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Abstract—In this paper, we propose a new deep learning-based
quality ranking framework to assist video list decoding methods
in the context of unreliable video transmissions. The objective is
to identify an intact image (corrected video frame) among a list
of candidate images generated by a list decoding method, where
all candidates, except for the intact image are corrupted. The
framework comprises a deep learning-based no-reference image
quality assessment (NR-IQA) for non-uniform video distortions
(NUD) system to rank the candidate images according to their
quality, which allows identifying the best one. To show the
validity of our proposed framework, we develop an NR-IQA
system relying on a proven patch-based convolutional neural
network (CNN) architecture, which we adapt to better account
for the non-uniform distortions observed in the candidate images,
e.g., H.265 transmission errors during wireless communications.
Specifically, we modify the patch size on which our CNN for
non-uniform distortions (CNN-NUD) operates to capture a larger
and more meaningful spatial context. Moreover, we develop a
new training database using images resulting from various bit
modifications in the received video packets, to simulate the list
decoding process, and train the system using a full reference
IQA (FR-IQA) method. Experiments on intra frames of videos
encoded using H.265 show the ability of this system to identify
an intact image among a set of five candidate images with an
average accuracy of 96.6%, whereas traditional NR-IQA metrics
or the initially trained CNN system offer poor accuracy ranging
between 15.7% and 33.6%, respectively.

Index Terms—Video Quality, Non-uniform Distortions, List
Decoding, Convolutional Neural Network (CNN), H.265, trans-
mission errors, wireless communications

I. INTRODUCTION

The last few years have been marked by a growth in the
number of intelligent systems. Most of them are equipped with
video sensors to allow their interaction with the environment.
As the video stream coming from these sensors is usually
transmitted to a core computer in order to be processed and
analyzed, video compression is inevitable prior to transmission
due to the huge amount of data that has to be transmit-
ted. Video communications mainly rely on wireless systems,
and as such inevitably suffer from errors in the transmitted
bitstream. Traditional approaches to fix such errors consist
in using forward error correction (FEC) codes [1]–[4], error
correction [5]–[8] or error concealment [9]–[12].

Although challenging, error correction avoids the overhead
introduced by FEC, and unlike error concealment, can recover

the intact (originally transmitted) information. Video list de-
coding is an error correction approach in which several altered
versions of a received video packet are generated by flipping
specific bits [5]–[8]. Each represents a meaningful attempt
to correct the received packet, and is known as a candidate.
Among the generated candidates, only one corresponds to the
intact (corrected) packet. The list decoding method must then
select, using a ranking criterion, the best candidate, ideally
corresponding to the intact video packet. For instance, in [5]
and [6], the authors use soft bits, which are real values
representative of the probability of having received an actual
0 or 1 (e.g., log-likelihood ratios), to select the most likely
video slice candidate. More precisely, they sum the absolute
soft bit information of the inverted bits and the most likely
video slice candidate is the one with the lowest sum (0 if no
bits were inverted). One problem with this approach is that
soft bit values are rarely available above the physical layer of
the protocol stack.

In order to increase the error correction capability without
relying on soft bit information, recent works have proposed to
use the Cyclic Redundancy Check (CRC) to guide correction.
In this context, the CRC is not considered as an overhead since
it is ubiquitously present in communications for validating
packet integrity, and is not simply added to support error
correction. Two methods have recently been proposed for
packet correction. The first is an arithmetic approach [13],
[14], while the other is based on a lookup table [15]. As
demonstrated in [16], such methods offer great potential in
Bluetooth Low Energy (BLE) and the Internet of Things (IoT)
environments. However, one drawback with this approach is
that it may generate a large number of candidates as N, the
number of assumed errors in each packet, grows. To tackle this
problem, the authors propose using additional validation steps
such as checksum and decoding validations. While this allows
to drastically reduce the number of possible candidates, several
candidates may nonetheless still remain. For instance, in [16]
the authors present experimental results where H.264 Baseline
encoded packets restricted to 1500 bytes protected with CRC-
24 lead to 34,705 valid candidates when a maximum of N=3
errors is considered. This number is reduced to an average
of 117.1 when checksum validation (CV) at the UDP level
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is applied and to 3.4 when additional video decoding checks
(VDC) are applied (e.g the video decoder can reconstruct
without crashing or encountering invalid information). When
several candidates remain after CV+VDC, the recovered candi-
date is arbitrarily chosen as the first decodable one [13]. This
could lead to an improper decision, i.e., a video containing
visual artifacts. To circumvent this, the decision regarding the
right candidate may be made by focusing on the visual aspect
of each candidate in the list. Such a visual consideration is
presented in [17], where the most likely candidate is decided
using a pixel-domain alignment metric.

This idea can be extended by using reliable visual quality
metrics (VQMs) for evaluations. Such metrics are divided into
three categories: full reference image quality assessment (FR-
IQA), reduced reference IQA (RR-IQA) and no-reference IQA
(NR-IQA) metrics. The FR-IQA metrics such as the Structural
Similarity Index (SSIM) [18], the Peak Signal-to-Noise Ratio
(PSNR), the Visual Information Fidelity (VIF), or even the
recent Video Multimethod Assessment Fusion (VMAF) metric
proposed by Netflix, are not usable in practice, since it is
necessary to have access to the original image to compute
them.

To overcome this problem with the FR-IQA metrics, NR-
IQA metrics such as the Blind/Referenceless Image Spatial
Quality Evaluator (BRISQUE) [19], the Perception based
Image Quality Evaluator (PIQE) [20], the Naturalness Image
Quality Evaluator (NIQE) [21] and recent learning based
methods can be used [22]–[24]. However, in this paper,
we show that these metrics are not reliable for assessing
the visual quality of images degraded due to non-uniform
distortions resulting from inverted bits within received H.265
video packets. The learning-based metrics need at the very
least to be retrained on an image database comprising non-
uniform distortions as observed in video damaged during
wireless transmissions and candidate images generated by
list decoding. And, depending on the learning-based archi-
tecture, more extensive modifications may be required. As
these popular metrics are not well adapted to the studied
problem, in this paper, we propose a new NR-IQA metric
relying on a convolutional neural network (CNN) as part
of our deep learning-based framework to support video list
decoding. The latter is evaluated considering H.265 wireless
communications where videos are subject to transmission
errors. We focus on intra-coded images due to their importance
in video communications [25].

Our contributions are as follows:
• We propose a new deep learning-based quality ranking

framework to assist video list decoding methods in the
context of unreliable video transmissions.

• We created and are making available two new video
databases extracted from the Sports-1M YouTube dataset
comprising 1 million videos at various resolutions [26].
The first one, used as training database, contains intact
and corrupted images (with non-uniform distortions) cre-
ated from 2590 extracted videos. The second one, used
as testing database, is similar to the first one but contains

intact and corrupted images generated from another set
of 113 videos. The code to recreate these two databases
is made available.

• We show from simulations that for intra-coded H.265
frames subject to transmission errors, the proposed ap-
proach is highly reliable for identifying the image with
the highest quality among a list of candidates with an
average accuracy of 96.6% while traditional NR-IQA
metrics perform poorly with an accuracy ranging between
15.7% and 33.6%.

• We show that the proposed database plays a key role
in the good performance obtained since the initial CNN
architecture [27] trained on the LIVE/TID2008 database
has accuracy of 32.1% while its accuracy reaches 95.2%
when trained on the proposed database. Nevertheless, our
improved method not only reaches a higher accuracy
(96.6%) but also a better visual quality when a wrong
decision is made.

Although H.265 [28] has been selected for this work, the
same methodology can be applied to other video compres-
sion standards such as H.264 and Versatile Video Coding
(VVC) [29]. We have selected H.265 because it is among
the standards that offer the best compression efficiency at
a reasonable computational complexity. We focus on Intra
frames since errors on them have a more negative impact on
the visual quality than on Inter frames. Their size is also much
larger, making them more prone to errors.

The goal of this work is not to propose a new deep learning
architecture or to show that the proposed system outperforms
other possible architectures, but rather, to demonstrate that
the proposed approach and architecture have the capability to
solve the problem of identifying the intact (corrected) image
among several images exhibiting to non-uniform distortions
due to transmission errors (bit inversions).

The paper is organized as follows: the proposed method is
described in Section II. Simulation results are presented and
analyzed in Section III. Finally, conclusion and future works
are given in Section IV.

II. PROPOSED VISUAL QUALITY RANKING FRAMEWORK

In this section, we present our deep learning-based quality
ranking framework to assist video list decoding methods.
We introduce a convolutional neural network for non-uniform
video distortions (CNN-NUD) to rank images obtained from
a list decoding method. Note that other deep learning-based
architectures could also be selected for this purpose. As men-
tioned, our goal is not to show that this specific CNN-NUD
system outperforms other possible architectures, but rather, to
demonstrate that the proposed approach and architecture have
the capability to solve the problem at hand. We also show the
system modifications and other considerations related to the
training, for example, that are required to solve it.

The proposed framework is illustrated in Fig. 1. The system
is first trained with a dataset containing intact and corrupted
decoded images. The dataset is obtained by first encoding sev-
eral images using H.265. Then, we simulate the list decoding
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Best 

candidate

Fig. 1: Global CNN-NUD framework (training on top, infer-
ence at the bottom) for the ranking of candidate images gen-
erated by a list decoding method, with illustrative examples.

process where bits of each received video packet are inverted at
various positions in an attempt to correct transmission errors.
Thus, for each encoded video, we obtain a list of video
candidates comprising the intact video along with several
corrupted versions of it. The loss function, corresponding to
the L1 norm, uses the predicted IQA score, denoted IQA’,
and a full-reference metric score calculated between each
decoded candidate and the decoded intact image. During the
inference phase, each candidate image resulting from video list
decoding passes through the trained CNN-NUD, and the one
with the highest predicted score is selected as the best one. We
maintain that our system ranks images since we are interested
in the accurate selection of the intact image rather than
having quality scores accurately matching human assessments.
Developing such a system is necessary as existing NR-IQA
metrics perform poorly in identifying the intact image, as will
be apparent in light of our experimental results (see Table II,
where their accuracy is less than 42% when there are only
four candidates). In the remainder of this section, we present
the various aspects of the proposed CNN-NUD.

A. No-reference CNN-based visual quality estimation

The image quality ranking system we develop relies on
a proven CNN architecture. We reuse the one presented
in [27], which was developed to perform IQA of corrupted
images with uniform distortions (e.g., white noise, blur). In
this paper, we modify the system according to our problem,
and in particular, to support non-uniform video distortions
observed in candidates. The system is composed of 5 layers,
as illustrated in Fig. 2 and assigns the same visual quality
score to each patch of an image.

It takes as input non-overlapping grayscale patches (blocks
of pixels) of size 32×32. A comparative study performed by
the authors on the size of the patches (ranging from 8 to
48), showed that the performance measured using the Spear-
man’s Rank Order Correlation Coefficient (SROCC) increased
slightly, from 0.946 to 0.959, with increasing patch size. These
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Fig. 2: Architecture of the initial CNN [27].

input patches are normalized as follows (step a):

pj,m =
p′j,m − µj,m

σj,m + C
, 1 ≤ m < Kj , (1)

where Kj is the number of patches in an image Ij , pj,m is the
normalized intensity of the m-th patch p′j,m, µj,m its mean,
σj,m its standard deviation and C is a constant fixed at 1 to
ensure numerical stability even when σj,m is close to zero.

The result is fed to a convolution layer of size 7×7 with
50 filters (step b). Each feature from the convolution is sent
to a pooling layer with a max pooling (step c). Its output is
fed to two connected layers with 400 neurons each (step d).
The last layer consists of a linear regression (step e) to obtain
the patch’s predicted visual score. The image’s visual score
is obtained by averaging the one of all patches forming the
image.

In [27], the network is initially trained with two databases:
LIVE [30] and TID2008 [31]. The loss function used is the
L1 norm defined as follows:

L =
1

M

M∑
j=1

1

Kj

Kj∑
m=1

∥f(pj,m;w)− yj,m∥L1, (2)

where M corresponds to the number of images used for
training the network, pj,m and yj,m correspond to the m-th
input patch of image Ij (the j-th training image) and its Dif-
ference Mean Opinion Score (DMOS) value, respectively, and
f(pj,m;w) represents the predicted patch quality value from
the network with weight w. Given the uniform degradation of
the images used for training, the value of yj,m is kept constant
for each patch of the image and corresponds to the visual
score of the whole image (i.e., DMOS). As we will see in the
next subsection, this approach, although competitive in terms
of best candidate selection accuracy, makes wrong decisions
leading to strong image quality degradations in our study case.
Therefore, changes are required to consider the non-uniform
nature of the distortions observed in our context of interest.

In the inference phase, our system estimates the quality of
an image I , comprising K patches, as:

IQA’(I) =
1

K

K∑
m=1

f(pm;w), (3)

where pm is the m-th image patch.
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(a) (b) (c) (d)

Fig. 3: Visual illustrations from the LIVE database [30]
containing image distortions: (a) JPEG compression, (b)
JPEG 2000 compression, (c) fast fading, (d) gaussian blur.

(a) (b) (c) (d)

Fig. 4: Visual illustrations from the proposed database with
non-uniform video distortions: (a)-(d) examples of 4 decoded
H.265 video packets containing intra frames where a bit is
inverted at different locations.

B. Modification of the CNN to support non-uniform video
distortions

As mentioned earlier, the initial NR-IQA architecture is
trained with uniform image distortions as shown in Fig. 3a-3d.
However, distortions observed in the context of list decoding,
where one or several bits of the received video packet are
inverted at various positions in an attempt to correct transmis-
sion errors, are clearly different and non-uniform, as shown in
Fig 4a-4d.

Therefore, the first modification concerns the metric used
in the training process. In the initial architecture, a single
DMOS value was used for all the patches coming from the
same image since distortions applied were uniform within the
image. In our case, this simplification does not hold. Indeed,
as this work considers NUD, a different score needs to be
assigned to intact and visually-corrupted patches during the
training. Having access to the original and erroneous images
in the training process, we propose assigning to each patch
a specific visual quality value by using a FR-IQA metric
such as the SSIM. SSIM was selected here due its ability to
measure changes in the structures (edges, textures) of images.
The metric is calculated between the patch coming from a
candidate and the intact one (at the same spatial position).

Furthermore, when dealing with corrupted packets, it can
be seen that the reconstructed image might contains some
32×32 erroneous patches exhibiting uniform colors (all black,
gray, etc.). The consequence of these distortions is that the
convolution operation, whose objective is to extract features,
cannot obtain any discriminative feature after the pooling
layer. Indeed, patches containing uniform colors can either be
original/initial patches coming from the image (e.g., flat areas)
or erroneous patches resulting from a bit error. To avoid such
ambiguity leading to misclassification, the second modification
we propose is to increase the patch size from 32×32 to 64×64.
This allows capturing a larger and more meaningful spatial

context within which discontinuities introduced by bit errors
are more likely to occur. This is shown in Fig. 5.

Fig. 5: Example of distortion for a patch size of 32×32 versus
64×64 for an H.265 packet subject to bit alteration.

Using this patch size modification, the convolution layer
of size 7×7 is able to capture information resulting from
the block boundaries. In order to train our system, we
create a new database containing intact and corrupted im-
ages from 2590 videos using the SPORT-1M database [32],
which consists of 1 million YouTube videos at various res-
olutions (e.g., 176×144, 320×240, 640×480, 1280×720).
Downloaded videos are encoded via the H.265 Test Model
(HM) encoder [33], with the following parameters: QP=37,
one image per packet. Each corrupted image is a decoded
packet after a bit was inverted at a random position to simulate
a candidate generated by the list decoding process. The code
for generating the database can be found at the following link:
https://github.com/AlexisGuichemerreCode/CNN Ranki
ng ListDecoding. In a first approach, we consider a high
quantization parameter (e.g., QP=37) to train the proposed
CNN. For high QP values, a single bit error has the potential
to create more significant visual distortion. Indeed, videos
encoded at a higher QP contain more critical information such
as the prediction modes, while those encoded at a lower QP
contain more residual information.

Finally, we modified the learning rate parameter to 10−5.
Indeed, the value of 10−1, which was used to train the initial
architecture in [27], gave a negative R2 score when retraining
it with our new database. The network was trained using 50
epochs as in [27].

C. Selection of the best candidate

Our neural network allows assigning an image quality value
to each patch of the image. The average of the patch quality
values within an image Ij is calculated, assigned to the whole
image, and is denoted IQA’(Ij). This metric then allows
ranking each candidate of a set from the most degraded image
to the least. The system selects the optimal image, Icopt, among
P candidates as:

Icopt = argmax
{Ic

j ,1≤j≤P}
IQA’(Icj ), (4)

where Icj is the j-th candidate image.

III. SIMULATIONS AND RESULTS

In this section, we assess and compare the performance
of various NR-IQA metrics, including the proposed system,
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in terms of R2 score for the training phase, accuracy to
discriminate the best candidate from the list, and average
visual quality for both the selected and the wrongly-classified
candidates.

A. Training performance of the CNN-NUD system

We first evaluate the performance of the system during the
training phase using the R2 score [34] computed as:

R2 = 1−
∑M

j=1

∑Kj

m=1 (yj,m − ŷj,m)∑M
j=1

∑Kj

m=1 (yj,m − y)
, (5)

where yj,m is the SSIM score associated with the m-th patch
sample of image Ij (with 1 ≤ m ≤ Kj), ŷj,m the SSIM score
predicted by the CNN associated with that same patch, and
y the mean SSIM score of the total database comprising M
images. A zero value for R2 indicates no correlation whereas
a score close to 1 indicates a perfect correlation. Note that the
training was performed using the 73545 patches comprising
the proposed database.

The R2 score for each tested CNN-based system is shown in
Table I. The three systems are: CNN retrained (CNN from [27]
trained with our proposed database), the proposed CNN-NUD
with 32×32 patches and with 64×64 patches. In the following
subsections, we will show that although higher R2 values
would have been hoped for, the systems are still able to
identify the best candidate with high accuracy. Even so, the
systems greatly differ when we analyze the quality of the
candidates they select, especially upon wrong decisions.

TABLE I: R2 score for each CNN-based system.

System R²

CNN [27] retrained 0.07
Proposed CNN-NUD 32× 32 0.25
Proposed CNN-NUD 64× 64 0.48

B. Candidate selection performance

In this subsection, we evaluate and analyze the candidate
selection performance of various no-reference IQA metrics:
BRISQUE, NIQE, PIQE, original CNN proposed in [27]
(which is trained with the LIVE [30] and TID2008 [31]),
original CNN retrained on our dataset, our proposed CNN-
NUD 32× 32 and CNN-NUD 64× 64 trained on our dataset.
As we clearly do not have access to the intact video during
the inference phase, only NR-IQA methods can be used (for
instance, PSNR and SSIM cannot be used).

Testing database: To study the performance of the pro-
posed system with respect to the studied problem, we create a
second database containing 113 videos of various resolutions
selected randomly from VGA to 720p. For simplicity, each
video is then rescaled at a resolution of 448×360 and encoded
using H.265 (HM encoder) with the following parameters:
QP=37, 1 packet/frame. A bit is then inverted at a random
position in the packet containing the intra (I) frame to simulate
the candidate generation process of list decoding. For each
video, four possible candidates are generated, namely: the

(a) (b) (c) (d)

Fig. 6: Example of 4 different levels of distortion for an
H.265 packet, comprising an intra frame, where a single
bit is inverted. Each example corresponds to an inverted bit
occurring at a different position, in percentage, within the
packet (0% is the first bit and 100% the last): (a) original
image, (b) inverted bit at about 30%, (c) inverted bit at about
40%, (d) inverted bit at about 70%.

original image without any error (Fig 6a), a candidate with
one inverted bit located at about 30% of the packet length
(Fig 6b), another one with an inverted bit located at about
40% (Fig 6c) and a last one with an inverted bit at about 70%
(Fig 6d) of the packet length. This simulates, for example,
the generation of candidates after performing CRC-based
error correction from [14]. Each candidate frame is decoded
with FFmpeg [35] and without any concealment. The main
reasons for creating such candidates are that the number of
decodable candidates after the CRC-based error correction
with checksum/decoder validation (CV+VDC) is significantly
low and inverted bits appear randomly. Note that an inverted
bit located at the beginning of the packet normally produces
a stronger degradation within the image.

Accuracy analysis with 4 candidates: Considering this
testing database composed of 113 videos and 4 candidates
for each video, simulations reveal that the three CNN-based
methods (CNN retrained, and the proposed CNN-NUD 32×32
and 64× 64) allow correctly selecting the intact video among
the other candidates with an average accuracy for different
QP of 95.7%, 96.6% and 98.2%, respectively. This is shown
in Table II (columns with 4 candidates), which presents a
performance comparison between various state-of-the-art no-
reference IQA metrics and our CNN-NUD solutions. The
accuracy represents the percentage of good classification, i.e.,
percentage of the time the system can identify the intact video
among the candidates. Note that since the original image is
clearly not available at the decoder, only no-reference image
quality metrics are required to be included in the performance
evaluation.

As observed, none of the tested NR-IQA metrics is able
to reliably rank the candidates and adequately select the
best one from the list. When considering four candidates in
the list, the best results obtained for such metrics are very
low (i.e., 36.3% at most, obtained for QP=37). The original
CNN proposed in [27], which is trained with the LIVE [30]
and TID2008 [31], increases the accuracy to up to 42.4%,
obtained for QP=37. This poor result is not surprising since
the CNN is trained with databases containing visual distortions
relating to JPEG 2000 compression, JPEG compression, white
gaussian noise, gaussian blur and fast fading (see Fig. 3a-
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TABLE II: Performance comparison of various NR metrics
for four and five candidates: BRISQUE, NIQE, PIQE, CNN
LIVE (CNN from [27] which is trained with the LIVE [30]
and TID2008 [31] databases), CNN retrained (CNN from [27]
trained with our proposed database) and the proposed CNN-
NUD 32 × 32 and 64 × 64. Avg. SSIM choice represents the
average systems’ SSIM on the test data while Avg. SSIM wrong
represents the average SSIM of wrongly-classified images.

NR-IQA metrics
Accuracy (%) Avg. SSIM choice Avg. SSIM wrong

4 cand. 5 cand. 4 cand. 5 cand. 4 cand. 5 cand.

QP=22

BRISQUE [19] 15.9 13.3 0.667 0.635 0.604 0.566
NIQE [21] 15.1 11.5 0.685 0.661 0.629 0.601
PIQE [20] 34.5 29.2 0.789 0.725 0.678 0.580

CNN LIVE/TID2008 [27] 26.5 22.1 0.682 0.686 0.567 0.596
CNN [27] retrained 95.5 95.5 0.975 0.975 0.453 0.453

Proposed CNN-NUD 32× 32 96.4 96.4 0.979 0.979 0.409 0.409
Proposed CNN-NUD 64× 64 98.2 97.3 0.993 0.993 0.622 0.735

QP=27

BRISQUE [19] 20.4 18.6 0.702 0.703 0.626 0.628
NIQE [21] 15.1 12.4 0.730 0.723 0.682 0.674
PIQE [20] 38.9 35.4 0.733 0.744 0.563 0.581

CNN LIVE/TID2008 [27] 34.5 33.6 0.737 0.740 0.599 0.608
CNN [27] retrained 95.5 94.6 0.982 0.982 0.607 0.671

Proposed CNN-NUD 32× 32 94.6 93.8 0.980 0.980 0.625 0.678
Proposed CNN-NUD 64× 64 98.2 97.3 0.996 0.997 0.813 0.873

QP=32

BRISQUE [19] 28.3 21.2 0.718 0.752 0.606 0.654
NIQE [21] 18.6 14.2 0.702 0.728 0.634 0.666
PIQE [20] 38.3 35.4 0.711 0.716 0.531 0.540

CNN LIVE/TID2008 [27] 33.6 32.7 0.726 0.726 0.588 0.592
CNN [27] retrained 97.3 96.4 0.988 0.988 0.555 0.662

Proposed CNN-NUD 32× 32 99.1 96.5 0.992 0.991 0.189 0.757
Proposed CNN-NUD 64× 64 97.3 96.4 0.992 0.992 0.730 0.789

QP=37

BRISQUE [19] 35.4 35.4 0.756 0.756 0.623 0.623
NIQE [21] 24.8 24.8 0.729 0.729 0.639 0.639
PIQE [20] 36.3 34.5 0.744 0.744 0.622 0.598

CNN LIVE/TID2008 [27] 42.4 39.8 0.762 0.765 0.580 0.610
CNN [27] retrained 94.6 94.6 0.981 0.981 0.650 0.655

Proposed CNN-NUD 32× 32 96.4 95.5 0.989 0.993 0.702 0.834
Proposed CNN-NUD 64× 64 99.1 95.5 0.999 0.999 0.996 0.980

Average

BRISQUE [19] 25.0 22.1 - - - -
NIQE [21] 18.4 15.7 - - - -
PIQE [20] 37.0 33.6 - - - -

CNN LIVE/TID2008 [27] 34.3 32.1 - - - -
CNN [27] retrained 95.7 95.2 - - - -

Proposed CNN-NUD 32× 32 96.6 95.5 - - - -
Proposed CNN-NUD 64× 64 98.2 96.6 - - - -

3d). Note that the fast fading effects are studied in the case
of JPEG 2000 with error resilience features enabled, which
induce visual artifacts completely different from the ones
resulting from bit errors in an H.265 compressed video stream.
When training that CNN with our proposed database, which
comprise distortions generated by bit errors such as those
observed in wireless transmissions, the accuracy increases to
94.6% at QP=37.

Applying the system changes described in section II allows
the proposed CNN-NUD to reach an accuracy of 96.4% and
99.1%, at QP=37, for the 32 × 32 and 64 × 64 systems,
respectively.

Effectively, by increasing the size of the input parameter to
capture more local information, applying a reference metric
for each patch rather than for the whole image during the
training (i.e., assigning the SSIM locally patch by patch), de-
veloping a training database composed of realistically distorted
candidates and training the system under these conditions, we
succeeded in developing a system capable of reliably selecting
the best candidate (i.e., the intact one) from a list issued
from a list decoding approach. Even if the retrained CNN
performs adequately in terms of accuracy, we are able to
further increase it. Indeed the average accuracy, considering
all QPs, for the retrained CNN is 95.7%, while the proposed
CNN-NUD systems offer an average accuracy of 96.6% and
98.2% for the 32×32 and the 64×64 patch sizes, respectively.

Fig 7 provides a visual example of the candidate selec-
tion performed by each method. We can observe that CNN
LIVE/TID2008 and CNN retrained make very poor choices.
While our CNN-NUD 32×32 makes a better choice, our CNN-
NUD 64×64 manages to select the intact version.

Accuracy analysis with 5 candidates: Moreover, as
observed in Fig. 6, the test was performed with three candidate
videos with major degradation as well as the intact one.
When considering an inverted bit located at the end of the
packet (position at about 90% of the packet length), a smaller
degradation is observed on the intra image as shown in Fig 8.
In the following, we also assess the performance of the system
by adding a fifth candidate with an inverted bit located at
about 90% of the packet length. As observed in Fig. 8, such a
location for a wrong bit causes a smaller degradation over
the frame (red square) and corresponds to an even more
challenging case for the system. In such a case, and as shown
in Table II (columns with 5 candidates), the proposed CNN-
NUD and the CNN retrained systems still offer great accuracy
(95.2% for CNN retrained, 95.5% for 32× 32 and 96.6% for
64× 64), whereas the other methods still fail in isolating the
best candidate (the average accuracy ranges between [15.7%–
33.6%] for non CNN-based methods and is 32.1% for CNN
LIVE/TID2008). Of course, such challenging error images, in
which only a tiny part of the image is distorted, might lead the
network to fail to detect them as impairments. Still, in such a
case, although the selected candidate is not the best (i.e., the
one with no/less distortion), we still have significantly higher
SSIM scores than with the other methods based on NR-IQA
or on the original CNN.

Finally, in addition to performing tests over challenging
situations, we also assessed the performance of the system
for different resolutions (i.e., considering larger images), even
though the results are not shown due to lack of space. Specif-
ically, 56 videos of size 704×448 were used. The proposed
model returned an accuracy of 98.2% for QP=37. Such a good
accuracy is expected, since the degradation within the images
are similar to those observed at lower resolutions.

Quality analysis: To evaluate the quality of the selected
candidates, we compute the SSIM between the intact image
and the selected one. In Table II, we show the average SSIM
for each metric for four QP values for the case of 4 and
5 candidates. We do not compute the average over all QPs
since we do not find it relevant. We can observe that the
average SSIM computed over the images selected as best
candidate is significantly higher for the proposed systems and
the retrained CNN compared to the other methods, for both
4 and 5 candidates. Indeed, regardless of the considered QP,
the average SSIMs are no less than 0.975 for the retrained
CNN, 0.979 and 0.992 for the proposed system with 32× 32
and 64×64 patches, respectively, while for the other methods
they do not exceed 0.765, in the best case.

Moreover, when making a wrong decision, the proposed
system also outperforms the others, as demonstrated by the
higher average SSIM values for wrongly-classified images.
Thus, our system not only allows to increase the identification
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(a) Intact (b) CNN LIVE/TID2008 [27] (c) CNN [27] retrained (d) Our CNN-NUD 32× 32 (e) Our CNN-NUD 64× 64

Fig. 7: Example of visual comparisons (QP=32) when a wrong selection has been made for each network except Proposed
CNN-NUD 64× 64. (a) Intact image. (b)-(e) Selected candidates by: (b) CNN LIVE/TID2008 [27], (c) CNN [27] retrained,
(d) Proposed CNN-NUD 32× 32, (e) Proposed CNN-NUD 64× 64 (which selected the intact candidate).

(a) (b)

Fig. 8: (a) Intact intra image after H.265 decompression
(QP=37). (b) A candidate image on which a bit is inverted
at the end of the packet (random position at about 90%).

of the best candidate, which increases the average SSIM of
selected candidates, but also allows to reduce the distortions
due to the selection of a wrong candidate. For instance, for
QP=37 and considering 5 candidates, the average SSIM of
wrongly-classified images is 0.834 and 0.980 for the proposed
CNN-NUD system with 32× 32 and 64× 64 patches, respec-
tively, compared to mean SSIM values in the interval [0.598–
0.639] for non CNN-based methods and of 0.655 for CNN
retrained. The superiority of the proposed CNN-NUD system
with 64×64 patches is even more evident at other QP values.

The average SSIM of wrongly-classified images is an im-
portant metric to compare methods. Indeed, while we wish to
increase accuracy, we may never reach 100% and selecting
a candidate as close as the intact version becomes essential.
Effectively, two methods with a similar accuracy may exhibit
very different average SSIMs for wrongly-classified images. It
is thus important for a system to select the image with the least
distortions when making a wrong decision, especially because
any degradation will propagate to the subsequent images
in the context of video compression. In practice, the intact
candidate may not always be among the available candidates
and selecting the one with the best quality is crucial.

Finally, it is important to note that even if the proposed
CNN-NUD system with 64×64 patches was trained only with
images encoded at QP=37, its performance is nevertheless very
good at other QPs. In future work, we will study the impact
of training with videos compressed with multiple QP values.

C. Simulation of simplified list decoding process

In this subsection, we simulate a simplified list decoding
process with the previous video test database. We suppose that

one error is located at a random bit location in each packet due
to unreliable transmission and that the list decoding process
generates candidates where a single bit is inverted in each.
Therefore, the candidates list will include the intact (corrected)
video packet along with candidates having two erroneous bits:
the original one due to transmission and a wrongly inverted
one by list decoding. In the context of multiple errors, it should
be easier for the methods to identify the intact image among
the other candidates since with two inverted bits instead of
one, wrong candidates are likely to experience higher visual
distortion.

In Table III, we show the results when 4 candidates are
generated. Results of BRISQUE, NIQE and PIQE are not
displayed as they perform poorly (performance similar to
Table II). We clearly see the important role of our new training
database in increasing the accuracy of methods. Also, we
observe that the proposed CNN-NUD methods allow to further
reduce the number of wrong decisions (from 4.25 to 2.25 on
average). Such reduction is of paramount importance as wrong
decisions even with relatively good quality will negatively
impact the next images due to error propagation.

TABLE III: Accuracy and number of wrong decisions (113
tests) comparison of various NR metrics for four candidates
for a simplified list decoding process with one error: CNN
LIVE (CNN from [27]), CNN retrained with our proposed
database) and the proposed CNN-NUD 32× 32 and 64× 64.

NR-IQA metrics Accuracy (%) Nb wrong classifications

QP=22

CNN LIVE/TID2008 [27] 29.0 80
CNN [27] retrained 97.3 3

Proposed CNN-NUD 32× 32 98.2 2
Proposed CNN-NUD 64× 64 98.2 2

QP=27

CNN LIVE/TID2008 [27] 30.4 79
CNN [27] retrained 93.8 7

Proposed CNN-NUD 32× 32 97.3 3
Proposed CNN-NUD 64× 64 97.3 3

QP=32

CNN LIVE/TID2008 [27] 36.5 72
CNN [27] retrained 98.2 2

Proposed CNN-NUD 32× 32 98.2 2
Proposed CNN-NUD 64× 64 99.1 1

QP=37

CNN LIVE/TID2008 [27] 36.5 72
CNN [27] retrained 95.5 5

Proposed CNN-NUD 32× 32 98.2 2
Proposed CNN-NUD 64× 64 97.3 3

Average

CNN LIVE/TID2008 [27] 33.1 75.8
CNN [27] retrained 96.2 4.25

Proposed CNN-NUD 32× 32 97.9 2.25
Proposed CNN-NUD 64× 64 97.9 2.25
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IV. CONCLUSION AND PERSPECTIVES

In this paper, we proposed a new deep learning-based qual-
ity ranking framework, comprising dedicated training/testing
databases, to assist video list decoding methods in the context
of unreliable video transmissions. We showed the merits of
this framework using a CNN architecture modified to perform
visual quality assessment for non-uniform video distortions.
We focused on the case of intra-coded H.265 frames subject to
bit errors as in wireless transmissions. On a first experiment,
the proposed approach was shown to be highly reliable for
identifying the image with the highest quality among a list of
candidates with an average accuracy of 96.6% while traditional
NR-IQA metrics perform poorly with an accuracy ranging
between 15.7% and 33.6%. Furthermore, our method, applied
to a simplified list decoding approach, reached an average
accuracy of 97.9% while the original CNN without retraining
reached only 33.1%. For all tested QP values, compared to
the original CNN architecture, our CNN-NUD system is more
robust in terms of identifying the intact image candidate while
limiting the visual distortion when making a wrong decision,
even in challenging cases. Future works will include the
modification of the system to support inter-coded frames and
to account for chroma channels as the observed artifacts are
color-dependent. Moreover, we will study the performance of
our system with the recent VVC standard [29].
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[3] Y. Huo, C. Hellge, T. Wiegand, and L. Hanzo, “A tutorial and review on
inter-layer FEC coded layered video streaming,” IEEE Communications
Surveys & Tutorials, vol. 17, no. 2, pp. 1166–1207, 2015.

[4] S. Fonnes, “Reducing packet loss in real-time wireless multicast video
streams with forward error correction,” Master’s thesis, University of
Oslo, Norway, 2018.

[5] D. Levine, W. E. Lynch, and T. Le-Ngoc, “Iterative joint source-channel
decoding of H.264 compressed video,” in Proc. IEEE Int. Symp. Circuits
Syst., May 2007, pp. 1517–1520.

[6] N. Q. Nguyen, W. E. Lynch, and T. Le-Ngoc, “Iterative joint source-
channel decoding for H.264 video transmission using virtual checking
method at source decoder,” in Proc. IEEE 23rd Can. Conf. Electr.
Comput. Eng., 2010, pp. 1–4.

[7] F. Golaghazadeh, S. Coulombe, F.-X. Coudoux, and P. Corlay, “Low
complexity H.264 list decoder for enhanced quality real-time video
over IP,” in 2017 IEEE 30th Canadian Conference on Electrical and
Computer Engineering (CCECE). IEEE, 2017, pp. 1–6.

[8] F. Golaghazadeh, S. Coulombe, F.-X. Coudoux, and P. Corlay,
“Checksum-filtered list decoding applied to H.264 and H.265 video
error correction,” IEEE Transactions on Circuits and Systems for Video
Technology, vol. 28, no. 8, pp. 1993–2006, 2017.

[9] M. Kazemi, M. Ghanbari, and S. Shirmohammadi, “A review of tempo-
ral video error concealment techniques and their suitability for HEVC
and VVC,” Multimedia Tools and Appl., vol. 80, pp. 1–46, 03 2021.

[10] H. Byongsu, J. Jonghyon, and R. Cholsu, “An improved multi-directional
interpolation for spatial error concealment,” Multimedia Tools and
Applications, vol. 78, no. 2, pp. 2587–2598, 2019.

[11] A. Sankisa, A. Punjabi, and A. K. Katsaggelos, “Video error conceal-
ment using deep neural networks,” in 2018 25th IEEE International
Conference on Image Processing (ICIP), 2018, pp. 380–384.

[12] B. Chung and C. Yim, “Bi-sequential video error concealment method
using adaptive homography-based registration,” IEEE Trans. on Circuits
and Systems for Video Tech., vol. 30, no. 6, pp. 1535–1549, 2020.

[13] V. Boussard, F. Golaghazadeh, S. Coulombe, F. X. Coudoux, and
P. Corlay, “Robust H.264 video decoding using CRC-based single error
correction and non-desynchronizing bits validation,” in IEEE Interna-
tional Conference on Image Processing, Oct 2020, pp. 1098–1102.

[14] V. Boussard, S. Coulombe, F.-X. Coudoux, and P. Corlay, “Enhanced
CRC-based correction of multiple errors with candidate validation,” in
Signal Processing: Image Communication, vol. 99, 2021, p. 116475.

[15] V. Boussard, S. Coulombe, F.-X. Coudoux, and P. Corlay, “CRC-based
correction of multiple errors using an optimized lookup table,” IEEE
Access, vol. 10, pp. 23 931–23 947, 2022.

[16] V. Boussard, S. Coulombe, F.-X. Coudoux, P. Corlay, and A. Trioux,
“CRC-based multi-error correction of H.265 encoded videos in wireless
communications,” in 2021 International Conference on Visual Commu-
nications and Image Processing (VCIP), 2021, pp. 1–5.

[17] R. A. Farrugia and C. J. Debono, “Robust decoder-based error control
strategy for recovery of H.264/AVC video content,” vol. 5, no. 13. IET,
2011, pp. 1928–1938.

[18] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image
quality assessment: from error visibility to structural similarity,” IEEE
Transactions on Image Processing, vol. 13, no. 4, pp. 600–612, 2004.

[19] A. Mittal, A. K. Moorthy, and A. C. Bovik, “No-reference image quality
assessment in the spatial domain,” Trans. Img. Proc., vol. 21, no. 12, p.
4695–4708, dec 2012.

[20] V. N, P. D, M. C. Bh, S. S. Channappayya, and S. S. Medasani,
“Blind image quality evaluation using perception based features,” in
2015 Twenty First National Conf. on Communications, 2015, pp. 1–6.

[21] A. Mittal, R. Soundararajan, and A. C. Bovik, “Making a “completely
blind” image quality analyzer,” IEEE Signal Processing Letters, vol. 20,
no. 3, pp. 209–212, 2013.

[22] H. Zhu, L. Li, J. Wu, W. Dong, and G. Shi, “Metaiqa: Deep meta-
learning for no-reference image quality assessment,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2020, pp. 14 143–14 152.

[23] S. A. Golestaneh, S. Dadsetan, and K. M. Kitani, “No-reference im-
age quality assessment via transformers, relative ranking, and self-
consistency,” in Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision, 2022, pp. 1220–1230.

[24] H. Zhu, L. Li, J. Wu, W. Dong, and G. Shi, “Generalizable no-reference
image quality assessment via deep meta-learning,” IEEE Trans. on
Circuits and Syst. for Video Tech., vol. 32, no. 3, pp. 1048–1060, 2022.

[25] W. Tan, B. Shen, A. J. Patti, and G. Cheung, “Temporal propagation
analysis for small errors in a single-frame in H.264 video,” in IEEE
International Conference on Image Processing, ICIP 2008, October 12-
15, 2008, San Diego, California, USA. IEEE, 2008, pp. 2864–2867.

[26] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and
L. Fei-Fei, “Large-scale video classification with convolutional neural
networks,” in 2014 IEEE Conference on Computer Vision and Pattern
Recognition, 2014, pp. 1725–1732.

[27] L. Kang, P. Ye, Y. Li, and D. Doermann, “Convolutional neural networks
for no-reference image quality assessment,” 2014 IEEE Conference on
Computer Vision and Pattern Recognition, pp. 1733–1740, 2014.

[28] ITU-T H.265 and ISO/IEC JTC 1/SC 29/WG 11, “ITU-T recommenda-
tion H.265: High Efficiency Video Coding,” 2013.

[29] B. Bross, J. Chen, S. Liu, and Y. Wang, “ITU-T and ISO/IEC JVET-
S2001 - versatile video coding (draft 10),” 2020.

[30] “Live image quality assessment database.” [Online]. Available:
http://live.ece.utexas.edu/research/quality/subjective.htm

[31] N. Ponomarenko, V. Lukin, A. Zelensky, K. Egiazarian, M. Carli, and
F. Battisti, “TID2008 - a database for evaluation of full-reference visual
quality assessment metrics,” Advances of Modern Radioelectronics,
vol. 10, pp. 30–45, 01 2009.

[32] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and
L. Fei-Fei, “Large-scale video classification with convolutional neural
networks,” in CVPR, 2014.

[33] K. Suhring, “H.265/HEVC HM reference software 16.20,” 2019, [Avail-
able] https://hevc.hhi.fraunhofer.de/.

[34] A. Di Bucchianico, “Coefficient of determination (R2),” Encyclopedia
of Statistics in Quality and Reliability, vol. 1, 2008.

[35] FFmpeg codec documentation. [Online]. Available: https://www.ffmpe
g.org/ffmpeg-codecs.html\#Video-Decoders

Sixteen International Workshop on Selected Topics in Mobile and Wireless Computing - 2023

142
Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on May 15,2025 at 06:38:30 UTC from IEEE Xplore.  Restrictions apply. 


