and the trend may de-
pend on the nature of the dataset X. ID(Z;X) keeps
increasing during learning on the MNIST dataset,
while it mostly decreases after an initial increase on
the CIFAR-10 and STL-10 datasets. We suspect that
all models are essentially overfitting the MNIST data,
and this may be verified by future studies. In nonsense
memorization, ID(Z;X) rises to a significant level in
most cases. This indicates that even when they overfit
random labels, the neural representations still contain
information about the input signals.

5.4 Guiding network initialization

We sought to assess the effects of network initialization
in terms of DSE. We were motivated by two observa-
tions (see Figure S6 in Supplement E): (1) the initial
DSEs for different models are not always the same de-
spite using the same method for random initialization;
(2) if DSE starts low, it grows monotonically; if DSE
starts high, it first decreases and then increases.

Figure 9: Initializing the network at a low DSE allows
for faster convergence and better final performance.
Top: CIFAR-10, bottom: STL-10. Shaded areas indi-
cate standard deviation across 3 random seeds.

We found that if we initialize the convolutional lay-
ers with weights ∼ N (0, σ), DSE SD(Z) is affected
by σ (Figure 9 left). We then trained ResNet models
with networks initialized at high (≈ log(n)) versus low
(≈ 0) DSE by setting σ = 0.1 and σ = 0.01, respec-
tively. The training history suggests that initializing
the network at a lower SD(Z) can improve the con-
vergence speed and final performance (Figure 9). We
believe this is because the high initial DSE from ran-
dom initialization corresponds to an undesirable high-
entropy state, which the network needs to get away
from (causing the DSE decrease) before it migrates
to the desirable high-entropy state (causing the DSE
increase). More details can be found in Supplement F.
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Figure 10: Correlation analysis between DSE SD(Z), DSMI ID(Z;X), ID(Z;Y ) and ImageNet accu-
racy evaluated on 962 pre-trained models. Red circles are ConvNets and blue circles are ViTs. Circle
sizes indicate model sizes. ID(Z;Y ) shows a strong positive correlation (p < 0.001). P.R: Pearson correlation
coefficient, S.R: Spearman correlation coefficient.

5.5 ImageNet cross-model correlation

In addition to evaluating DSE and DSMI along the
training process of the same model, we investigated
whether they can serve as meaningful indicators across
different models. To that end, we computed the cor-
relations between these diffusion geometric quantities
on a representative subset of data and the downstream
classification accuracy across 962 publicly available
models pre-trained on ImageNet. Details of this ex-
periment are described in Supplement D. As illustrated
in Figure 10, ID(Z;Y ) has a strong positive correla-
tion with classification accuracy (with p < 0.001 con-
sistently under four conditions). On the other hand,
SD(Z;X) and ID(Z;X) do not show strong statisti-
cal significance. This indicates a trend that a higher
ID(Z;Y ) corresponds to a better downstream perfor-
mance, which may facilitate the selection of promising
models without evaluating on the entire dataset.

6 Conclusion

In this work, we define diffusion spectral entropy
(DSE) and diffusion spectral mutual information
(DSMI). Through simulation on toy datasets, we
showed that DSE and DSMI are meaningful and noise-

resilient measures that can scale better to very high
dimensions compared to existing methods in both re-
liability and runtime. We then analyzed the neural
representations of six vision backbones in supervised
learning, contrastive learning, and overfitting settings.
We observed that DSE during learning increases un-
der all training conditions. Furthermore, we showed
that DSMI between a hidden layer and class labels in-
creases during learning, whereas it converges to zero
when overfitting random labels. We saw more complex
trends in DSMI with the primary input: it increases
in the MNIST dataset, while it decreases in CIFAR-10
and STL-10. Finally, we show that DSE can be used to
guide network initialization and that DSMI is strongly
correlated with downstream performance.

Some future directions include further investigating
the effect of network initialization, exploring DSE and
DSMI as regularizations for supervised learning, using
DSE to regularize self-supervised learning, using DSMI
to improve adversarially trained generative models,
and many other exciting opportunities. Researchers
can further extend this framework to data from other
systems, in addition to neural networks, to understand
how neural networks process information similarly or
differently from other systems, such as brain networks.
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and Grassberger, P. (2004). Estimating mutual in-
formation. Physical review E, 69(6):066138.

[Kwak and Choi, 2002] Kwak, N. and Choi, C.-H.
(2002). Input feature selection by mutual infor-
mation based on parzen window. IEEE transac-
tions on pattern analysis and machine intelligence,
24(12):1667–1671.

[Liao et al., 2023] Liao, D., Liu, C., Christensen, B.,
Tong, A., Huguet, G., Wolf, G., Nickel, M., Adel-
stein, I., and Krishnaswamy, S. (2023). Assessing
neural network representations during training us-
ing data diffusion spectra. In ICML 2023 Work-
shop on Topology, Algebra and Geometry in Ma-
chine Learning (TAG-ML).

[Merbis and de Domenico, 2023] Merbis, W. and
de Domenico, M. (2023). Complex information
dynamics of epidemic spreading in low-dimensional
networks.

[Moon et al., 2019] Moon, K. R., van Dijk, D., Wang,
Z., Gigante, S., Burkhardt, D. B., Chen, W. S., Yim,
K., Elzen, A. v. d., Hirn, M. J., Coifman, R. R.,
et al. (2019). Visualizing structure and transitions
in high-dimensional biological data. Nature biotech-
nology, 37(12):1482–1492.

[Moon et al., 1995] Moon, Y.-I., Rajagopalan, B., and
Lall, U. (1995). Estimation of mutual information
using kernel density estimators. Physical Review E,
52(3):2318.

[Paninski, 2003] Paninski, L. (2003). Estimation of
entropy and mutual information. Neural computa-
tion, 15(6):1191–1253.

[Saxe et al., 2018] Saxe, A. M., Bansal, Y., Dapello,
J., Advani, M., Kolchinsky, A., Tracey, B. D., and
Cox, D. D. (2018). On the information bottleneck
theory of deep learning. In International Conference
on Learning Representations.

[Saxe et al., 2019] Saxe, A. M., Bansal, Y., Dapello,
J., Advani, M., Kolchinsky, A., Tracey, B. D., and
Cox, D. D. (2019). On the information bottleneck
theory of deep learning. Journal of Statistical Me-
chanics: Theory and Experiment, 2019(12):124020.

[Su et al., 2022] Su, H., Chen, D., Pan, G.-J., and
Zeng, Z. (2022). Identification of network topology
variations based on spectral entropy. IEEE Trans-
actions on Cybernetics, 52(10):10468–10478.



Assessing Neural Network Representations During Training Using Noise-Resilient Diffusion Spectral Entropy

[Suzuki et al., 2008] Suzuki, T., Sugiyama, M., Sese,
J., and Kanamori, T. (2008). Approximating mu-
tual information by maximum likelihood density ra-
tio estimation. In New challenges for feature selec-
tion in data mining and knowledge discovery, pages
5–20. PMLR.

[Takahashi et al., 2012] Takahashi, D. Y., Sato, J. R.,
Ferreira, C. E., and Fujita, A. (2012). Discriminat-
ing different classes of biological networks by ana-
lyzing the graphs spectra distribution. PloS one,
7(12):e49949.

[Tishby and Zaslavsky, 2015] Tishby, N. and Za-
slavsky, N. (2015). Deep learning and the informa-
tion bottleneck principle. In 2015 ieee information
theory workshop (itw), pages 1–5. IEEE.

[Van der Maaten and Hinton, 2008] Van der Maaten,
L. and Hinton, G. (2008). Visualizing data using
t-sne. Journal of machine learning research, 9(11).

[Van Dijk et al., 2018] Van Dijk, D., Sharma, R.,
Nainys, J., Yim, K., Kathail, P., Carr, A. J., Bur-
dziak, C., Moon, K. R., Chaffer, C. L., Pattabi-
raman, D., et al. (2018). Recovering gene interac-
tions from single-cell data using data diffusion. Cell,
174(3):716–729.

[Ver Steeg, 2000] Ver Steeg, G. (2000). Non-
parametric entropy estimation toolbox (npeet).
Non-parametric entropy estimation toolbox
(NPEET).
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A Limitations of the Classic Shannon Entropy and Mutual Information

A.1 Computing the Classic Shannon Entropy and Mutual Information

To compute the classic Shannon entropy of a variable Z, instead of computing the entropy on the eigenvalue
spectrum of the diffusion matrix which gives SD(Z), we directly compute the entropy on the embedding vectors
which give H(Z).

For n data points, the set of embedding vectors contains a total of n vectors in RD. We need to convert the n
vectors to probability densities and use Eqn 3. The most common way (e.g., in [Tishby and Zaslavsky, 2015]) is
to bin these vectors along each of the D feature dimensions. Specifically, we will compute the global range of all
n vectors along each feature dimension i ∈ {1, 2, . . . , D}, and normalize them to [0, 1]. Then, we can quantize all
the vectors along each dimension into b different bins. For example, if b = 10, values in [0, 0.1) will be assigned
to bin 1; values in [0.1, 0.2) to bin 2, etc. As a result, each vector is converted to a quantized version, with each
entry being an integer in [1, b]. Each possible quantized vector can be referred to as a “bucket”. It can be easily
noticed that the number of buckets is equal to bD. After counting the number of vectors in each bucket, we can
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estimate the distribution of probability density on the buckets. Finally, we compute the classic Shannon entropy
using Eqn 3. Classic Shannon mutual information can be computed in a similar manner, using Eqn 4 and the
aforementioned entropy computation.

A.2 Limitations of Classic Shannon Entropy and Mutual Information

The major limitation lies in the binning process. It is a known problem that the number of buckets scales
exponentially with respect to the feature dimension D. Take ResNet-50 as an example: the penultimate
layer has D = 2048. It is overwhelmingly likely that all embedding vectors are assigned to different buckets, even
if we use the minimal choice of 2 bins per feature dimension — which is already a very coarse-grained binning.
When the majority of cases result in unique bucketing which leads to the maximum entropy, this metric has
very limited expressiveness. This phenomenon, which we call the curse of dimensionality in the CSE and CSMI
computation, is illustrated in Figure S1.

This phenomenon can be seen in both toy data (Figures 6 and 7) and real data (Figures S2, S3 and S4).

Figure S1: Curse of dimensionality in Classic Shannon Entropy / Mutual Information.

Figure S2: Classic Shannon entropy version for Figure 6. The embedding vectors are frequently allocated
to unique buckets, which leads to the maximum possible entropy of − log2

1
10000 = 13.288 for 10,000 data points.
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Figure S3: Classic Shannon mutual information version for Figure 7.

Figure S4: Classic Shannon mutual information version for Figure 8.
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B Propositions with Proofs on DSE and DSMI

The following propositions establish some bounds on the minimal and maximal values of Diffusion Spectral En-
tropy (DSE). In addition, they provide insight on the definition of Diffusion Spectral Mutual Information (DSMI).
Note that taking t → ∞ allows us to talk about the major structures in the dataset.

Proposition 4.1 SD achieves a minimal entropy of 0 when the diffusion operator defines an ergodic Markov
chain, and is in steady state (as t → ∞).

Proof. The eigenvalues of a finite ergodic Markov chain have the form 1 = |λ1| > |λ2| ≥ · · · ≥ |λN | ≥ 0, we see
that λt

i = 0 as t → ∞ ∀i > 1. Thus, the resultant entropy is 1 log(1) +
∑

i>1 0 = 0, proving the proposition.

Proposition 4.2 As t → ∞, SD(PX , t) on data with k well-separated, connected clusters is log k.

Proof. If the data has k well-separated clusters, then PX has eigenvalues of the form 1 = |λ1| = |λ2| = · · · =
|λk| > |λk+1| ≥ · · · ≥ |λN | ≥ 0. In other words, the multiplicity of 1 eigenvalues of PX corresponds to the
number of connected components in the underlying graph, which here is k, all other eigenvalues are strictly less
than 1 and greater than or equal to 0. Therefore, as t → ∞ only these eigenvalues remain and the resultant DSE
is
∑

k
1
k log(k) = log(k) completing the proof.

Lemma B.1. Let K be the anisotropic kernel matrix, where for data points xi and xj, Kij =
G(xi,xj)

∥G(xi,·)∥α
1 ∥G(xj ,·)∥α

1
,

and G(xi, xj) = exp(−∥xi − xj∥22/σ). Then, the anisotropic kernel matrix K is a positive semidefinite matrix.

Proof. Note that K = D−αGD−α, where G is the Gaussian kernel matrix and Dii =
∑n

j=1 Gij for all i ∈ [n],

and Dij = 0 for i ̸= j. It is well known that the Gaussian kernel matrix G is positive semidefinite, so xTGx ≥ 0
∀x ∈ Rn\{0}. Let x̃ = D−αx ∈ Rn\{0}, and x̃TKx̃ = (xTD−α)G(D−αx) ≥ 0 ∀x̃ ∈ Rn\{0} since x̃ is a linear
reparameterization of x.

Lemma B.2. Given n data points, let

ϕm(λ1, · · · , λm) =− (n−m+ 1)
λm

(n−m+ 1)λm +
∑m−1

j=1 λj

log

(
λm

(n−m+ 1)λm +
∑m−1

j=1 λj

)

−
m−1∑
i=1

λi

(n−m+ 1)λm +
∑m−1

j=1 λj

log

(
λi

(n−m+ 1)λm +
∑m−1

j=1 λj

)

be a function of the eigenvalues of the anisotropic diffusion matrix K for m ∈ {2, · · · , n}, where the eigenvalues
are ordered such that λ1 ≥ λ2 ≥ · · · ≥ λn. For all m ∈ {2, n− 1}, ϕm(λ1, · · · , λm) ≥ ϕm+1(λ1, · · · , λm, λm+1).

Proof. By Lemma B.1, K has all non-negative eigenvalues. Staying in convention with DSE, let 0 log
(
0
0

)
= 0.

First, we observe the following:

ϕm(λ1, · · · , λm) = ϕm+1(λ1, · · · , λm, λm)

By the Fundamental Theorem of Calculus,

∫ λm

λm+1

∂ϕm+1

∂λm+1
dλm+1 = ϕm − ϕm+1

Thus, it suffices to show that on [λm, λm+1],
∫ λm

λm+1

∂ϕm+1

∂λm+1
dλm+1 ≥ 0. In pursuit of tidiness, let ϕm+1 = f + g,

where f(λ1, · · · , λm+1) = (n−m) λm+1

(n−m)λm+1+
∑m

j=1 λj
log
(

λm+1

(n−m)λm+1+
∑m

j=1 λj

)
, and g represents the summation

term.
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For f ,

∂f

∂λm+1
= −(n−m)

(
log

(
λm+1

(n−m)λm+1 +
∑m

j=1 λj

)
+ 1

)
 −(n−m)λm+1(

(n−m)λm+1 +
∑m

j=1 λj

)2 +
1

(n−m)λm+1 +
∑m

j=1 λj


= −(n−m)

(
log

(
λm+1

(n−m)λm+1 +
∑m

j=1 λj

)
+ 1

)−(n−m)λm+1 + (n−m)λm+1 +
∑m

j=1 λj(
(n−m)λm+1 +

∑m
j=1 λj

)2


= −(n−m)

(
log

(
λm+1

(n−m)λm+1 +
∑m

j=1 λj

)
+ 1

) ∑m
j=1 λj(

(n−m)λm+1 +
∑m

j=1 λj

)2


For g,

∂g

∂λm+1
= −

m∑
i=1

(
log

(
λi

(n−m)λm+1 +
∑m

j=1 λj

)
+ 1

) −(n−m)λi(
(n−m)λm+1 +

∑m
j=1 λj

)2


=

m∑
i=1

(
log

(
λi

(n−m)λm+1 +
∑m

j=1 λj

)
+ 1

) (n−m)λi(
(n−m)λm+1 +

∑m
j=1 λj

)2


Together, letting S = (n−m)λm+1 +
∑m

j=1 λj ,

∂ϕm+1

∂λm+1
=

∂g

∂λm+1
+

∂f

∂λm+1

=
1

S2

(
(n−m)

m∑
i=1

λi log

(
λi

S

)
+ (n−m)

m∑
i=1

λi − (n−m)

m∑
i=1

λi log

(
λm+1

S

)
− (n−m)

m∑
i=1

λi

)

=
1

S2

(
(n−m)

m∑
i=1

λi log

(
λi

S

)
− (n−m)

m∑
i=1

λi log

(
λm+1

S

))

=
n−m

S2

m∑
i=1

λi log

(
λi

λm+1

)

We conclude by observing that λm+1 is the smallest eigenvector, so every log term must be non-negative.

Here, note that ϕn = SD(PX , t = 1).

Lemma B.3. Define ϕ as in Lemma B.2. Then, the function ϕ2(λ1, λ2) is concave for the anisotropic diffusion
matrix.

Proof. Since λ1 ≡ 1 by construction, it suffices to show that ∂2ϕ2

∂λ2
2
(1, λ2) ≤ 0 for all λ2 ≤ 1.
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∂ϕ2

∂λ2
= −

(
log

(
1

1 + (n− 1)λ2

)
+ 1

)
−1(n− 1)

(1 + (n− 1)λ2)2

− (n− 1)

(
log

(
λ2

1 + (n− 1)λ2

)
+ 1

)(
−λ2(n− 1)

(1 + (n− 1)λ2)2
+

1

1 + (n− 1)λ2

)
=

(n− 1)

(1 + (n− 1)λ2)2

(
log

(
1

1 + (n− 1)λ2

)
+ 1

)
+

(n− 1)

(1 + (n− 1)λ2)2

(
log

(
λ2

1 + (n− 1)λ2

)
+ 1

)
(λ2(n− 1)− (1 + (n− 1)λ2)

=
(n− 1)

(1 + (n− 1)λ2)2

(
log

(
1

1 + (n− 1)λ2

)
+ 1− log

(
λ2

1 + (n− 1)λ2

)
− 1

)
=

(n− 1)

(1 + (n− 1)λ2)2

(
log

(
1

λ2

))
= − (n− 1)

(1 + (n− 1)λ2)2
log (λ2)

∂2ϕ2

∂λ2
2

= −(−2)(n− 1)
(n− 1)

(1 + (n− 1)λ2)3
log (λ2)−

(n− 1)

λ2(1 + (n− 1)λ2)2

= 2(n− 1)
(n− 1)

(1 + (n− 1)λ2)3
log (λ2)−

(n− 1)(1 + (n− 1)λ2)

λ2(1 + (n− 1)λ2)3

=
n− 1

(1 + (n− 1)λ2)3

(
2(n− 1) log (λ2)−

(1 + (n− 1)λ2)

λ2

)
=

n− 1

(1 + (n− 1)λ2)3

(
2(n− 1) log (λ2)−

(
1

λ2
+ (n− 1)

))

Concavity requires 1
λ2

+ (n − 1) ≥ 2(n − 1) log(λ2). Here, we observe that λ2 ≤ 1, and 1
λ2

+ (n − 1) > 0 ≥
2(n− 1) log(λ2) completes the proof.

Proposition 4.3 Let X ∈ Rn×d be a dataset of n independent and identically distributed multivariate Gaussian
vectors in Rd, where xi ∼ N (0, Id). Then, using K as defined in Eqn 1 with α = 1/2,

E[SD(PX , t = 1)]

⪅ log(
n

1− β
)−

(
1

n
+

(
n− 1

n

)
β

)
log

(
1 +

βn

1− β

)
where β =

(
1 +

4

σ

)− d
2

(8)

Proof. We prove the above theorem in four steps:

1. Expectation is linear.
2. One can approximate the expected random anisotropic kernel matrix.
3. Based on this, one can derive the expected eigenvalues of the expected matrix.
4. Use Jensen’s Inequality with the bounded DSE.

First, eigenvalues λ are defined such that for matrix K ∈ Rn×n, Kx = λx for all vectors x ∈ Rn. By the linearity
of expectation, E[K]x = E[λ]x. Thus, computing E[K] leads to a solution for E[λ], which can be used to upper
bound the DSE.

Second, E[K] = E[D−1/2GD−1/2]. Here, we approximate the expectation by E[K] ≈ (D | E[G])−1/2E[G](D |
E[G])−1/2, as confirmed empirically. Computations based on E[G] are much more approachable, given the nature
of the problem.
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For diagonal entries of G, E[Gii] = E
[
exp

(
−∥xi − xi∥22/σ

)]
= 1. For off-diagonal entries of G, we proceed

inductively. First, xi − xj ∼ N (0, 2Id). Let zij ≡ ∥xi − xj∥22. Since
zij
2 ∼ χ2

d, one can verify that the chi-squared

distribution moment generating function is E[etX ] = (1− 2t)−d/2 for t < 1/2. Thus, E
[
exp

(
−∥xi − xj∥22/σ

)]
=

E[e(−1/σ)2zij ] = (1 + 4
σ )

−d/2.

For E[K],

E[Kii] ≈
1

1 + (n− 1)(1 + 4
σ )

−d/2

E[Kij ] ≈
(1 + 4

σ )
−d/2

1 + (n− 1)(1 + 4
σ )

−d/2
∀i ̸= j

Third, observe that our approximate E[K] may be decomposed as follows:

E[K] ≈ 11
T

(
(1 + 4

σ )
−d/2

1 + (n− 1)(1 + 4
σ )

−d/2

)
+ In

(
1− (1 + 4

σ )
−d/2

1 + (n− 1)(1 + 4
σ )

−d/2

)

One easily verifies that the first matrix has eigenvalues λ1 = n
(

(1+ 4
σ )−d/2

1+(n−1)(1+ 4
σ )−d/2

)
and λ2 = · · · = λn = 0,

and the second matrix has eigenvalues λ1 = · · · = λn =
1−(1+ 4

σ )−d/2

1+(n−1)(1+ 4
σ )−d/2 . By construction, the eigenvalues are

additive, so E[K] has E[λ1] = 1, and E[λ2] = · · · = E[λn] =
1−(1+ 4

σ )−d/2

1+(n−1)(1+ 4
σ )−d/2 .

Fourth, we refer to Lemma B.2 in claiming that ϕ2(λ1, λ2) ≥ ϕn(λ1, λ2, · · · , λn) = SD(PX , t = 1). By the
concavity established in Lemma B.3, Jensen’s Inequality implies that E[ϕ2(λ1, λ2)] ≤ ϕ2(E[λ1],E[λ2]). Simply
put,

E[SD(PX , t = 1)] ≤ ϕ2(E[λ1],E[λ2])
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Finally, letting β = (1 + 4
σ )

−d/2,

ϕ2(E[λ1],E[λ2]) = − (n− 1)E[λ2]

(n− 1)E[λ2] + E[λ1]
log

(
E[λ2]

(n− 1)E[λ2] + E[λ1]

)
− E[λ1]

(n− 1)E[λ2] + E[λ1]
log

(
E[λ1]

(n− 1)E[λ2] + E[λ1]

)
= −

(n− 1) 1−β
1+(n−1)β

(n− 1) 1−β
1+(n−1)β + 1

log

(
1−β

1+(n−1)β

(n− 1) 1−β
1+(n−1)β + 1

)

− 1

(n− 1) 1−β
1+(n−1)β + 1

log

(
1

(n− 1) 1−β
1+(n−1)β + 1

)

= −(n− 1)
(1− β)

(n− 1)(1− β) + 1 + (n− 1)β
log

(
(1− β)

(n− 1)(1− β) + 1 + (n− 1)β

)
− 1 + (n− 1)β

(n− 1)(1− β) + 1 + (n− 1)β
log

(
1 + (n− 1)β

(n− 1)(1− β) + 1 + (n− 1)β

)
= −(n− 1)

(1− β)

(n− 1) + 1
log

(
(1− β)

(n− 1) + 1

)
− 1 + (n− 1)β

(n− 1) + 1
log

(
1 + (n− 1)β

(n− 1) + 1

)
= −(n− 1)

(1− β)

n
log

(
(1− β)

n

)
− 1 + (n− 1)β

n
log

(
1 + (n− 1)β

n

)
=

n− 1− nβ + β

n
log

(
n

1− β

)
+

1 + nβ − β

n
log

(
n

1 + (n− 1)β

)
=

n

n
log

(
n

1− β

)
+

1 + nβ − β

n

(
log

(
n

1 + (n− 1)β

)
− log

(
n

1− β

))
= log

(
n

1− β

)
+

1 + nβ − β

n

(
log

(
1− β

1 + (n− 1)β

))
= log

(
n

1− β

)
+

(
1

n
+

n− 1

n
β

)
log

(
1− β

1 + (n− 1)β

)
= log

(
n

1− β

)
−
(
1

n
+

n− 1

n
β

)
log

(
1− β + nβ

1− β

)
= log

(
n

1− β

)
−
(
1

n
+

n− 1

n
β

)
log

(
1 +

nβ

1− β

)

Corollary 1. SD achieves maximal entropy in a matrix where each point only transitions to itself, and the
entropy here will be log(n).

Proof. In this case the transition matrix corresponds to the identity matrix, hence, each of the n eigenvalues
is 1. Thus the diffusion spectral entropy is the uniform distribution on n states −

∑n
i (1/n) log(1/n) = log(n),

which maximizes the entropy.

Lemma B.4. Let f be a probability distribution, and let X ∈ Rkn×d be a dataset of n ∈ N independent and
identically distributed d-dimensional points xi ∼ f . Let these points lie in k ∈ N distinct clusters, where the
diffusion probability between points of different clusters is arbitrarily small. Let Y ∈ Rn×d be a dataset of n
i.i.d. points yi ∼ f in one cluster. Then, the expected DSE E[SD(PX , t)] may be related to the expected DSE
E[SD(PY , t)] by the following equality:

E [SD(PX , t)] = E [SD(PY , t)] + log(k)

Proof. Let K ∈ Rn×n be the anisotropic kernel matrix for Y , and let λ1, · · · , λn denote its ordered eigenvalues.
Let K̃ ∈ Rkn×kn be the anisotropic kernel matrix for X, where λ̃1, · · · , λ̃kn are its ordered eigenvalues. Note
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that as a block diagonal matrix, λ̃ki+1 = · · · λ̃ki+k in law for i ∈ [0, n − 1]. Since each block is composed of n
data points distributed as f , λi+1 = λ̃ki+1 in law. Thus, we can reformulate E[SD(PX , t)] as follows:

E[SD(PX , t)] = E

[
−

kn∑
i=1

(
|λ̃t

i|∑kn
i=1 |λ̃t

j |

)
log

(
|λ̃t

i|∑kn
i=1 |λ̃t

j |

)]

= E

[
−k ·

n∑
i=1

(
|λt

i|
k ·
∑n

i=1 |λt
j |

)
log

(
|λt

i|
k ·
∑n

i=1 |λt
j |

)]

= E

[
−k

k
·

n∑
i=1

(
|λt

i|∑n
i=1 |λt

j |

)
log

(
|λt

i|
k ·
∑n

i=1 |λt
j |

)]

= E

[
−

n∑
i=1

(
|λt

i|∑n
i=1 |λt

j |

)(
log

(
|λt

i|∑n
i=1 |λt

j |

)
− log(k)

)]

= E

[
−

n∑
i=1

(
|λt

i|∑n
i=1 |λt

j |

)
log

(
|λt

i|∑n
i=1 |λt

j |

)]
− log(k) · E

[
−

n∑
i=1

(
|λt

i|∑n
i=1 |λt

j |

)]
= E[SD(PY , t)] + log(k)

Proposition 4.4 Take n to be arbitrarily large. Let X ∈ Rn×d be a matrix of i.i.d. random values xij ∼ f .
Let Y ∈ Rn×d be a matrix of i.i.d. random values yij ∼ f , but in k ∈ N distinct clusters such that when the
anisotropic probability matrix is computed for α = 1/2, the probability of diffusion between points of different
clusters is arbitrarily small. Then, using β as defined in Proposition 4.3, the approximate upper bound on DSE
increases by β log(k).

Proof. We take n to be large such that the upper bound in Prop. 4.3 approaches log
(

n
1−β

)
− β log

(
βn
1−β

)
, for

E[SD(PX , t = 1)]. Let Z ∈ Rn/k×d also contain i.i.d. random entries according to f . For E[SD(PZ , t = 1)], the

aforementioned upper bound evaluates to log
(

n
1−β

)
−β log

(
βn
1−β

)
−(1−β) log(k) following simple manipulations.

By Lemma B.4, E[SD(PY , t = 1)] = E[SD(PZ , t = 1)] + log(k).

E[SD(PY , t = 1)] = E[SD(PZ , t = 1)] + log(k)

≤ log

(
n

1− β

)
− β log

(
βn

1− β

)
− (1− β) log(k) + log(k)

≤ log

(
n

1− β

)
− β log

(
βn

1− β

)
+ β log(k)

Proposition 4.5 As t → ∞ in a hidden layer X with k well-separated clusters and class labels Y perfectly
indicating clusters, we will have ID(X;Y ) = log(k).

Proof. Based on proposition 4.2, the entropy of k well-separated clustered data with t → ∞ is log(k), thus
SD(Px, t) = log(k). However, for each label y SD(Px, t) = log(1) = 0. Thus ID(X;Y ) = log k.
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C Full Caption of the Toy Data Figure

Here we show Figure 3 with the full caption.

Figure S5: Diffusion Spectral Entropy (DSE) and Diffusion Spectral Mutual Information (DSMI)
on toy data.
(A) DSE increases as intrinsic dimension grows, while classic Shannon entropy (CSE) saturates to log(n) due to
curse of dimensionality. Left: Weighted sum of a random n×n symmetric positive definite matrix (to simulate
a diffusion matrix) and the n× n identity matrix. In theory, the identity matrix shall have the highest entropy
at each respective n. Mid: d-dimensional U [−1, 1] inside a 2048 dimensional space. Right: d-dimensional
N (0, I) inside a 2048 dimensional space. Shaded areas indicate the standard deviation from 5 independent runs.
For the latter two distributions, additive noise is injected into the coordinates and schematics for d = {1, 2, 3}
are illustrated on top. The number of data points for the simulation is 500. Note that in the latter two cases
for DSE we compute the diffusion matrix of the data manifold prior to entropy evaluation, whereas in the
first case we skip that step because the matrix is already provided. In the latter two cases, CSE saturates to
log(n) = log2(500) = 8.966.
(B) When two random variables are dependent, DSMI negatively correlates with the level of data corruption,
while classic Shannon mutual information (CSMI) does not capture this trend. DSMI ID(Z;Y ) and CSMI are
computed on synthetic, 20-dimensional trees with {2, 5, 10} branches (Left, Mid, Right). The x-axis represents
the level of label corruption, ranging from completely clean label (left) to fully corrupted label (right), with 3
dimensional schematics demonstrating corruption ratios {0.0, 0.5, 1.0} displayed on top. At full corruption,
ID(Z;Y ) converges to zero, as the embedding vectors do not contain information on the labels.
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D Experimental Details

D.1 Three conditions for neural network training process

All experiments were run on a single NVIDIA A100 GPU.

D.1.1 Supervised learning

We trained the 6 networks (3 ConvNets and 3 vision transformers as mentioned in Section 5.3) end-to-end.
The ConvNets included ResNet [He et al., 2016], ResNeXT [Xie et al., 2017], and ConvNeXT [Liu et al.,
2022]. The vision transformers included the original Vision Transformer (ViT) [Dosovitskiy et al., 2020], Swin
Transformer [Liu et al., 2021], and Cross-Covariance Image Transformer (XCiT) [Ali et al., 2021].

We used an AdamW optimizer [Loshchilov and Hutter, 2017] with an initial learning rate of 1e-5 for MNIST [Le-
Cun, 1998] or 1e-4 for CIFAR-10 [Krizhevsky et al., 2009] and STL-10 [Coates et al., 2011]. The learning rate is
modulated by a Cosine Annealing Scheduler [Loshchilov and Hutter, 2016] with a linear warm-up for the first 10
epochs. The total duration of training is 200 epochs. At the end of each epoch, we pass the entire validation set
through the model and collect the RD representation vectors as output from the penultimate layer for further
analysis.

D.1.2 Contrastive learning

For the contrastive learning experiments, we followed the SimCLR [Chen et al., 2020] paradigm: we create two
augmentations of the same image and ask the model to embed them closer on the embedding manifold, while
encouraging greater separation between them and the other images in the same batch. The standard training
procedure of contrastive learning first trains the backbone, with the classifier (the final, linear layer) detached,
for some epochs, and then performs a linear probing or fine-tuning. In either case, a linear classifier layer is
attached and trained for some more epochs. The weights of the backbone are frozen in the former case, versus
learnable in the latter.

Since we need to assess how well the model is learning at each epoch, we instead perform linear probing by
the end of each epoch. Specifically, we freeze the backbone weights, attach a reinitialized linear classifier layer,
and train the classifier for 10 epochs with the training set. Then, we record the end-to-end validation accuracy
and collect the embedding vectors on the validation set, similar to the supervised learning case. Finally, we
unfreeze the backbone weights for the next epoch of SimCLR training. For fair comparison, the training details
are otherwise the same as in the supervised learning case, including the learning rate and scheduling.

D.1.3 Purposeful overfitting

In purposeful overfitting, we train the model in the same way as in the supervised learning case, except that
the data labels are randomly permuted. In this way, the models are forced to learn nonsense labels. To better
overfit, we reduced the extent of data augmentation during training, since data augmentation is proven effective
in mitigating overfitting. For fair comparison, the training details are otherwise the same as in the supervised
learning case, including learning rate and scheduling.

D.2 Computing DSMI with input

We compute ID(Z;X) the same way as we compute ID(Z;Y ). By a simple change of variables, Eqn 7 can be
rewritten as:

ID(Z;X) = SD(Z)− SD(Z|X) = SD(PZ , t)−
∑
xi∈X

p(X = xi)SD(PZ |X = xi, t)

Compared to DSMI between the neural representation and the output, the DSMI with input is slightly more
complicated because the input signals do not fall into discrete categories, i.e. xi are not naturally defined. To
this end, for the set of n input images, we flatten them and perform spectral clustering. For a fair comparison
with ID(Z;Y ), we cluster these vectors into the same number of categories as the number of classes in Y . The
remaining process is the same as how we compute DSMI with output.
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D.3 Details on Imagenet cross-model correlation

D.3.1 Pre-trained models

The pre-trained models are obtained from the Huggingface PyTorch Image Models repository [Wightman, 2019].
Specifically, we used the models listed in https://github.com/huggingface/pytorch-image-models/blob/

main/results/results-imagenet.csv, which the owners shared under Apache License 2.0. There are originally
1002 models, but 40 models failed our standardized pipeline, likely due to the presence of auxiliary structures,
leading to a final set of 962 models. All of these models are pre-trained on ImageNet [Deng et al., 2009].

D.3.2 ImageNet accuracy

The ImageNet validation accuracy (top-1 and top-5) is taken from https://github.com/huggingface/

pytorch-image-models/blob/main/results/results-imagenet.csv. Test accuracy (top-1 and top-
5) is taken from https://github.com/huggingface/pytorch-image-models/blob/main/results/

results-imagenet-real.csv.

D.3.3 DSE and DSMI

The full ImageNet validation set contains 1000 classes each with 50 samples. For efficient computation, we
measured DSE SD(Z), DSMI ID(Z;X), and ID(Z;Y ) on the union of two commonly used subsets of ImageNet
validation set: namely Imagenette and Imagewoof. The former contains 10 very distinct classes (tench, English
springer, cassette player, chain saw, church, French horn, garbage truck, gas pump, golf ball, parachute), while
the latter contains 10 very similar classes (Australian terrier, Border terrier, Samoyed, Beagle, Shih-Tzu, English
foxhound, Rhodesian ridgeback, Dingo, Golden retriever, Old English sheepdog). We believe that the union of
these two subsets forms a representative subset of ImageNet.

D.4 Logarithm base

It can be verified that the choice of a logarithm base does not affect the validity of our formulations. By
convention, we choose base 2 (log2) in our implementation. Hence, the unit of entropy will be bits.

https://github.com/huggingface/pytorch-image-models/blob/main/results/results-imagenet.csv
https://github.com/huggingface/pytorch-image-models/blob/main/results/results-imagenet.csv
https://github.com/huggingface/pytorch-image-models/blob/main/results/results-imagenet.csv
https://github.com/huggingface/pytorch-image-models/blob/main/results/results-imagenet.csv
https://github.com/huggingface/pytorch-image-models/blob/main/results/results-imagenet-real.csv
https://github.com/huggingface/pytorch-image-models/blob/main/results/results-imagenet-real.csv
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E All Raw Results

Here we show the raw results corresponding to the following figures: Figures 6, 7, 8, S2, S3, S4.

Figure S6: Raw results for Figure 6.

Figure S7: Raw results for Figure 7.

Figure S8: Raw results for Figure 8.



Assessing Neural Network Representations During Training Using Noise-Resilient Diffusion Spectral Entropy

Figure S9: Raw results for Figure S2.

Figure S10: Raw results for Figure S3.

Figure S11: Raw results for Figure S4.
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F DSE Initialization Experiments

For all experiments on the evolution of DSE and DSMI during neural network training, we initialized the model
parameters using the same standard initialization process.

For convolutional layers (i.e. Conv and ConvTranspose), we used Kaiming normal initialization [He et al., 2015].
For linear layers (a.k.a. fully-connected layers), we initialized them with a normal distribution with mean 0 and
standard deviation 1e-3. For batch normalization weights, we initialized them with a constant value of 1.0. For
all biases, we initialized them with a constant value of 0.

Despite the fact that we used the same initialization, the initial value of DSE is not always the same across
different experiments. For example, in Figure S6, ResNet on MNIST began at a high DSE, while ViT on MNIST
began at a low DSE. While this does not change the general increasing trend of DSE during training, we wonder:
Will initializing the network at a high DSE versus a low DSE affect the learning process?

After further investigation, we found that we can control this behavior by modifying the initialization parameters
on the convolutional layers. Specifically, we replaced the initialization method for the convolutional layers with
a normal distribution with a mean of 0 and a tunable standard deviation. We observed a monotonic trend in
the initial DSE as we adjusted the standard deviation (Figure S12). However, as the transition is abrupt, it is
not easy to target an arbitrary DSE value.

Figure S12: Initialization parame-
ters affects the initial DSE (CIFAR-
10).

Figure S13: Initializing the network at a low DSE allows for faster conver-
gence and better final performance (CIFAR-10).

Figure S14: Initialization parame-
ters affects the initial DSE (STL-
10).

Figure S15: Initializing the network at a low DSE allows for faster conver-
gence and better final performance (STL-10).

To answer the question in bold above, we trained two ResNets on the CIFAR-10 dataset, one starting with a
low DSE (conv. init. std. = 0.01) and the other starting with a high DSE (conv. init. std. = 0.1). Experiments
are repeated under 3 random seeds. Intuitively, we would expect the former to converge faster than the latter,
because in the former case the embedding manifold only needs to monotonically increase DSE (Figure S13 left,
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blue line), while in the latter case the DSE needs to first decrease from the peak and then increase (Figure S13
left, red line). Indeed, this intuition is supported by empirical results. In the right panel of Figure S13, it can
be seen that, at least in our preliminary experiments, initializing the network at a low DSE allows faster
convergence and better final performance.

We conducted the same experiments on STL-10 and observed the same results. The corresponding figures are
Figure S14 and Figure S15.

Figure S16: PHATE representation of the embedding spaces during training for low (panel A) and high (panel
B) initial DSE. Colors represent ground truth class labels.

This observation can be further corroborated by the visualizations of the embedding space. When we initialize
the network at a low DSE (Figure S16(A)), the PHATE [Moon et al., 2019] representation of the embedding space
is close to a uniform blob. As the network undergoes more training, the embedding space becomes organized
into distinct branches, each corresponding to a different class. This process is relatively smooth and monotonic.

On the other hand, when we initialize the network at a high DSE (Figure S16(B)), the PHATE representation
almost looks like a curved ribbon. As training progresses, the embedding space first expanded to become more
blob-like and then stretches out into branches. Compared to the other case above, which only has a branching
phase, this process has an additional expansion phase before the branching phase, which may explain the slower
convergence. Moreover, the final representations are not as clean and well-separated as the other case.

All of these results together suggest that different network initializations may affect the convergence rate and
final performance, and that some properties of network initialization can be captured by DSE. However, since
this is not the main focus of this paper, we leave it to future research to explore this topic in more depth.

G Additional DSE Results: Intuition and MAGIC visualization

G.1 DSE vs. Diffusion t in the Intuition Figure

Figure S17 illustrates DSE vs. diffusion time t for the cases in the intuition figure (Figure 1). It can be seen that
DSE approaches log2(3) ≈ 1.585 with 3 nicely separated blobs, while it approaches zero with one single blob.

G.2 MAGIC Visualization for DSE vs. Diffusion t

To emphasize that DSE reflects the structure of the data manifold instead of data variations in the ambient space,
we employed MAGIC [Van Dijk et al., 2018] for visual representation. This visualization technique showcases the
diffusion geometric representation of the data manifold across various diffusion t values. As evident in Figure S18,
with an increase in diffusion t, a dataset characterized by three distinct blobs evolves into three separate ‘lines’.
Conversely, a dataset featuring a singular blob transforms into a single ”line.” This visual representation using
MAGIC underscores the inherent structures within the data manifold and it is evident that DSE aligns well with
these visual interpretations.
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Figure S17: DSE vs. Diffusion t for Figure 1. Left: X are k separated clusters. Simulated with 3 blobs in
2 or 3 dimensions. SD(PX , t) ≈ log(k) when t increases Right: X is a single blob. Simulated with 1 blob in 2
or 3 dimensions. SD(PX , t) ≈ 0 with increasing t.

Figure S18: MAGIC representation of simulated blobs data in 3 dimension. Top panel: X are k
separated clusters. Bottom panel: X is a single blob. As diffusion t increases, a dataset characterized by three
distinct blobs evolves into three separate “lines.” Conversely, a dataset featuring a singular blob transforms into
a single “line”.

G.3 Ablation Study

We conducted an ablation study on diffusion spectral entropy by experimenting with alternative methods for
computing entropy. In addition to diffusion spectral entropy (DSE) and classic Shannon entropy (CSE), we
investigate three alternatives: diffusion matrix entry entropy (DMEE) in which the classic Shannon entropy is
computed on the entries in the diffusion matrix P; entropy with eigenvalues from the binary adjacency matrix
of k-nearest-neighbor graph; entropy with eigenvalues from the weighted adjacency matrix G constructed with
the Gaussian kernel.

Table S1: Descriptions of methods being compared.

Method Description

DSE diffusion spectral entropy: proposed method (Eqn 6)
CSE classic Shannon entropy (Eqn 3)

DMEE diffusion matrix entry entropy (Shannon entropy over {Pi,j})
KNN with eigenvalues from binary adjacency matrix of k-nearest-neighbor graph

Gaussian with eigenvalues from the weighted adjacency matrix G, where G(z1, z2) = e−
∥z1−z2∥2

σ

We visualized the behavior of different entropy methods against the intrinsic dimension of the data. We can see
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Figure S19: Ablation study on diffusion spectral entropy (DSE).

from Figure S19 that diffusion matrix entry entropy (DMEE) decreases as the intrinsic dimension of the data
increases. The entropy computed on eigenvalues from the binary adjacency matrix of the k-nearest-neighbor
graph (KNN method) jitters around a fixed value as the intrinsic data dimension increases. The entropy on the
eigenvalues of the weighted adjacency matrix G starts with a high entropy in a relatively small data dimension
and continues to increase until it becomes stagnant. It plateaus in much smaller dimensions on both uniform
and Gaussian distributed data. On data with a high percentage of noise (50%, 70%), we observe that entropy
on eigenvalues of Gaussian adjacency matrix barely changes despite increasing data dimension, while diffusion
spectral entropy (DSE) can remain resilient to noise and effectively reflect the increasing intrinsic dimension as
the diffusion parameter t is adjusted.

H Additional DSMI Results: Intuition and Subsampling Robustness

H.1 DSMI vs. Diffusion t in the Intuition Figure

Figure S20 illustrates DSMI for the cases in the intuition figure (Figure 1). It can be seen that DSMI is positive
on nicely separated clusters, while close to zero on well-mixed clusters. Moreover, when t is sufficiently high,
DSMI approaches log(k), which in this case is log2(3) ≈ 1.585.
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Figure S20: DSMI simulations for Figure 1. Left: Y is on separated clusters. Simulated with 3 blobs in 2
or 3 dimensions. SD(X|Y ) < SD(X) and ID(X;Y ) are positive. Right: Y is close to a uniform sub-sampling of
X. Simulated with 1 blob in 2 or 3 dimensions. ID(X;Y ) is around 0, but can have negative values if SD(X|Y )
is larger than SD(X) for numeric reasons.

H.2 Subsampling Technique for DSMI: Subsampling Robustness

As mentioned in Definition 4.2, we use a subsampling technique to compute Diffusion Spectral Mutual Infor-
mation (DSMI).

Since DSMI is computed as a conditional DSE, we hereby justify this technique by showing that Diffusion
Spectral Entropy (DSE) is robust to subsampling (Figure S21). Four line styles of the same color, respectively,
represent different subsampling ratio ranging from 100% (full dataset) to 10%. It can be observed that DSE can
be reliably computed despite significant subsampling.

On the other hand, we also need to point out that the subsampling robustness is constrained by the DSE upper
bound. DSE is capped by log2 n where n is the number of data points. For example, if the entire population has
a DSE of 8 while we subsample fewer than 28 = 256 data points, the subsampled DSE will be an underestimate.
In our studies, the subsampling ratio is about 10%, which always yields a significant number of data points
per category. This technique shall be used with caution if it is applied to other studies with more extreme
subsampling.
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Figure S21: Diffusion spectral entropy estimation is robust to subsampling. Subsampled SD(Z) are
computed on synthetic multi-dimensional trees.
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