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Abstract

Large language models (LLMs) have demon-001
strated remarkable reasoning capability in solv-002
ing mathematical problems. However, existing003
approaches primarily focus on improving the004
quality of correct training data, e.g., distilling005
high-quality correct solutions from advanced006
models, neglecting the value contained in error007
data, potentially hindering the model’s reflec-008
tive ability. Though some studies attempted to009
leverage error data, they often involve complex010
mechanisms, such as Monte Carlo Tree Search011
(MCTS) to explore error nodes. In this work,012
we propose to enhance LLM’s reasoning abil-013
ity by Learning from Errors for MatheMatical014
Advancement (LEMMA). LEMMA constructs015
data consists of an incorrect solution with an016
erroneous step and a reflection connection to017
a correct solution for fine-tuning. Specifi-018
cally, we systematically analyze the model-019
generated error types and introduce an error-020
type grounded mistake augmentation method021
to collect diverse and representative errors.022
Correct solutions are either from fixing the023
errors or generating a fresh start. Through024
a model-aware smooth reflection connection,025
the error solution is transferred to the cor-026
rect one. By fine-tuning on the constructed027
dataset, the model is able to self-correct er-028
rors autonomously within the generation pro-029
cess without relying on external critique mod-030
els. Experimental results demonstrate that031
LEMMA achieves significant performance im-032
provements over other strong baselines.033

1 Introduction034

Recently, Large Language Models (LLMs) have035

significantly improved their ability to solve mathe-036

matical problems through Supervised Fine-Tuning037

(SFT). A common strategy involves refining the038

quality of chain-of-thought (CoT) reasoning data,039

such as distilling high-quality solutions from ad-040

vanced models (Magister et al., 2023; Yu et al.,041
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Figure 1: Overview of LEMMA.

2024b). While these methods enhance the model’s 042

capacity to generate step-by-step solutions, they 043

predominantly focus on optimizing correct reason- 044

ing trajectories while overlooking the potential of 045

error data. This omission limits the model’s abil- 046

ity to learn from mistakes, thereby constraining 047

its reflective reasoning capability. Reflection—the 048

process of identifying, analyzing, and correcting 049

errors—is a critical component of human problem- 050

solving (Stacey et al., 1982). Given the failure to 051

integrate this ability into LLMs, models remain 052

vulnerable to propagating errors during inference 053

without autonomous correction mechanisms. 054

To address this gap, recent studies have begun ex- 055

ploring methods to cultivate reflection in LLMs by 056

leveraging error data. For instance, some works (Xi 057

et al., 2024b; Li et al., 2024f; Qin et al., 2024; Guan 058

et al., 2025) employ external critical models to cri- 059

tique intermediate reasoning steps or use Monte 060

Carlo Tree Search (MCTS) to navigate complex 061

reasoning paths and prune error branches. Oth- 062

ers (Yan et al., 2024; Han et al., 2024; Zhang et al., 063

2024a; Yang et al., 2024) propose self-correction 064

frameworks that construct incorrect-correct data 065

for fine-tuning, enabling the model to iteratively re- 066

vise its outputs. However, these approaches suffer 067

from significant limitations. MCTS-based methods 068

introduce substantial computational overhead and 069
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complexity.070
In this work, we propose LEMMA to Learn071

from Errors for MatheMatical Advancement, a072

novel method to systematically enhance LLMs’073

reflective reasoning by constructing and learning074

from error-corrective trajectories. Our approach075

begins with a fine-grained categorization of er-076

ror types in model-generated solutions, ranging077

from “question misinterpretation” to “calculation078

error”. Building on this taxonomy, we design079

an error-type grounded error augmentation strat-080

egy that diversifies error data by (1) harvesting081

mistakes from the target model’s own reasoning082

traces and (2) guiding advanced models to gen-083

erate representative errors according to the ana-084

lyzed error type distributions. For each erroneous085

solution, we then construct paired reflection data086

through two complementary mechanisms: Fix &087

Continue Trajectories, where the mistake is directly088

corrected within its original context, and Fresh &089

Restart Trajectories, where a new correct solution090

is generated from scratch. These trajectories are091

seamlessly connected via model-aware reflection092

links—annotations that explain the error’s origin093

and justify the correction—resulting in coherent094

training examples.095

Experiments across mathematical reasoning096

benchmarks (e.g., GSM8K, MATH) demonstrate097

LEMMA’s effectiveness. Models fine-tuned with098

LEMMA achieve state-of-the-art (SOTA) perfor-099

mance, outperforming both standard SFT baselines100

and prior error-aware methods (at least 8.1% accu-101

racy improvement on MATH for DeepSeekMath-102

7B). LEMMA-trained models also achieve strong103

generalization ability through evaluation on out-of-104

distribution (OOD) benchmarks. Further analysis105

reveals LEMMA can consistently reduce the oc-106

currence of representative error types. In contrast,107

while fine-tuning on the original training set (SFT)108

improves overall accuracy, it leads to an increase109

in certain error types. These results validate that110

structured learning from errors, guided by system-111

atic analysis, is a powerful yet underutilized lever112

for advancing mathematical reasoning in LLMs.113

2 Related Work114

Self-Improvment in Math Reasoning Due to115

the scarcity of mathematical reasoning data with116

detailed, human-annotated reasoning steps (Song117

et al., 2023; Luo et al., 2023), some studies (Zelik-118

man et al., 2022; Yuan et al., 2023; Singh et al.,119

2024; Huang et al., 2023; Tong et al., 2024a)120

leverage the correct output of the model itself 121

for fine-tuning. This strategy is also known as 122

self-improvement or reject sampling fine-tuning. 123

Recently, some works (Qi et al., 2024; Xi et al., 124

2024a; Xu et al., 2024; Xi et al., 2024b; Qin et al., 125

2024; Guan et al., 2025) have begun using Monte 126

Carlo Tree Search (MCTS), Process Reward Mod- 127

els (PRM) (Lightman et al., 2024) or critique mod- 128

els to further enhance self-improvement. However, 129

these methods only utilize the correct solutions, ne- 130

glecting the generated errors. Since models only 131

learn from correct solutions, they struggle to reflect 132

on and self-correct errors they made, leading to 133

error accumulation (Zhang et al., 2024a; Han et al., 134

2024; Yan et al., 2024). 135

Data Augmentation in Math Reasoning Data 136

augmentation is also a prevalent strategy to en- 137

hance model performance on mathematical tasks. 138

Magister et al. (2023) and Yue et al. (2024a) dis- 139

tills reasoning capabilities from LLMs into smaller 140

LMs. Dart-Math (Tong et al., 2024b) introduces 141

a difficulty-aware answer augmentation strategy, 142

where more solutions are generated for harder prob- 143

lems. To further boost model performance, several 144

works (Tang et al., 2024; Huang et al., 2024; Yue 145

et al., 2024b; Liu et al.; Zhou et al., 2024; Ding 146

et al., 2024; Lu et al., 2024a; Li et al., 2024a; Luo 147

et al., 2023; Li et al., 2024c) synthesize more train- 148

ing data by creating new mathematical problems 149

and solutions. For example, MetaMath (Yu et al., 150

2024a) combines answer augmentation and ques- 151

tion augmentation, as well as two backward reason- 152

ing methods (Jiang et al., 2024; Weng et al., 2023), 153

to further augment training data. Our method is or- 154

thogonal to these question augmentation methods 155

and can be directly integrated with them. 156

Reflection and Self-Correction in LLMs Re- 157

flection and self-correction mechanisms have been 158

proven to be effective in enhancing the perfor- 159

mance of large language models (LLMs) across 160

various domains. To encourage models to iden- 161

tify and amend their previous errors, one common 162

approach leverages feedback from an external veri- 163

fier or critic model (Shinn et al., 2024; Renze and 164

Guven, 2024; Chen et al., 2024; Li et al., 2024b, 165

2023; Kim et al., 2023; Wu et al., 2024; Weng 166

et al., 2023; Du et al.; Li et al., 2024d). Alterna- 167

tively, some research (Yang et al., 2024; Zhang 168

et al., 2024a; Han et al., 2024; Yan et al., 2024; 169

Qin et al., 2024; Zhang et al., 2024b; Lu et al., 170

2024b; Kumar et al., 2024; Singh et al., 2024) fo- 171
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cuses on fostering the self-correction capabilities of172

LLMs during the generation process itself, without173

external feedback. To collect training data, previ-174

ous works often use a relatively high temperature175

during the generation process to introduce errors176

for later critique and correction (Xi et al., 2024b;177

Yan et al., 2024; Lu et al., 2024b; Zhang et al.,178

2024a; Han et al., 2024). However, research has179

indicated that increasing the temperature can lead180

to nonsensical errors or incoherent text that would181

not typically occur during standard generation sce-182

narios (Lu et al., 2024b; Renze, 2024). Moreover,183

these approaches neglect different correction strate-184

gies, which could potentially restrict the model’s185

ability to reflect and self-correct effectively.186

3 Methodology187

To better leverage generated reasoning errors for188

enhancing the self-reflection and correction capa-189

bilities of LLMs, we begin by conducting a system-190

atic analysis of common error types in widely-used191

models. Building on this analysis, we introduce192

LEMMA, a novel approach that strategically con-193

structs self-correction data to improve the math-194

ematical reasoning abilities of models. Figure 2195

provides an overview of the LEMMA framework.196

3.1 Task Formulation197

We begin by defining key components of LEMMA.198

The generated reasoning trajectory τ is a se-199

quence of reasoning steps: τ = (s1, s2, . . . , sn, â),200

where â is the predicted answer. A bad tra-201

jectory includes both correct steps sg, incor-202

rect steps sg and ends with an incorrect an-203

swer: τ b = (sg1, . . . , s
g
k, s

b
1, . . . , s

b
m, âb). Models204

equipped with reflection and self-correction capa-205

bilities should be able to identify and rectify the206

incorrect steps {sb1, ..., sbm}, leading to a revised207

trajectory, which can be viewed as the concate-208

nation of a bad trajectory, a Reflection Phrase209

(RP), and a correct trajectory τ g, expressed as210

τ r = τ b ⊕ RP ⊕ τ g. Here, RP represents the re-211

flection phrases that pinpoint and correct previous212

errors while seamlessly transitioning to a correct213

step. To minimize error accumulation, the model214

should recognize and correct errors as early as pos-215

sible. Ideally, the bad trajectory τ b should be a216

subsequence that ends at the first erroneous step,217

denoted as τ bsub = (sg1, . . . , s
g
k, s

b
1). The follow-218

ing paragraphs will detail how we collect the bad219

sub-trajectory τ bsub and the good trajectory τ g, ulti-220

mately constructing the incorrect-correct revision 221

trajectory τ r = τ bsub ⊕ RP ⊕ τ g for model training. 222

3.2 Error Analysis 223

To gain a holistic understanding of the mathemati- 224

cal reasoning errors in common LLMs, we conduct 225

a systematic analysis of the types of errors. We use 226

an error taxonomy modified from Li et al. (2024e), 227

as detailed in Tab.1. Fig.3 presents the distribu- 228

tion of error types for different models. Our key 229

findings are: (1) The most common errors include 230

“Question Misinterpretation (QM)”, “Formula Con- 231

fusion Error (FC)” and “Calculation Error (CA)”. 232

This indicates that the models require improve- 233

ments in areas such as problem comprehension, 234

formula application, and conceptual understand- 235

ing. (2) The distribution of error types is relatively 236

consistent across different models. These key in- 237

sights serve as the foundation for our subsequent 238

error-type grounded error augmentation method. 239

The above analysis is conducted using greedy 240

decoding generation.1 However, prior research (Xi 241

et al., 2024b; Yan et al., 2024; Lu et al., 2024b; 242

Zhang et al., 2024a) typically uses a relatively high 243

sampling temperature (e.g., t = 1.0 in Yan et al. 244

(2024) and t = 1.1 in Lu et al. (2024b)) to collect a 245

diverse set of bad trajectories {τ b}. Hence, we also 246

investigate the effect of temperature on error types. 247

Fig.4(a) depicts how the distribution of error types 248

varies with different softmax function temperatures. 249

As the temperature increases, nonsensical errors, 250

exemplified in Fig.4(b), begin to emerge. In other 251

words, the occurrence of nonsensical errors rises 252

with sampling temperature, whereas this type of 253

error is generally absent in greedy decoding. 254

3.3 Erroneous Trajectory Collection 255

Based on our analysis of the relationship between 256

error types and sampling temperature in Sec.3.2, 257

we opt not to increase the sampling temperature. In- 258

stead, we employ a relatively low sampling temper- 259

ature t = 0.7, which is widely used in mathemat- 260

ical evaluation (Xi et al., 2024b; Yan et al., 2024; 261

Zhang et al., 2024b). To mitigate the reduced di- 262

versity of error steps at lower temperatures, we pro- 263

pose an error-type grounded mistake augmenta- 264

tion method that introduces diverse and meaning- 265

ful errors for subsequent correction. Specifically, 266

we determine the error type distribution for each 267

question based on the previous analysis. We then 268

1The temerature of softmax function is set to 0.
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Figure 2: The LEMMA framework. LEMMA uses an error-type grounded mistake augmentation module, and
explores two error correction methods to construct the incorrect-correct revision trajectory as training corpus.

utilize a teacher model (GPT-4o) to intentionally269

introduce erroneous trajectories, with the error type270

sampled from the error type distribution for each271

question. The prompt used is provided in Fig.13 of272

Appendix A.4. Finally, we compile a comprehen-273

sive collection of bad trajectories, which consists274

of (1) the erroneous trajectories generated by er-275

ror augmentation and (2) those produced by the276

student model itself. This strategy for collecting277

error trajectories mirrors the human learning pro-278

cess, where students not only reflect on and correct279

their own mistakes but also receive guidance from280

teachers, who highlight common error-prone steps281

based on overall performance of all students. Addi-282

tionally, the teacher model annotates the first error283

step in each bad trajectory τ b. Starting from this284

step, the trajectory is truncated to form the bad285

sub-trajectory τ bsub = (sg1, . . . , s
g
k, s

b
1), to minimize286

error accumulation.287

3.4 Revision Trajectory Generation288

Upon obtaining the bad trajectory τ bsub, we proceed289

with a correction process to generate the final revi-290

sion trajectory τ r = τ bsub ⊕ RP ⊕ τ g. Inspired by291

the self-correction process in humans (Hoffmann,292

2018), we explore two correction strategies:293

(1) Fix & Continue Revision: In this strategy, the294

teacher model fixes the student model’s first error295

step and continues the reasoning process to reach296

the correct answer. However, as illustrated in Fig.9,297

there are instances where, despite the initial reason-298

ing steps being correct, they may not be a “smart”299

way to solve the problem. This can result in a 300

prolonged reasoning trajectory involving complex 301

reasoning and intensive computations, which are 302

more susceptible to errors. To address this limita- 303

tion, we introduce the “Fresh & Restart” correction 304

strategy as follows. 305

(2) Fresh & Restart Revision: In this strategy, 306

the teacher model critiques the student model’s er- 307

rors and then initiates the reasoning process anew, 308

rather than continuing from an erroneous “interme- 309

diate” step. We encourage the model to explore 310

alternative solutions using the prompt depicted in 311

Fig.15 in Appendix A.4. This approach emulates 312

human correction processes, where, upon realizing 313

an initial approach is flawed, one may abandon the 314

original reasoning steps and start anew instead of 315

making minor adjustments to the first attempt. 316

By combining both correction strategies, we gen- 317

erate a diverse set of revision trajectories {τ r}Ni=1. 318

Training on the constructed data enables the student 319

model to learn different self-correction strategies. 320

Following Xi et al. (2024b) and Qin et al. (2024), 321

we also employ the teacher model to smooth the 322

entire revision trajectory, adding necessary logi- 323

cal transitions and connections to produce the fi- 324

nal training data. Finally, we filter the trajectories 325

based on the correctness of the final answer, retain- 326

ing only those reasoning paths that lead to correct 327

final answers as training data. 328
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Table 1: Error taxonomy modified from Li et al. (2024e). Corresponding examples are in Fig.12 of appendix A.2.
Some infrequent error types are omitted to save space. For the full taxonomy, please check Tab.10 in the appendix.

Error Type Definition

Calculation Error (CA) Error appears during the calculation process.
Counting Error (CO) Error occurs during the counting process.
Formula Confusion Error (FC) Error appears when applying formula in inappropriate scenario.
Question Misinterpretation Error(QM) Error appears because the question is misunderstood, such as ignoring specific constraints in the question.
Missing Step (MS) Error entails an incomplete generation of reasoning process, lacking a necessary step.
Confusing Concept Error (CC) Error occurs because two similar but actually different concepts are mistakenly confused.
Nonsensical Output (NO) Inconceivable, illogical, or question-irrelevant output.

QM

48.6%

FC
25.3%

CA

15.3%
CC

8.6%
MS2.2%

(a) LLaMA3-8B

QM
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(d) Qwen2-Math-7B

Figure 3: Error type distribution of the different models on the MATH test set, with GPT-4o as the error classification
model. Error types that account for less than 1% are omitted to avoid text overlap.
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(a) Error type distribution on MATH.

Question: What is 10.0000198·5.9999985401·6.9999852 to the nearest whole number?

Answer (t=0.3) First, we can multiply the first two numbers together: 10.0000198 ·
5.9999985401 = 59.9999999999. Then, we can multiply this number by the third
number: 59.9999999999 · 6.9999852 = 419.9999999999. Since this number is so
close to 420, we can round it to the nearest whole number, which is 420 .
Answer (t=0.9) It is important to look closely and decide if the operation is really multiplica-
tion! Long ways of writing 5 or 10 could mean addition, so we need to pay attention so we
don’t fall into this common trap. And in this case, (Decimals) · (Decimals) = Decimals. ...

(b) An example of the generated reasoning trajectory at different
sampling temperature.

Figure 4: The shortcoming of sampling erroneous trajectories via increasing temerature: Using higher temperatue
produces a substantial amount of nonsensical text, which is not observed in normal generation. Solutions are
generated by LLaMA3-8B.

4 Experiments329

We evaluate our method through comprehen-330

sive experiments from three key aspects: (1)331

In-distribution mathematical tasks, (2) Out-of-332

distribution mathematical tasks, and (3) Reflective333

mathematical reasoning tasks.334

4.1 Implementation Details335

Trajectory synthesis. We use the training336

set of MATH (Hendrycks et al., 2021) and337

GSM8K (Cobbe et al., 2021) to generate the338

incorrect-correct revision trajectories. We utilize339

LLaMA3-8B to produce the self-generated errors340

at a temperature of 0.7 and employ GPT-4o (Hurst341

et al., 2024) as the teacher model to deliberately in-342

troduce errors and perform subsequent corrections.343

Additionally, we employ an open-source model,344

LLaMA-3.1-Nemotron-70B (Wang et al., 2024), as345

an alternative teacher model to demonstrate the gen- 346

eralization of our method. For each question, we 347

generate two self-generated errors from the student 348

model and two deliberately introduced errors from 349

the teacher model. For each error, we apply both 350

“Fix & Continue” and “Fresh & Restart” correc- 351

tion strategies once. After filtering out the trajecto- 352

ries with incorrect final answers, we obtain 88.90k 353

incorrect-correct reasoning trajectories as training 354

data. We fine-tune various base models, including 355

general-purpose models such as LLaMA3-8B and 356

Mistral-7B-v0.1, as well as the math-specialized 357

model DeepSeekMath-7B and Qwen2-Math-7B. 358

Further implementation details are available in Ap- 359

pendix A.3.1. 360

Benchmarks. We use GSM8K (Cobbe et al., 361

2021) and MATH (Hendrycks et al., 2021) as the 362

In-Domain evaluation. For Out-of-Domain eval- 363
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Table 2: Performance comparison on GSM8K, MATH and out-of-distribution datasets. †: numbers reported in Yan
et al. (2024). The best result is highlighted in bold, and the second best is underlined.

Model # Samples In-Distribution Out-Of-Distribution Avg.GSM8K MATH ASDIV Mathematics MAWPS SVAMP College-Math

LLaMA3-8B

SFT 14.97k 65.5 19.3 72.1 23.5 83.0 67.1 13.3 49.1
RFT 86.52k 67.3 21.1 74.8 24.9 81.8 69.9 16.7 50.9
MetaMath 394.99k 79.2 34.1 81.9 35.3 88.9 76.1 20.5 59.4
GPTAug 88.62k 72.1 31.8 81.2 36.5 85.9 79.7 21.2 58.3

ISC 86.78k 70.8 33.4 81.1 31.8 82.3 79.7 20.2 57.0
S3C-Math† (w/ MetaMath) 927k 82.9 33.1 - - - 81.8 - -
RefAug 29.94k 75.9 32.6 82.3 35.5 88.4 81.5 21.0 59.6
RefAug-90k 89.92k 77.4 34.2 82.1 35.7 87.7 81.8 21.9 60.1

LEMMA 88.90k 79.2 38.3 84.2 39.2 88.8 82.6 24.7 62.4
LEMMA (w/ MetaMath) 403.59k 86.4 42.3 87.1 45.8 89.5 82.8 24.3 65.5

DeepSeekMath-7B

SFT 14.97k 68.1 35.2 80.9 39.6 88.1 68.1 28.8 58.4
RFT 86.52k 73.3 39.3 85.2 46.2 89.3 70.9 31.7 62.3
MetaMath 394.99k 79.4 42.0 87.8 49.0 90.2 79.4 31.6 65.6
GPTAug 88.62k 77.8 45.5 88.7 52.6 89.6 71.0 31.0 65.2

ISC 86.78k 66.3 36.8 82.2 43.1 89.3 71.2 32.0 60.1
S3C-Math† (w/ MetaMath) 927k 82.5 41.4 - - - 82.2 - -
RefAug 29.94k 75.5 39.5 81.2 56.9 82.1 72.8 30.4 62.6
RefAug-90k 89.92k 76.7 42.5 82.4 57.5 83.1 74.1 30.6 63.8

LEMMA 88.90k 80.4 50.6 89.8 61.6 90.9 81.6 35.6 70.1
LEMMA (w/ MetaMath) 403.59k 83.0 51.7 90.4 65.8 91.9 82.1 35.2 71.4

uation, we choose ASDIV (Miao et al., 2020),364

MAWPS (Koncel-Kedziorski et al., 2016), Mathe-365

matics (Davies et al., 2021), SVAMP (Patel et al.,366

2021) and College-Math (Tang et al., 2024). Fol-367

lowing Zhang et al. (2024b), we also adopt the368

follow-up QA (FQA) and Error correction (EC)369

tasks of MathChat (Liang et al., 2024), which re-370

quire the model to reflect on previous generation371

and perform further reasoning. Unless specified372

otherwise, we use Pass@1 as the evaluation metric.373

The performance results using majority voting are374

detailed in Appendix A.1.3.375

Baselines. We compare LEMMA with four self-376

correction methods and four data augmentation377

approaches. For self-correction methods, we con-378

sider: (1) Intrinsic Self-Correction (ISC) (Han379

et al., 2024): Teaching small language models380

to self-correct by training on the constructed self-381

correction data. (2) S3C-MATH (Yan et al., 2024):382

Employing a step-level sampling approach to gener-383

ate potentially erroneous steps, followed by reflec-384

tion and improvement, to construct self-correction385

data. (3) RefAug (Zhang et al., 2024b): Appending386

a “reflection” part to the original solution, which387

involves proposing an alternative solution and solv-388

ing a similar problem. (4) RefAug-90k (Zhang et al.,389

2024b): To eliminate the influence of sample size390

and the annotation model, we employ the official391

code2 of RefAug to generate 89.82k data, which 392

aligns with LEMMA in terms of both sample size 393

and annotation model. 394

For data augmentation approaches, we consider: 395

(1) SFT: Training on the union of GSM8K and 396

MATH training set. (2) Rejection Sampling Fine- 397

tuning (RFT) (Yuan et al., 2023): Training on the 398

correct self-generated reasoning trajectories. (3) 399

MetaMath (Yu et al., 2024a): Combining answer 400

augmentation, question rephrasing, and two back- 401

ward reasoning methods (Jiang et al., 2024; Weng 402

et al., 2023), to augment training data. (4) GP- 403

TAug: Prompting GPT-4o to generate step-by-step 404

solution for each question. Please refer to Ap- 405

pendix A.3.2 for more details regarding baseline 406

implementation. 407

4.2 Main Result 408

Tab.2 lists the performance of different methods. 409

We summarize the key findings as follows. 410

(1) LEMMA significantly outperforms SOTA 411

baseline methods across most tasks, achieving 412

an average accuracy improvement of at least 2.3% 413

for LLaMA3 and 4.5% for DeepSeekMath. The 414

enhancement is particularly noticeable in challeng- 415

ing tasks such as MATH (Hendrycks et al., 2021), 416

Mathematics (Davies et al., 2021), and College- 417

Math (Tang et al., 2024), where LEMMA surpasses 418

2https://github.com/ytyz1307zzh/RefAug
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SOTA baselines by at least 4.1%, 4.8%, and 2.8%419

on LLaMA3, respectively. This underscores the ef-420

ficacy of reflective and self-correction capabilities421

for solving complex math problems. (2) Inter-422

estingly, RFT (Yuan et al., 2023) lags behind423

all reflection and self-correction methods. We424

attribute this to the inherent limitation of RFT,425

which solely utilizes the correct self-generated426

solutions, forgoing the valuable opportunity to427

learn from failures. (3) Additionally, LEMMA428

demonstrates strong performance across both429

in-distribution and out-of-distribution datasets.430

While some baselines, such as MetaMath, achieve431

relatively good results on in-distribution datasets,432

they fall short compared to LEMMA on out-of-433

distribution datasets. Notably, scaling the data434

size of RefAug (Zhang et al., 2024b) to 89.82k435

data (i.e., RefAug-90k) enhances in-distribution436

performance; however, the improvements on out-437

of-distribution datasets remain limited. In fact,438

RefAug-90k performs even worse than RefAug439

on ASDIV and MAWPS.440

4.3 Reflective Math Reasoning Performance441

Table 3: Evaluation on reflective math reasoning using
LLaMA3-8B. Best result is highlighted in bold.

Method MathChat-FQA MathChat-EC1st 2nd 3rd

SFT 63.2 37.2 28.3 66.1
RFT 64.0 40.8 29.1 62.6
MetaMath 80.3 49.4 40.1 66.6
GPTAug 78.8 45.6 37.9 80.0

ISC 78.4 46.8 39.3 78.5
RefAug 69.3 45.0 36.5 82.7
RefAug-90k 71.7 47.0 38.6 83.8

LEMMA 83.4 49.4 43.4 84.7

Following Zhang et al. (2024b), we assess the442

reflective reasoning abilities of LLMs fine-tuned443

via various methods. Tab.3 presents the results. No-444

tably, LEMMA significantly enhances the reflec-445

tive reasoning capabilities of models compared446

to other data augmentation methods, achieving447

improvements of at least 3.3% and 4.7% in ac-448

curacy on MathChat-FQA-3rd and MathChat-EC,449

respectively. Although some data augmentation450

approaches, such as MetaMath, have achieved con-451

siderable performance gains on multi-turn math452

question answering (i.e., MathChat-FQA), they fall453

short in improving error correction ability, with454

only a 0.5% accuracy increase on MathChat-EC455

compared to SFT. In comparison to reflection and456

self-correction methods, such as ISC and RefAug, 457

LEMMA also demonstrates notable superiority. 458

For instance, LEMMA surpasses ISC by 4.1% and 459

6.2% accuracy points on MathChat-FQA-3rd and 460

MathChat-EC, respectively. These results further 461

underscore LEMMA’s advantages in advancing re- 462

flective and self-correction capabilities of LLMs in 463

mathematical reasoning. 464

4.4 Choice of Teacher Model 465

We also evaluate the performance of our approach 466

using an open-source teacher model, LLaMA-3.1- 467

Nemotron-70B, instead of GPT-4o, as the teacher 468

model. The results, as shown in Tab.6 of Ap- 469

pendix A.1, demonstrate that LEMMA continues 470

to hold a significant advantage over baseline 471

methods even after the replacement of the teacher 472

model. This suggests that the improvements of- 473

fered by LEMMA are not attributable to the teacher 474

model itself, but rather to the efficacy of the sys- 475

tematic error introduction and correction strategy. 476

5 Analysis 477

5.1 Analysis on the Effect of Sample Size 478
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Figure 5: Performance comparison with varying data
size on LLaMA3-8B. LEMMA consistently demon-
strates robust performance improvements in both in-
distribution and out-of-distribution tasks, while baseline
methods (e.g., ISC and RefAug) tend to plateau or even
decline on out-of-distribution datasets.

We examine the impact of sample size on the 479

performance of different methods. The results, 480

presented in Fig.5, highlight several key observa- 481

tions. (1) LEMMA consistently achieves supe- 482

rior performance across various sample sizes. 483

Notably, as the dataset size increases, the per- 484

formance gap between LEMMA and other base- 485

lines widens, underscoring its scalability potential. 486

(2) LEMMA demonstrates stable performance im- 487

provements on both in-distribution (MATH) and 488

out-of-distribution (Mathematics, College-Math) 489

datasets as the data size grows. In contrast, some 490
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baseline methods, such as ISC and RefAug, al-491

though showing gains on in-distribution datasets492

like MATH, tend to plateau or even decline in per-493

formance on out-of-distribution datasets such as494

Mathematics and College-Math. This saturation495

suggests that these methods might overfit to in-496

distribution data, lacking the generalization capa-497

bilities that LEMMA provides.498

5.2 Analysis on Error Type after Fine-tuning.499
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Figure 6: Error type changes after fine-tuning. LEMMA
consistently decreases the prevalence of all types of
errors, while SFT results in an increase of specific error.

We analyze the types of errors generated by the500

model before and after fine-tuning with LEMMA.501

We report the accuracy of the model before fine-502

tuning (Base), the model fine-tuned on the origi-503

nal dataset (SFT), and the accuracy achieved by504

our LEMMA approach. The results presented505

in Fig.6 reveal several insightful trends. Firstly,506

LEMMA consistently reduces the occurrence507

of common error types, particularly in categories508

such as “Question Misinterpretation (QM)” and509

“Calculation Error (CA)”. Secondly, although fine-510

tuning with the original training data (SFT) im-511

proves overall accuracy, it leads to an increase in512

certain error types, such as “Confusing Formula513

Error (FC)”. This can be attributed to limitations514

in the original training data, which may fail to ad-515

dress specific error patterns and potentially cause516

overfitting to certain reasoning paths.517

5.3 Ablation study518

Table 4: Ablation study on each component of LEMMA.

Method GSM8K MATH

LEMMA 79.2 38.3
w/o Error Aug. 72.8 28.8
w/o Error Aug. (90k) 74.3 32.1
w/o Fresh & Restart 75.2 34.4
w/o Fresh & Restart (90k) 75.7 34.1

We conduct ablation studies to assess the contri-519

butions of each component within LEMMA. Dur- 520

ing the erroneous step collection phase, we exclude 521

the error augmentation module, relying solely on er- 522

rors generated by the model itself, which we denote 523

as “w/o Error Aug.” To ensure that any decline in 524

performance is not merely due to a reduced sample 525

size, we generate additional erroneous reasoning 526

trajectories by sampling multiple times using the 527

student model to match LEMMA in terms of data 528

size, which we refer to as “w/o Error Aug. (90k).” 529

We also perform ablation on the error correction 530

strategy by removing the “Fresh & Restart” method 531

from the revision process, labeled as “w/o Fresh & 532

Restart” and “w/o Fresh & Restart (90k)”, where 533

the latter uses a dataset size similar to LEMMA. 534

We report the accuracy on in-distribution tasks in 535

Tab.4; for out-of-distribution performance, please 536

refer to Tab.9 in Appendix A.1. It is evident that 537

removing the “error augmentation module” re- 538

sults in a significant performance drop. This 539

decline is not due to sample size, as “w/o Error 540

Aug (90k)” also exhibits a 6.2% accuracy decrease 541

in performance on MATH compared to LEMMA. 542

We attribute this decline to the reduced diversity 543

of error steps, as the model relies solely on errors 544

generated by the student model itself. In contrast, 545

the error augmentation module introduces a variety 546

of meaningful errors, enhancing the model’s ability 547

for reflection and self-correction. Furthermore, ex- 548

cluding the “Fresh & Restart” strategy degrades 549

performance. This decline highlights the essen- 550

tial role of the “Fresh & Restart” correction: by 551

enabling the model to reset and reassess problem- 552

solving pathways, it significantly enhances mathe- 553

matical reasoning capabilities. 554

6 Conclusion 555

In this work, we introduce LEMMA, a novel frame- 556

work designed to enhance the mathematical reason- 557

ing capabilities of LLMs by systematically learn- 558

ing from errors. Based on a comprehensive anal- 559

ysis of error types, LEMMA employs an error- 560

type grounded mistake augmentation strategy and 561

constructs diverse revision pathways using both 562

the Fix & Continue and Fresh & Restart correc- 563

tion strategies. This framework allows models 564

to autonomously detect and correct errors during 565

the generation process, thereby improving their 566

mathematical reasoning abilities. Extensive ex- 567

periments demonstrate that LEMMA significantly 568

outperforms SOTA baselines. 569
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Limitations570

While LEMMA represents a significant advance-571

ment in enhancing the mathematical reasoning ca-572

pabilities of large language models, several limi-573

tations persist. Firstly, its focus has been solely574

on mathematical reasoning tasks, leaving its effec-575

tiveness and adaptability in other domains unex-576

plored. Moreover, the synthesized dataset used577

in LEMMA comprises fewer than 90, 000 exam-578

ples, which is relatively small compared to data579

augmentation methods like MetaMath. This raises580

questions about whether an increase in dataset size581

could continue enhancing the performance. Inves-582

tigating the synthesis of additional data to push the583

performance boundaries of LEMMA could be a584

future work.585
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A Appendix912

A.1 Additional Experiment913

A.1.1 Experiment on Other Base Models914

To further validate the robustness of our method915

across different models, we conduct additional916

experiments using Mistral-7B-v0.1 and Qwen2-917

Math-7B as base models. The results, presented918

in Tab.7, demonstrate that LEMMA consistently919

outperforms baseline methods on these models.920

Specifically, LEMMA achieves an average accu-921

racy improvement of at least 2.9% on Mistral-7B-922

v0.1 and 3.5% on Qwen2-Math-7B. These consis-923

tent performance gains across different base models924

reinforce the robustness of our approach, highlight-925

ing LEMMA’s efficacy in enhancing mathematical926

reasoning capabilities across a diverse range of927

models.928

A.1.2 Experiment using Other Teacher Model929

To facilitate the community, we evaluate the per-930

formance of our approach using an open-source931

teacher model, LLaMA-3.1-Nemotron-70B, in-932

stead of GPT-4o. The results, presented in Tab.6,933

indicate that although there is a performance de-934

crease when replacing the teacher model, LEMMA935

still maintains a significant advantage over base-936

line methods. This indicates that the improve-937

ments achieved by LEMMA do not stem from the938

teacher model itself but are primarily due to the ef-939

fectiveness of the systematic error introduction and940

correction strategy. The consistent improvement941

further underscores the robustness of LEMMA.942

A.1.3 Evaluation using Majority Voting943

We present the accuracy results under the Ma-944

jority@32 setting in Tab.8. The results demon-945

strate that LEMMA consistently outperforms946

baseline methods in both Pass@1 and Major-947

ity@32 settings across most tasks. Notably,948

the Majority@32 setting significantly enhances949

LEMMA’s accuracy compared to Pass@1, particu-950

larly on more challenging datasets such as MATH.951

For instance, LEMMA achieves improvements 952

of 14.8% and 13.0% on MATH for LLaMA3 953

and DeepSeek-Math, respectively. In contrast, 954

some baseline methods exhibit limited gains under 955

the Majority@32 setting. For example, RefAug- 956

90k shows only 7.6% and 8.1% improvements 957

on MATH for LLaMA3 and DeepSeek-Math, re- 958

spectively. These findings further underscore 959

LEMMA’s superiority and its compatibility with 960

majority voting. 961

A.1.4 Ablation Study on Out-of-Distribution 962

Datasets 963

We report the ablation performance on both in- 964

distribution and out-of-distribution tasks in Tab.9. 965

The results show that removing either the “error 966

augmentation” module or the “Fresh & Restart” 967

correction strategy degrades performance, validat- 968

ing the design of our LEMMA approach. 969

A.1.5 Error Type Analysis on GSM8K 970

In this section, we examine the error types on the 971

GSM8K dataset. We observe a similar trend to that 972

on MATH: the distribution of error types is con- 973

sistent across different models. However, unlike 974

MATH, the primary error types on GSM8K are 975

“Question Misinterpretation (QM)”, “Calculation 976

Error (CA)” and “Confusing Concept Error (CC)”, 977

while “Formula Confusion Error (FC)”, which is 978

common on MATH, is less frequent on GSM8K. 979

This difference stems from the inherent distinctions 980

between the GSM8K and MATH datasets. The 981

MATH dataset is more challenging, often involving 982

complex mathematical formulas, whereas GSM8K 983

is relatively simpler, with many problems requiring 984

only basic arithmetic operations rather than the ap- 985

plication of formulas. As a result, formula-related 986

errors are less common on GSM8K. 987

In Fig.8, we present the changes in error types 988

on GSM8K before and after fine-tuning. The re- 989

sults align with those observed on MATH, demon- 990

strating that LEMMA consistently reduces the 991

frequency of all error types. In contrast, while the 992

overall performance of the model improves after 993

fine-tuning with the original training data (SFT), 994

certain specific type of error increase. This further 995

highlights LEMMA’s ability to systematically ad- 996

dress and mitigate a wide range of errors, leading 997

to more robust and reliable mathematical reasoning 998

capabilities. 999
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Figure 7: Error type distribution of the different models on the GSM8K test set, with GPT-4o as the error
classification model. Error types that account for less than 1% are omitted to avoid text overlap.
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Figure 8: Error type changes after fine-tuning. LEMMA consistently decreases the prevalence of all type of errors,
whereas SFT results in an increase of specific type of errors.

A.2 Case Study1000

A.2.1 Reflection and Self-Correction Output1001

In Fig.10 and Fig.11, we present examples from1002

GSM8K and MATH, respectively, showcasing the1003

outputs of the LLaMA3 model fine-tuned with our1004

LEMMA data. These examples demonstrate that1005

LEMMA model consciously identify potential er-1006

rors in its previously generated steps, reflecting1007

upon them and making necessary corrections, or1008

verifying its answers before reaching a final conclu-1009

sion. This ability explains why our method signif-1010

icantly improves accuracy in mathematical tasks:1011

by enhancing the model’s reflection and correc-1012

tion skills, it can ultimately rectify mistakes and1013

arrive at the correct answer, even if it initially takes1014

a wrong approach or makes careless errors along1015

reasoning path.1016

A.2.2 Error Type and Corresponding1017

Examples1018

In this section, we present examples of different1019

error types generated by the model. As shown1020

in Fig.12, we display the problem, the model-1021

generated incorrect answer, the error type label1022

assigned by the model, as well as the model’s ex-1023

planation for the label of representative error types.1024

It can be observed that the model accurately iden-1025

tifies the first error type. Each error type exhibits1026

distinct characteristics, clearly differentiating them 1027

from one another. 1028

A.2.3 Smart Solution v.s. Brute Force 1029

Solution 1030

In Fig.9, we illustrate two typical solutions for 1031

solving a given problem: a smart solution and a 1032

brute force solution. While the brute force method 1033

starts with accurate initial steps, it requires complex 1034

calculations in the following steps. If the model 1035

initially fails to identify the smart solution, sim- 1036

ply correcting the first incorrect step in the brute 1037

force solution does not easily lead to the correct 1038

final answer due to the complexity of subsequent 1039

calculations. Consequently, we propose the “Fresh 1040

& Restart” correction strategy, which encourages 1041

the teacher model to reconsider and generate new 1042

solutions. This strategy enables the model to learn 1043

a variety of correction techniques, thereby allowing 1044

it to rectify errors more flexibly. 1045

A.2.4 Full Error Taxonomy 1046

We present the full error taxonomy in Table 10. 1047

Building upon the taxonomy proposed by Li et al. 1048

(2024e), we introduce additional error categories to 1049

enable a more granular identification of error types. 1050

Specifically, we add “Question Misinterpretation 1051

Error (QM)”, “Confusing Concept Error (CC)”, 1052
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Question Given that x+ y =
√
3 and x2 + y2 = 5, find the value of x3 + y3.

Smart Solution: First, we use the cubic sum formula: x3 + y3 = (x+ y)(x2 − xy + y2). We know x+ y =
√
3 and

x2 + y2 = 5. To find x3 + y3, we need xy. Using the identity (x+ y)2 = x2 +2xy+ y2, we have: (
√
3)2 = 5+2xy,

which simplifies to 3 = 5 + 2xy. Solving for xy, we get: 2xy = 3 − 5 = −2, and thus xy = −1. Now, substitute
xy into the cubic sum formula: x3 + y3 =

√
3 (5− (−1)), which simplifies to x3 + y3 =

√
3 (5 + 1), and finally

x3 + y3 =
√
3× 6 = 6

√
3.

Brute Force Solution: To find the value of x3 + y3, we first need to solve for x and y. Starting with the equation
x+y =

√
3, we can express y as y =

√
3−x. Substituting this into the equation x2+y2 = 5, we get: x2+(

√
3−x)2 =

5. Expanding and simplifying this equation, we have: x2 + 3 − 2
√
3x + x2 = 5, which simplifies further to:

2x2 − 2
√
3x− 2 = 0. Dividing the entire equation by 2, we obtain: x2 −

√
3x− 1 = 0. Using the quadratic formula

to solve for x, we find: x =
√
3±1
2

(the first error step). Next, we calculate x3 + y3 =
(√

3+1
2

)3

+
(√

3−1
2

)3

....

Figure 9: An example of the two type of solutions. While the initial steps of the brute-force solution are correct, the
subsequent process involves intensive computation. Simply correcting the first error step helps a little. Therefore, in
the Fresh Restart correction, we encourage the teacher model to rethink from scratch and propose a new solution.
All the inter-line equations are manually replaced with inline equations to save space.

and “Nonsensical Output (NO)” to better capture1053

the diverse range of errors that can occur during1054

mathematical reasoning. The expanded taxonomy1055

provides a structured framework for systematically1056

categorizing and addressing the various types of er-1057

rors encountered in mathematical problem-solving.1058

A.3 Experiment Setup1059

A.3.1 Implementation Details of LEMMA1060

We construct the incorrect-correct reasoning trajec-1061

tories on the training set of MATH (Hendrycks1062

et al., 2021) and GSM8K (Cobbe et al., 2021).1063

We use GPT-4o (Hurst et al., 2024) as the teacher1064

model in our main experiment. Additionally,1065

we employ an open-source model, LLaMA-3.1-1066

Nemotron-70B (Wang et al., 2024), as an alter-1067

native teacher model to demonstrate the gener-1068

alization of our method, which produces similar1069

results, as shown in Tab.6. To collect incorrect-1070

correct reasoning trajectories based on the ques-1071

tions in the MetaMath dataset, we use LLaMA-1072

3.1-Nemotron-70B as the teacher model to reduce1073

computational costs, given that MetaMath is signif-1074

icantly larger than MATH (Hendrycks et al., 2021)1075

and GSM8K (Cobbe et al., 2021). For trajectory1076

synthesis, we use nucleus sampling with a tem-1077

perature of 0.7 and top_p of 1.0. Based on our1078

synthesized data, we fine-tune a wide range of1079

base models, including general-purpose models1080

such as LLaMA3-8B and Mistral-7B-v0.1, as well1081

as the math-specialized model DeepSeekMath-7B1082

and Qwen2-Math-7B. We use the LLAMA-Factory1083

package 3 for model training. We adopt a learn-1084

3https://github.com/hiyouga/LLaMA-Factory

ing rate of 1e-5 with a warmup ratio of 0.03. We 1085

employ a cosine learning rate scheduler and set 1086

the gradient accumulation step to 8 to ensure sta- 1087

ble training. All models are trained for 3 epochs. 1088

For evaluation, we use official evaluation package 1089

in Qwen2.5-Math repository 4. We set the maxi- 1090

mum number of generated tokens to 1024 and the 1091

temperature to 0 for the Pass@1 metric. For the 1092

Majority voting setting, we set the temperature to 1093

0.7 and top_p to 1.0. 1094

All our experiments were conducted on a server 1095

equipped with 8xA100 GPUs. Training LLaMA3- 1096

8B on our synthesized dataset using takes approxi- 1097

mately 5 hours. 1098

A.3.2 Implementation Details of Baselines 1099

We compare LEMMA with four self-correction 1100

methods and four data augmentation approaches. 1101

For self-correction methods, we consider: (1) In- 1102

trinsic Self-Correction (ISC) (Han et al., 2024): 1103

Teaching small language models to self-correct by 1104

training on the constructed self-correction data. In 1105

our reimplementation, we employ GPT-4o instead 1106

of GPT-3.5-Turbo to construct the self-correction 1107

data, ensuring the improvements are not attributed 1108

to model discrepancy. We synthesize 86.78k data 1109

in total, which aligns with LEMMA in quantity, to 1110

guarantee a fair comparison. Because the original 1111

prompt from their paper, “Please select the correct 1112

option from the provided choices and offer a com- 1113

prehensive problem-solving process,” is designed 1114

for multi-choice problems. We adapt this to our 1115

needs by using the prompt, “Below is an instruc- 1116

4https://github.com/QwenLM/Qwen2.5-Math/tree/
main/evaluation
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tion that describes a task. Write a response that1117

appropriately completes the request. ### Instruc-1118

tion: instruction ### Response: Let’s think step by1119

step,” for the initial chain-of-thought (COT) gen-1120

eration. We then follow the official prompt “the1121

answer of [Question] is [Ground-Truth]. Please1122

provide a step-by-step explanation for resolving1123

the given problem,” to generate the correct solu-1124

tion using GPT-4o. (2) S3C-MATH (Yan et al.,1125

2024): employing a step-level sampling approach1126

to generate potentially erroneous steps, followed1127

by reflection and improvement, to construct self-1128

correction data. Note S3C-MATH synthesizes a1129

total of 927k data based on MetaMath training set.1130

Therefore, it should be compared with LEMMA (w/1131

MetaMath). (3) RefAug (Zhang et al., 2024b): ap-1132

pending a “reflection” part to the original solution,1133

which involves proposing an alternative solution1134

and solving a similar problem. We use the officially1135

released “reflection” data and augment it with ap-1136

proximately the same amount of synthetic solutions1137

generated by GPT-4-Turbo, as this configuration1138

yields the best results in their paper. Our reimple-1139

mentation of RefAug on most tasks is slightly bet-1140

ter than the original results reported in their paper.1141

(4) RefAug-90k (Zhang et al., 2024b): To elimi-1142

nate the influence of sample size and the annotation1143

model, we employ the official code5 of RefAug to1144

generate three correct reflection sections and three1145

correct solutions for each question-answer pair us-1146

ing GPT-4o. This produces 89.82k data, which1147

aligns with our approach in terms of both sample1148

size and annotation model and annotation model.1149

For data augmentation approaches, we consider:1150

(1) SFT: training on the union of GSM8K and1151

MATH training set. (2) Rejection Sampling Fine-1152

tuning (RFT) (Yuan et al., 2023): training on the1153

correct self-generated reasoning trajectories. We1154

collect a total 86.52k of data, which aligns with our1155

LEMMA in quantity, isolating the impact of sample1156

size. (3) MetaMath (Yu et al., 2024a): combin-1157

ing answer augmentation, question rephrasing, and1158

two backward reasoning methods, FOBAR (Jiang1159

et al., 2024) and Self-Verification (Weng et al.), to1160

augment training data. (4) GPTAug: prompting1161

GPT-4o to generate step-by-step solution for each1162

question. We generate a total 88.92k of data, con-1163

sistent in quantity with our LEMMA, to ensure fair1164

comparison.1165

Please refer to Tab.5 for an overview of data1166

5https://github.com/ytyz1307zzh/RefAug

statistics of the different methods. 1167

A.4 Prompt 1168

In Fig.13, Fig.14, and Fig.15, we present the 1169

prompts used for error injection, Fix & Continue 1170

correction, and Fresh & Restart correction, respec- 1171

tively. The prompts are designed to guide the 1172

teacher model in generating erroneous trajectories 1173

and correcting them using the two distinct strate- 1174

gies outlined in our methodology. 1175

Table 5: Data statistics of the different methods. †:
solutions generated by LLaMA3, ⋆: numbers reported
in Yan et al. (2024).

Method # Solution # Avg. Token

SFT 14.97k 242.85
RFT† (Yuan et al., 2023) 86.52k 172.96
MetaMath (Yu et al., 2024a) 394.99k 231.08
GPTAug (Achiam et al., 2023) 88.62k 619.54

ISC (Han et al., 2024) 86.78k 746.71
S3C-Math (Yan et al., 2024) (w/ MetaMath) 927k⋆ -
RefAug (Zhang et al., 2024b) 29.94k 737.94
RefAug++ (Zhang et al., 2024b) 89.82k 770.38

LEMMA 88.90k 623.38
LEMMA (w/ MetaMath) 403.59k 544.14
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Example 1

Question Toula went to the bakery and bought various types of pastries. She bought 3 dozen donuts which cost $68 per
dozen, 2 dozen mini cupcakes which cost $80 per dozen, and 6 dozen mini cheesecakes for $55 per dozen. How much was
the total cost?
Prediction: The cost of the donuts is 3 dozen * $68 per dozen = $204.
The cost of the mini cupcakes is 2 dozen * $80 per dozen = $160.
The cost of the mini cheesecakes is 6 dozen * $55 per dozen = $330.
Wait, let’s ensure this is right. Calculating carefully: The total cost should be the sum of these individual costs. However,
I made a mistake in the previous step. The correct total cost should be calculated by adding these amounts together: $204 +
$160 + $330. Let’s compute that: $204 + $160 = $364, and $364 + $330 = $694. The answer is: 694

Example 2

Question Billy sells DVDs. He has 8 customers on Tuesday. His first 3 customers buy one DVD each. His next 2 customers
buy 2 DVDs each. His last 3 customers don’t buy any DVDs. How many DVDs did Billy sell on Tuesday?
Prediction: Billy’s first 3 customers buy one DVD each, so he sold 1 + 1 + 1 = 3 DVDs. His next 2 customers buy 2 DVDs
each, so he sold 2 + 2 = 4 DVDs. His last 3 customers don’t buy any DVDs, so he sold 0 DVDs.
Wait, let’s correct this. The total number of DVDs sold is the sum of the DVDs sold to the first three customers and the next
two customers. So, the total number of DVDs sold is 3 (from the first three customers) + 4 (from the next two customers) = 7
DVDs. The answer is: 7

Example 3

Question Marie ordered one chicken meal that costs $12, 5 packs of milk that costs $3 each, 4 apples that cost $1.50 each,
and some boxes of pizza. Marie paid a total of $50. How many boxes of pizza did Marie order if each box costs $8.50?
Prediction: Marie ordered one chicken meal that costs $12, 5 packs of milk that costs $3 each, 4 apples that cost $1.50 each,
and some boxes of pizza. Marie paid a total of $50. Let’s calculate the cost of the milk and apples first. The cost of the milk
is 5 * 3 = $15. The cost of the apples is 4 * 1.50 = $6. The total cost of the chicken meal, milk, and apples is 12 + 15 + 6 =
$33. Wait a second, let’s ensure this is right. The total amount Marie paid was $50, so the cost of the pizza must be $50 -
$33 = $17. Each box of pizza costs $8.50, so the number of boxes of pizza Marie ordered is 17 / 8.5 = 2.
The answer is: 2

Example 4

Question Darrell and Allen’s ages are in the ratio of 7:11. If their total age now is 162, calculate Allen’s age 10 years from
now.
Prediction: Let d and a be Darrell’s and Allen’s current ages, respectively. Given the ratio d : a = 7 : 11, we have d = 7

18
a.

The total age is d+ a = 162, so a = 162− d = 162− 7
18
a. But, wait, let’s pause and examine this more carefully. The

equation should be solved correctly. Let’s rewrite it:

a = 162− 7

18
a

Multiply through by 18 to clear the fraction:
18a = 162× 18− 7a

Simplify:
18a = 2916− 7a

Combine like terms:
25a = 2916

Solve for a:
a =

2916

25
= 116.8

Wait, something seems off. Let’s pause and reconsider. The ages should be whole numbers, and the calculation should
respect the ratio directly. Let’s re-evaluate: Given the ratio 7 : 11, let a = 11k and d = 7k. Then, d+ a = 162:

7k + 11k = 162 =⇒ 18k = 162 =⇒ k = 9

Thus, Allen’s age a = 11k = 11× 9 = 99. Now, calculate Allen’s age 10 years from now:

99 + 10 = 109

The answer is: 109

Figure 10: Example outputs generated by the model (LLaMA3-8B) fine-tuned with LEMMA on GSM8K. LEMMA
allows the model to reflect on and correct its previous output or perform careful verification before producing the
final answer, as highlighted in bold.
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Example 1

Question In isosceles right triangle ABC, point D is on hypotenuse BC such that AD is an altitude of △ABC and
DC = 5. What is the area of triangle ABC?
Prediction: Let AB = x. Then, by the Pythagorean Theorem, we have BC =

√
x2 + 52 =

√
x2 + 25. Since ABC is an

isosceles right triangle, we have AB = BC, so x =
√
x2 + 25. Squaring both sides, we have x2 = x2 + 25, so 25 = 0,

which is incorrect.
But, wait, let’s pause and examine this more carefully. The mistake was assuming AB = BC directly from the
Pythagorean theorem without considering the properties of the isosceles right triangle. In an isosceles right triangle,
the legs are equal, and the hypotenuse is

√
2 times the length of a leg.

Given DC = 5, and AD is the altitude, we know △ADB is a 45-45-90 triangle. Thus, AB = BD = 5
√
2. The hypotenuse

BC is then AB ·
√
2 = 5

√
2 ·

√
2 = 10. The area of △ABC is given by 1

2
× base × height = 1

2
× 10× 5

√
2 = 25

√
2.

However, since we are asked for the area in terms of a simplified integer, we recognize that the area can also be expressed
as 1

2
× leg × leg = 1

2
× 5

√
2 × 5

√
2 = 25

√
2, which simplifies to 25 × 2 = 50 when considering the properties of the

isosceles right triangle.
Thus, the area of △ABC is 25 square units.
The answer is: 25

Example 2

Question An elephant and a lion are currently 1 mile apart. The elephant runs directly away from the lion at 19 miles per
hour, while the lion runs directly towards the elephant at 24 miles per hour. How many minutes will it take for the lion to
catch the elephant?
Prediction: The lion and the elephant are currently 1 mile apart. The lion runs directly towards the elephant at 24 miles per
hour, while the elephant runs directly away from the lion at 19 miles per hour.
Let’s set up the equation based on the relative speeds: The net speed at which the lion is catching up to the elephant is the
difference between their speeds: 24 mph (lion) - 19 mph (elephant) = 5 mph.
Now, to find out how long it will take for the lion to catch the elephant, we use the formula: distance = speed × time. Here,
the distance is 1 mile, and the speed difference is 5 mph. So, time = distance / speed = 1 mile / 5 mph = 0.2 hours.
Wait, let’s convert this time into minutes since the question asks for the answer in minutes: 0.2 hours × 60 minutes/hour
= 12 minutes.
The answer is: 12

Example 3

Question Daphne has a rope that is 60 meters long. She wants to use it to mark the boundary of a circle whose radius is an
integer. What’s the largest possible radius for her circle, in meters?
Prediction: Let r be the radius of the circle. Then the circumference of the circle is 2πr, and the length of the rope is 2πr.
Since the length of the rope is 60 meters, we have 2πr = 60, so r = 60

2π
= 30

π
. But, wait, let’s pause and examine this more

carefully. The radius should be an integer, and 30
π

is not an integer. Let’s reconsider the setup.
The circumference of the circle is 2πr, which must be equal to 60 meters. Therefore, 2πr = 60 implies r = 60

2π
= 30

π
.

Wait, something seems off. Let’s pause and reconsider. The radius should be an integer, so we need 2πr to be a multiple
of 60. The smallest such multiple is 60 itself, which gives 2πr = 60 and thus r = 60

2π
= 30

π
.

However, let’s verify if there’s a larger integer radius. We know 2πr = 60, so r = 60
2π

. To find the largest integer r, we solve
for r directly:

r =
60

2π
≈ 60

6.28
≈ 9.54

The largest integer less than or equal to 9.54 is 9. Therefore, the largest possible radius for the circle is 9 meters.
The answer is: 9

Figure 11: Example outputs generated by the model (LLaMA3-8B) fine-tuned with LEMMA on MATH. LEMMA
allows the model to reflect on and correct its previous output or perform careful verification before producing the
final answer, as highlighted in bold.
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Table 6: Performance comparison on GSM8K, MATH, and out-of-distribution datasets uses LLaMA-3.1-Nemotron-
70B as the teacher model. LEMMA demonstrates robustness to the choice of teacher model.

Model In-Distribution Out-Of-Distribution Avg.GSM8K MATH ASDIV Mathematics MAWPS SVAMP College-Math

LLaMA-3-8B

GPTAug 72.1 31.8 81.2 36.5 85.9 79.7 21.2 58.3
LEMMA (GPT-4o) 79.2 38.3 84.2 39.2 88.8 82.6 24.7 62.4
LEMMA (LLaMA3) 77.3 36.4 84.1 37.9 87.7 82.7 23.1 61.3

DeepSeekMath-7B

GPTAug 77.8 45.5 88.7 52.6 89.6 71.0 31.0 65.2
LEMMA (GPT-4o) 80.4 50.6 89.8 61.6 90.9 81.6 35.6 70.1
LEMMA (LLaMA3) 78.4 48.8 88.8 60.7 88.0 76.1 34.7 67.9

Table 7: Additional results on GSM8K, MATH and out-of-distribution datasets using Mistral-7B-v0.1 and Qwen2-
Math-7B. †: numbers reported in Yan et al. (2024).

Model # Samples In-Distribution Out-Of-Distribution Avg.GSM8K MATH ASDIV Mathematics MAWPS SVAMP College-Math

Mistral-7B-v0.1

SFT 14.97k 56.4 14.1 62.2 16.6 72.6 52.6 9.2 40.5
RFT 86.52k 55.6 12.7 65.5 16.6 73.8 57.4 9.5 41.6
MetaMath 394.99k 72.6 28.1 75.9 26.6 85.0 69.4 15.4 53.3
GPTAug 88.62k 69.0 30.9 77.6 34.6 82.2 71.6 16.7 54.7

ISC 86.78k 54.1 24.6 18.1 27.4 19.5 12.2 14.3 24.3
RefAug 29.94k 71.9 30.7 78.4 33.7 83.7 74.7 17.7 55.8
RefAug-90k 89.92k 73.0 31.4 79.9 34.8 86.1 78.1 17.5 57.3

LEMMA 88.90k 80.8 34.5 81.1 40.3 85.8 78.9 20.1 60.2

Qwen2-Math-7B

SFT 14.97k 78.7 50.9 88.1 50.3 92.4 78.9 37.0 68.0
RFT 86.52k 83.5 54.4 90.7 57.4 92.7 80.0 38.5 71.0
MetaMath 394.99k 84.2 51.8 90.4 60.7 92.6 81.9 34.4 70.9
GPTAug 88.62k 83.8 53.6 92.3 64.9 95.2 89.5 36.6 73.7

ISC 86.78k 77.1 48.9 89.4 51.9 92.1 78.3 31.6 67.0
S3C-Math† (w/ MetaMath) 927k 84.7 51.7 - - - 87.4 - -
RefAug 29.94k 80.1 53.5 92.0 62.7 92.9 80.5 35.1 71.0
RefAug-90k 89.92k 84.1 56.4 92.4 68.7 93.2 84.3 36.2 73.6

LEMMA 88.90k 87.4 62.9 93.0 74.1 94.8 88.9 39.1 77.2
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Table 8: Performance comparison on GSM8K, MATH and out-of-distribution datasets under Pass@1 and Major-
ity@32 (Maj@32) settings. †: numbers reported in Yan et al. (2024). The best result is highlighted in bold, and the
second best is underlined. For Maj@32 evaluation, temperature is 0.7.

Model # Samples GSM8K MATH ASDIV Mathematics College-Math
Pass@1 Maj@32 Pass@1 Maj@32 Pass@1 Maj@32 Pass@1 Maj@32 Pass@1 Maj@32

LLaMA3-8B

SFT 14.97k 65.5 80.3 19.3 30.8 72.1 82.3 23.5 35.0 13.3 20.2
RFT 86.52k 67.3 79.3 21.1 29.4 74.8 84.5 24.9 37.2 16.7 22.3
MetaMath 394.99k 79.2 85.7 34.1 42.2 81.9 87.9 35.3 47.3 20.5 25.1
GPTAug 88.62k 72.1 81.1 31.8 38.8 81.2 90.4 36.5 47.5 21.2 25.0

ISC 86.78k 70.8 85.5 33.4 48.4 81.1 87.4 31.8 47.8 20.2 27.4
S3C-Math† (w/ MetaMath) 927k 82.9 87.3 33.1 41.6 - - - - - -
RefAug 29.94k 75.9 83.5 32.6 42.7 82.3 90.0 35.5 46.6 21.0 25.8
RefAug-90k 89.92k 77.4 85.3 34.2 41.8 82.1 90.3 35.7 49.3 21.9 25.6

LEMMA 88.90k 79.2 90.3 38.3 53.1 84.2 90.1 39.2 53.3 24.7 32.1

DeepSeekMath-7B

SFT 14.97k 68.1 81.7 35.2 48.6 80.9 90.0 39.6 55.1 28.8 32.6
RFT 86.52k 73.3 84.5 39.3 50.7 85.2 91.6 46.2 62.9 31.7 38.4
MetaMath 394.99k 79.4 84.8 42.0 52.5 87.8 93.1 49.0 64.2 31.6 37.4
GPTAug 88.62k 77.8 87.2 45.5 55.2 88.7 93.7 52.6 75.6 31.0 35.1

ISC 86.78k 66.3 82.5 36.8 51.4 82.2 91.4 43.1 61.6 32.0 38.1
S3C-Math† (w/ MetaMath) 927k 82.5 88.2 41.4 52.1 - - - - - -
RefAug 29.94k 75.5 86.5 39.5 49.5 81.2 94.1 56.9 70.1 30.4 31.4
RefAug-90k 89.92k 76.7 86.7 42.5 50.6 82.4 94.3 57.5 73.1 30.6 31.9

LEMMA 88.90k 80.4 89.2 50.6 63.6 89.8 93.1 61.6 77.4 35.6 36.8

Table 9: Ablation study on each component of LEMMA. Removing either the mistake augmentation module or the
fresh & restart module results in a dramatic decline in performance.

Method GSM8K MATH ASDIV Mathematics MAWPS SVAMP College-Math Avg.

LEMMA 79.2 38.3 84.2 39.2 88.8 82.6 24.7 62.4

w/o Error Aug. 72.8 28.8 81.0 32.0 85.1 75.6 21.7 56.7
w/o Error Aug. (90k) 74.3 32.1 81.2 35.8 86.5 78.5 21.8 58.6
w/o Fresh & Restart 75.2 34.4 82.7 37.1 87.7 79.6 22.2 59.8
w/o Fresh & Restart (90k) 75.7 34.1 82.3 37.6 87.0 80.2 22.1 59.9

Table 10: Error taxonomy adapted from Li et al. (2024e). We add “Question Misinterpretation Error (QM)”,
“Confusing Concept Error (CC)”, and “Nonsensical Output (NO)” to allow for a more fine-grained identification of
error types. Corresponding examples are provided in Figure 12.

Error Type Definition

Calculation Error (CA) Error appears during the calculation process.
Counting Error (CO) Error occurs during the counting process.
Context Value Error (CV) Error arises when attributes of named entities do not align with the information provided.
Hallucination (HA) Error involves adding fictitious unrelated statements contradictory to the question.
Unit Conversion Error (UC) Error occurs during unit conversion process.
Operator Error (OP) Error involves a single operator being erroneously applied within the expression.
Formula Confusion Error (FC) Error appears when applying formula in inappropriate scenario.
Missing Step (MS) Error entails an incomplete generation of reasoning process, lacking a necessary step.
Contradictory Step (CS) Error manifests inconsistency between preceding and subsequent reasoning steps.

Question Misinterpretation Error(QM) Error appears because the question is misunderstood, such as ignoring specific constraints in the question.
Confusing Concept Error (CC) Error occurs because two similar but actually different concepts are mistakenly confused.
Nonsensical Output (NO) Inconceivable, illogical, or question-irrelevant output.
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Question Misinterpretation

Question: Josh decides to try flipping a house. He buys a house for $80,000 and then puts in $50,000 in repairs.
This increased the value of the house by 150%. How much profit did he make?
Incorrect Solution: The house is worth 80,000 + 50,000 = 130,000. The value increased by 150%, so it is now
130,000 + 150% of 130,000. 150% of 130,000 is 1.5 * 130,000 = 195,000. The house is now worth 130,000 +
195,000 = 325,000. The profit is 325,000 - 80,000 - 50,000 = 195,000. The answer is 195,000.
Classification Explanation: The solution is incorrect, the first wrong step arises because the value increase was
miscalculated by applying the 150% increase to the total cost of the house and repairs ($130,000) instead of the
original house price ($80,000). Therefore, the wrong type is ‘question_misinterpretation_error’.

Confusing Concept Error

Question: Juan and his brother Carlos are selling lemonade. For each gallon they make it costs $3 for lemons
and $2 for sugar. They sell each glass for $0.50 and get 20 glasses per gallon. If they made $25 in profit, how
much did they spend on lemons?
Incorrect Solution: They sold 20 glasses per gallon for $0.50 each. So they made 20 x $0.50 = $10 per gallon.
They made $25 in profit. So they sold 25 / 10 = 2.5 gallons. They spent $3 per gallon on lemons. So they spent
2.5 x $3 = $7.50 on lemons. The answer is 7.5.
Classification Explanation: The solution is incorrect, the first wrong step arises because the number of gallons
sold was miscalculated. The profit per gallon should have been considered ($5 per gallon, not $10 per gallon,
as $10 includes revenue without accounting for costs). Instead, the calculation used $10 per gallon to find the
number of gallons sold, leading to the wrong result. Therefore, the wrong type is ‘confusing_concept_error’.

Calculation Error

Question: Mishka bought 3 pairs of shorts, 3 pairs of pants, and 3 pairs of shoes. One pair of shorts costs
$16.50. One pair of pants costs $22.50 and one pair of shoes costs $42. How many dollars did Mishka spend on
all the clothing items?
Incorrect Solution: Mishka bought 3 pairs of shorts, 3 pairs of pants, and 3 pairs of shoes. So he bought 3 + 3
+ 3 = 9 items. One pair of shorts costs 16.50 dollars. One pair of pants costs 22.50 dollars. One pair of shoes
costs 42 dollars. So he spent 3 * 16.50 + 3 * 22.50 + 3 * 42 = 165 + 67.50 + 126 = 358.50 dollars. The answer
is 358.50.
Classification Explanation: The solution is incorrect, the first wrong step arises because there is a calculation
error in computing the middle term. 3 * 22.50 should equal 67.50, but when adding this to the other terms
(49.50 + 67.50 + 126), the solution arrives at an incorrect total of 358.50. The correct calculation should be: 3 *
16.50 = 49.50, 3 * 22.50 = 67.50, 3 * 42 = 126, and 49.50 + 67.50 + 126 = 243. Therefore, the wrong type is
‘calculation_error’.

Missing Step Error

Question: Darrell and Allen’s ages are in the ratio of 7:11. If their total age now is 162, calculate Allen’s age
10 years from now.
Incorrect Solution: The ratio of Darrell’s age to Allen’s age is 7:11. The sum of the ratio is 7 + 11 = 18.
Darrell’s age is 7/18 of the total age. Allen’s age is 11/18 of the total age. 11/18 of 162 is 99. The answer is 99.
Classification Explanation: The solution is incorrect, the first wrong step arises because the problem asks for
Allen’s age 10 years from now, but the proposed solution only calculates his current age. Therefore, the wrong
type is ‘missing_step_error’.

Nonsense Output Error

Question: Janet’s ducks lay 16 eggs per day. She eats three for breakfast every morning and bakes muffins for
her friends every day with four. She sells the remainder at the farmers’ market daily for $2 per fresh duck egg.
How much in dollars does she make every day at the farmers’ market?
Incorrect Solution: First off, Janet eats about three of the 16 eggs each day, leaving 16-3= 13 eggs left over to
figure out how much profit she can earn from sales. Because she bakes four muffins per day using four of the 16
bird eggs, 4 duck eggs+13 duck eggs=17 eggs to bake 5 muffins. Quack! Each fresh duck egg,I’m sorry, each
dryer egg eggs muffin mix approximately sell $2 each at the farmers’ pavilion farmers market fair vendors stalls.
That’s about $13 total per Five Fresh Glazed Muffins. Would all cashiers fell her sales quickly? Quick Take ⊗
Sophia
Classification Explanation: The solution is incorrect, the first wrong step arises because the proposed solution
includes incoherent and irrelevant information that does not align with the logical structure and context of the
question. The output deviates significantly from the problem’s requirements and reasoning steps, making it
nonsensical. Therefore, the wrong type is ‘nonsense_output_error’.

Figure 12: Representative error type and corresponding examples.
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Error Augmentation Prompt

### Instruction
Suppose you are a careless student. I will provide you with a problem and the ground-truth solution. Your goal is to propose
a new solution that contains specific errors. Specifically, you should:

• Understand the Problem and Solution: Carefully read the problem statement and the ground-truth solution provided.
Ensure you fully understand the question and the solution.

• Introduce Specific Errors: Intentionally introduce a {Error_Type} error into the reasoning steps.

{Error_Description}. Try to make these errors plausible and reasonable that even an intelligent student will make,
not blatant or superficial. Don’t mention the error_type error explicitly. Your output should be as natural as a student’s
realistic reasoning process, in which he/she makes mistakes.

• Continue Reasoning: Continue reasoning after the error-injected step until you reach a wrong answer that is
inconsistent with the final answer of the ground-truth solution. Leave the previous error as it is. Do NOT try to correct
the error in the following steps.

• Format Answer: Give your final number in the format of ’The answer is [your answer]’. Stop at the wrong answer,
do not try to correct it.

• Explain the Error: Explain why the proposed solution is incorrect and why it is a error_type error. Your explanation
should be wrapped in <explanation> tags.

[Question] question
[Ground-truth Solution] gt_solution
[Error-Injected Solution]

Figure 13: Error augmentation prompt for introducing flawed reasoning trajectories using the teacher model.
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“Fix & Continue” Correction Prompt

### Instruction
You are a diligent student with a sharp analytical mind. Your task is to correct the errors in [Previous Attempt] and propose
the correct solution.

1. Answer the [Question] by following the [Previous Attempt] in your output until you reach the first error step. After
outputing the first error step, stop following the [Previous Attempt] and use one of the following "transition" phrases
to naturally introduce the shift in reasoning:

• But, wait, let’s pause and examine this more carefully.
• Wait a second, let’s ensure this is right. Calculating carefully:
• Hmm, I want to verify this calculation. Let’s go through it:
• Wait, this doesn’t seem right. Let’s pause and consider this:
• Let’s pause and consider what we know so far.
• This didn’t seem right. Wait, let’s correct that.
• Wait, something seems off. Let’s pause and consider what we know so far.
• Let’s pause and consider if we’ve set up everything correctly.
• Wait a second. Is everything correct? Let me double-check.
• Wait, maybe there’s something wrong. Let’s pause and reconsider.
• The result looks strange, is everything correct? Let me double-check.
• Does this make sense? Let’s rethink this.
• Could I have missed something? Let’s pause and consider what we know so far.

2. Then, point out the previous error, correct it, and continue reasoning from the corrected step until you reach an
answer consistent with the [Ground-truth Solution].

3. Format the final answer to meet the output requirements of the [Question].

4. Don’t mention [Previous Attempt] and [Ground-truth Solution] explicitly. Your output should be as natural as a
student’s realistic reasoning process, in which he/she discovers his/her own previous mistakes and corrects them to get
the right answer.

5. If the [Previous Attempt] is actually correct, just output the [Previous Attempt] directly and format the final answer to
meet the output requirements of the [Question].

[Question] {question}
[Previous Attempt] {pred_solution}
[Ground-truth Solution] {gt_solution}
[Corrected Solution]

Figure 14: “Fix & Continue” correction prompt.
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“Fresh Restart” Correction Prompt

### Instruction
You are a diligent student with a sharp analytical mind. Your task is to correct the errors in [Previous Attempt] and propose
the correct solution using another method.

1. Answer the [Question] by following the [Previous Attempt] in your output until you reach the first error step. After
outputing the first error step, stop following the [Previous Attempt] and use one of the following "transition" phrases
to naturally introduce the shift in reasoning:

• But, wait, let’s pause and examine this more carefully.
• Wait a second, let’s ensure this is right. Calculating carefully:
• Hmm, I want to verify this calculation. Let’s go through it:
• Wait, this doesn’t seem right. Let’s pause and consider this:
• Let’s pause and consider what we know so far.
• This didn’t seem right. Wait, let’s correct that.
• Wait, something seems off. Let’s pause and consider what we know so far.
• Let’s pause and consider if we’ve set up everything correctly.
• Wait a second. Is everything correct? Let me double-check.
• Wait, maybe there’s something wrong. Let’s pause and reconsider.
• The result looks strange, is everything correct? Let me double-check.
• Does this make sense? Let’s rethink this.
• Could I have missed something? Let’s pause and consider what we know so far.

2. Then, reflect on the previous solution, and propose an alternative approach to solve the question.

3. Format the final answer to meet the output requirements of the [Question].

4. Don’t mention [Previous Attempt] and [Ground-truth Solution] explicitly. Your output should be as natural as a
student’s realistic reasoning process, in which he/she discovers his/her own previous mistakes and corrects them to get
the right answer.

5. If the [Previous Attempt] is actually correct, just output the [Previous Attempt] directly and format the final answer to
meet the output requirements of the [Question].

[Question] {question}
[Previous Attempt] {pred_solution}
[Corrected Solution]

Figure 15: “Fresh & Restart” correction prompt.
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