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Abstract

In modern healthcare, radiology plays a piv-001
otal role in diagnosing and managing diseases.002
However, the complexity of medical imaging003
data and the variability in interpretation can004
lead to inconsistencies and a lack of patient-005
centered insights in radiology reports. To ad-006
dress these challenges, we propose a novel007
multimodal prompt-driven report generation008
framework that integrates diverse data modal-009
ities—such as medical images, and clinical010
notes—to produce comprehensive and context-011
aware radiology reports. Our framework lever-012
ages innovative prompt engineering techniques013
to guide vision-language models in synthesiz-014
ing relevant information, ensuring the gener-015
ated reports are not only accurate but also016
tailored to individual patient profiles. A key017
feature of our framework is its ability to pro-018
vide patient-centric explanations, offering clear019
and personalized insights into diagnostic find-020
ings and their implications. Experimental re-021
sults demonstrate this framework’s effective-022
ness in enhancing report quality, improving un-023
derstandability, and could foster better patient-024
doctor communication. This approach repre-025
sents a significant step toward more intelligent,026
transparent, and human-centered medical AI027
systems.028

1 Introduction029

Radiology reports form the basis for clinical diag-030

nostics and guide medical experts in treating pa-031

tients. Despite their significance, creating radiol-032

ogy reports is a labor-intensive and expert-intensive033

process frequently plagued with human errors and034

differing details based on the radiologist’s level of035

experience. Given the very low ratio of radiolo-036

gists to patients, the laborious process of creating037

full text radiology reports ends up being one of the038

workflow’s largest obstacles (US, China, and India039

is 1:10,000, 1:14,772, and 1:100,000, respectively)040

(Arora, 2014). Given the huge number of cases and041

the shortage of radiology experts, time-efficiently 042

generating reports is a major hurdle worldwide. 043

Towards this goal, there has been a huge attempt 044

from both industry and academia, with the land- 045

scape of AI-based report generation having seen 046

exponential growth in recent times (Messina et al., 047

2022). This growth is owed to the evolving capabil- 048

ities of large language models and vision language 049

models (VLMs) in particular. VLMs have revolu- 050

tionized the fields of computer vision and natural 051

language processing by integrating visual percep- 052

tion and language understanding. These models 053

have showcased exceptional abilities on a variety 054

of tasks, such as image captioning (Hossain et al., 055

2019), visual question answering (Lu et al., 2023), 056

and visual common sense reasoning (Zellers et al., 057

2018). By ingestion of vast amounts of image and 058

text data, these models can learn rich visual rep- 059

resentations and align them with the textual token 060

space (Zhu et al., 2023; Alayrac et al., 2022; Rad- 061

ford et al., 2021; Wang et al., 2022c) to generate 062

texts which are consistent with the image. Fine- 063

tuning them with task-specific data improves their 064

alignment with specialized tasks and user needs. 065

VLMs such as (Thawakar et al., 2024; Moor et al., 066

2023) show promising efficacy in aligning image 067

with text for medical use cases. 068

1.1 Motivation 069

Radiology reports are crucial for clinical decision- 070

making, offering critical insights into a patient’s 071

health. VLMs find an excellent application in gen- 072

eration of radiology reports. However, all genera- 073

tive pre-trained models are opaque by design. As 074

report generation is a crucial stage of the medical 075

decision making process, transparency becomes 076

a necessity for such systems. Report generation 077

systems which are able to generate reports with 078

explanations are better placed to build trust and 079

acceptability. This in turn, would help towards 080

the large scale integration of such systems into 081
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medical workflows. Zhao et al. (2023) defines vari-082

ous types of explainability namely, gradient-based,083

perturbation-based and attention-based to name a084

few. We observe that explainability in case of ra-085

diology report generation gets bifurcated into two086

types: patient-centric and expert-centric. Patient087

centric explanations are lucid generated texts, that088

paraphrases medical keywords in the report. To-089

wards this we leverage the language generation090

capabilities of VLMs which possess an unique fea-091

ture of generating text in coherence to the prompted092

image. We employ this unique feature to generate093

coherent reports and patient centric explanations.094

Further, recent research has demonstrated that large095

language models can also rationalize their own gen-096

eration (Wiegreffe et al., 2021) giving the model097

an ability to give natural language explanations for098

its own generated responses. Importantly, generat-099

ing radiology reports using prompting strategies let100

alone, multimodal prompting is an under-explored101

domain. Driven by this motivation, we developed a102

two step procedure to come up with a system to gen-103

erate radiology reports along with patient-centric104

explanations. In the first stage we design few-shot105

prompts following the standard in-context learning106

template. For this stage we take a fine-tuned open107

source VLM model Mini-GPT4 (Zhu et al., 2023)108

fine-tuned on MIMIC-CXR dataset (Johnson et al.,109

2019). This stage acts as the synthetic data gen-110

erator, which annotates each of the image-report111

instance with a patient-centric explanation. For112

verifying the explanations we rely only on medical113

expert evaluations. Following this we go to stage114

two, where we propose our few-shot multimodal115

prompting strategy which generates a radiology re-116

port along with patient-centric explanations. We117

apply these few-shot learning capabilities to Med-118

Flamingo (a fine-tuned Flamingo model) (Moor119

et al., 2023) and provide our evaluation by utilizing120

both classical NLG metrics (BLEU, ROUGE, ME-121

TEOR) and medical expert evaluation score. How-122

ever, given the nature of medical texts, semantic123

similarity has paramount importance and therefore,124

we focus more on semantic similarity scores rather125

than lexical similarity.126

Our contributions are:127

1. An Augmented IUX dataset Demner-128

Fushman et al. (2015) with each of 3995129

image-report instances annotated with a130

patient-centric explanation. We achieve this131

via a synthetic data generation pipeline which132

are then evaluated by medical experts. 133

2. A multimodal prompt based VLM framework, 134

Rad-Flamingo, for automated radiology re- 135

port generation and patient-centric explana- 136

tion. Our method improved quantitative and 137

qualitative scores. 138

3. A first-of-its-kind multimodal in-context 139

learning technique for self-rationalization by 140

adding explicit medical knowledge to the 141

prompt. To the best of our knowledge, this 142

method incorporates explainability for prompt 143

based radiology report generation resulting in 144

a 2.4% increment in performance over exist- 145

ing few-shot prompting techniques. 146

2 Background and Definitions 147

Patient-Centric Explanations: Pathophysiology 148

(McCance et al., 2019) is the study of the func- 149

tional changes that occur in the body as a result 150

of a disease or injury. It focuses on understanding 151

the mechanisms by which diseases disrupt normal 152

physiological processes. In heart failure, for in- 153

stance, a reduction in cardiac output leads to com- 154

pensatory mechanisms like fluid retention, which 155

can cause symptoms like edema and shortness of 156

breath. Therefore, such informations serve as a 157

form of medical explanation with the generated 158

report. We extend this idea to patient-centric expla- 159

nations, where the pathophysiological explanations 160

are provided along-with the medical reports for 161

ease of understanding from the patients’ perspec- 162

tive. 163

Self-Rationalization: Self-rationalization in large 164

language models (LLMs) (Marasovic et al., 2022; 165

Wiegreffe et al., 2021; Camburu et al., 2018) refers 166

to their ability to generate explanations or justifica- 167

tions for their own outputs. This involves creating 168

reasoning pathways that appear coherent, logical, 169

and aligned with the responses they produce, even 170

though these models do not possess true under- 171

standing or awareness. LLMs achieve this by lever- 172

aging their vast training data to mimic human rea- 173

soning patterns, constructing plausible rationales 174

based on context, prior responses, and linguistic 175

structures. However, these explanations do not 176

serve as a pointer to the internal working of the 177

model, they merely act as a justification to the out- 178

put. In sensitive domains such as healthcare, an 179

explanation, at the very least plays an important 180

role towards building trust. 181
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In-Context Learning: In-context learning refers182

to the ability of LLMs to perform tasks by under-183

standing and extrapolating from examples provided184

within a prompt, without requiring explicit fine-185

tuning of the model. This technique leverages the186

model’s parametric knowledge and allows users to187

define the task through natural language instruc-188

tions and a few input-output examples (often called189

few-shot learning). The model infers the pattern190

from the context and applies it to new instances191

during the same interaction. In-context learning192

demonstrates the flexibility of LLMs to adapt to193

diverse tasks, making them highly versatile for ap-194

plications like text generation, question answering,195

and code synthesis (Dong et al., 2024).196

3 Related Work197

Report Generation: Radiology report generation198

has been receiving a lot of attention lately, and199

several models have been developed based on the200

encoder-decoder architecture that was first used for201

image captioning tasks (Vinyals et al., 2014; Xu202

et al., 2015; Pan et al., 2020). However, report gen-203

eration poses additional challenges compared to204

image captioning, as medical reports are typically205

longer and coherent with respect to captions. In206

an encoder decoder setting it becomes very diffi-207

cult to generate long-form reports coherent with208

the medical image. Furthermore, bias in medi-209

cal datasets makes it difficult to generate compre-210

hensive, long-form reports. To address these chal-211

lenges, researchers have proposed various methods.212

Wang et al. (2021), introduced an image-text match-213

ing branch to facilitate report generation, utilizing214

report features to augment image characteristics215

and consequently minimize the impact of data bias.216

They also employed a hierarchical LSTM structure217

for the generation of long-form text. Chen et al.218

(2020a) and Wang et al. (2022b) introduced addi-219

tional memory modules to store past information,220

which can be utilized during the decoding process221

to improve long-text generation performance.222

Another type of work aims to mitigate data bias223

by incorporating external knowledge information,224

with the most representative approach being the225

integration of knowledge graphs Li et al. (2019,226

2023b); Huang et al. (2023); Liu et al. (2021);227

Zhang et al. (2020). Zhang et al. (2020) and Liu228

et al. (2021) combined pre-constructed graphs rep-229

resenting relationships between diseases and or-230

gans using graph neural networks, enabling more231

effective feature learning for abnormalities. Li et al. 232

(2023b) developed a dynamic approach that up- 233

dates the graph with new knowledge in real-time. 234

Huang et al. (2023) incorporated knowledge from 235

a symptom graph into the decoding stage using an 236

injected knowledge distiller. 237

These methods are able to generate reports as cap- 238

tion with very high accuracy. However, they do 239

not have the ability of free-form text generation 240

possesed by pretrained VLMs. Therefore, VLMs 241

become very effective for free-form text genera- 242

tion. 243

Vision Language Models: A significant area of 244

research in natural language processing (NLP) and 245

computer vision is the exploration of vision lan- 246

guage model (VLM) learning techniques. This 247

VLM aims to bridge the gap between visual and tex- 248

tual information, enabling machines to understand 249

and generate content that combines both modali- 250

ties. Recent studies have demonstrated the poten- 251

tial of VLM models in various tasks, such as image 252

captioning (Zhu et al., 2023), visual question an- 253

swering (Liu et al., 2023; Maaz et al., 2024), and 254

image generation (Zhang et al., 2023). Developing 255

on these medical VLMs like (Li et al., 2023a) and 256

(Abdin et al., 2024) show impressive performance 257

on medical NLP use cases. 258

4 Methodology 259

We propose a two-stage methodology for generat- 260

ing radiology reports that generates patient-centric 261

explanations, aiming to increase the report under- 262

standing for a non-expert reader. 263

In the first stage, as per Figure 1, we use a finetuned 264

MiniGPT4 model to synthetically generate patient- 265

centric explanations for each image report pair. The 266

model is finetuned on MIMIC-CXR Johnson et al. 267

(2019) dataset, a large-scale repository of chest X- 268

ray images and corresponding reports in the form 269

of findings and impressions. Finetuning allows 270

the model to re-parameterize its weights to learn 271

to align a chest X-ray to its corresponding report. 272

Given this finetuned model, we design a three-shot 273

prompt template to generate patient-centric expla- 274

nations for an X-ray image and its corresponding 275

report. Therefore, this stage appends all the exist- 276

ing dataset samples with a patient-centric explana- 277

tion. The explanations generated are evaluated by 278

medical-experts which allows us to use the dataset 279

as a gold label for the second stage. In the sec- 280

ond stage, we use this newly augmented dataset to 281
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tokenized data

<img> <img> <img> <img>

Med-Flamingo
Findings:................
Impressions:...........
PCE:....................

input

output

Five-Shot
Multimodal
Prompt

tokenized data

<img>

MiniGPT4 PCE

input

output

Three-Shot Multimodal
Prompt

Stage-I Stage-II
FInetuned

Frozen

Figure 1: Stage I: Refers to the synthetic data generation stage, which annotate the existing IUX dataset with patient
centric explanations. Stage II: Refers to the report generation stage where we design multimodal in-context prompts
using the annotated data from stage I. Additionally, the fire symbol represents the finetuned model and ice symbol
represent using frozen weights of a model not finetuned by us. PCE refers to the abbreviation of patient-centric
explanation.

perform in-context learning with a vision-language282

model that has been pretrained on a medical ques-283

tion answering dataset. This approach allows the284

model to incorporate the nuances of patient-centric285

explanations while maintaining its ability to pro-286

vide clinically accurate and detailed radiological287

interpretations. By combining fine-tuning with in-288

context learning, we aim to achieve a balance be-289

tween medical precision and accessibility, ensuring290

the generated reports are useful for both healthcare291

providers and patients. This methodology show-292

cases a novel application of vision-language mod-293

els in potentially enhancing medical communica-294

tion and patient engagement.295

4.1 Stage I (Synthetic Data Generation)296

To fine-tune the MiniGPT4 Zhu et al. (2023) model297

we follow the technique in Thawakar et al. (2024).298

We combine textual information from a medical299

large language model (LLM) and visual character-300

istics from a pre-trained medical vision encoder301

(VLM) given the X-ray. In particular, our large302

language model (LLM) is based on the recently303

developed Vicuna model (Zheng et al., 2024), and304

we use MedClip (Wang et al., 2022c) as a vision305

encoder.306

Given an X-ray x ∈ RH×W×C , the vision en-307

coder encodes the image as Eimg. Then, the raw 308

embeddings are transformed to an output dimen- 309

sion of 512 using a linear projection head. 310

Vp = fv(Eimg(x)) (1) 311

where Eimg is the vision encoder, fv is the projec- 312

tion head. We use a trainable linear transformation 313

layer to close the gap between the embedding space 314

of the language decoder and image-level features 315

, denoted as t. This layer transforms the image- 316

level features, represented by Vp, into correspond- 317

ing language-decoder embedding tokens, denoted 318

as Lv: 319

Lv = t(Vp) (2) 320

Following this we employ a few-shot prompting 321

strategy to generate patient-centric explanations for 322

a given image-report pair. 323

We follow a standard few-shot prompting strat- 324

egy with three examples in the prompt. In the 325

prompt we write Explanations as a placeholder for 326

patient-centric explanation. The prompt template 327

goes as follows: 328

Example 1: 329

Findings:......
Impressions:.......
Explanations:......
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Example 2:330

Findings:......
Impressions:.......
Explanations:......

Example 3:331

Findings:......
Impressions:.......
Explanations:......

Your Turn:332

Findings:......
Impressions:.......
<img>Looking at the Xray, findings
and impressions generate an explanation

For the synthetic data generation we consider the333

IUX (Demner-Fushman et al., 2015) dataset, the334

generated explanations are appended to each in-335

stance of the IUX dataset. For designing the prompt336

we sample three image-report (findings and im-337

pressions) pairs from each of the disease classes.338

We take assistance of medical experts to append339

each of the samples with patient-centric explana-340

tions. Subsequently, we pass the prompt as per341

Stage I in Fig 1 for the fine-tuned model to learn in-342

context. Fine-tuning the model on a large corpus,343

such as MIMIC-CXR (Johnson et al., 2019), helps344

the model to condition on the context provided in345

the prompt. We provide the full prompt samples346

in Appendix A. Therefore, the model is able to347

generate good quality explanations tailoring to our348

requirement. (the details are in appendix D). An349

Augmented Dataset is now created which consists350

of Image, report (Findings and Impressions) and351

patient-centric explanation 2.352

4.2 Stage II (Radiology Report Generation)353

In this stage we follow the Med-Flamingo model354

Moor et al. (2023) which is finetuned on a medical355

visual question answering dataset. Med-Flamingo356

is developed on the Open-Flamingo Awadalla et al.357

(2023) architecture which possesses the ability of358

few-shot learning from multimodal inputs. The359

language modeling in Med-Flamingo is represented360

in eq 3361

p(yℓ | x1:ℓ−1, y1:ℓ−1) =

L∏
ℓ=1

p(yℓ | y1:ℓ−1, x1:ℓ−1)

(3)362

where yℓ refers to the ℓth language token, y1:ℓ−1 to 363

the set of prior language tokens, and x1:ℓ−1 to the 364

set of prior visual tokens. While fine-tuning, the 365

input is annotated in the form of interleaved image 366

text data, which makes it effective for multimodal 367

few-shot learning. We exploit this interleaved tem- 368

plate to design our proposed prompt as per Stage 369

II in Fig 1. The interleaved input prompt-design 370

while fine-tuning enables the model to condition 371

on the multi-modal context. We choose five exam- 372

ples for each disease class from the Augmented 373

Dataset compiled in stage I. Pivoting on the idea of 374

interleaved image text data prompt, we set up our 375

framework for multimodal in-context learning for 376

which the prompt template is demonstrated below: 377

Example 1: 378

<img>Findings:......
Impressions:.......
Explanations:......

Example 2: 379

<img>Findings:......
Impressions:.......
Explanations:......

Example 3: 380

<img>Findings:......
Impressions:.......
Explanations:......

Example 4: 381

<img>Findings:......
Impressions:.......
Explanations:......

Example 5: 382

<img>Findings:......
Impressions:.......
Explanations:......

Your Turn: 383

<img>Looking at the xray generate
findings and impressions and a explana-
tion

Prompt examples are provided in the Appendix B. 384

5



Metrics Models

R2GEN R2GenCMN Joint-TraiNet M2KT Open-Flamingo XProNet Rad-Flamingo
(Chen et al., 2020b) (Chen et al., 2021) (Yang et al., 2023) (Yang et al., 2022) (Awadalla et al., 2023) (Wang et al., 2022a)

BLEU-1 0.355 0.372 0.359 0.366 0.293 0.353 0.323

BLEU-2 0.223 0.233 0.226 0.213 0.195 0.221 0.232

BLEU-3 0.152 0.153 0.155 0.146 0.155 0.150 0.183

BLEU-4 0.103 0.105 0.102 0.104 0.071 0.105 0.081

METEOR 0.141 0.150 0.142 0.152 0.165 0.141 0.170

ROUGE 0.278 0.282 0.278 0.267 0.223 0.281 0.223

Table 1: Lexical similarity performance of Rad-Flamingo compared to baselines using classical metrics (BLEU,
METEOR, ROUGE). The table highlights the limitations of these metrics in evaluating medical text generation,
emphasizing the need for domain-specific semantic evaluation.

5 Experiments385

5.1 Dataset386

In stage I we consider the MIMIC-CXR (Johnson387

et al., 2019) dataset for fine-tuning. MIMIC-CXR388

dataset comprises 473,057 images and 206,563389

reports from 63,478 patients. The official splits,390

i.e. 368,960 for training, 2,991 for validation, and391

5,159 for testing are used for fine-tuning our model.392

Subsequent to this we follow our prompting tech-393

nique (Section 4.1) to generate patient-centric ex-394

planations and append it to each instance of the395

IUX dataset(Demner-Fushman et al., 2015).396

In stage II we use the Augmented dataset from397

the previous step and design our prompts as per398

Fig 1. The dataset consists of 7,470 chest X-Ray399

images and 3,955 radiology reports. The number400

of patients are equal to the number of reports how-401

ever, each patient corresponds to two xray images402

i.e. frontal and lateral. Therefore, number of im-403

ages are twice the number of reports. We append a404

patient-centric explanation to each of 3955 radiol-405

ogy reports.406

5.2 Experimental Setup407

In stage-1 training, the model is fine-tuned to gain408

alignment between X-ray image features and cor-409

responding reports by training over a large set of410

image-report pairs. The result obtained from the411

injected projection layer is considered as a gentle412

cue for our medically tuned VLM model, guid-413

ing it to generate appropriate report based on the414

finding and impression that match the given X-ray415

images. For preprocessing we follow Thawakar416

et al. (2024) where we utilize high quality interac-417

tive report summaries of MIMIC-CXR. The train418

set contains 213,514 image report pairs for train-419

ing. During training, the model is trained for 320k420

total training steps with a batch size of 16 using 3421

NVIDIA A100 (80GB) GPUs. 422

In stage-II we utilize predetermined prompts as 423

shown in the previous section (4.2). 424

For each X-ray image instance we take the cor- 425

responding finding, impression and patient centric 426

explanation and put it in the following format: 427

<image> Findings Impression Explana- 428

tion|endofchunk|. 429

Five of these aforementioned multimodal prompt 430

were followed by the query prompt described be- 431

low: 432

<image> + You are a helpful medical assistant. 433

You are provided with images, findings, impressions 434

and explanation.Looking at this image generate 435

Findings, Impressions and Explanations. 436

6 Result and Analysis 437

Our results analyse the effectiveness of our multi- 438

modal prompt in generating reports with patient- 439

centric explanation. Tables 1 and 2 compare the 440

scores over the generated report and patient-centric 441

explanations. 442

6.1 Lexical Metrics 443

In this section, we evaluate the quality of gener- 444

ated reports by Rad-Flamingo and compare them 445

against baselines using classical lexical similarity 446

metrics such as BLEU (Papineni et al., 2002), ME- 447

TEOR (Lavie and Agarwal, 2007), and ROUGE 448

(Lin, 2004) as shown in Table 1. These metrics 449

provide a convenient means of measuring word 450

overlap and syntactic similarity between generated 451

and reference texts. Rad-Flamingo performs sim- 452

ilar to the baselines on lexical similarity metrics. 453

However, these metrics find less application in med- 454

ical domain. This arises due to their inability to 455

account for the deeper semantic relevance and con- 456

textual accuracy required in specialized content, 457

such as medical data. For example, the sentences 458
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Metrics Rad-Flamingo Rad-Flamingo w/oI Open-Flamingo Open-Flamingo w/oI

BertScore 0.875 0.855 0.863 0.834

BioClinicalBertScore 0.895 0.879 0.885 0.854

RadGraphF1 0.285 0.273 0.279 0.269

Table 2: Performance comparison of Rad-Flamingo and Open-Flamingo models on clinical evaluation metrics using
proposed multimodal few-shot prompting framework. The table includes ablation studies highlighting the impact of
removing image modalities (w/oI) from the few-shot prompts. We do a metricise significance testing in Appendix
D.2

"There is focal consolidation" and "There is no459

focal consolidation" are lexically very similar yet460

semantically very dissimilar. Therefore, semantic461

similarity plays a greater role in evaluating gen-462

erated medical texts. Our evaluation emphasizes463

the performance of the Flamingo family of mod-464

els (Moor et al., 2023) (Awadalla et al., 2023), as465

these models provide the essential few-shot learn-466

ing capabilities needed for our prompt-based report467

generating framework.468

Alternative vision-language models, such as469

Med-Phi (Abdin et al., 2024) and Med-LLaVA (Li470

et al., 2023a), were deliberately excluded as base-471

lines from our analysis due to their lack of com-472

parable few-shot learning features, making them473

less suitable for the scenarios we investigate. We474

stick to few-shot learning abilities as it plays a crit-475

ical role in data scarce scenario such as medical476

domain. Our few-shot prompting technique show477

comparable performance in some of the lexical met-478

rics. While these metrics offer a preliminary mea-479

sure of performance, they do not fully reflect the480

real-world utility of generated medical texts. This481

analysis underscores the need for more domain-482

specific evaluation frameworks that can assess not483

only linguistic fluency and coherence but also the484

contextual alignment of generated texts in medical485

domain.486

6.2 Semantic Metrics487

We apply our few-shot prompting framework on488

all the available Flamingo family models namely,489

Rad-Flamingo and Open-Flamingo as shown in490

Table 2. The underlying model in Rad-Flamingo491

is Med-Flamingo. Med-Flamingo with our pro-492

posed multimodal prompt template is referred to493

as Rad-Flamingo. We choose semantic metrics for494

clinical evaluation like BioClinicalBERTScore 1495

1BioClinicalBERT is taken from huggingface. Underlying
model is BioBERT trained on MIMIC III dataset.https://
huggingface.co/emilyalsentzer/Bio_ClinicalBERT

(Lee et al., 2019), BERTScore (Zhang et al., 2019) 496

and RadGraphF1 (Jain et al., 2021). In table 2 col- 497

umn Rad-Flamingo represents the setting where we 498

prompt the Med-Flamingo model with proposed 499

multimodal few-shot prompt. The following col- 500

umn, Rad-Flamingo w/oI represents the setting 501

where we remove only the images from the few- 502

shot prompt examples keeping other components of 503

the prompt similar to Rad-Flamingo. Similar, abla- 504

tion is carried out for the columns Open-Flamingo 505

and Open-Flamingo w/oI. 506

Both the BERTScore and ClinicalBERTScore for 507

Rad-Flamingo show a 1.4% increase compared to 508

Open-Flamingo. This shows our proposed mul- 509

timodal prompt template effectively generates re- 510

port with better performance than existing models. 511

Similar increase is found in case of RadGraphF1 512

scores. This result signifies the benefit of our 513

proposed multimodal prompt template of Rad- 514

Flamingo, over Open-Flamingo. To show the util- 515

ity of multimodality in our prompt template, we 516

remove the images from the examples and pass 517

it to the Rad-Flamingo and Open-Flamingo mod- 518

els. Rad-Flamingo w/oI and Open-Flamingo w/oI 519

represents those settings. We see the scores drop 520

significantly by 2.4% percent indicating the utility 521

of the multimodal prompt in integrating different 522

data-modalities and helps the model to generate 523

task-specific outputs. This approach effectively 524

addresses challenges in both unimodal and multi- 525

modal data modes. So domain specific metrics are 526

crucial to understand the utility of the multimodal 527

prompt strategy developed by us. Therefore, we 528

observe from the metrics that the semantic similar- 529

ity scores help us analyze the performance better 530

for task-specific output. Overall, the best perfor- 531

mance is given by Rad-Flamingo as the underly- 532

ing Med-Flamingo model is finetuned on medical 533

data. However, comparing the scores with Open- 534

Flamingo exhibits the effectiveness and utility of 535
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Models Rad-Flamingo

Cardiomegaly 3.44± 0.67

Pulmonary Atelectasis 3.33± 1.36

Nodules 3.21± 1.05

Opacity 2.06± 0.54

Calcified Granuloma 3.03± 0.41

Pulmonary Fibrosis 3.0± 0.63

Consolidation 3.2± 0.39

Pneumothorax 3.6± 0.8

Granuloma 3.4± 0.95

Bronchiestasis 3.25± 0.44

Table 3: The table presents the mean and standard devi-
ation of scores provided by four medical professionals
for each of the chosen disease class, highlighting the
effectiveness of the proposed prompting method after
stage II.

our proposed multimodal prompt framework.536

6.3 Qualitative Evaluation537

Owing to the subjective nature and the semantic538

complexity which medical data possesses, evalua-539

tion by medical expert becomes very important to540

have a rigorous examination of a proposed system.541

We consulted four expert-medical professionals to542

evaluate our generated reports and corresponding543

patient-centric explanations. Our expert evaluation544

was fixed on the primary criteria of Patient Cen-545

tric Understandability. Following this we created546

five levels of grading: 1 (very poor), 2 (poor), 3547

(good), 4 (very good), 5 (excellent). We choose548

the most common disease classes and provide to549

each of the medical experts. Subsequently, for550

each disease class we get four scores and the table551

shows a mean and standard deviation over these552

four scores. The expert evaluation also shows our553

proposed prompting method, gives promising per-554

formance. An output sample of our system is given555

in Appendix B.556

6.4 Readability measure557

To evaluate the patient centricity of the generated558

explanations we evaluate them using the Lexile559

Reading Measure (Stenner, 2023). A Lexile mea-560

sure is a standardized score that assesses both the561

reading ability of individuals and the complexity of562

Models Rad-Flamingo

Generated Ground Truth

Lexile Measure 69.28 63.6

CharBLEU 0.298 0.283

Table 4: The table highlights the readability and spelling
accuracy of the generated texts, demonstrating their
alignment with patient comprehension needs and medi-
cal domain standards.

written texts, represented on a scale typically rang- 563

ing from below 200L to above 1600L. This mea- 564

sure helps educators, parents, and students identify 565

reading materials that align with a reader’s cur- 566

rent ability level, ensuring an appropriate level of 567

challenge to support comprehension and skill devel- 568

opment. We also evaluate on CharBLEU metrics 569

(Denoual and Lepage, 2004) since in medical text 570

spelling plays a crucial role. Table 4 shows a 8.9% 571

increase in the readability of the generated expla- 572

nations. The score provided is an average over all 573

the ten selected diseases as per table 3. Averaging 574

over all the values gives a rise in the readability 575

measure, however for some disease class we do not 576

find any increment. The overall readability of the 577

explanations increase as per the scores. The expla- 578

nations generated in stage II demonstrate improved 579

readability compared to those from stage I, high- 580

lighting the effectiveness of our proposed prompt 581

design in enhancing explanation clarity. This im- 582

provement underscores the potential of carefully 583

crafted prompts in generating lucid explanations 584

for users to comprehend and utilize. 585

7 Conclusion 586

Rad-Flamingo proposes a radiology report genera- 587

tion framework by combining multimodal data with 588

prompt-driven methodologies and patient-centric 589

explanations. This framework enhances accuracy, 590

interpretability, and communication in medical 591

imaging, setting new standards for personalized, 592

explainable AI in healthcare. Rad-Flamingo high- 593

lights the potential of AI to automate routine report- 594

ing tasks, allowing radiologists to focus on complex 595

cases and clinical decision-making. In conclusion, 596

Rad-Flamingo shows a potential option for more 597

efficient and impactful healthcare delivery. Future 598

efforts can focus on better alignment of vision and 599

language components of VLMs. Thereby, generat- 600

ing better reports with explanations. 601
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Limitations602

In this section we discuss the main limitations of603

our proposed framework. A notable limitation in604

our study is the absence of a number of VLMs605

which possess the same few-shot learning capabil-606

ity as the Flamingo family of models. This restricts607

us from evaluating the generalizability of our ap-608

proach. While our method shows promise, validat-609

ing its performance against a diverse set of few-610

shot models would provide deeper insights into its611

strengths and weaknesses. The inclusion of these612

models would also allow us to better understand613

how our approach fares in broader scenarios and614

under varying conditions, such as domain shifts or615

noisy inputs.616

Class imbalance in machine learning occurs617

when certain classes dominate the training data,618

causing the model to be biased toward these over-619

represented classes and perform poorly on minor-620

ity classes. This is particularly problematic in ap-621

plications like medical diagnosis, where minority622

classes are crucial, and can be addressed using tech-623

niques like re-sampling, loss adjustment, or robust624

algorithms.625

Another constraint in our evaluation is the lack626

of a direct comparison with ChatGPT, a widely627

recognized benchmark in conversational AI. The628

prompt template we use would be require high com-629

putational and financial cost to perform a rigorous630

analysis. These constraints underscore the need631

for collaborative efforts and accessible research632

resources to enable comprehensive benchmarking.633

Ethical Considerations634

The development of the Rad-Flamingo framework,635

designed for multimodal prompt-driven radiology636

report generation with patient-centric explanations,637

adheres to the highest standards of ethical con-638

duct. We prioritize patient privacy and data secu-639

rity by ensuring that all medical information used640

in the model is anonymized and handled in com-641

pliance with relevant regulations. We augment a642

standard dataset where each data sample is already643

anonymized. Therefore, our proposed data augmen-644

tation does not create any scare for identity leak-645

age. The framework is designed to support, rather646

than replace, radiologists and clinicians, with a647

focus on improving diagnostic accuracy and foster-648

ing transparent communication between healthcare649

providers and patients.650

We are committed to minimizing bias by ensur-651

ing that the training data used is diverse, repre- 652

senting a wide range of demographic groups and 653

medical conditions. Additionally, patient explana- 654

tions generated by the model are designed to be 655

comprehensible and respectful, avoiding harmful 656

or misleading interpretations. 657

In all instances, human oversight is maintained 658

to validate outputs and ensure the model’s align- 659

ment with clinical practice standards and ethical 660

guidelines. 661
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A Appendix 991

A.1 Prompt sample from Stage I 992

Example 1: Findings:Borderline cardiomegaly. Midline sternotomy. Enlarged pulmonary arteries.
Clear lungs. Inferior.
Impression: No acute pulmonary findings.
Explanation: The borderline cardiomegaly suggests slight enlargement of the heart, which could
be due to chronic pressure overload (possibly from hypertension) or cardiomyopathy. The midline
sternotomy indicates a previous cardiac surgery, which could relate to coronary artery disease or
valve replacements, considering the context of other findings. Enlarged pulmonary arteries might
suggest pulmonary hypertension, which could be secondary to left heart disease or chronic lung
conditions, though the lungs are reported as clear. The absence of acute pulmonary findings despite
these chronic alterations indicates that there are no new or worsening issues in the pulmonary
system at this time.

993

Example 2: Findings: The cardiac contours are normal. basilar atelectasis. The lungs are clear.
Thoracic spondylosis. Lower cervical arthritis.
Impression: Basilar atelectasis. No confluent lobar consolidation or pleural effusion.
Explanation: The chest X-ray shows basilar atelectasis, a partial collapse or incomplete expansion
of the lower lung segments, likely due to shallow breathing or reduced lung volume. The lungs are
otherwise clear, without any signs of confluent lobar consolidation or pleural effusion, suggesting
no infection or fluid accumulation. The cardiac contours are normal, ruling out cardiomegaly
or abnormal heart positioning. Degenerative changes, including thoracic spondylosis and lower
cervical arthritis, are noted, indicating age-related or chronic wear-and-tear changes in the spine.
The overall impression is of minor pulmonary findings with no acute cardiopulmonary disease.

994

Example3: Findings: The cardiomediastinal silhouette is within normal limits for size and contour.
The lungs are normally inflated without evidence of focal airspace disease, pleural effusion, or
pneumothorax. Stable calcified granuloma within the right upper lung. No acute bone abnormality.
Impression: No acute cardiopulmonary process.
Explanation: The chest X-ray reveals a normal cardiomediastinal silhouette, indicating no en-
largement or abnormality in heart or mediastinal contours. The lungs are well inflated, with no
signs of focal airspace disease such as infection, fluid, or collapse. A stable, calcified granuloma
in the right upper lung suggests a past, healed infection (e.g., tuberculosis or histoplasmosis)
with no current active disease. The absence of pleural effusion, pneumothorax, or acute bone
abnormalities supports the lack of any acute thoracic issues. Overall, there is no evidence of an
acute cardiopulmonary process, and the findings are consistent with a stable, chronic condition.

995

Your Turn: Findings: Heart size within normal limits. No focal alveolar consolidation, no definite
pleural effusion seen. No typical findings of pulmonary edema. No pneumothorax.
Impression: No acute cardiopulmonary findings.
<img>Looking at the Xray, findings and impressions generate a patient- centric explanation

996

B Appendix 997

B.1 Prompt sample from Stage II 998

The images in figure 1 are placeholders to exhibit the multimodal prompt design. While experiments we 999

took examples per disease class mentioned in the results section. 1000
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Example 1: <image>Findings: Heart size mildly enlarged, stable mediastinal and hilar contours.
No focal alveolar consolidation, no definite pleural effusion seen. No typical findings of pulmonary
edema. No pneumothorax.
Impressions: Mild cardiomegaly, no acute pulmonary findings.
Explanation: It is clear the patient is in an enlarged heart condition (mild cardiomegaly) and
has been for some time. The pulmonary system is clear and no evidence of acute lung changes.
The overall pathophysiology suggests that the patient is in a chronic, stable state with ongoing
changes.The findings are normal and do not suggest any acute or severe events.<|endofchunk|>

1001

Example 2: <image>Findings: The heart is top normal in size. The mediastinum is stable. The
lungs are clear.
Impressions: Borderline cardiomegaly without acute disease.
Explanation: It is a case of borderline cardiomegaly, but it is difficult to correlate the finding of
enlarged heart with pathophysiology. Borderline cardiomegaly is a radiological finding. It could
mean that the heart size is in between normal and big (normal is 55 mm) but in this case it comes
to 57 mm.<|endofchunk|>

1002

Example 3: <image>Findings: Stable borderline cardiomegaly, stable mediastinal and hilar
contours. No alveolar consolidation, no findings of pleural effusion or pulmonary edema. No
pneumothorax.
Impressions: No acute cardiopulmonary findings.
Explanation: 1. No acute cardiopulmonary findings. 2. No pulmonary edema. 3. Bilateral
patchy pulmonary opacities noted. 4. No focal alveolar consolidation, no definite pleural effusion
seen. 5. No large pleural effusions. 6. Multifocal scattered bibasilar patchy and pulmonary
opacities again noted. 7. No pneumothorax. 8. No left apical basal consolidation. 9. No left
apical, basal patchy consolidation. 10. No pulmonary vascular congestion. 11. No pulmonary
infarction.<|endofchunk|>

1003

Example 4: <image>Findings: Persistent cardiomegaly. No abnormal airspace consolidation.
Resolved interstitial edema. No pneumothorax or pleural effusion.
Impressions: Stable cardiomegaly without acute abnormality.
Explanation: No pneumothorax, no effusion, no infiltrate, no pulmonary congestion, no pleural
erythema all point towards non-infectious etiology. Mild cardiomegaly without acute abnormality is
also non-specific and without clinical significance. The unremarkable spine suggests degenerative
changes and nothing else.<|endofchunk|>

1004

Example 5: <image>Findings: The outside is normal except for slight cardiomegaly.
Impressions: Heart size upper limits normal. Lungs are clear. No evidence of active tuberculosis.
No change from prior exam.
Explanation: Slight cardiomegaly. Clear lungs indicate no pulmonary congestion or active dis-
ease.<|endofchunk|>

1005

Your Turn: <image> You are a helpful medical assistant. You are provided with images, find-
ings, impressions and explanation.Looking at this image generate Findings, Impressions and
Explanations

1006
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C Appendix 1007

C.1 Augmented IUX dataset instance 1008

Findings: Heart size mildly enlarged, stable 
mediastinal and hilar contours. No focal alveolar 
consolidation, no definite pleural effusion seen. 
No typical findings of pulmonary edema. No 
pneumothorax.

Impressions: Mild cardiomegaly, no acute 
pulmonary findings

Explanation: It is clear the patient is in an 
enlarged heart condition (mild cardiomegaly) 
and has been for some time. The pulmonary 
system is clear and no evidence of acute lung 
changes. The overall pathophysiology suggests 
that the patient is in a chronic, stable state with 
ongoing changes.The findings are normal and do 
not suggest any acute or severe events.

Figure 2: Augmented dataset instance showcasing input modalities (e.g., medical images, clinical text) and
corresponding annotated outputs, illustrating the report (findings and impression) and patient-centric explanation

C.2 Radiology Report with patient-centric explanation generated by Rad-Flamingo 1009

Findings: Heart size mildly enlarged, stable 
mediastinal and hilar contours. No focal alveolar 
consolidation, no definite pleural effusion seen. 
No typical findings of pulmonary edema. No 
pneumothorax.

Impressions: Mild cardiomegaly, no acute 
pulmonary findings

Explanation: It is clear the patient is in an 
enlarged heart condition (mild cardiomegaly) 
and has been for some time. The pulmonary 
system is clear and no evidence of acute lung 
changes. The overall pathophysiology suggests 
that the patient is in a chronic, stable state with 
ongoing changes.The findings are normal and do 
not suggest any acute or severe events.

Image Generated Ground Truth

Findings: Stable cardiomegaly. No abnormal 
airspace consolidation. Resolved interstitial 
edema. No pneumothorax or pleural effusion.

Impressions: Stable cardiomegaly without acute 
abnormality.

Explanation: No pneumothorax, no effusion, no 
infiltrate, no pulmonary congestion, no pleural 
erythema all point towards non-infectious 
etiology. Mild cardiomegaly without acute 
abnormality is also non-specific and without 
clinical significance. The unremarkable spine 
suggests degenerative

Figure 3: Example of output given by Rad-Flamingo. Image and ground truth are from the proposed augmented
dataset.

D Appendix 1010

D.1 Medical Expert Evaluation for Stage I outputs 1011

D.2 Significance testing for Semantic Metrics 1012

Extending our analysis in the results section, we further provide significance testing for the BERTScore, 1013

BioClinicalBERTScore, and RadGraphF1 scores of Rad-Flamingo, Rad-Flamingo w/oI, Open-Flamingo, 1014
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Models Rad-Flamingo

Cardiomegaly 3.72± 0.89

Pulmonary Atelectasis 3.15± 1.22

Nodules 3.38± 1.12

Opacity 2.11± 0.68

Calcified Granuloma 3.11± 0.58

Pulmonary Fibrosis 3.27± 0.73

Consolidation 3.05± 0.49

Pneumothorax 3.51± 0.92

Granuloma 3.52± 1.01

Bronchiestasis 3.18± 0.65

Table 5: The table presents the mean and standard deviation of scores provided by four medical professionals for
each of the chosen disease class, highlighting the effectiveness of the proposed prompting method after stage I.

Metrics F-statistic p-value

BioClinicalBertScore 30.00 0.0001

BertScore 30.01 0.0001

RadGraphF1 30.00 0.0001

Table 6: Statistical significance analysis using one-way ANOVA for BERTScore, BioClinicalBERTScore, and
RadGraphF1 scores across four evaluation settings: Rad-Flamingo, Rad-Flamingo w/oI, Open-Flamingo, and
Open-Flamingo w/oI. The results indicate significant differences in scores, as determined by F -statistics and
p-values (p < 0.05).

and Open-Flamingo w/oI.1015

1016

Null Hypothesis (H0): There is no significant difference between the <score-name>. Alternative1017

Hypothesis (H1): There is significant difference between the <score-name>. As each of the output1018

from the models are mean of generated reports over the chosen disease classes, we take them as the1019

group mean for the one-way ANOVA test (Ross and Willson, 2017). Therefore, we consider the four1020

evaluation setting as four groups of data, We get F -statistic = 30.00 and p-value ≈ 0.0001 respectively.1021

Consequently, F -statistic > Fcritical and p-value < 0.05, satisfying these conditions we can reject1022

the Null Hypothesis thereby establishing the values are significantly different. Similarly, we get F -1023

statistic = 30.01 and p-value ≈ 0.0001 respectively. As the BioClinicalBERTScores are similar to1024

the BERTScore we get similar F -statistic and p-value. Consequently, F -statistic > Fcritical and1025

p-value < 0.05, satisfying these conditions we can reject the Null Hypothesis thereby establishing the1026

values are significantly different. Lastly, we get F -statistic = 30.00 and p-value ≈ 0.0001 respectively.1027

Consequently, F -statistic > Fcritical and p-value < 0.05, satisfying these conditions we can reject the1028

Null Hypothesis thereby establishing the values are significantly different.1029
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