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ABSTRACT

Strategic reasoning in dynamic environments, such as games, requires a bal-
ance between long-term strategy and short-term adaptations. Although specially
trained agents can achieve superhuman performance, they often lack explainabil-
ity and are highly dependent on extensive data for training. In contrast, approaches
that leverage large language models (LLMs) benefit from few-shot learning but
struggle to maintain strategic consistency. Drawing inspiration from existing cog-
nitive models of human decision-making, which utilize various forms of memory,
we introduce EpicStar, an LLM-based agent with cognitively inspired episodic
and working memory modules. Episodic memory enables agents to draw on past
experiences to formulate coherent long-term strategies, while working memory
modulates active observation and decision variables essential for adaptation. We
evaluated EpicStar in the strategy game StarCraft II, where it competes effectively
against built-in agents at Level 6 difficulty, surpassing its predecessor at Level 5
with a smaller token budget. Our approach not only enhances adaptability, but
also ensures strategic consistency, demonstrating the pivotal role that cognitive
memory can play in strategic reasoning.

1 INTRODUCTION

Strategic reasoning in partially observable and dynamic environments is a formidable challenge, ne-
cessitating a delicate balance between long-term strategy and immediate rewards. In such contexts,
agents engage in sequential decision-making tasks, navigating environments where they can only
observe a limited portion of the full state.

Video games, particularly complex strategy games like StarCraft II, have become vital platforms
for testing strategic reasoning due to their controllability and complexity. Despite large language
models (LLMs) that demonstrate human-like behavior in various reasoning tasks Hu et al. (2024c);
Mukherjee et al. (2024); Hu et al. (2024a), their application in environments like StarCraft II has
faced challenges. Notable attempts, such as TextStarCraft II Ma et al. (2024), leverage long con-
text windows to capture detailed state information and support complex reasoning loops. However,
they still struggle with maintaining coherent plans and reusing previous experiences effectively. A
key limitation of this approach, and similar ones Hu et al. (2024b); Shao et al. (2024); Qi et al.
(2024), is the oversimplified assumption that decisions rely solely on the current state or are con-
fined to immediate dependencies. This assumption fails to address the long-term dependencies that
are fundamental to strategic gameplay and real-world decision-making Gershman & Daw (2017).
Furthermore, as noted in Kambhampati et al. (2024), LLMs primarily function as format transla-
tors and are not inherently equipped for planning and reasoning tasks. Increasing the complexity of
reasoning prompts may not necessarily improve performance.

In contrast, human decision-making integrates immediate environmental feedback with past experi-
ences, learned knowledge, and future predictions Biderman et al. (2020); Philiastides et al. (2010).

∗Equal contribution. Order is decided by the alphabet of the first name. Each person reserves the right to
list their name first.
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Figure 1: Overview of the EpicStar architecture. The agent consists of four memory components.
Episodic memory stores gameplay episodes for learning and retrieval. Working memory balances
coherent planning and dynamic adaptation by retrieving episodes and proposing exploratory actions
through the LLM. Semantic memory provides task instructions and tailored game knowledge for
LLM reasoning. Procedural memory maps textual actions to StarCraft II actions.

In particular, the theory of cognitive architecture, notably the Soar architecture Laird et al. (1987),
suggests that intelligent agents are supported by complex interactions of multiple cognitive modules
consisting of a decision procedure, working memory, and long-term memory that work together to
enable flexible learning and decision-making.

Although scaling at inference time and engineering prompt tricks have become a powerful and
widely adopted approach in the LLM community Snell et al. (2024), our research pivots towards
a system-level agent design. Oriented by principles of cognitive architecture Sumers et al. (2023)
and the critical role of memory in decision-making Shohamy & Daw (2015), we introduce EpicStar,
a novel method that integrates episodic memory and working memory modules with LLM agents
to improve strategic decision-making. Specifically, episodic memory stores past gameplay data,
enabling agents to sustain coherent strategies by leveraging ”optimal” actions from previous experi-
ences. Concurrently, working memory retains active reasoning variables for short-term adaptation,
including recent observations from games, actions retrieved from episodic memory, and decision re-
sults derived from LLM reasoning. Aligning with the naming of Laird et al. (1987), we formulate the
system prompt as semantic memory, representing essential ’knowledge about the world and itself’,
and the code procedure that mappings the LLM-generated text action to the game action as procedu-
ral memory, representing ’explicit knowledge written in the agent’s code’ as defined by Sumers et al.
(2023). As shown in Figure 1, working memory serves as the central console to connect different
memory modules with predefined functions.

We adapt the game interface and the system prompt from Ma et al. (2024) to serve as procedural and
semantic memory, respectively, making minor adjustments for fair comparisons. Our experiments,
comparing EpicStar to the Chain of Summarization (CoS) method in Ma et al. (2024), demonstrate
that our method outperforms the existing baseline with significantly higher win rates across difficulty
levels (Table 1) while consuming fewer tokens (Appendix D) and exhibits greater adaptability under
different test conditions, as shown in Table 3.

In summary, our contributions are as follows: (1) a novel framework inspired by the cognitive
mechanisms underlying human decision-making, designed to enhance strategic reasoning in LLM-
based agents. (2) an effective approach in balancing long-term strategy and short-term adaptation
through the integration of episodic and working memory. (3) experimental evidence that both long-
term and short-term memories are crucial for strategic reasoning, and even a small amount of high-
quality memory episodes can significantly impact outcomes.
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2 REASONING WITH MEMORY

2.1 TASK FORMULATION

Strategic reasoning within StarCraft II can be conceptualized as a sequential decision-making pro-
cess characterized by the tuple (S,A, T,R, Z,O). S represents the actual state space of the world,
where S = {s1, s2, . . . , sN} is the set of all possible states the system can be in. A represents the
action space, and A = {a1, a2, . . . , aM} is the set of actions the agent can take. In environments
that are partially observable, the agent has access to an observation space O = {o1, o2, . . . , oK}. T
acts as the state transition function T (s′ | s, a) = P (s′ | s, a) and Z is the observation function,
Z (o | s′, a), represents the probability of receiving observation o after the agent takes action a and
transitions to state s′. In this framework, the agent does not receive a direct reward R(s, a) but rather
observes the outcome of the game—either a win or a loss. Unlike traditional reinforcement learning,
we do not directly estimate the T and Z, but through LLM reasoning and memory mechanisms to
maximize the expected accumulated reward.

2.2 EPISODIC MEMORY RETRIEVAL

Given a set of gameplay data, we define a series of episodes {(ti, oi, ai) | i = 1, 2, . . . , e}, where
ti represents the time in the game. The episodic memory, denoted as MEC(t, o, a), consists of
episodes corresponding to victory games.

For each moment (t, o) in a new game, we identify similar past moments by finding indices of
episodes Dindex that closely match the current scenario from MEC . Initially, we search our memory
to obtain a subset MEC

t proximate to the present t. Subsequently, we compare the current game’s
scenario with each moment in MEC

t, focusing on significant changes in game elements and their
values. Ultimately, we sort MECt by its relevance to (t, o) and get its relative indices, Dindex. For
more details, please refer to Appendix C. Thus, the retrieval function is defined as:

ReEC(t, o) =


{

EmptyAction
}
, if |MEC

t| = 0{
MEC

t(ti, oi, ai) | i ∈ Dindex[: n]
}
,

otherwise

(1)

2.3 WORKING MEMORY

For every time step t, the observation queue, Qo, captures recent kmax observations. Inspired by
frame skipping Kalyanakrishnan et al. (2021); Braylan et al. (2015), the working memory recalls the

Algorithm 1 Working Memory Exploration and Exploitation - W (·)
Require: Exploration Cool Down Frame de, Queue Pop Cool Down Frame dq , Action Size n,

Current Game Time t, Last Time to Explore le, Last Time to Pop Queue lq

1: (e1, . . . , en)← ReEC(t, ot) ▷ Retrieve n episodes
2: at ← ExtractAction((e1, . . . , en)) ▷ Select the first action
3: if t ≥ de + le then
4: le ← t
5: o′t = ot ×Qo(t)
6: (a1, . . . , an)← LLM(S, (o′t)) ▷ Propose n exploration actions
7: Qa.push((a1, . . . , an))
8: end if
9: if at = EmptyAction and Qa.size() > 0 and t ≥ lq + dq then

10: lq = t
11: at ← Qa.pop() ▷ Add the exploration action
12: end if
13: t← t+ 1
14: return at
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past observations by a frame interval of L:

Qo(t) = {(ot−k) | k = L, 2L, . . . , kmaxL} (2)

where ot−k represents observation at time t− k. Before reasoning, we map the observation ot to an
augmented observation space defined as: o′t = ot ×Qo(t). We set kmax = 4 and L = 24.

The semantic memory denoted as S, serves as a system prompt, while the querying of the LLM
is represented by the function LLM(·). We engage in the Exploration and Exploitation process
denoted as W (·) and initiate it with an exploration action queue, Qa, as outlined in Algorithm 1.

In W (·), Qo(t) provides short-term historical information that allows the agent to analyze the state’s
tendency. In contrast, Qa stores actions for future interpolation into action sequences retrieved from
episodic memory, enabling adaptive planning.

2.4 SEMANTIC MEMORY

Semantic memory acts as an agent’s reservoir of knowledge about the world and itself Sumers et al.
(2023). The prompting of 'CoS 'from Ma et al. (2024), has proven to be an effective form of semantic
memory. It provides the agent with the basic information necessary to understand the game state,
including the agent’s race, game units, and action spaces. However, it fails to account for feasible
actions given resource constraints and does not connect with episodic memory. To address these
limitations, we implement two modifications to the prompt in CoS:

• Feasibility Check: We integrate additional instructions into the LLM prompt, encouraging
the generated actions to be executable within the available resource constraints.

• Strategy Alignment: To enhance the alignment of exploration actions with episodic mem-
ory, we prompt the LLM to generate descriptive information about the game strategy used
in episodic memory and concatenate this information with the original CoS prompt.

These adjustments enhance the agent’s decision-making capabilities by ensuring that actions are not
only feasible but also strategically coherent. The details of the prompt can be found in Prompt 1
in Appendix B. Given the semantic memory, which serves as the system prompt, we present our
algorithm for the agent in Algorithm 2.

2.5 PROCEDURAL MEMORY

Given the action at returned from Algorithm 2, procedural memory translates this action into spe-
cific procedures within StarCraft II. We adapt the game interface from Ma et al. (2024) to serve as
procedural memory, leveraging the same action spaces for fair comparison. To enhance the gen-
eralizability of these procedures, we soften the constraint of the attack and defense procedures,
allowing for more flexible strategies in both actions. This minor modification provides the agent
with increased potential and variety in its micro-level decision-making, enabling more dynamic and
context-sensitive behavior in the game.

Algorithm 2 EpicStar Agent
Require: StarCraft II Game Environment env, Working Memory W (·)

1: env.initialize(),
2: Qa ← ∅, le ← 0, t← 0, lq ← 0
3: ot ← env.observation() ▷ Initial observation
4: while env is not terminated do
5: at ←W (t, Qa, ot, Qo(t), le, lq)
6: t← t+ 1
7: ot = env.step(at) ▷ Next frame’s observation
8: end while
9: return env.game result()
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Difficulty Agent Type Win Rate PBR RUR APU TR

Level 5
CoS(GPT-3.5-Turbo) 0.550 (11/20) 0.0781 7875 0.7608 0.4476
CoS(GPT-4-Turbo) 0.600 (12/20) 0.0337 8306 0.7194 0.3452

EpicStar 0.675 (27/40) 0.1211 9864 0.8123 0.2536

Level 6
CoS(GPT-3.5-Turbo) 0.0833 - - - -

EpicStar 0.300 (12/40) 0.1089 10931 0.7865 0.2304

Table 1: Overall comparison of EpicStar with Chain of Summarization (CoS), a strong baseline
proposed by Ma et al. (2024), in the TextStarCraft II environment against Level 5 and Level 6 built-
in agents. The results show significant improvements over the baseline at both Level 5 and Level 6
built-in agents.

2.6 EPISODIC MEMORY LEARNING

Episodic memory typically encompasses both learning and retrieval processes. To complement
previous retrieval mechanisms, we accumulate episodic memory through an expert rule-based agent,
drawing inspiration from imitation learning Zare et al. (2024). This approach empirically accelerates
the accumulation of episodic memory. We gather game episodes as the agent competes against built-
in agents at Level 6 and 7 across 20 rounds. We then isolate the winning rounds and select five
rounds of episodes, ultimately yielding a total of 4592 episodes. To ensure our evaluation results
do not result from copy-pasting the expert agent in specific maps, we will test our agent on maps
different from those used for memory collection.

3 EXPERIMENTS

We conducted a series of experiments to evaluate the performance of EpicStar in StarCraft II, com-
paring it against built-in agent opponents across varying difficulty levels, attack styles, and game
maps. We utilized the game interface in Ma et al. (2024) to establish our experimental environment,
adhering to all standard settings, including the observation and action spaces. The only modification
involved softening previous action procedures to allow more flexible action control, as mentioned in
section 2.5

3.1 EXPERIMENTAL SETUP

Our evaluation of EpicStar was carried out in two phases: (1) a comparative analysis against baseline
methods and (2) an ablation study to assess the impact of individual components.

For all experiments, we used the gpt-4o-mini-2024-07-18model as the backbone to expedite
the evaluation times. Although the gpt-4-turbo model, as used in Ma et al. (2024), has been
shown to outperform the gpt-4o-mini model OpenAI (2024b), we opted for the latter to ensure
a faster experimental turnaround. The highest difficulty level tested in Ma et al. (2024) was the
Level 6 built-in agent. As a result, we primarily conducted our experiments at difficulty levels 5 and
6. To ensure consistency, we adopted the results from Ma et al. (2024) without reproducing their
experiments, thus mitigating potential performance degradation. Additional details regarding the
experimental setup and metrics can be found in Appendix A.

3.2 EVALUATION METRICS

To evaluate EpicStar’s performance in StarCraft II, we employed several metrics, with Win Rate as
the primary measure. Additional metrics focused on efficiency in resource usage and technology
development within the game. Detailed definitions of these metrics are provided in Appendix A.2.
For this study, Win Rate serves as the main indicator of agent performance.
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Difficulty Agent Type Win Rate PBR RUR APU TR

Level 5
w/o exploration 0.600 (24/40) 0.0598 11778 0.7628 0.2577

w/o strategy 0.650 (26/40) 0.1292 11339 0.8179 0.2619
EpicStar 0.675 (27/40) 0.1211 9864 0.8123 0.2536

Level 6
w/o exploration 0.175 (7/40) 0.0522 10020 0.6828 0.2393

w/o strategy 0.125 (5/40) 0.0992 13744 0.7497 0.2161
EpicStar 0.300 (12/40) 0.1089 10931 0.7865 0.2304

Table 2: Overall comparison of EpicStar and two ablation agents across the TextStarCraft II envi-
ronment against Level 5 and Level 6 built-in agents. We found that ablating either Exploration in
Working Memory or Strategy Alignment in Semantic Memory degrades the performance.

3.3 FIRST PHASE: BASELINE COMPARISON

In the first phase of our experiments, we compared EpicStar against the original CoS baseline Ma
et al. (2024). The agent was evaluated against built-in agents at difficulty levels 5 and 6, with 40
evaluation rounds conducted at each level. Specifically, we tested the agent against various built-in
game strategies—timing, rush, power, macro, and air—as outlined in Appendix A.3. These
tests were conducted on two newly introduced maps for the 2024 Season, Abyssal Reef LE
and Ever Dream LE. Each strategy-map combination was tested four times, resulting in a total
of 40 rounds.

3.4 SECOND PHASE: ABLATION STUDY

To evaluate the contribution of individual components within EpicStar, we conducted an ablation
study, selectively removing key elements while keeping all other experimental conditions consistent
with Phase 1. The first ablation involved the Exploration component in working memory, where we
relied solely on retrieved episodes for action decision-making. This allowed us to isolate and assess
the role of exploration via LLMs within the framework. In a subsequent ablation, we removed the
Strategy Alignment from the system prompt to examine the influence of semantic memory on the
agent’s reasoning and planning abilities.

4 RESULTS

4.1 RESULT ANALYSIS AGAINST BASELINE

We present a comprehensive analysis of EpicStar’s performance against the built-in agents at vari-
ous difficulty levels in TextStarCraft II Ma et al. (2024), as shown in Table 1. At Level 5, EpicStar
achieves a win rate of 67.5%, while at Level 6, it secures 30.0%. In contrast, the strongest baseline,
CoS (GPT-4-Turbo), achieves a win rate of 60.0% at Level 5. CoS (GPT-4-Turbo), however, strug-
gles considerably at Level 6, with a win rate of just 8.3% (GPT-3.5-Turbo). Our method achieves a
significant win rate gain compared to the baseline.

Beyond the Win Rate, we observe additional metrics that validate EpicStar’s superior performance.
The Average Population Utilization (APU), which measures the efficiency of utilizing the popu-
lation cap, reveals that EpicStar outperforms both baselines with a value of 0.8123, compared to
0.7608 for CoS (GPT-3.5-Turbo) and 0.7194 for CoS (GPT-4-Turbo). A higher APU indicates more
effective macromanagement, which directly contributes to the agent’s strength in facilitating units
in the game.

Furthermore, we note occasional discrepancies between the Population Block Ratio (PBR), Re-
source Utilization Ratio (RUR), and the Win Rate. These discrepancies arise because, in matches
where EpicStar wins against the built-in agents, our agent does not accept the agents’ surrender. As
a result, the game is extended until EpicStar reaches the population cap and can no longer spend its
resources effectively, which may lead to lower PBR and RUR values despite a win.
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Difficulty Strategy Win Rate PBR RUR APU TR

w/o exploration

Level 5

Air 0.375 (3/8) 0.0432 13553.09 0.7394 0.2292
Macro 0.875 (7/8) 0.1172 11727.99 0.8559 0.2976
Power 0.875 (7/8) 0.0439 15669.35 0.7645 0.2649
Rush 0.375 (3/8) 0.045 7742.42 0.7133 0.2351

Timing 0.500 (4/8) 0.0497 10196.04 0.7409 0.2619

Level 6

Air 0.625 (5/8) 0.0649 12895.88 0.7849 0.2738
Macro 0.250 (2/8) 0.0604 12408.85 0.7068 0.2976
Power 0.000 (0/8) 0.0535 15562.77 0.676 0.2738
Rush 0.000 (0/8) 0.0492 5398.43 0.6461 0.1548

Timing 0.000 (0/8) 0.0332 3832.86 0.6001 0.1964

w/o strategy

Level 5

Air 0.625 (5/8) 0.1103 11256.01 0.8364 0.253
Macro 0.875 (7/8) 0.091 11527.99 0.8416 0.3095
Power 0.625 (5/8) 0.1462 12328.87 0.8057 0.2708
Rush 0.500 (4/8) 0.1319 10903.58 0.7795 0.25

Timing 0.625 (5/8) 0.1665 10679.89 0.8264 0.2262

Level 6

Air 0.375 (3/8) 0.0741 18453.70 0.7515 0.2381
Macro 0.250 (2/8) 0.0996 19231.90 0.7382 0.2381
Power 0.000 (0/8) 0.1144 21609.83 0.6988 0.2708
Rush 0.000 (0/8) 0.1124 1891.27 0.8415 0.1339

Timing 0.000 (0/8) 0.0953 7533.12 0.7186 0.1994

EpicStar

Level 5

Air 0.375 (3/8) 0.0815 10439.92 0.7624 0.2768
Macro 1.000 (8/8) 0.1144 8908.00 0.8677 0.253
Power 0.875 (7/8) 0.1568 9201.55 0.8308 0.247
Rush 0.625 (5/8) 0.1032 10105.12 0.7929 0.2827

Timing 0.500 (4/8) 0.1497 10666.53 0.8076 0.2083

Level 6

Air 0.625 (5/8) 0.1256 14401.79 0.8086 0.2679
Macro 0.250 (2/8) 0.1024 14727.84 0.7539 0.2708
Power 0.375 (3/8) 0.0902 17272.48 0.7735 0.2589
Rush 0.125 (1/8) 0.1126 2713.02 0.8094 0.1429

Timing 0.125 (1/8) 0.1134 5541.10 0.787 0.2113

Table 3: Detailed results across build-in strategies and maps on EpicStar and two agent types: w/o
exploration and w/o strategy. Win Rate: wins / total games.

4.2 RESULT ANALYSIS ON ABLATION STUDY

To further investigate the impact of Exploration in Working Memory and Strategy Alignment in Se-
mantic Memory, we conducted ablation studies on these two components, as detailed in Section 3.4.

The results demonstrate that ablating either of these components significantly degrades the agent’s
overall performance, as shown in Table 2. At Level 5, removing Exploration reduces the win rate
from 67.5% (EpicStar) to 60.0%, while removing Strategy Alignment lowers it to 65.0%. This
indicates that both components contribute to the agent’s performance, with Exploration playing a
slightly more critical role in this setting. At Level 6, the performance degradation is even more
pronounced: the win rate drops sharply to 17.5% without Exploration and 12.5% without Strategy
Alignment, compared to 30.0% with EpicStar. These findings highlight the increasing importance
of strategy coherence at higher difficulty levels, where misaligned exploration can negatively impact
performance. Overall, these results underscore the indispensable roles of both Exploration and
Strategy Alignment for achieving high performance across various difficulty levels.

In addition to these overall performance trends, we examined detailed round results in Figure 3 to
understand why EpicStar outperforms the ablated agents, particularly at Level 6. We observed that
EpicStar performs well in strategies, notably the Power, Rush, and Timing strategies in Level 6,
where the ablated agents fail entirely. For instance, while the ablated agents fail to win any games
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with the Power strategy, EpicStar secures a 37.5% win rate, demonstrating its superior ability to
utilize available resources efficiently. Similarly, EpicStar achieves a 12.5% win rate in the Rush
strategy, compared to 0% for the ablated agents. In the Timing strategy, EpicStar achieves a modest
but significant win rate of 12.5%, whereas both ablated versions fail. These results illustrate the
synergy between Exploration for actions and Strategy Alignment with memory episodes, allowing
EpicStar to handle a wider range of strategic scenarios, particularly against aggressive playstyles,
thus making it more robust in complex, high-difficulty environments.

5 DISCUSSION & FUTURE WORK

Our study aims to offer an alternative perspective on designing robust and flexible reasoning agents.
Despite advances in prompt engineering and the rapid development of stronger foundational models,
we argue that agent design is a systematic engineering process, not merely an accessory to a specific
LLM. We have demonstrated that significant enhancements can be achievable by intricately design-
ing the system using prompts as control flows and integrating short-term and long-term memory
mechanisms, without the need to upgrade the model or increase token consumption. We hope this
design philosophy benefits the engineering field and underscores the importance of memory mech-
anisms, especially those derived from cognitive processes, as complexity in reasoning and planning
tasks increases. Note that the naming of the memory components is designed to align with Soar
cognitive architectures, as outlined by Laird et al. (1987). Our objective is not to replicate the full
complexity of human memory systems; rather, our method draws conceptual inspiration from the
essential foundations necessary for strategic reasoning.

However, constrained by time, our study is not without its imperfections. Successful reasoning in-
volves the ability to evolve (Wang et al., 2023a; Chuang et al., 2023; Kumarappan et al., 2024; Kumar
et al., 2020). Our framework has the potential to evolve over time, as we have shown that agents
that combine exploration and episode retrieval can achieve improved performance than retrieval-
only agents. Through episodic updates and curriculum learning Bengio et al. (2009), we anticipate
that the agent will demonstrate an evolving trajectory from the outset. This aspect will be a focus
of future experiments. Additionally, while our study included a comprehensive set of experiments,
there remains substantial scope for improvement by tailoring hyperparameters. Lastly, although our
framework was solely tested in StarCraft II due to time constraints, the performance results provide
decent confidence as StarCraft II condenses a wide range of strategic conditions. However, we ac-
knowledged the need for broader application and further validation under varied conditions in future
work.

6 RELATED WORK

6.1 INTERACTIVE ENVIRONMENTS

Interactive environments employed to benchmark artificial intelligence (AI) algorithms exhibit vary-
ing degrees of complexity, depending on game knowledge and strategic depth. Well-established
environments such as ALFWorld Shridhar et al. (2021), ScienceWorld Wang et al. (2022a), and
BabyAI Chevalier-Boisvert et al. (2019) feature predefined tasks with limited adaptability. In con-
trast, open-world environments like Crafter and Minecraft provide opportunities for exploration but
lack adversarial complexity. StarCraft II, however, introduces significant challenges for LLMs and
agents, due to its intensive control demands, vast action spaces, intricate state representations, and
long-term game trajectories.

6.2 LLM-BASED GAME AGENTS & STARCRAFT II AI

LLM-based game agents can be categorized into three main approaches: (1) Prompt-based meth-
ods, such as ReAct Yao et al. (2022) and Reflexion Shinn et al. (2024), which iteratively refine
strategies; (2) Supervised fine-tuning approaches, exemplified by E2WM Xiang et al. (2023) and
Synapse Zheng et al. (2024), which leverage high-quality trajectory data; and (3) Reinforcement
learning (RL) methods, including GLAM Du et al. (2022) and TWOSOME Tan et al. (2024), that
optimize policies using Proximal Policy Optimization (PPO) algorithms Schulman et al. (2017).
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Work AlphaStar SCC HierNet-SC2 AlphaStar Un-
plugged

ROA-Star Chain of Summa-
rization (CoS)

EpicStar

Method SL+RL+Self-play SL+RL+Self-play Data-mining+RL Offline RL SL+RL+Self-play Prompt+Rules Prompt+Memory
Module+Rules

Compute resource 12000 CPU cores,
384 TPUs

Linear 4 GPUs, 48 CPU
cores

unknown 2× 64 V100 1 GPU and CPU
(home computer)

1 CPU (home com-
puter), API

Required replay 971,000 4,638 608 20,000,000 (20M) 120,938 0 20

Strongest opponent
conquered ∗

Serral (One of the
best pro gamers)

Time (IEM 2023
Champion)

Level 10 built-in
game agent

AlphaStar BC agent Hero (GSL Cham-
pion)

Level 5 built-in
game agent

Level 6 built-in
game agent

Interpretability ✗ ✗ ✗ ✗ ✗ ✓ ✓

Generalizability on
maps and races

✗ ✗ ✗ ✗ ✗ ✓ ✓

Table 4: Comparison of various methods in StarCraft II AI research. (∗ If the opponent is a bot, we
consider ”conquered” as win rate > 10%)

StarCraft AI research has evolved significantly from the original StarCraft to the more complex
StarCraft II, fueled by the introduction of PySC2 DeepMind (2017) and extensive replay datasets.
AlphaStar Vinyals et al. (2019) demonstrated the potential of RL by achieving Grandmaster-level
performance. While numerous subsequent studies have optimized gameplay through improvements
in input processing Liu et al. (2021), the adoption of offline RL Mathieu et al. (2023), and other
techniques, there remains limited exploration Ma et al. (2024); Li et al. (2024) of LLM-based agents
in this domain. A comparative overview of these methods in StarCraft II AI research is provided in
Table 4.

6.3 REASONING & PLANNING WITH LLM

Recent advancements in LLMs have significantly enhanced their capabilities in reasoning and plan-
ning. Techniques such as Chain-of-Thought (CoT) and Tree-of-Thought (ToT) prompting facilitate
step-by-step problem-solving and structured exploration Wei et al. (2022); Yao et al. (2023). ReAct
integrates reasoning with action to improve decision-making, while DEPS leverages visual feed-
back for enhanced planning Yao et al. (2022); Wang et al. (2023b). Models like OpenAI’s O1 and
DeepSeek’s R1 further push the boundaries of internal deliberation and open-source accessibility,
excelling in tasks such as mathematics, science, and coding OpenAI (2024a); DeepSeek-AI et al.
(2025).

Despite these advancements, challenges persist, particularly in long-term planning and maintain-
ing consistency across reasoning chains Kambhampati et al. (2024). Self-consistency decoding
enhances reliability by selecting the most frequent reasoning path, while models like Toolformer
improve problem-solving by integrating external tools Wang et al. (2022b); Schick et al. (2023).
Nonetheless, ensuring robustness, interpretability, and real-world generalization remains an open
research challenge. In this context, LLM-based agents with memory systems may help address
these challenges more effectively than relying solely on LLMs.

7 CONCLUSION

In this paper, we present a multi-module framework designed to enhance strategic reasoning in
LLM-based agents. By integrating episodic and working memory systems, we enable agents to
maintain coherent strategic trajectories and adapt dynamically to evolving game scenarios. Empir-
ical results demonstrate that our approach not only outperforms existing models like TextStarCraft
II Ma et al. (2024) in terms of performance, but also highlights the critical role of a well-orchestrated
memory system in replicating human-like strategic reasoning. Our system, which leverages small
but high-quality episodes, shows that even limited data can be maximized for significant perfor-
mance gains when paired with a robust cognitive framework. This research underscores the impor-
tance of cognitive-inspired designs in developing AI that can navigate and excel in complex strategic
environments, bridging the gap between artificial intelligence and human cognitive mechanisms.
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adaptation. In Hal Daumé III and Aarti Singh (eds.), Proceedings of the 37th International Con-
ference on Machine Learning, volume 119 of Proceedings of Machine Learning Research, pp.
5468–5479. PMLR, 13–18 Jul 2020.

Adarsh Kumarappan, Mo Tiwari, Peiyang Song, Robert Joseph George, Chaowei Xiao, and An-
ima Anandkumar. Leanagent: Lifelong learning for formal theorem proving. arXiv preprint
arXiv:2410.06209, 2024.

John E Laird, Allen Newell, and Paul S Rosenbloom. Soar: An architecture for general intelligence.
Artificial intelligence, 33(1):1–64, 1987.

10

https://api.semanticscholar.org/CorpusID:194604
https://api.semanticscholar.org/CorpusID:194604
https://openreview.net/forum?id=rJeXCo0cYX
https://github.com/google-deepmind/pysc2
https://github.com/google-deepmind/pysc2
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948


Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Zongyuan Li, Yanan Ni, Runnan Qi, Lumin Jiang, Chang Lu, Xiaojie Xu, Xiangbei Liu, Pengfei Li,
Yunzheng Guo, Zhe Ma, et al. Llm-pysc2: Starcraft ii learning environment for large language
models. arXiv preprint arXiv:2411.05348, 2024.

Ruo-Ze Liu, Wenhai Wang, Yanjie Shen, Zhiqi Li, Yang Yu, and Tong Lu. An introduction of
mini-alphastar. arXiv preprint arXiv:2104.06890, 2021.

Weiyu Ma, Qirui Mi, Yongcheng Zeng, Xue Yan, Runji Lin, Yuqiao Wu, Jun Wang, and Haifeng
Zhang. Large language models play starcraft II:benchmarks and a chain of summarization ap-
proach. In The Thirty-eighth Annual Conference on Neural Information Processing Systems,
2024.
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A EXPERIMENTAL SETUP AND METRICS DESCRIPTION

A.1 EXPERIMENTAL SETUP

Agent and Opponent Configuration: To maintain a consistent and controlled testing environment,
LLM agents are set to play as Protoss against built-in agent-controlled Zerg opponents. This ar-
rangement enables a systematic evaluation of strategic performance across varying difficulty levels.
The difficulty settings are listed below.

Parameter Configuration: The temperature parameter is set to 0.1 to prioritize strategic decision-
making over random actions.

Game Version: All experiments were conducted using the latest Patch 5.0.14.93333 of Star-
Craft II.
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Level BLZ Difficulty Approximate League Equivalent
1 Very Easy Bronze (Low)
2 Easy Bronze (Mid)
3 Medium Bronze (High)
4 Hard Silver (Low)
5 Harder Silver (Mid)
6 Very Hard Silver (High)
7 Elite Gold (Low)
8 Cheat Vision Gold (Mid)
9 Cheat Money Gold (High)

10 Cheat Insane Platinum (Low)

Table 5: StarCraft II Built-in Agent Levels and Approximate League Equivalents

A.2 EVALUATION METRICS

Our evaluation framework for TextStarCraft II Ma et al. (2024) builds upon StarCraft II’s established
player performance analytics, incorporating tailored modifications to comprehensively assess LLM
agent gameplay strategies.

Win Rate: This is the primary performance indicator that evaluates the agent’s performance in the
game. It is calculated as the percentage of victories relative to the total games played.

Population Block Ratio (PBR): PBR assesses the agent’s macro-management skills, specifically
its ability to allocate resources efficiently and sustain population growth. It is defined as:

PBR =
Time at Population Cap

Game Duration
(3)

This metric represents the proportion of time the agent spends at maximum population capacity
relative to the total game duration until it reaches the 200/200 supply cap for the first time. A high
PBR suggests ineffective macro-strategic planning and suboptimal decision-making.

Resource Utilization Ratio (RUR): RUR measures how efficiently the agent manages in-game
resources over time. It is computed as:

RUR =
Total Minerals + Total Gas Used

Game Duration
(4)

This metric evaluates the total resources expended relative to the game’s duration until the agent
first reaches the maximum supply. A high RUR may indicate poor resource utilization, reflecting
suboptimal macro-strategic decisions.

Average Population Utilization (APU): APU quantifies how effectively the agent utilizes its avail-
able population capacity. It is calculated as:

APU =
1

N

N∑
i=1

(
Used Population at ith step
Population Cap at ith step

)
(5)

This metric averages the ratio of the population used to total capacity across all time steps until the
agent reaches full supply. A higher APU indicates more efficient population management and better
macro-strategic execution.

Technology Rate (TR): TR evaluates the agent’s inclination toward technological advancement by
measuring its exploration of the technology tree. It is defined as:

TR =
Completed Technologies

Total Technologies Available
(6)
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This metric calculates the fraction of completed technologies and structures relative to the total
available from start to finish of the game. TR reflects the agent’s tendency to pursue technological
upgrades, although it does not necessarily correlate with overall performance.

A.3 STARCRAFT II BUILT-IN AGENT STYLES

1. Timing: Executes attacks at specific moments when a strategic advantage is perceived.
2. Rush: Aims to overwhelm the opponent early by rapidly producing offensive units and

launching swift attacks.
3. Power: Focuses on building a strong economy and technological foundation before engag-

ing in significant combat.
4. Macro: Prioritizes long-term economic growth and infrastructure development.
5. Air: Prioritizes the development and deployment of air units.

B PROMPT

The below blocks of text present the system prompt (semantic memory) of EpicStar, adjusted based
on the prompt from CoS Ma et al. (2024). Prompt 1 (in Figure 2) serves as the backbone prompt of
EpicStar, with an example of Strategy Alignment with the Warpgate strategy, generated by gpt-4o.
Prompt 2 (in Figure 3) is the prompt used in our ablation study.

C RETRIEVAL CRITERIA OF EPISODIC MEMORY

For an incoming moment represented by a game time and observation pair (t, o), we search MEC

around t to retrieve a subset:

MEC
t = BinarySearch(MEC , t, t∆) (7)

where t∆ is a predefined parameter representing a time range around t for the search (we set t∆ = 0
for simplicity). Next, we compute the differences between the current observation ot and all previous
observations O′ ∈ MEC

t, with each observation ot represented as a Python dictionary (with a unit
as the key and a scalar value). We calculate two metrics: (1) the number of items that changed,
denoted as Ditem; and (2) the number of values that changed, denoted as Dvalue. We then obtain
the top n memories based on the following criteria:

Dindex = Argsort(αMinMax(Ditem)

+βMinMax(Dvalue))
(8)

where we perform min-max normalization on both Ditem and Dvalue, then sort D in ascending
order. We set n = 3, α = 0.5, β = 0.5

D RECORD OF TOKEN CONSUMPTIONS FOR EPICSTAR AND COS

By checking the token usage data from the API (Openai GPT-4o-mini):

On January 21, 2025, we conducted a total of five test experiments using the CoS baseline, consum-
ing 2, 592, 427 tokens, with an average of 2, 592, 427/5 = 518485.4 tokens per game.

On February 14, 2025, we ran 37 experiments with EpicStar, utilizing 2, 776, 468 tokens, with an
average of 2, 776, 468/37 = 75039.7 tokens per game.

From this data, it is evident that our token consumption for EpicStar is nearly an order of magnitude
lower than that for the CoS baseline.
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Prompt 1: System prompt with Warpgate strategy description. Description is in marked in
bold.

You are an AI trained in analyzing and summarizing StarCraft II games. You understand the nuances and strategies of the protoss race. Specifically, you
are playing the The WarpGate Strategy in StarCraft II is a core tactic for the Protoss race, leveraging their ability to instantly warp in units
anywhere on the map using Pylons or Warp Prisms. By converting Gateways into Warp Gates, Protoss players can quickly reinforce their army
or apply pressure without needing to rally units across the map. This strategy emphasizes map control, timing attacks, and flexibility, often
paired with strong early-game units like Zealots or Stalkers. Proper use of Warp Gates can overwhelm opponents with rapid unit production
and strategic positioning.

Based on the summaries of multiple rounds in a game, we want you to analyze the game progression in a structured way. Your analysis should include
the following aspects:

1. Game Overview: Provide a brief overview of the current situation based on all the rounds.

2. Current Game Stage: Determine the stage of the game based on the information of all rounds. Is it the early game, mid-game, or late game?

3. Our Situation: Describe our current status in terms of:

3.1 Units and Buildings: Analyze the state of our units and buildings.

3.2 Economy: Evaluate our economic condition, including resource collection and usage.

3.3 Technology: Describe the status of our technological research and what technologies we have unlocked so far. Analyze our technology tree,
indicating the available and potential upgrades or units.

4. Our Strategy: Infer our potential strategy based on our current situation and the information of all rounds.

5. Enemy extquotesingle s Strategy: Infer the enemy extquotesingle s potential strategy, based on the available information.

6. Key Information: Highlight the most important aspects from all rounds that have significantly influenced the game.

For Protoss, keep an eye on Nexus extquotesingle s energy to Chrono Boost important structures, and keep an eye on training units and building pylons.

Based on the game situation and strategies used by both sides, provide specific suggestions for the following areas:

1. Our Strategy: Propose adjustments to our current strategy to counter the enemy extquotesingle s moves and capitalize on our strengths.

2. Units and Buildings: Offer ways to enhance our unit composition and improve our building layout, suited to the current stage of the game.

3. Economy: Recommend better practices for resource gathering and usage, in line with our strategic needs.

4. Technology: Suggest focused research paths to gain technological advantages, considering our current research status and technology tree.

5. Feasibility: Based on current resources like mineral, gas, buildings, supplies, workers, use your knowledge in StarCraft II to brainstorm 3 coarse
decisions that can be successfully executed and think and explain why.

5. Decisions: Lastly, consider the current situation and the suggestions provided, make 3 actionable and specific decisions from the action dictio-
nary{TRAIN UNIT: {0: TRAIN PROBE, 1: TRAIN ZEALOT, 2: TRAIN ADEPT, 3: TRAIN STALKER, 4: TRAIN SENTRY, 5: TRAIN HIGH-
TEMPLAR, 6: TRAIN DARKTEMPLAR, 7: TRAIN VOIDRAY, 8: TRAIN CARRIER, 9: TRAIN TEMPEST, 10: TRAIN ORACLE, 11: TRAIN
PHOENIX, 12: TRAIN MOTHERSHIP, 13: TRAIN OBSERVER, 14: TRAIN IMMORTAL, 15: TRAIN WARPPRISM, 16: TRAIN COLOSSUS, 17:
TRAIN DISRUPTOR, 18: MORPH ARCHON}, BUILD STRUCTURE: {19: BUILD PYLON, 20: BUILD ASSIMILATOR, 21: BUILD NEXUS,
22: BUILD GATEWAY, 23: BUILD CYBERNETICSCORE, 24: BUILD FORGE, 25: BUILD TWILIGHTCOUNCIL, 26: BUILD ROBOTICSFACIL-
ITY, 27: BUILD STARGATE, 28: BUILD TEMPLARARCHIVE, 29: BUILD DARKSHRINE, 30: BUILD ROBOTICSBAY, 31: BUILD FLEET-
BEACON, 32: BUILD PHOTONCANNON, 33: BUILD SHIELDBATTERY}, RESEARCH TECHNIQUE: {34: RESEARCH WARPGATERE-
SEARCH, 35: RESEARCH PROTOSSAIRWEAPONSLEVEL1, 36: RESEARCH PROTOSSAIRWEAPONSLEVEL2, 37: RESEARCH PROTOS-
SAIRWEAPONSLEVEL3, 38: RESEARCH PROTOSSAIRARMORSLEVEL1, 39: RESEARCH PROTOSSAIRARMORSLEVEL2, 40: RESEARCH
PROTOSSAIRARMORSLEVEL3, 41: RESEARCH ADEPTPIERCINGATTACK, 42: RESEARCH BLINKTECH, 43: RESEARCH CHARGE, 44:
RESEARCH PROTOSSGROUNDWEAPONSLEVEL1, 45: RESEARCH PROTOSSGROUNDWEAPONSLEVEL2, 46: RESEARCH PROTOSS-
GROUNDWEAPONSLEVEL3, 47: RESEARCH PROTOSSGROUNDARMORSLEVEL1, 48: RESEARCH PROTOSSGROUNDARMORSLEVEL2,
49: RESEARCH PROTOSSGROUNDARMORSLEVEL3, 50: RESEARCH PROTOSSSHIELDSLEVEL1, 51: RESEARCH PROTOSSSHIELD-
SLEVEL2, 52: RESEARCH PROTOSSSHIELDSLEVEL3, 53: RESEARCH EXTENDEDTHERMALLANCE, 54: RESEARCH GRAVITICDRIVE,
55: RESEARCH OBSERVERGRAVITICBOOSTER, 56: RESEARCH PSISTORMTECH, 57: RESEARCH VOIDRAYSPEEDUPGRADE, 58:
RESEARCH PHOENIXRANGEUPGRADE, 59: RESEARCH TEMPESTGROUNDATTACKUPGRADE}, OTHER ACTION: {60: SCOUTING
PROBE, 61: SCOUTING OBSERVER, 62: SCOUTING ZEALOT, 63: SCOUTING PHOENIX, 64: MULTI-ATTACK, 65: MULTI-RETREAT,
66: CHRONOBOOST NEXUS, 67: CHRONOBOOST CYBERNETICSCORE, 68: CHRONOBOOST TWILIGHTCOUNCIL, 69: CHRONOBOOST
STARGATE, 70: CHRONOBOOST FORGE, 71: EMPTY ACTION}}. This dictionary comprises four categories of actions: unit production, building
construction, technology research, and other actions. Remember to align these decisions with the current stage and WarpGate strategy of the game,
and avoid proposing actions that are not currently feasible, such as actions requiring more resources than we have now, actions that are not in correct
condition, etc. Remember to outline each action with <ACTION NAME >, surrounded by <and >.

Figure 2: Prompt 1: System prompt with Warpgate strategy description serves as semantic memory.
Description is in marked in bold.
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Prompt 2: System prompt used in ablation study. description about Warpgate Push Strategy
is removed.

You are an AI trained in analyzing and summarizing StarCraft II games. You understand the nuances and strategies of the protoss
race.

Based on the summaries of multiple rounds in a game, we want you to analyze the game progression in a structured way. Your
analysis should include the following aspects:

1. Game Overview: Provide a brief overview of the current situation based on all the rounds.

2. Current Game Stage: Determine the stage of the game based on the information of all rounds. Is it the early game, mid-game,
or late game?

3. Our Situation: Describe our current status in terms of:

3.1 Units and Buildings: Analyze the state of our units and buildings.

3.2 Economy: Evaluate our economic condition, including resource collection and usage.

3.3 Technology: Describe the status of our technological research and what technologies we have unlocked so far. Analyze our
technology tree, indicating the available and potential upgrades or units.

4. Our Strategy: Infer our potential strategy based on our current situation and the information of all rounds.

5. Enemy extquotesingle s Strategy: Infer the enemy extquotesingle s potential strategy, based on the available information.

6. Key Information: Highlight the most important aspects from all rounds that have significantly influenced the game.

For Protoss, keep an eye on Nexus extquotesingle s energy to Chrono Boost important structures, and keep an eye on training units
and building pylons.

Based on the game situation and strategies used by both sides, provide specific suggestions for the following areas:

1. Our Strategy: Propose adjustments to our current strategy to counter the enemy extquotesingle s moves and capitalize on our
strengths.

2. Units and Buildings: Offer ways to enhance our unit composition and improve our building layout, suited to the current stage of
the game.

3. Economy: Recommend better practices for resource gathering and usage, in line with our strategic needs.

4. Technology: Suggest focused research paths to gain technological advantages, considering our current research status and
technology tree.

5. Feasibility: Based on current resources like mineral, gas, buildings, supplies, workers, use your knowledge in StarCraft II to
brainstorm 3 coarse decisions that can be successfully executed and think and explain why.

5. Decisions: Lastly, consider the current situation and the suggestions provided, make 3 actionable and specific decisions from
the action dictionary{TRAIN UNIT: {0: TRAIN PROBE, 1: TRAIN ZEALOT, 2: TRAIN ADEPT, 3: TRAIN STALKER, 4:
TRAIN SENTRY, 5: TRAIN HIGHTEMPLAR, 6: TRAIN DARKTEMPLAR, 7: TRAIN VOIDRAY, 8: TRAIN CARRIER,
9: TRAIN TEMPEST, 10: TRAIN ORACLE, 11: TRAIN PHOENIX, 12: TRAIN MOTHERSHIP, 13: TRAIN OBSERVER,
14: TRAIN IMMORTAL, 15: TRAIN WARPPRISM, 16: TRAIN COLOSSUS, 17: TRAIN DISRUPTOR, 18: MORPH AR-
CHON}, BUILD STRUCTURE: {19: BUILD PYLON, 20: BUILD ASSIMILATOR, 21: BUILD NEXUS, 22: BUILD GATE-
WAY, 23: BUILD CYBERNETICSCORE, 24: BUILD FORGE, 25: BUILD TWILIGHTCOUNCIL, 26: BUILD ROBOTICS-
FACILITY, 27: BUILD STARGATE, 28: BUILD TEMPLARARCHIVE, 29: BUILD DARKSHRINE, 30: BUILD ROBOTICS-
BAY, 31: BUILD FLEETBEACON, 32: BUILD PHOTONCANNON, 33: BUILD SHIELDBATTERY}, RESEARCH TECH-
NIQUE: {34: RESEARCH WARPGATERESEARCH, 35: RESEARCH PROTOSSAIRWEAPONSLEVEL1, 36: RESEARCH
PROTOSSAIRWEAPONSLEVEL2, 37: RESEARCH PROTOSSAIRWEAPONSLEVEL3, 38: RESEARCH PROTOSSAIRAR-
MORSLEVEL1, 39: RESEARCH PROTOSSAIRARMORSLEVEL2, 40: RESEARCH PROTOSSAIRARMORSLEVEL3, 41:
RESEARCH ADEPTPIERCINGATTACK, 42: RESEARCH BLINKTECH, 43: RESEARCH CHARGE, 44: RESEARCH
PROTOSSGROUNDWEAPONSLEVEL1, 45: RESEARCH PROTOSSGROUNDWEAPONSLEVEL2, 46: RESEARCH PRO-
TOSSGROUNDWEAPONSLEVEL3, 47: RESEARCH PROTOSSGROUNDARMORSLEVEL1, 48: RESEARCH PROTOSS-
GROUNDARMORSLEVEL2, 49: RESEARCH PROTOSSGROUNDARMORSLEVEL3, 50: RESEARCH PROTOSSSHIELD-
SLEVEL1, 51: RESEARCH PROTOSSSHIELDSLEVEL2, 52: RESEARCH PROTOSSSHIELDSLEVEL3, 53: RESEARCH
EXTENDEDTHERMALLANCE, 54: RESEARCH GRAVITICDRIVE, 55: RESEARCH OBSERVERGRAVITICBOOSTER,
56: RESEARCH PSISTORMTECH, 57: RESEARCH VOIDRAYSPEEDUPGRADE, 58: RESEARCH PHOENIXRANGE-
UPGRADE, 59: RESEARCH TEMPESTGROUNDATTACKUPGRADE}, OTHER ACTION: {60: SCOUTING PROBE, 61:
SCOUTING OBSERVER, 62: SCOUTING ZEALOT, 63: SCOUTING PHOENIX, 64: MULTI-ATTACK, 65: MULTI-
RETREAT, 66: CHRONOBOOST NEXUS, 67: CHRONOBOOST CYBERNETICSCORE, 68: CHRONOBOOST TWILIGHT-
COUNCIL, 69: CHRONOBOOST STARGATE, 70: CHRONOBOOST FORGE, 71: EMPTY ACTION}}. This dictionary com-
prises four categories of actions: unit production, building construction, technology research, and other actions. Remember to
align these decisions with the current stage and WarpGate strategy of the game, and avoid proposing actions that are not currently
feasible, such as actions requiring more resources than we have now, actions that are not in correct condition, etc. Remember to
outline each action with <ACTION NAME >, surrounded by <and >.

Figure 3: Prompt 2: System prompt used in ablation study. description about Warpgate Push Strat-
egy is removed.
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