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ABSTRACT

Instance-level crack segmentation is critical for automated structural health moni-
toring of tunnels and bridges, yet progress is limited by the scarcity of densely an-
notated datasets with instance-level labels. To address this gap, we make two key
contributions. First, we introduce CrackInst1K, to our knowledge the first pub-
licly available instance-level crack segmentation dataset, comprising 1025 high-
resolution tunnel images with pixel-accurate instance masks. Second, we propose
CrackInstSynth, a generative data-augmentation framework that substantially en-
larges instance-level crack corpora while preserving geometric and topological
realism. CrackInstSynth integrates three coordinated modules: (i) Region-level
Instance Placement (RIP), which partitions the canvas into quadrants to strate-
gically position crack instances for diverse layouts; (ii) a Physics-driven Skele-
ton Generator (PSG) that enriches morphological variability by growing crack
skeletons via physical simulation; and (iii) a Topology-Preserving Generation
Module (TPGM) that employs a two-stage conditional diffusion pipeline (skele-
ton→mask, mask→image) to produce paired, width-aware instance masks and
corresponding images while enforcing intra-instance topology and inter-instance
separation. Extensive experiments show that augmenting real data with CrackIn-
stSynth consistently improves the performance of multiple instance segmentation
models on CrackInst1K and other benchmarks, validating both visual fidelity and
downstream effectiveness. We will release CrackInst1K and CrackInstSynth to
facilitate future research in structural health monitoring.

1 INTRODUCTION

Cracks on the surfaces of tunnels Lei et al. (2024c); Wang et al. (2023), bridges Lei et al. (2024c);
Chen et al. (2022), pavements Lei et al. (2023; 2024a); Chen et al. (2025), and other civil infras-
tructure are critical indicators of material fatigue, water ingress, and progressive structural dete-
rioration Yuan et al. (2024). Early and accurate detection enables preventive maintenance before
minor defects escalate into serious hazards, thereby extending service life and reducing life-cycle
costs Panella et al. (2022). For tunnel linings in particular, unchecked crack growth can quickly com-
promise structural integrity, whereas timely repair markedly reduces subsequent expenditures Wang
et al. (2023).

While binary crack maps suffice for coarse assessment, downstream tasks—such as measuring per-
crack size, prioritizing repair schedules, and tracking temporal evolution—require distinguishing
individual cracks Zhao et al. (2024a); Lei et al. (2024c). Instance-level segmentation simultaneously
localizes and uniquely labels each crack, yielding pixel-accurate masks that support geometric anal-
ysis, path tracing, and longitudinal studies. Compared with semantic segmentation, which merges
all crack pixels into a single class, or detection pipelines that output only bounding boxes, instance
segmentation provides the level of detail needed for automated, priority-driven maintenance strate-
gies Shi et al. (2021). Fig. 1 illustrates a workflow for measuring tunnel-lining crack properties
using instance segmentation.

Despite recent progress, crack segmentation research remains severely data-constrained. Public
benchmarks such as CFD Shi et al. (2016), DeepCrack Zou et al. (2018), and CRACK500 Shi
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(a) Original high-resolution 

inspection image

(b) Patch-wise crack 

instance segmentation

(c) Reassembled 

segmentation & attribute 

extraction
Number of cracks: 3

Crack1 width:2.9 length:898

Crack2 width:3.2 length:1003

Crack3 width:2.4 length: 717

Figure 1: Workflow for instance-level crack segmentation and measurement. (a) Original high-
resolution inspection image. (b) Patch-wise instance segmentation: the image is tiled into patches,
and each patch is processed by an instance segmentation model to produce individual crack masks
(blue, red, and green). (c) Reassembled segmentation and attribute extraction: patch-wise predic-
tions are mapped back to the original image coordinates and merged to obtain image-level crack
instances, from which geometric attributes (e.g., width and length) are computed and summarized.

et al. (2016) contain only a few hundred images, and collecting additional data is costly: a single
tunnel survey typically yields fewer than 500 usable frames, while pixel-level annotation by safety
experts can take several minutes per image Panella et al. (2022); Liu et al. (2019); Rezaie et al.
(2020). The shortage is even more acute for instance-level labels: no open dataset currently provides
pixel-accurate instance IDs (unique labels for each crack), and most studies rely on binary masks
or sparsely annotated subsets Zhao et al. (2024a). This gap hampers automatic structural health
monitoring and highlights the need for cost-effective methods to enlarge corpora for crack instance
segmentation.

To mitigate the twin shortages of scale and instance granularity, we curate CrackInst1K, a publicly
available tunnel-lining crack dataset comprising 1025 high-resolution images (1024×1024 pixels).
Images collected across multiple years and tunnels are first tiled into patches and then randomly
mosaicked to ensure de-identification while guaranteeing that each image contains at least one an-
notated crack instance. At a scale where ∼1,000 pixels correspond to ∼1,m on the lining, each
image covers roughly 1,m2. Compared with prior crack segmentation benchmarks, CrackInst1K
provides explicit instance labels together with accurate geometric scale and focuses on two crack
types that require precise sizing in tunnel and bridge structural health monitoring—hairline cracks
and branched/intersecting cracks—while excluding map cracking (crazing), generally does not re-
quire exact dimensional measurement. This establishes a fine-grained reference set for geometry-
accurate, instance-level evaluation.

Building on this resource, we develop CrackInstSynth, a topology-aware generative augmenta-
tion framework that produces diverse crack instance segmentation image–mask pairs without ad-
ditional manual labeling. The pipeline first performs Region-level Instance Placement (RIP) by
selecting one to three seed instances from CrackInst1K and placing their masks at random positions
within a randomly selected canvas quadrant. Next, a Physics-driven Skeleton Generator (PSG)
stochastically grows each seed’s skeleton under a physics-based crack growth simulation, thereby
increasing the informationtiveness of seeds. The grown seeds are then processed by a Topology-
Preserving Generation Module (TPGM) with two diffusion stages: (i) a skeleton→mask stage, in
which a pixel-space generative model conditionally produces width-aware instance masks; and (ii)
a mask→image stage, in which a topology-consistent, ControlNet-style (TC-ControlNet) diffusion
model, conditioned on the width-aware masks and a predefined text prompt, renders photorealistic
crack images whose topology exactly matches the conditioning masks. By integrating these three
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modules, CrackInstSynth generates diverse, label-aligned samples that augment real data and enable
large-scale training of crack instance segmentation models.

We assess CrackInstSynth on CrackInst1K as well as the public DeepCrack Liu et al. (2019) and
CRACK500 Shi et al. (2016) benchmarks. The evaluation covers both the visual fidelity of the syn-
thetic images and the performance gains of the synthetic image-mask pairs provide when training
state-of-the-art instance segmentation models. In every case, the augmented data yields clear im-
provements over baseline training sets, confirming the practical value of the proposed framework
for crack analysis. We will release CrackInst1K and CrackInstSynth to support future research.

In summary, this paper makes the following contributions:

1. CrackInst1K: a publicly available dataset of 1025 tunnel-lining images (1024×1024) with
pixel-accurate per-instance masks. Images are de-identified via tile–mosaic preprocessing;
the set focuses on hairline and branched/intersecting cracks, forming a fine-grained bench-
mark.

2. CrackInstSynth: a topology-aware generative augmentation framework that produces di-
verse, label-aligned image–mask pairs without extra labeling, integrating RIP, PSG, and
TPGM with a two-stage diffusion pipeline (skeleton→mask, mask→image).

2 RELATED WORK

2.1 CRACK INSTANCE SEGMENTATION

Most deep learning studies on cracks still treat the problem as binary or semantic segmentation,
classifying all crack pixels as a single class. Transformer-based detectors such as CrackFormer Liu
et al. (2021) improve hairline preservation by modeling long-range context, yet intersecting cracks
often remain merged, which limits geometric analysis that requires per-crack masks.

More recent work adapts generic instance frameworks to the thin-object regime of cracks. Mask R-
CNN He et al. (2017) pipelines augmented with morphological closing reconnect fragmented masks
and improve accuracy on tunnel linings Huang et al. (2022). Orientation-aware detectors represent a
curved crack as a sequence of rotated segments to separate crossings and branches Chen et al. (2023).
Lightweight one-stage networks enhanced with multi-head and triplet attention achieve real-time
instance segmentation while boosting recall for fine structures Yu et al. (2025). Other approaches
advance per-crack labeling but still struggle with continuity and ambiguous boundaries Zhao et al.
(2024b); Lei et al. (2024c).

Topology-preserving techniques address these weaknesses. A differentiable connectivity loss pe-
nalizes broken masks Pantoja-Rosero et al. (2022), and ambiguity-aware representation learning
refines uncertain crack edges Chen et al. (2024). Large benchmarks such as OmniCrack30k Benz
& Rodehorst (2024) expand training data, yet none provide dense instance labels with calibrated
metric scale. CrackInst1K and the CrackInstSynth framework fill this gap by supplying precisely
scaled instance annotations and generating additional topology-consistent data, enabling large-scale
instance segmentation without additional manual labeling.

2.2 GENERATIVE DATA AUGMENTATION

Conditional GANs were the first practical engines for paired data synthesis. pix2pixHD and SPADE
translate coarse semantic masks into photorealistic surfaces and have been adapted to crack and road-
defect imagery Wang et al. (2018); Park et al. (2019). Such GAN-based pipelines boost realism but
offer limited geometric diversity and often break thin structures, restricting their value for topology-
sensitive tasks.

Recent augmentation studies explore alternative generative cues. Cut-and-paste strategies like Insta-
Boost warp foreground masks to create new layouts Fang et al. (2019), whereas domain-randomized
renderers synthesize cracks by overlaying procedural textures on material maps Yang et al. (2020).
MosaicFusion shows that a single diffusion pass can populate disjoint canvas regions with multiple
labeled objects for detection and segmentation Xie et al. (2025), and Panoptic Diffusion embeds
instance IDs in the latent space to reduce label misalignment Bansal et al. (2023). Although these
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methods enlarge datasets efficiently, none explicitly maintain the connectivity and mutual separation
required by elongated, intersecting cracks.

Latent diffusion models inject text or mask guidance into the denoising process, delivering higher
fidelity and broader mode coverage Rombach et al. (2022). ControlNet Zhang et al. (2023), T2I-
Adapter Mou et al. (2024), and related variants refine mask conditioning but still downsample masks
and weaken structural cues. CrackInstSynth advances this line by coupling physics-driven skele-
ton growth with a two-stage, topology-preserving diffusion module, generating large volumes of
geometry-faithful image–mask pairs tailored to crack instance segmentation.

3 METHODOLOGY

Crack Instance 

masks

CrackInst1K

Dataset

Region-level 

Instance Placement

(RIP)

Physics-driven 

Skeleton Generator

(PSG)

Skeleton2Mask

Generation

Mask2Img

Generation

Pavement style

Tunnel style

Topology-Preserving Generation Module (TPGM)

Skeletonization

(1-pixel width)
with 

prompts

(a)  Step 1 (b)  Step 2 (c)  Step 3

…

Figure 2: Overall workflow of the proposed CrackInstSynth framework. The pipeline comprises
three sequential stages: (a) Region-level Instance Placement (RIP), (b) Physics-driven Skeleton Gen-
erator (PSG), and (c) Topology-Preserving Generation Module (TPGM), which performs Skeleton-
to-Mask and Mask-to-Image synthesis while enforcing crack topology.

CrackInstSynth tackles the scarcity of crack-instance data by generating topology-consistent image–
mask pairs in three stages, as shown in Fig. 2. (a) Region-level Instance Placement (RIP) selects
one to three seed instances (masks) from the curated CrackInst1K dataset and placing their masks
at random positions within a randomly selected canvas quadrant, producing diverse multi-instance
layouts; the placed masks are then skeletonized to one-pixel width to prepare for physics-based
growth. (b) Physics-driven Skeleton Generator (PSG) takes the one-pixel skeletons and stochas-
tically grows each under a physics-based crack growth simulation, injecting physically plausible
branching and increasing the informationtiveness. (c) Topology-Preserving Generation Module
(TPGM) then runs a two-stage diffusion process: a Skeleton2Mask network inflates each skeleton
into a width-aware instance mask, and a Mask2Img network—conditioning a topology-consistent,
ControlNet-style diffusion model (TC-ControlNet) on the width-aware masks and style prompts
(e.g., pavement, tunnel)—renders photorealistic crack images whose geometry and topology exactly
match the conditioning masks.

3.1 REGION–LEVEL INSTANCE PLACEMENT

Let D = {(Mj , bj)} denote the set of pixel masks Mj ⊂ [0, 1]H0×W0 in CrackInst1K and their
axis–aligned bounding boxes bj = [xj , yj , wj , hj ]. Given a blank canvas C ∈ RH×W×3 of size
H = W = 1024, RIP synthesises a layout with n ∼ U{1, 2, 3} instances.

The canvas is partitioned into four non–overlapping quadrants R = {R1, R2, R3, R4}, each of size
512 × 512. RIP selects n distinct regions {Rπ(1), . . . , Rπ(n)} by a random permutation π, then
places the n sampled masks after an i.i.d. translation
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ti ∼ U
(
[0, wmax

i ]× [0, hmax
i ]

)
,

wmax
i = wRπ(i) − wj ,

hmax
i = hRπ(i) − hj .

(1)

so that every translated box b̃i = bj + ti is fully contained in its region. The procedure returns a
colour canvas IRIP, that is, a segmentation of multiple crack instances and the translated annotations
{M̃i, b̃i}.
RIP can be summarized as follows: (i) we evenly divide a 1024×1024 canvas into four non-
overlapping 512×512 regions, inspired by MosaicFusion Xie et al. (2025), to increase the informa-
tion density per image; (ii) we then iteratively place up to three sampled crack instances at random
into the four regions. This design encodes a civil-engineering prior: since CrackInst1K is calibrated
such that ∼1000,px ≈ 1,m, a 1024×1024 canvas (about 1,m2) should typically contain no more
than three cracks.

Unlike MosaicFusion, in RIP the instances are sampled at the 1024×1024 scale and then placed
into 512×512 regions. We allow region overflow at placement time: portions extending beyond the
assigned region are preserved, whereas any content outside the outer 1024×1024 canvas is clipped.
This relaxation increases layout diversity and retains potential cross-region interactions (e.g., inter-
secting cracks), while keeping the global canvas consistent.

3.2 PHYSICS-DRIVEN SKELETON GENERATOR

For each seed mask M̃i produced by RIP we extract a one-pixel-wide skeleton Si = THIN(M̃i)

using Zhang–Suen thinningLam et al. (1992). Let Bi denote the axis-aligned bounding box of M̃i.
PSG expands Bi by a scale factor α ∈ [1.2, 1.6] to obtain a growth window B̂i inside which a
stochastic crack propagation process is simulated. Starting from k randomly sampled pixels on Si

(k∼U{1, . . . ,Mk}), default Mk = 4, a random walk Lei et al. (2024a) adds new skeleton points
until a maximum relative length m=0.8 of the window is reached or a step limit is met:

Snew
i = RANDOMWALK

(
Si, B̂i, k, m,max, ℓ, θ

)
,

where max are the maximum step counts, ℓ is the step length in pixels (default 2) and θ bounds the
turning angle (±30◦). The walk is confined to B̂i to avoid inter-instance overlap.

See Apendix A.3.1 for the Algorithm 1 of RANDOMWALK.

Physically, cracks in the infrastructure structures propagate along principal stress directions while
exhibiting stochastic branching. Embedding this behaviour via bounded random walks injects plau-
sible curvature, length variation and side branches, thereby expanding the geometric distribution
beyond the limited shapes in CrackInst1K.

3.3 TOPOLOGY-PRESERVING GENERATION MODULE (TPGM)

TPGM takes as input the PSG-augmented skeletons. Let {Snew
i }ni=1 be the grown skeletons from

PSG and define the instance-ID skeleton map SPSG ∈ {0, . . . , n}H×W by assigning value i to pixels
on Snew

i and 0 to background. Each pixel of SPSG encodes an instance identifier (0 for background,
1:n for cracks) along one-pixel-wide centerlines. TPGM produces a topology-aligned, width-aware
instance map MWA ∈ {0, . . . , n}H×W that expands each skeleton to its physical width, and a
photorealistic image I, through two diffusion stages.

Formally, TPGM learns
F : SPSG 7−→ (MWA, I). (2)

The mapping is realized by (i) a Skeleton→Mask diffusion network that inflates SPSG into MWA;
and (ii) a Mask→Image diffusion network that renders I conditioned on MWA while honoring the
above topological requirements.
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3.3.1 STAGE 1: SKELETON→MASK DIFFUSION

Given the one-pixel-wide instance-ID map SPSG ∈ {0, . . . , n}H×W , the goal is to infer a width-
aware instance map MWA ∈ {0, . . . , n}H×W that satisfies connectivity and separation. We adopt
the pixel-level Semantic Diffusion Model (SDM) framework Wang et al. (2022); Lei et al. (2024a),
conditioning directly on SPSG. Skeleton conditioning is injected via SPADE Park et al. (2019)
layers placed in every upsampling block of the UNet; no additional modalities are required.

Pixel-space diffusion preserves high-frequency details and has been shown to outperform latent-
space diffusion (e.g., LDM) on tasks requiring strict structural fidelity, such as medical shape
synthesis Konz et al. (2024) and curvilinear object augmentation Lei et al. (2024b). Because
Skeleton→Mask uses only a single conditioning map without text prompts, the pixel-level SDM
is more efficient and easier to train than latent counterparts while retaining full spatial resolution.

3.3.2 STAGE 2: MASK→IMAGE DIFFUSION
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Input
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Embedding
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×2

Input

Feature

Conv

Conv

SiLU
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condition

(b) TC-ControlNet Encoder Block 

(a) Topology-consistent ControlNet for mask-to-image generation (c) SPADE Norm

Figure 3: Topology-Consistent ControlNet (TC-ControlNet) for mask-to-image generation. (a) The
upper path (blue) is the frozen Stable Diffusion UNet; the lower path (yellow) is the trainable Con-
trolNet branch that injects multi-scale, topology-preserving mask features. A TopoDownsample
module provides three scale masks whose region-adjacency graph is unchanged. (b) Encoder block
details: the downsampled mask modulates features. (c) SPADE-Norm restores spatial cues “washed
out” by standard normalization.

Latent diffusion models such as ControlNet Zhang et al. (2023) and T2I-Adapter Mou et al. (2024)
often break fine connectivity when synthesizing from semantic maps: (i) the raw mask is down-
sampled by a factor of eight via convolution/interpolation, destroying small-scale connectivity and
topology; and (ii) subsequent normalization (e.g., GroupNorm) spatially averages feature statis-
tics, further washing out geometry Park et al. (2019); Lei et al. (2024b). We therefore introduce a
Topology-Consistent ControlNet (TC-ControlNet) that preserves crack connectivity and topology
at both the input and feature levels (Fig. 3(a)). The two key adaptations relative to vanilla ControlNet
are (1) a TopoDownsample module and (2) topology-aware feature modulation via SPADE Norm.

(1) TopoDownsample module. Before the mask enters the latent UNet it must be reduced to 1
8 ,

1
16 , and 1

32 of its original size. Naı̈ve interpolation removes hairline cracks or merges adjacent
regions. TopoDownsample performs this reduction while exactly preserving the connectivity and
hole structure of every instance by casting downsampling as a small mixed-integer program (MIP)
that assigns a component label to each low-resolution pixel. We maximize similarity to the original
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mask while enforcing topology:

max
x

∑
m,i,j

wm Sm(i, j)xm,i,j

s.t.
∑
m

xm,i,j = 1 (exclusivity)∑
(i,j)∈Rm

xm,i,j ≥ 1 (component survival)

xm,i,j + xm,i+1,j+1 ≤ 1 (avoid diagonal bridges)

Here xm,i,j ∈{0, 1} indicates whether low-res pixel (i, j) is assigned to component m; wm weights
components (foreground > background); and

Sm(i, j) =
|m ∩N (i, j) |
|N (i, j)|︸ ︷︷ ︸

local coverage

+λ
1

1 + minp∈∂m∥p− (i, j)∥︸ ︷︷ ︸
boundary proximity

,

with N (i, j) a circular neighborhood (radius 2sk), ∂m the boundary of m, and λ=0.5. The first
two constraints ensure every pixel takes exactly one label and no connected component disappears;
the third keeps the background 4/8-connected at low resolution to prevent spurious holes. A small
set of additional linear constraints (omitted here for brevity; see Appendix A.5) ensures boundary
continuity so that foreground–background interfaces form a single closed loop. As a result, the
downsampled masks preserve Euler characteristic, Betti numbers, and the region adjacency graph
(RAG) of the original. Applying the MIP at three scales yields M(8),M(16),M(32) fed to TC-
ControlNet.

(2) Topology-aware feature modulation via SPADE Norm. To prevent normalization from blur-
ring crack structure, every encoder block in the ControlNet branch replaces GroupNorm with
SPADE Norm conditioned on topology-consistency masks (Fig. 3(b,c)). For an input feature tensor
f and a mask M(s) at scale s ∈ {8, 16, 32}, the layer computes

SPADE(f,M(s)) = γs(M
(s)) f−µ(f)

σ(f) + βs(M
(s)), (3)

where µ(·) and σ(·) are per-channel statistics, and the spatially varying scale and shift maps γs, βs

are produced by two 3×3 Conv–SiLU blocks. Feeding masks at three resolutions aligns the UNet’s
receptive field with expected crack widths and re-injects precise geometry that would otherwise be
lost.

TC-ControlNet is trained with the same noise-prediction objective as vanilla ControlNet; only the
mask embedder (some Conv layers) and the ControlNet branch are updated, while the Stable Diffu-
sion backbone and the text encoder remain frozen.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. All experiments are conducted on three high–quality crack datasets: CrackInst1K,
CRACK500 Shi et al. (2016), and DeepCrack Liu et al. (2019).

Evaluation protocol. Effectiveness is assessed from two complementary angles:

1. Visual realism and consistency. For every dataset we synthesise a set of image–mask pairs
with CrackInstSynth+TC-ControlNet and compute

• FID on RGB images (realism);
• mIoU and absolute Betti errors β0, β1 between ground-truth masks and predictions of

a pre-trained robust U-Net Lei et al. (2024b) (consistency).
2. Downstream instance segmentation. Each training set is enlarged five-fold using the full

CrackInstSynth pipeline (only replaces TC-ControlNet with other generative models). A

7
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standard Mask R-CNN He et al. (2017) detector is trained from scratch for 100 epochs
(batch size ≥ 8) on the augmented data, and evaluated with mAPbbox

50 and mAPseg
50 on the

held-out test split. For the semantic segmentation datasets CRACK500 and DeepCrack, we
consider there to be only one instance.

4.2 EXPERIMENT RESULTS AND DISCUSSION

Semantic map Pavement style Tunnel styleSkeleton Brick style Concrete style

Figure 4: Qualitative results produced by CrackInstSynth. Columns (left→right): Skeleton, Se-
mantic map, Pavement style, Tunnel style, Brick style, Concrete style. For each row we keep the
mask (instance IDs shown by colours) fixed and only change the text prompt; TC-ControlNet trans-
fers the background/material appearance while preserving per-instance topology and width, demon-
strating label-faithful, multi-style rendering. Best viewed in colour and with zoom.

4.2.1 EVALUATION OF VISUAL REALISM AND CONSISTENCY

We compare TC-ControlNet with representative GANs (Pix2PixHD Wang et al. (2018),
SPADE Park et al. (2019)), a pixel-space diffuser (SDM) Wang et al. (2022), and leading latent-
space methods (T2i-Adapter Mou et al. (2024), FreestyleNet Xue et al. (2023), ControlNet Zhang
et al. (2023), PLACE Lv et al. (2024), SCP-ControlNet Lei et al. (2024b)).

Table 1 shows that TC-ControlNet achieves the lowest FID and Betti errors and the highest mIoU
on all three datasets. Relative to the strongest baseline (SCP-ControlNet) it cuts β0 by 22%–30%,
reduces β1 by about 10%, and improves FID by 2–6, confirming that the TopoDownsample and
SPADE-Norm mechanisms jointly preserve fine connectivity without sacrificing photorealism.
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Table 1: Visual realism and topology consistency on CRACK500, Deepcrack, and CrackInst1K.
Best results are in bold.

Datasets CRACK500 Deepcrack CrackInst1K

Methods mIoU (↑) FID (↓) β0 (↓) β1 (↓) mIoU (↑) FID (↓) β0 (↓) β1 (↓) mIoU (↑) FID (↓) β0 (↓) β1 (↓)

pix2pixHD 46.7 118.4 0.171 0.0120 48.2 148.9 55.00 37.45 54.2 142.3 52.04 32.44
SPADE 64.3 100.8 0.164 0.0115 63.4 137.5 50.84 33.35 74.0 125.4 39.21 26.15

SDM 62.1 98.3 0.140 0.0091 62.1 163.1 52.71 31.58 73.1 126.0 40.14 28.47
T2i-Adapter 52.4 94.5 0.151 0.0070 64.2 136.5 53.33 31.61 72.2 129.5 42.24 30.51
FreestyleNet 66.7 89.7 0.161 0.0088 65.3 122.1 48.51 31.46 74.8 113.1 36.14 26.86
ControlNet 73.4 90.3 0.168 0.0090 68.3 123.5 49.45 29.94 76.7 110.3 36.80 26.31

PLACE 71.3 88.6 0.124 0.0085 68.7 118.7 46.14 30.21 76.6 105.4 35.47 24.89
SCP-ControlNet 73.9 85.4 0.091 0.0073 67.6 117.6 44.77 31.22 76.0 103.8 34.28 22.95

TC-ControlNet (ours) 75.2 82.3 0.071 0.0050 70.9 111.8 41.05 25.31 79.7 101.9 32.35 20.09

Table 2: Downstream segmentation performance (Mask R-CNN) after 5× data augmentation on
Deepcrack, CRACK500 and CrackInst1K. Best results are in bold.

Datasets CRACK500 Deepcrack CrackInst1K

Methods mAPbbox
50 (↑) mAPseg

50 (↑) mAPbbox
50 (↑) mAPseg

50 (↑) mAPbbox
50 (↑) mAPseg

50 (↑)

Original 85.1 75.4 86.6 84.6 84.2 70.1
pix2pixHD 86.3 77.8 87.4 87.1 86.3 73.8

SPADE 87.9 79.6 88.9 88.0 88.1 76.5

SDM 87.4 79.1 88.5 87.6 87.6 76.0
T2i-Adapter 87.0 78.6 87.2 88.5 87.1 75.4
FreestyleNet 87.6 80.5 88.1 89.4 89.3 77.8
ControlNet 87.5 81.1 88.2 90.5 88.6 80.0

PLACE 87.0 81.6 88.8 91.0 89.4 79.2
SCP-ControlNet 87.4 82.5 89.0 90.9 89.1 81.1
TC-ControlNet 88.7 84.2 89.7 92.2 91.2 83.3

4.2.2 EVALUATION OF DOWNSTREAM SEGMENTATION PERFORMANCE

Table 2 reports Mask R-CNN performance after augmenting each training set to five times its orig-
inal size with different generators. CrackInstSynth paired with TC-ControlNet yields the highest
mAPbbox

50 and mAPseg
50 on all three benchmarks, surpassing the strongest baseline (SCP-ControlNet)

by up to +1.5 bbox AP and +2.1mask AP. The gains over the “Original” rows confirm that the syn-
thetic imagery is not only realistic but also task-useful, boosting instance detection and segmentation
accuracy without additional manual labels.

4.2.3 VISUALIZATION AND QUALITATIVE ANALYSIS

Fig. 4 provides visual evidence that the proposed pipeline preserves crack geometry while offering
flexible appearance control. TC-ControlNet renders photorealistic textures in various distinct styles,
coarse asphalt, ribbed concrete tunnel brick masonry facade and concrete structural surface.

Table 3: Ablation study on CrackInst1K using downstream instance-segmentation metrics. Each
variant removes or alters one component of CrackInstSynth.

ID Method mAPbbox
50 (↑) mAPseg

50 (↑)

A0 Original training set (no aug.) 84.2 70.1

A1 No Region-level Placement (naı̈ve paste) 86.4 75.4
A2 No Physics-driven Skeleton Growth 86.6 76.3
A3 Vanilla ControlNet (no topology branch) 88.6 80.0

A4 TC-ControlNet w/ TopoDownsample only 86.4 76.5
TC-ControlNet w/ SPADE only 89.1 81.1

A5 Full CrackInstSynth (ours) 91.2 83.3
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4.2.4 ABLATION STUDY

Table 3 isolates the contribution of each novel component on CrackInst1K dataset, reported with
Mask R-CNN He et al. (2017) mAP after 5× augmentation:

A1 No Region-level Placement. Replacing RIP with naı̈ve cut–paste lowers mask AP by 7.9. Over-
lapping or truncated instances therefore hurt detector training even when image realism is preserved.
A2 No Physics-driven Skeleton Growth. Skipping PSG removes the morphological diversity injected
by the random walk, yielding a similar drop (−7.0 seg AP). Diversity in crack length and branching
is thus essential for generalisation. A3 Vanilla ControlNet. Using the standard latent UNet without
our topology branch reduces bbox AP by 2.6 and seg AP by 3.3, the largest single loss. Preserv-
ing connectivity during Mask→Image synthesis is therefore critical. A4 TC-ControlNet variants.
Feeding only TopoDownsample masks (no SPADE) or only SPADE Norm (no TopoDownsample)
recovers part of the gain, but neither matches the full model.

In sum, every module, RIP, PSG, and the dual innovations of TC-ControlNet, contributes measur-
ably; removing any of them degrades instance segmentation, while the complete CrackInstSynth
pipeline A5 achieves the best accuracy (+13.2 seg AP over the unaugmented baseline A0).

4.2.5 RUNTIME–ACCURACY TRADE-OFF OF TOPODOWNSAMPLE

We study the effect of the MIP solver tolerance on accuracy and latency for TopoDownsample. Fig. 5
(one representative dataset) plots accuracy gain vs. max time limit under MIPGap ∈ {5, 2, 1, 0.5}%.
The curves show monotonic but saturating improvements: tightening the gap yields higher accuracy
with diminishing returns. In practice, we select the tightest feasible gap under a given time budget;
if the budget is exceeded, we fallback to bilinear downsampling to guarantee responsiveness.

Figure 5: Runtime–accuracy trade-off of TopoDownsample. Accuracy gain vs. max time limit under
different MIPGap settings on a representative dataset.

Across datasets and metrics, a moderate tolerance (MIPGap 1–2%) within a 1–2 s budget captures
almost all of the attainable gains, while tighter settings incur disproportionate latency for marginal
improvements.

5 CONCLUSION

We introduced CrackInst1K (high-resolution tunnel-crack data with per-instance masks) and
CrackInstSynth (a topology-aware augmentation pipeline combining RIP, PSG, and TPGM/TC-
ControlNet), which synthesizes realistic, topology-consistent image–mask pairs and consistently
boosts instance segmentation performance. We will release both resources to support future work in
structural health monitoring.
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A APPENDIX

This appendix complements the main paper with six self-contained parts:

1. Section Additional related work A.1 show additional related work, including the recent
works about topology-aware diffusion for curvilinear structures.

2. Section Details of CrackInst1K Dataset A.2 documents the new CrackInst1K dataset—
its imaging pipeline, annotation protocol, statistics, example images, and anonymisation
policy.

3. Section More details about CrackInstSythn A.3 give more Implementation details of
CrackInstSythn.

4. Section Rationale Behind TC-ControlNet Design A.4 explains the design of TC-
ControlNet, clarifying how TopoDownsample and SPADE jointly preserve crack topology
and appearance.

5. Section TopoDownsample: Formulation, Implementation & Theoretical Analysis A.5
gives the full MIP formulation of TopoDownsample, solver details, qualitative compar-
isons, and a formal proof that the method preserves Betti numbers and the region-adjacency
graph.

6. Section Additional Details for Experiments A.6 lists all hyper-parameters, hardware,
prompts, detector settings, and evaluation metrics used in the experiments, followed by
additional quantitative results.

7. Section More visualizations A.6.3 provides extra end-to-end visualisations, illustrating
that the generated masks maintain perfect crack geometry across multiple rendering styles.

A.1 ADDITIONAL RELATED WORK

A.1.1 TOPOLOGY-AWARE DIFFUSION FOR CURVILINEAR STRUCTURES

Recent works inject explicit topological objectives into diffusion. TopoDiffusionNet Gupta et al.
(2024) and TopoCellGen Xu et al. (2025) incorporate persistent-homology (PH) constraints to
guide denoising toward target Betti profiles, improving topological faithfulness beyond appear-
ance similarity. For linear networks, ControlTraj Zhu et al. (2024) enforces path-level constraints
under diffusion to maintain global connectivity and branching structure. In medical imaging, a
topology-aware conditional LDM preserves vascular connectivity and branching via PH-guided
losses across views Demirci et al. (2025). Closer to cracks, semantic diffusion–based pavement
synthesis improves realism and segmentation but does not explicitly regulate connectivity or non-
self-intersection during generation Cano-Ortiz et al. (2024).

Unlike PH-loss–based approaches (e.g., TopoDiffusionNet) that condition on multi-object topology,
we follow the semantics-to-image paradigm and focus on single-crack instance topology consis-
tency. Concretely, we adopt a two-stage design that couples a physics-guided skeleton generator
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Original image Annotation Original image Annotation

Figure 6: Representative samples from CrackInst1K. Each column pair shows the original image
patch (left) and the corresponding instance annotation (right). Individual cracks are outlined with
unique colours and numeric IDs, while background objects remain unlabelled to reflect real mainte-
nance scenes.

(PSG) with a topology-preserving conditioning module, injecting crack-specific priors to yield more
informative synthetic samples for downstream instance analysis.

A.2 DETAILS OF CrackInst1K DATASET

A.2.1 SCOPE AND MOTIVATION

CrackInst1K is a public benchmark for instance-level crack segmentation in civil-infrastructure
imagery. It contains 1025 tunnel-lining patches (1024×1024 pixels), released in COCO format.
The dataset supplies scale-aware, topology-preserving annotations for algorithms that must separate
neighbouring cracks and trace fine branches.

A.2.2 IMAGING AND PRE-PROCESSING PIPELINE

Images were captured in situ with a vehicle-mounted line-scan system. The rig maintains orthogonal
viewing geometry and uniform illumination while travelling at approximately 3–5 km/h, producing
raw stripes of 1000×7448 pixels that resolve cracks as thin as 0.29 mm. After acquisition, stripes
were auto-stitched and frames containing visible cracks were retained. Each selected frame was
cropped to square regions (800–3 000 pixels per side) and finally resized to 1024×1024 for release.
Patches are split per scene to prevent leakage: 923 images for training and 102 for validation (90/10).

Fig. 6 gives a visual impression of the dataset, highlighting the thin, meandering geometry of cracks
and the clutter commonly encountered inside tunnel environments.

A.2.3 ANNOTATION PROTOCOL

Annotation followed a four-stage procedure:

1. Polygon tracing: crack contours were digitised as dense polygons (mean 140 vertices).
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2. Instance labelling: every polygon receives a unique identifier; intersecting cracks are
traced separately.

3. Automatic sanity checks: scripts flag self-intersections, duplicate vertices or masks that
leak outside the canvas.

4. Double-blind review: two independent annotators correct flagged masks; a third reviewer
resolves conflicts.

The final JSON stores each polygon, its bounding box, skeleton length and the physical pixel size.

A.2.4 DATA ANONYMISATION AND AVAILABILITY

The raw imagery was collected over multiple years from several geographically distinct tunnels.
During pre-processing, every exported 1024× 1024 patch is a spatial mosaic drawn from different
time stamps and camera poses. This strategy removes any location-specific patterns and prevents
re-identification of the original infrastructure.

Availability – The dataset and scripts will be released upon acceptance to support reproducible
research.

A.3 MORE DETAILS ABOUT CRACKINSTSYTHN

A.3.1 MORE DETILS ABOUT PSG

Algorithm 1 sketches the RandomWalk procedure.

Algorithm 1 Physics-driven random walk within a rescaled bbox

1: Input: skeleton S, growth window B̂, parameters (k,m,max, ℓ, θ)
2: Initialise queue Q with k random start pixels on S
3: Snew ← S
4: while Q ̸= ∅ do
5: Pop current point (x, y, d) where d stores the incoming direction
6: if length(Snew)/ diag(B̂) ≥ m or steps > max then
7: continue
8: end if
9: Sample turning angle ∆ϕ ∼ U(−θ, θ)

10: d′ ← d+∆ϕ; (x′, y′)← (x, y) + ℓ(cos d′, sin d′)

11: if (x′, y′) ∈ B̂ and not occupied then
12: Add (x′, y′) to Snew and push (x′, y′, d′) to Q
13: end if
14: end while
15: return Snew

Compared with pure geometric jittering, PSG implements a physics-based simulation of crack
growth by carefully tuning the parameters of a bounded random walk, thereby increasing instance-
level information content. In practice, PSG adds 35% new skeleton pixels per instance in average,
providing diverse yet physically credible conditional masks for the subsequent Topology-Preserving
Generation Module (TPGM).

A.3.2 MORE DETAILS ABOUT TPGM

TPGM F : SPSG 7−→ (MWA, I) as much as possible meet the following conditions:

• Intra-instance topology: for every instance c > 0, the region {p : MWA(p) = c} forms a
single 8-connected component (i.e., β0 = 1, no holes).

• Inter-instance separation: ∀p and ∀c ̸= d, it never holds that MWA(p) = c ∧ MWA(p) =
d (regions are mutually exclusive).

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

• Pixel-wise consistency: cracks in I correspond one-to-one with labels in MWA; in partic-
ular, the crack support in I exactly matches {p : MWA(p) ̸= 0}, and for each c > 0 the
rendered crack c coincides with {p : MWA(p) = c}.

A.3.3 MORE DETAILS ABOUT STAGE 1: SKELETON→MASK DIFFUSION

Training pairs. We construct training pairs (Ssk,Mgt) from crack segmentation datasets by skele-
tonizing each ground-truth mask Mgt with Zhang–Suen thinning Lam et al. (1992) to obtain Ssk.
At inference time, SPSG (from PSG) replaces Ssk as the conditioning input.

Hyperparameters. We follow the original SDM setup Wang et al. (2022); Lei et al. (2024a): co-
sine β1:T schedule, T=1000 training steps, DDIM 20 sampling steps, UNet depth 4 with 128 base
channels, AdamW (learning rate 1×10−4, weight decay 1×10−2). We train for 150k iterations with
batch size 16.

Sampling. Given a new skeleton mask, we sample xT ∼N (0, I) and run the DDIM solver for 20
steps to obtain M̂WA. A channelwise argmax yields the discrete width-aware map that feeds Stage 2.

A.4 RATIONALE BEHIND TC-ControlNet DESIGN

Background. ControlNet Zhang et al. (2023) augments Stable Diffusion Rombach et al. (2022)
with an extra condition c (for example, a segmentation map) to guide generation. The input mask
c ∈ RH×W×3 is first embedded by a small CNN, h = Ec(c) ∈ RH

8 ×W
8 ×4, and added to the noisy

latent zt before entering the trainable branch of a U-Net copied from the frozen backbone.

Problem. GroupNorm layers inside the U-Net average spatial statistics and tend to erase fine se-
mantic cues Park et al. (2019); Lei et al. (2024b). Moreover, naively downsampling thin-object
masks to the latent resolution (1/8, 1/16, 1/32) breaks connectivity and alters topology, as shown in
the main paper.

Solution. TC-ControlNet addresses both issues with two design choices:

1. TopoDownsample. The binary crack mask is reduced to three latent scales by solving
a small mixed-integer program that preserves Euler characteristic and region-adjacency,
avoiding the aliasing artefacts of convolutional or interpolation-based resizing.

2. SPADE feature modulation. Each encoder block replaces GroupNorm with SPADE Park
et al. (2019), using the topology-safe masks from TopoDownsample as spatially varying
scale and bias to reinject crack geometry lost during normalisation.

Illustration. Fig. 7 demonstrates the effect of the two modules on two representative crack masks.
Column (a) shows the original 512× 512 mask; columns (b)–(d) display the TopoDownsample out-
puts at resolutions 64, 32, and 16. Even at 1/32 resolution, the skeleton remains connected and free
of spurious bridges. Column (e) gives the final photorealistic image generated by TC-ControlNet;
the crack paths precisely match the conditioning masks, confirming that topology is retained through
both the latent UNet and the RGB decoder.

Fallback strategy. If the mixed-integer solver fails to find a feasible assignment at a given scale
(rare in practice), the algorithm falls back to bilinear interpolation for that scale only, ensuring
continuity of the generation pipeline.

By combining topology-aware downsampling with spatially adaptive modulation, TC-ControlNet
mitigates semantic dilution and delivers superior topological fidelity compared with vanilla Control-
Net, as validated quantitatively and qualitatively in the main paper.

A.5 TOPODOWNSAMPLE: FORMULATION, IMPLEMENTATION & THEORETICAL ANALYSIS

Simply resizing a thin–object mask from 512×512 to latent grids (64, 32, 16) with nearest, bicubic
or pooling interpolation breaks connectivity and may introduce spurious holes. TopoDownsample

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

(a) (b) (c) (d) (e)

Figure 7: Effect of TopoDownsample and SPADE in TC-ControlNet. (a) Original 512× 512 crack
mask; (b)–(d) topology-preserving masks at resolutions 64, 32, and 16; (e) asphalt-style image
synthesised by TC-ControlNet.

addresses this by formulating down-sampling as a compact mixed-integer programme (MIP) whose
feasible set contains only pixel assignments that preserve foreground–background topology Chen &
Peng (2024).

1. PROBLEM SET-UP

Let c∈{0, 1}H×W be the input binary mask and c(k) its coarse version at scale k∈{0, 1, 2}, height
Hk = H/2 3−k. Each pixel of c(k) aggregates an sk×sk block of c, where sk = H/Hk.

Decision variables.

• x
(k)
m,i,j ∈{0, 1}: macro-pixel (i, j) belongs to component m.

• z
(k)
v ∈{0, 1}: vertex v activates a valid corner configuration from the catalogue in Chen &

Peng (2024).

• l
(k)
v ∈{0, 1}: unique terminal flag closing each boundary loop.

2. OBJECTIVE

max
x,z,l

∑
m,i,j

wm Sm(i, j)x
(k)
m,i,j ,

where Sm(i, j) is the component–block overlap score and wm = 2 for foreground, 1 for back-
ground Chen & Peng (2024).

3. CONSTRAINTS

1. Exclusivity:
∑

m x
(k)
m,i,j = 1 ∀(i, j).

2. Component survival:
∑

(i,j)∈Rm
x
(k)
m,i,j ≥ 1 ∀m.

3. Anti-diagonal (background): x
(k)
m,i,j +x

(k)
m,i+1,j+1 ≤ 1 for every background component

m.

4. Boundary continuity: z
(k)
v ⇒

∨
v′∈N (v) z

(k)
v′ .

5. Loop closure:
∑

v∈Vb
l
(k)
v = 1 for each boundary b.

Items 1–3 ensure a valid label map; 4–5 force every interface to form a single closed 8-connected
curve, thereby preserving Euler characteristic χ = β0 − β1 Kong & Rosenfeld (1989).
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4. COMPONENT AND CORNER ENUMERATION

Foreground components are extracted with 8-connectivity, background with 4-connectivity—the
standard “complementary” pairing that avoids paradoxes in digital topology Rosenfeld (1979). At
each grid vertex we test the twelve corner templates of Chen & Peng (2024); invalid patterns are
discarded, shrinking the MIP.

5. SOLVER DETAILS

The MIP is implemented in C++ and solved with Gurobi Gurobi Optimization, LLC (2024), while a
Python port is provided for visualisation. A greedy warm start assigns each macro-pixel to the com-
ponent covering the largest area. If a scale is infeasible (rare; < 0.3% at 16×16), TopoDownsample
falls back to bilinear interpolation for that scale only.

6. QUALITATIVE COMPARISON

Fig. 8 contrasts TopoDownsample with five baselines (nearest, bicubic, pooling, ACN, dilation).
Only our method preserves the crack’s topology at 64, 32 and 16 pixels.

7. THEORETICAL ANALYSIS

We now prove that any feasible MIP solution preserves the Region Adjacency Graph (RAG) Stock-
man & Shapiro (2001) and the Betti numbers β0 (components) and β1 (holes).

Lemma 1. (Component preservation) The down-sampled mask has exactly the same number of
8-connected foreground and 4-connected background components as the original; hence β0 is un-
changed.

Proof. Component survival (Constraint 2) forbids disappearance. Anti-diagonal plus exclusivity
(Constraints 1–3) forbid two distinct components from touching, preventing mergers. If an original
component attempted to split, its boundary would fragment into two closed curves, violating the
single-loop requirement (Constraint 5). Thus one-to-one correspondence of components holds.

Lemma 2. (Hole preservation) Every original hole persists in the down-sampled mask and no new
hole is created; therefore β1 is unchanged.

Proof. A hole is a 4-connected background component fully enclosed by a foreground boundary.
Lemma 1 guarantees the hole itself survives. Boundary continuity (Constraint 4) and unique-loop
(Constraint 5) keep its enclosing Jordan curve intact, preventing the hole from leaking into exterior
background. Because the MIP introduces no additional black–white adjacencies, no extra closed
curve—and hence no extra hole—can arise.

Lemma 3. (RAG preservation) The Region Adjacency Graph of the down-sampled mask is isomor-
phic to that of the input.

Proof. By Lemma 1, nodes (regions) correspond one-to-one. For each original black–white pair,
Constraint 5 instantiates exactly one closed boundary loop, producing the same edge in the output
RAG. Pairs not adjacent originally remain separated by at least one pixel, and no new edge appears
because no new boundary loop is allowed.

Theorem 1. (Topology preservation) Any feasible solution of the TopoDownsample MIP preserves
β0, β1, and the entire RAG of the binary mask.

Proof. Immediate from Lemmas 1, 2 and 3.
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Figure 8: TopoDownsample versus conventional down-sampling methods on two crack masks.
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A.6 ADDITIONAL DETAILS FOR EXPERIMENTS

A.6.1 EXPERIMENTAL SETUP

Hyper-parameter settings

All experiments were run on a workstation equipped with two NVIDIA RTX A6000 GPUs (48 GB
each), an AMD EPYC 7513 CPU, and 256 GB RAM. Gurobi 11.0 is used for all MIP optimisations.

Unless stated otherwise, all hyper-parameters below are shared across CrackInst1K, DeepCrack and
CRACK500.

• Canvas tiling (RIP). The 1024×1024 canvas is partitioned into four 512×512 quadrants;
n∼ U{1, 2, 3} instances are sampled without replacement and pasted into randomly per-
muted quadrants. Source boxes are translated uniformly inside each quadrant, avoiding
overlap.

• BBox expansion for PSG. For every seed instance the bounding box is isotropically en-
larged by an independent scale factor αx, αy ∼ U(1, 1+s) with s = 0.6. The enlarged
window defines the admissible region for random walks.

• Random-walk skeleton growth (PSG). Number of starting points k∼U{0, . . . , 4}; maxi-
mum crack-pixel ratio m = 0.8; step length 2 px; turning angle ±30◦; step budget per start
point min steps = 30, max steps = 100.

• File resolution. All intermediate masks are kept at 1024×1024; diffusion stages operate at
512×512 and outputs are up-sampled back to 1024 if needed using Lanczos.

Synthetic-data generation

• SDM (Skeleton→Mask). UNet depth 4, base channels 128; cosine β schedule, T=1000
training steps, DDIM 20 sampling steps; learning rate 1×10−4, AdamW with weight decay
1×10−2, batch size 16 for 150 k iterations.

• TC-ControlNet (Mask→Image). Frozen SD 1.5 backbone, ControlNet channel multi-
plier 0.5, TopoDownsample at scales 64/32/16, SPADE injection at every encoder block,
classifier-free guidance scale 7.5, DDIM 20 inference steps.

• Prompt settings. For the Crack500 dataset, the prompt settings from COSTG Lei et al.
(2024b) were used. For the Deepcrack and CrackInst1K datasets, the prompt templates are
as follows: An image of cracks in a tunnel lining (road pavement); CrackInst1K dataset
(Deepcrack dataset); there are(is) k cracks(s) in this image. Here k = {1, 2, 3} is the
number of crack instances randomly placed during RIP.

• Augmentation budget. Each training split is expanded to exactly 5× its original size
(Table 2, main paper). Synthetic images are saved at 1024×1024, then centre-cropped to
1024×1024 before training.

Downstream instance segmentation

The goal of this experiment group is to measure how much CrackInstSynth augments improve
downstream crack instance segmentation. Unless noted otherwise, every detector is trained twice:
(i) on the original real-image training split and (ii) on the augmented set (real + synthetic at 5×
scale). All hyper-parameters below are kept identical between the two runs so that any accuracy
difference can be attributed solely to the synthetic data.

• Mask R-CNN He et al. (2017). ResNet-50-FPN backbone initialised from COCO; SGD
(lr 0.02, momentum 0.9, wd 1×10−4); linear warm-up 1k iters, step drops at epochs 60 and
80; 100 epochs, global batch size 8 (CrackInst1K) or 12 (DeepCrack / CRACK500); data
aug. = random flip (p 0.5) + scale jitter [0.8, 1.2]; evaluation with COCO AP at IoU 0.50
using coco eval.py in Detectron2.

• Cascade Mask R-CNN Cai & Vasconcelos (2018). R50-FPN, three-stage cascade; other
settings identical to Mask R-CNN; configuration follows the official Detectron2 recipe.

• Mask2Former Cheng et al. (2022). Swin-L backbone, 2× LR schedule (100 epochs on
our datasets), AdamW optimiser with parameters from the original paper; all other hyper-
parameters unchanged.
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• CondInst Tian et al. (2020). R50-FPN; trained with default 3× schedule in Detectron2 but
capped at 100 epochs for parity.

• SOLOv2 Wang et al. (2020). ResNet-101-FPN; we adopt the authors’ public configuration
from MMDetection 3.3; total epochs 100.

• QueryInst Fang et al. (2021). Swin-T backbone; default learning-rate schedule from the
paper; batch size 8 due to GPU memory.

Loss weights, anchor settings, and post-processing remain exactly as in the respective reference
implementations; no detector-specific tuning is performed.

Image-quality evaluation

• FID. Computed on 10k CrackInstSynth images vs. the entire real training split of the same
dataset; Inception-V3 pool3 features, TORCH-FID.

• mIoU and Betti errors. Each instance mask is collapsed to a binary crack-vs-background
map before evaluation so that topology metrics reflect true foreground connectivity, inde-
pendent of instance IDs. A robust U-Net Lei et al. (2024b), predicts binary masks for 2k
synthetic images; results are compared to ground truth to obtain mIoU as well as absolute
Betti-number errors (|∆β0|, |∆β1|). Connected-component analysis uses SCIKIT-IMAGE
measure.label with 8-connectivity for foreground and 4-connectivity for background,
matching the TopoDownsample convention.

A.6.2 MORE EXPERIMENTAL RESULTS

More detectors performance on CrackInstSynth

Table 4 reports the mAPseg
50 achieved by six detectors on three benchmarks, with and without Crack-

InstSynth augmentation. All models gain accuracy, with TC-ControlNet data giving the largest boost
on the most data-hungry detector (Mask R-CNN).

Table 4: Segmentation mAP50 before and after adding CrackInstSynth training data.

Detector CrackInst1K DeepCrack CRACK500

Base +Synth Base +Synth Base +Synth

Mask R-CNN 70.1 83.3 84.6 92.2 75.4 84.2
Cascade Mask R-CNN 71.5 82.0 85.3 91.0 76.0 83.6
Mask2Former 78.0 86.1 89.4 94.0 80.2 87.1
CondInst 69.4 78.4 83.2 88.5 73.0 80.6
SOLOv2 65.0 73.2 79.8 85.1 68.7 75.8
QueryInst 79.3 86.3 78.7 93.7 80.1 85.0

Cross-dataset generalisation

To evaluate domain robustness, we adopt a leave-one-dataset-out protocol: the detector is trained
on a single source set (with or without CrackInstSynth) and tested zero-shot on the remaining two
target sets. Table 5 shows that synthetic training data consistently improve segmentation accuracy
by 6–9 across all six source–target pairs.

Synthetic samples derived from the source domain thus transfer positively, even without any access
to target images, confirming CrackInstSynth’s value for real-world deployment.

Sensitivity to the synthetic-to-real ratio

Fig. 9 shows how Mask R-CNN mAPseg
50 evolves when the synthetic-to-real ratio increases from 1:1

to 50:1. The trend is consistent across all three benchmarks: accuracy climbs rapidly up to a 5:1
ratio and saturates thereafter. Consequently, we fix 5× synthetic augmentation for all main-paper
experiments.
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Table 5: Cross-dataset generalisation of Mask R-CNN between datasets. mAPseg
50 .

Source Target Base +Synth

CrackInst1K DeepCrack 60.2 67.5
CRACK500 58.9 65.1

DeepCrack CrackInst1K 62.1 69.3
CRACK500 61.0 68.2

CRACK500 CrackInst1K 58.0 64.8
DeepCrack 59.1 66.4

Figure 9: Mask R-CNN segmentation AP versus the amount of synthetic data, plotted on a log-
scaled x-axis.

A.6.3 MORE VISUALIZATIONS

Fig. 10 shows skeleton→mask→image examples with four material domains. Columns (a)–(b) il-
lustrate that physics-driven growth and the Skeleton2Mask diffusion recover realistic widths and
branching. Columns (c)–(f) demonstrate prompt-driven style transfer: tunnel, pavement, brick, and
concrete. Across rows, crack pixels remain aligned to the same mask and connectivity is unchanged,
indicating label-faithful, multi-style synthesis that supports our cross-dataset generalization experi-
ments.

A.6.4 PSG QUANTITATIVE ALIGNMENT: FULL STATISTICS

To demonstrate that PSG-generated masks match real masks in key curvilinear and topological
statistics beyond visuals, we report full distribution distances (Wasserstein W1 and Kolmogorov–
Smirnov) and robust-location summaries (medians/IQRs).

Feature W1 KS stat KS p-value nreal npsg

length mean 13.3595 0.0300 0.688 1134 1134
tortuosity mean 0.0143 0.4109 4.58×10−86 1134 1134
turning std 0.00512 0.0591 0.0382 1134 1134
curvature std 0.00830 0.3298 5.51×10−55 1134 1134
deg3p share 0.00633 0.0926 1.19×10−4 1134 1134
β0 0.0203 0.00706 1.000 1134 1134
β1 0.0176 0.0106 1.000 1134 1134

Table 6: REAL vs. PSG: Wasserstein W1 and KS statistics across curvilinear/topology features.
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(a) Skeleton (b) Mask (c) Tunnel sytle (d) Pavement sytle (e) Brick sytle (f) Concrete sytle

Figure 10: Additional visualizations across materials (CrackInstSynth). Columns: (a) Skeleton
after physics-driven growth; (b) Mask produced by the Skeleton→Mask diffusion; (c) Tunnel style;
(d) Pavement style; (e) Brick style; (f) Concrete style. The same mask (instance IDs in colour) is
rendered into different materials by switching text prompts. TC-ControlNet transfers background
appearance while preserving per-instance topology and width.
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In Tab. 6, W1 distances are small across all features, and KS statistics are low for most metrics; β0,1

match particularly well (KS p=1.0). For tortuosity and curvature, KS p-values are tiny due to the
large sample size, but the corresponding W1 magnitudes remain very small, indicating negligible
practical shift.

REAL PSG
Feature median p25 p75 median p25 p75

length mean 208.79 74.48 558.36 207.51 80.04 557.89
tortuosity mean 1.000 1.000 1.000 1.000 1.000 1.027
turning std 0.5391 0.5173 0.5567 0.5364 0.5140 0.5600
curvature std 0.3441 0.3409 0.3453 0.3425 0.3328 0.3530

Table 7: REAL vs. PSG: medians and IQRs (p25–p75). Small absolute W1 and aligned robust
summaries indicate close distributional agreement.

In Tab. 7, medians and IQRs of key curvilinear statistics are closely aligned between REAL and
PSG; deviations are minor and directionally consistent with the small W1 in Tab. 6.

Tables 6 and 7 jointly show that PSG preserves the distribution of curvilinear (length, tortuosity,
turning/curvature) and topological (β0,1) descriptors: effect sizes (W1) are small and robust sum-
maries (medians/IQRs) align closely with REAL data. While some KS tests become significant
under large n, the practical shifts are negligible. These results substantiate the claim that PSG is
physics-consistent beyond visual plausibility and does not distort the data-generating geometry.

A.6.5 PSG SENSITIVITY AND RESOLUTION-AWARE SCALING

To clarify what matters to tune in PSG and how to port settings across resolutions, we sweep key
parameters at 10242 and report a simple resolution rule with normalized geometry metrics.1

Parameter sweep (@10242, m=0.10). Defaults: k=4, ℓ=2 px, max=200 iters (max=100 · ℓ),
θ∈{±15◦,±30◦,±45◦}.

Param (values) Best Aggregate W range ∆ vs. default # within +5% Note

k (2,4,8) 4 13.3904 → 13.7421 +0.0% → +2.6% 3/3 Highly insensitive
max (100,200,300) 200 13.3904 → 13.4400 +0.0% → +0.4% 3/3 Runtime knob; stable
ℓ px (1,2,3) 2 13.3904 → 14.8500 +0.0% → +10.9% 2/3 Affects lengths
θ (±15◦,±30◦,±45◦) ±30◦ 13.3904 → 14.5800 +0.0% → +8.9% 2/3 Affects curvature

Table 8: PSG sensitivity at 10242: most parameters are robust; ℓ and θ modulate geometry as
expected.

In Tab. 8, varying k or max has negligible effect (≤2.6% and ≤0.4% on the aggregate W ), whereas
ℓ and θ control geometry (length/curvature) with still moderate shifts; most settings remain within
+5% of the default.

Resolution scaling rule. Let s = target
1024 ; keep (k,m) fixed; scale ℓ = 2s px and max = 100 · ℓ.

Resolution (rule-scaled) Normalized Aggregate W ∆ vs. 10242 Note

5122 (s=0.5, ℓ=1, max=100) 0.0449 +1.9% Normalized by size
10242 (s=1.0, ℓ=2, max=200) 0.04399 0.0% Baseline
20482 (s=2.0, ℓ=4, max=400) 0.0434 −1.3% Normalized by size

Table 9: Resolution-aware scaling keeps geometry statistics stable after size normalization.

In Tab. 9), after size normalization, the aggregate geometry drift remains within ±2% from 5122 to
20482, indicating that the linear rule preserves the distributional shape across resolutions.

1Aggregate metric: sum of 1D Wasserstein distances over length mean, tortuosity mean, turning std,
curvature std, deg3p share; lower is better.
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For practical tuning, prioritize ℓ and θ; the defaults k=4 and max=200 are sufficient. The simple
scaling rule (ℓ=2s, max=100ℓ) maintains stable geometry statistics across resolutions while keeping
the parameterization minimal.

26


	Introduction
	Related Work
	Crack Instance Segmentation
	Generative Data Augmentation

	Methodology
	Region–Level Instance Placement
	Physics-driven Skeleton Generator
	Topology-Preserving Generation Module (TPGM)
	Stage 1: SkeletonMask Diffusion
	Stage 2: MaskImage Diffusion


	Experiments
	Experimental Setup
	Experiment results and discussion
	Evaluation of Visual Realism and Consistency
	Evaluation of Downstream Segmentation Performance
	Visualization and Qualitative Analysis
	Ablation Study
	Runtime–accuracy trade-off of TopoDownsample


	Conclusion
	Appendix
	Additional related work
	Topology-aware diffusion for curvilinear structures

	Details of CrackInst1K Dataset
	Scope and Motivation
	Imaging and Pre-processing Pipeline
	Annotation Protocol
	Data Anonymisation and Availability

	More details about CrackInstSythn
	More detils about PSG
	More details about TPGM
	More details about Stage 1: SkeletonMask Diffusion

	Rationale Behind TC-ControlNet Design
	TopoDownsample: Formulation, Implementation & Theoretical Analysis
	Additional Details for Experiments
	Experimental Setup
	More Experimental Results
	More visualizations
	PSG quantitative alignment: full statistics
	PSG sensitivity and resolution-aware scaling



