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ABSTRACT

Although the learning of deep neural networks (DNNs) is widely believed to be
a fitting process without an explicit symbolic structure, previous studies have dis-
covered (Ren et al., 2023a; Li & Zhang, 2023b) and proven (Ren et al., 2023c) that
well-trained DNNs usually encode sparse interactions, which can be considered as
primitives of the inference. In this study, we redefine the interaction on principal
feature components in intermediate-layer features, which significantly simplifies
the interaction and enables us to explore the dynamics of interactions through-
out the learning of the DNN. Specifically, we visualize how new interactions are
gradually learned and how previously learned interactions are gradually forgotten
during the training process. We categorize all interactions into five distinct groups
(reliable, withdrawing, forgetting, betraying, and fluctuating interactions), which
provides a novel perspective for understanding the learning process of DNNs.

1 INTRODUCTION

Explainable artificial intelligence (XAI) has received increasing attention in recent years. A funda-
mental challenge in the realm of XAI is to identify primitives that reflect the inference logic behind
the output score of deep neural networks (DNNs). Analogous to taking semantic concepts as prim-
itives in human cognition, previous researchers hoped to examine whether a DNN also encoded
some kind of concepts (Zhou et al., 2016; Kim et al., 2018). However, up to now, there is still no
universally accepted formulation of semantic concepts in DNNs, because it involves joint issues in
cognitive science and mathematics. In recent research, Ren et al. (2023c) proved that under some
common conditions,1 a well-trained DNN usually encoded a relatively small number of interactions
among input variables (e.g. pixels and words). Thus, they claimed these interactions could be con-
sidered as concepts encoded by the DNN. For example, Figure 1(a) shows a DNN may encode an
interaction between two eye patches and a mouth patch, and this interaction makes a numerical util-
ity on the classification score of the cat category. Masking any of the three patches will invalidate
this interaction and remove its utility from the output.

Although we still doubt whether the interactions in (Ren et al., 2023c) can precisely represent con-
cepts in human cognition, a series of studies have indicated that interactions can still serve as primi-
tive inference patterns used by a DNN, to some extent. (1) Ren et al. (2023c) proved that even when
input variables in an input sample were arbitrarily masked, it was always possible to use a small
number of interactions to replicate the output score of the DNN. (2) Li & Zhang (2023b) demon-
strated the generalization ability of interactions in classification tasks. (3) Besides, (Cheng et al.,
2021) discovered that in image classification, each interaction between image patches potentially
corresponded to a specific visual concept.

Therefore, in this study, we adopt the above interactions as the primitives for the output score of a
DNN. In this way, the learning dynamics of a DNN can be roughly explained as the gradual emer-
gence of discriminative interactions and the progressive forgetting of incorrect interactions through-
out the training process.

Thus, our goal is to visualize the changes in primitive interactions during the learning process. How-
ever, previous research defined interactions on raw input variables, and the high dimension of inputs
boosted the computational complexity. Besides, some interactions between raw input variables are

1Please see Appendix A for details.
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Figure 1

(a) Interaction on raw input variables. (b) Interaction on principal feature components.
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Figure 1: In this study, we extend the interaction based on (a) raw input variables to interactions
based on (b) principal feature components.

noisy patterns without a clear relation with the classification task. In order to provide a more concise
explanation of the DNN, we redefine the interaction on top-ranked principal feature components in
intermediate layers. As Figure 1 (b) shows, we consider the top-ranked principal feature components
as basic “input variables” for interactions. We empirically verify that the proposed interactions on
feature components are much sparser and more informative for classification than interactions be-
tween raw input variables (see Figure 3). The sparsity of the interaction-based explanation suggests
a high likelihood of representing the essential inference logic of a DNN, considering Occam’s Razor.

In this way, the entire learning process of a DNN can be explained by the emergence of new in-
teractions between feature components and the forgetting of old interactions. Thus, we visualize
the emergence and forgetting of these interactions to analyze the learning dynamics of DNNs. We
find that interactions encoded in a DNN can be categorized into five groups, namely reliable, with-
drawing, forgetting, betraying, and fluctuating interactions. We further analyze the complexity and
number of interactions in each group, which provides new insights into our understanding of the
learning of different DNNs.

2 RELATED WORKS

Explaining the inference of a DNN. Zeiler & Fergus (2014); Simonyan & Zisserman (2014); Doso-
vitskiy & Brox (2016) directly visualized the receptive fields of intermediate-layer features in the
DNN. On the other hand, Ribeiro et al. (2016); Zhou et al. (2016); Selvaraju et al. (2017); Sun-
dararajan et al. (2017); Lundberg & Lee (2017) estimated the attributions or importance of input
variables for inference. To explain a DNN as a symbolic system, Che et al. (2016); Frosst & Hinton
(2017); Wu et al. (2018); Shih et al. (2019) distilled knowledge from a DNN to symbolic models to
explain the inference logic of a DNN. However, these studies lacked sufficient mathematical support
to guarantee their explanations really reflect true primitives encoded by a DNN.

Quantifying interactions in a DNN. Compared with the above distillation-based symbolic expla-
nation, defining and quantifying interactions within a DNN has emerged as a more straightforward
approach to explaining primitives encoded by a model (Murdoch et al., 2018; Singh et al., 2019;
Jin et al., 2020; Sundararajan et al., 2020; Janizek et al., 2021; Tsai et al., 2022). Recent works by
Ren et al. (2023c); Li & Zhang (2023b) have demonstrated that, under some common conditions,1
a well-trained DNN tended to encode a small number of interactions for inference. In this con-
text, we propose to define interactions based on principal feature components, and we find that such
interactions yield a much simpler explanation for a DNN.

3 PRIMITIVE INTERACTIONS IN DNNS

3.1 PRELIMINARY: INTERACTIONS

Exploring the primitives of the inference logic constitutes a central concern in explaining a black-box
system, just like explaining a set of cognitive concepts in the human brain. To this end, there is not
any solid proof of whether a DNN encodes concepts that align with human cognition. Despite issues
in cognitive science, Ren et al. (2023c); Li & Zhang (2023b) have provided sufficient mathematical
evidence for us to consider interactions as some kind of inference primitives behind the output score
of the DNN. Given a trained DNN v, let x ∈ Rn denote an input sample with n input variables (e.g.,
an image with n image patches, a sentence with n words, and an intermediate-layer feature with n
principal components). Let N = {1, 2, . . . , n} denote the set of indices for these input variables.
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The DNN’s output is denoted by v(x) ∈ R.2 Li & Zhang (2023a) have defined the following two
types of interactions, i.e., the AND interaction and the OR interaction.

Definition 1-α (AND interaction). Let us use AND interactions to explain a function vand(x). For
a specific subset S ⊆N of input variables, the utility Iand(S|x) of the AND interaction within S is
defined as follows. In particular, Iand(∅|x) = vand(x∅).

Iand(S|x) =
∑

L⊆S
(−1)|S|−|L|vand(xL) (1)

where | · | denotes the cardinality of a set. For each subset L ⊆ S, xL denotes a masked input
sample, in which the variables in N \L are masked.3 Then, vand(xL) ∈ R denotes the output on the
masked input. vand(x∅) denotes the output when we mask all input variables in N . Accordingly, we
obtain vand(xN ) ≡ vand(x).

Definition 1-β (OR interaction). Let us use OR interactions to explain a function vor(x). For a
specific subset S⊆N of input variables, the utility Ior(S|x) of the OR interaction within S is defined
as follows. In particular, Ior(∅|x) = vor(x∅).

Ior(S|x) = −
∑

L⊆S
(−1)|S|−|L|vor(xN\L) (2)

The AND interaction was first proposed by Harsanyi (1959) as the Harsanyi dividend. The OR
interaction can essentially be regarded as a specialized form of the AND interaction. This is achieved
by considering original variable values as masked states and taking the masked states (baseline
values) as conventional values of variables (please refer to Appendix B for details).

Figure 1 shows an interaction in an image of a cat’s face, where a function vand may encode the
AND interaction within S = {x1, x2, x3}. The co-appearance of these three patches triggers the
AND interaction, thus contributing a numerical utility Iand(S|x) to the output vand(x). Conversely,
if any patch in S is masked, this AND interaction will be invalidated, and its utility Iand(S|x) will
be removed from the output, i.e., resulting in Iand(S|x) = 0. The positive (or negative) utility of
the interaction indicates the AND interaction among variables in S will increase (or decrease) the
output vand(x). Similarly, the OR interaction represents the OR relationship between variables, e.g.,
the existence of any patch in {x1, x2} indicates the eye of the cat. Thus, another function vor may
encode an OR interaction in {x1, x2}, and it has a utility Ior({x1, x2}|x) to the output vor(x).

Li & Zhang (2023a) have proposed a method to extract both AND interactions and OR interactions
from a DNN. They disentangled the output score v(xL) of the DNN into two components vand(xL) =
0.5v(xL) + γL and vor(xL) = 0.5v(xL)− γL with learnable parameters {γL}. In this way, it is further
proven that the DNN output v(x) can be decomposed as the sum of utilities of all interactions.

v(x) = vand(x) + vor(x) =
∑

S⊆N
Iand(S|x) +

∑
S⊆N

Ior(S|x) (3)

where the overall DNN output v(x) is disentangled into the output score vand(x) for AND interac-
tions Iand(S|x) and the output score vor(x) for OR interactions Ior(S|x). The parameters {γL} are
determined by minimizing

∑
S⊆N [|Iand(S|x)|+ |Ior(S|x)|].

Considering interactions as primitives of the inference. The above interactions can be considered
as primitives of the inference logic of the model, because of the following three properties:

• Sparsity. Ren et al. (2023c) have proved that under three common conditions,1 a DNN usually
encodes very sparse interactions. Although there can be up to 2n different subsets S ⊆ N , they
prove that only a few subsets of variables exhibit considerable interaction utility (i.e., |Iand(S|x)| or
|Ior(S|x)| is large) for the DNN output. All other subsets have almost zero interaction utility. Let
Ωsalient denote the set of subsets S that have a large utility (large value of |Iand(S|x)| or |Ior(S|x)|).
• Universal approximating. Li & Zhang (2023a) have proved that a small number of interactions in
Ωsalient are already powerful enough to approximate model outputs on 2n randomly masked inputs.

2There are various settings for v(x) when the DNN has multiple output dimensions. For example, in multi-
category classification tasks, v(x) is usually defined as v(x) = log p(y=y∗|x)

1−p(y=y∗|x) by following (Deng et al.,
2022), where y∗ denotes the ground-truth label of the input x.

3In practice, people usually mask input variables in N \L using baseline values {bi} (also called reference
values) (Ancona et al., 2019; Covert et al., 2020) to replace the original values in these input variables, i.e.,
setting xi = bi if i ∈ N \ L.
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Theorem 1. Given an input sample x, when we arbitrarily mask the variables in x to obtain the
masked inputs xS w.r.t. a randomly subset S ⊆ N , the DNN output on the input v(xS) can be
accurately mimicked by the sum of interactions, i.e., ∀S ⊆ N, v(xS) = v(x∅) +

∑
∅≠L⊆S Iand(L|x) +∑

L∩S ̸=∅ Ior(L|x) ≈ v(x∅) +
∑

∅≠L⊆S,L∈Ωsalient
Iand(L|x) +

∑
L∩S ̸=∅,L∈Ωsalient

Ior(L|x).

• Generalization power. Li & Zhang (2023b) have discovered the generalization ability of interac-
tions. That is, people can extract a common set of interactions from different (but similar) inputs or
different models, and these interactions are discriminative for classification.

3.2 PRIMITIVE INTERACTIONS ON FEATURES

Previous studies commonly regarded raw pixels/words/3D points in an input image/sentence/3D
point cloud as the basic input variables of interactions. However, this approach face s challenges
when the input is high-dimensional, because it leads to a large number of interactions4 and also
boosts the computational cost. To circumvent these issues, we introduce a new perspective: we
redefine interactions on the top-ranked principal feature components in an intermediate layer of a
DNN. We discover that compared to interactions defined on raw input variables, defining interactions
on feature components can further enhance the sparsity of interactions.

Let us train a DNN, and collect the DNN trained after K different checkpoints (epochs). Given
an input sample, we extract the feature from a certain intermediate layer of the DNNs at these
K checkpoints, denoted by f (1), f (2), . . . , f (K) ∈ Rm. Subsequently, we conduct principal com-
ponent analysis (PCA) on the K features to compute the top r principal directions (eigenvectors)
q1, q2, . . . , qr ∈ Rm corresponding to the largest r eigenvalues. In this way, we extract feature com-
ponents along the top r principal directions, so as to use these feature components as basic “input
variables” to define the interaction. Specifically, for the feature f (k) extracted after k epochs, we can
decompose the intermediate-layer feature f (k) into the following (r + 2) feature components.

f (k) =
∑

i∈Nfeature
fi + f̄ + ϵ (4)

where Nfeature = {1, 2, . . . , r} denotes the indices of the top r principal feature components. fi =
qiq

T
i (f

(k) − f̄) ∈ Rm represents the i-th principal feature component. f̄ =
∑K

k=1 f
(k)/K denotes the

average feature during the learning process. ϵ = f (k) − f̄ −
∑

i∈Nfeature
fi is referred to as the overall

effect of all the remaining m− r feature components in f (k).

In this way, if we consider f̄ + ϵ as a constant background, we can regard the r feature components
in f (k) as the variables involved in interactions. I.e., each interaction S ⊆ Nfeature represents the col-
laborative relationship between feature components in S. Here, because f (k) can be extracted from
any epoch, we ignore the superscript (k). Then, for a subset L ⊆ Nfeature, fL represents the masked
feature when we mask feature components in Nfeature \ L,5 i.e.,fL =

∑
i∈L fi +

∑
i∈Nfeature,i/∈L bi + f̄ .

We use bi
def
= qiq

T
i (f |E[x] − f̄) to represent the masked state (or namely the baseline value) of the i-th

feature component. f |E[x] denotes the feature when the average value E[x] of all input samples in
the training set is fed to the model. bi represents the i-th feature component in the feature f |E[x].

The DNN output v(x) can be also regarded as a function of the feature f , i.e., v(x) = g(f), where
g(·) denotes the subsequent layers built upon the feature f . g(fL) denotes the DNN output on the
masked feature. Thus, we can directly use Eq. (1) and Eq. (2) to compute the utility of interactions
Iand(S|f) and Ior(S|f) on feature components by replacing v(xL) with g(fL).

How many principal feature components are needed as input variables? To ensure the reliability
of the extracted interactions, it is crucial to examine whether the top r feature components are
sufficiently significant to represent most signals in f . Therefore, we conducted experiments to
visualize the significance of feature components along all directions (eigenvectors) in the DNN. For
each DNN, we fed an input sample x to the DNNs trained after K different epochs, and extracted
K feature vectors f (1), . . . , f (K) from these DNNs. Figure 2 shows the eigenvalues obtained by
applying PCA to K feature vectors. We found that in most DNNs, the top 10 eigenvalues were
significantly larger than the rest. This observation suggested that the feature components along the
top 10 directions could well represent most signals within the features.

4Nevertheless, the number of salient interactions with considerable utilities is still significantly lower than
the exponential number of all potential 2n+1 interactions.

5Given that the components in ϵ in Eq. (4) are usually very small (see Figure 2), we ignore these components.
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actions were put together and sorted in descending order of relative strength. Using principal feature
components significantly enhanced the sparsity of interactions.

Experimental settings. We trained a 5-layer MLP (Ren et al., 2023b) (namely MLP-5) and an 8-
layer MLP (Ren et al., 2023b) (namely MLP-8) on three UCI tabular datasets (Dua & Graff, 2017),
including the census income (namely income), TV News channel commercial detection (namely
TV news), and bike sharing (namely bike) datasets. We also followed (Li & Zhang, 2023b) to
train a CNN and a three-layer unidirectional LSTM model on the SST-2 dataset (Socher et al.,
2013). Besides, we trained VGG-11 (Simonyan & Zisserman, 2014) and ResNet-20 (He et al., 2016)
(namely RN-20) on the MNIST (LeCun et al., 1998) and CIFAR-10 (Krizhevsky, 2012) datasets, and
trained PointNet (Charles et al., 2017) on the ShapeNet (Yi et al., 2016) dataset. For the MLPs, CNN,
and LSTM models, we selected output features of the second fully-connected/convolutional/LSTM
layer for PCA. For VGG-11, we selected output features of the conv2 1 layer, and for RN-20, we
selected output features of the conv3 6 layer. For the PointNet, we selected the output features of
the input transform layer. We generated different masked samples on each training sample in tabular
datasets to generate features on different masked samples to perform PCA. Given each input sample,
all of its features collected from different epochs were used for PCA.

Cost of computing interactions between feature components. Compared to interactions on raw
input variables, interactions defined on feature components present a much smaller computational
cost. For the input x ∈ Rn, the computational cost of interactions on the n input variables in x is 2n.
When we define interactions on top r feature components (r ≪ m in most cases), the computational
cost of interactions is reduced to 2r, which is much less than 2n.

3.2.1 SPARSITY OF INTERACTIONS

If the network output on an input sample can always be explained by a small set of interactions, no
matter how we randomly mask the input, then the principle of Occam’s Razor suggests that we can
consider such interactions as primitive inference patterns encoded by the DNN. Otherwise, if a large
number of interactions are required to explain the DNN, then these interactions are less likely to re-
flect the essence of the inference logic used by the DNN. To this end, Ren et al. (2023c) have proven
the sparsity of AND interactions on raw input variables under simplifying assumptions, but these
assumptions are difficult to examine in real DNNs. Besides, we also extend AND interactions to OR
interactions. Therefore, we still need to verify the sparsity of interactions on feature components.

We conducted experiments to compare the sparsity of interactions on feature components with the
sparsity of interactions on raw input variables. In order to extract interactions on raw input variables,
we followed the experimental settings in (Ren et al., 2023b) to divide each input image in the MNIST
and CIFAR-10 datasets into 7 × 7 and 8 × 8 image regions, respectively. We randomly sampled
twelve image regions as twelve input variables to compute interactions. For the ShapeNet dataset,
we computed interactions using the manually annotated parts provided by (Li & Zhang, 2023b)
as input variables. To compute interactions on the top-ranked principal feature components, we
followed the “Experimental setting” paragraph to compute principal feature components. Then,
we used the top r = 10 principal feature components to compute interactions. For simplicity,
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Figure 5: Average error of using salient interaction to approximate network outputs g(fS) on differ-
ent masked features. Outputs g(fS) w.r.t. different subsets S were sorted in an ascending order. The
shaded area represents the approximation error when using the sum of interactions to match the real
network output g(fS). We averaged the error over neighboring 50 subsets S.

we concatenated the strength |Iand(S|x)| of 2r AND interactions and the strength |Ior(S|x)| of 2r

OR interactions to construct a 2r+1-dimensional vector I . The strength of all interactions was
normalized by I ← I/maxi Ii to compute their relative strength. Then, we drew the curve of the
relative strength of interactions by sorting them in descending order. Figure 3 shows the average
curve over different input samples. We found that using the principal feature components could
significantly enhance the sparsity of interactions. Explanations based on such sparser interactions
were more likely to represent the primitives for the inference logic of a DNN.

3.2.2 UNIVERSAL APPROXIMATION PROPERTY

In this section, we aim to verify that interactions defined on feature components can accurately
mimic the entire model output g(f). We also followed the settings in the “Experimental setting”
paragraph to extract AND-OR interactions. Let Ωα denote the set of the most salient α interactions
with the largest values of |Iand/or(S|f)|. Then, we used the metric Ex|∆g(f)|=Ef [|g(f)− ĝα(f)|], w.r.t.
ĝα(f)=g(f∅)+

∑
S∈Ωα

Iand(S|f)+
∑

S∈Ωα
Ior(S|f), to measure the approximation error of using differ-

ent numbers α of interactions. Given each input, we computed the least number of interactions α̂ that
were required to cover 90% of the network output g(f), i.e., α̂ = minα s.t. (|g(f)− ĝα(f)|)/|g(f)| ≤
0.1. Figure 4 reports the average approximation error over different samples and the average ratio of
the minimum interaction number (Ef [α̂/2

r+1]), which shows that the network outputs were usually
well approximated by only using less than 10% most salient interactions.

We also conducted experiments to demonstrate that the sum of a few interactions could well approx-
imate various network outputs on an exponential number of randomly masked features {g(fS)}S .
Specifically, we measured the approximation error when we used the most salient α ∈ {20, 40, 60}
interactions, respectively. Then, we computed ∆gα(fS) = g(fS)− ĝα(fS) as the approximation error
on fS , where ĝα(fS) = g(f∅) +

∑
L∈Ωα,∅≠L⊆S Iand(L|f) +

∑
L∈Ωα,L∩S ̸=∅ Ior(L|f). Figure 5 shows

network outputs on all 2n masked features in an ascending order, and the shaded area represents
the approximation error. For visualization, we averaged the approximation error over 50 neighbor-
ing masked features for smoothing. The results show that a small number (usually less than 60) of
interactions could well approximate the varying network outputs on different masked features.

4 VISUALIZATION OF THE EMERGENCE OF PRIMITIVE INTERACTIONS

4.1 VISUALIZATION OF INTERACTIONS ON FEATURES

Visualization of principal feature components in the interaction. As the first step of visualizing
the interaction, we visualize each principal feature component fi involved in the interaction. We
draw a heatmap on raw input variables of the sample x that corresponds to each feature component
fi. Different types of data require different visualization methods, which are as follows.
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For image data. For an input image, let f ∈ RH×W×C denote its intermediate-layer feature, where
H,W, and C denotes the height, width, and channel number of the feature map, respectively. Let qi ∈
RH×W×C denote the i-th principal feature direction of the feature tensor. We consider f to be a map
with H×W positions, and the feature at each position is denoted by pj ∈ RC(j ∈ {1, 2, . . . , H×W}).
Correspondingly, each feature direction vector qi can also be divided into H×W vectors for H×W
positions, i.e., qi,j ∈ RC(j ∈ {1, 2, . . . , H ×W}). Then, we compute qTi,j(pj − p̄j) ∈ R to represent
the significance of the feature component along the i-th feature direction at the j-th position, where
p̄j is computed by averaging the positional features pj extracted after different epochs. In addition,
si = qTi (f − f̄) represents the overall influence of the feature f along the i-th principal direction qi.
Thus, we use the metricM(i)

j = sign(si) · qTi,j(pj − p̄j) to represent the influence of the j-th position
in the feature map on strengthening the overall influence |si| of the i-th feature component.

In this way, we obtain a heatmapM(i) ∈ RH×W for each feature component, and we further rescale
the heatmap to the input size for visualization. Figure 6 (a,b) shows the resulting heatmaps, where
the highlighted regions represent patches that significantly influence the i-th feature component fi.

For point cloud data. Just like (Simonyan et al., 2014), we visualize the gradient of the significance
of feature components w.r.t. 3D points in the input. Given a point cloud x ∈ Rn×3, let xj ∈ R3 denote
a 3D point, and let f ∈ Rm denote the intermediate-layer feature. For each feature direction qi, we
use |si| to represent the significance of the i-th feature component in f , i.e., si = qTi (f − f̄). Then,
we compute the gradient of |si| w.r.t. the 3D coordinates of each 3D point,M(i)

j = ∂|si|/∂xj ∈ R3 to
represent the influence of the j-th 3D point on the i-th feature component. To visualize the influence
of different 3D points on the i-th feature component, we use the RGB color channels to represent
the three-dimensional gradientM(i). We also normalize the gradients over different 3D points to the
range [0, 1] for visualization (please refer to the Appendix D for more details). Figure 6 (c) shows
the heatmaps of the top-4 feature components in PointNet trained on the ShapeNet dataset.

For language data. We use the Shapley value (Shapley, 1953) to measure the attribution of each
word in the input sentence to the principal feature component. Given the feature f of the input
sentence x, we compute si = qTi (f − f̄) to represent the influence of the i-th feature component.
Then, we compute the following Shapley value to measure the contribution of each word in the
input to the influence si of the i-th feature component. Let Nword = {1, 2, . . . , n} denote indices of
all words in the input sentence. The Shapley value M(i)

j of each word xj(j ∈ Nword) measures the
numerical contribution of the word xj to the influence si of the i-th feature component, as follows.

M(i)
j =

∑
T⊆Nword\{j}

[
|T |!(n− |T | − 1)!/n!

]
·
[
si(xT∪{j})− si(xT )

]
(5)

where si(xT ) = qTi (f|xT
− f̄) denotes the influence of the i-th principal feature component when we

input a masked sentence xT to the DNN. f|xT
denotes the intermediate-layer feature extracted from
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Figure 8: Visualization of three salient interactions in training samples of the SST-2 dataset, and
how they are learned during the training process.

(a) reliable
interactions

(b) withdrawing
interactions

(c) forgetting
interactions

(d) betraying
interactions

(e) fluctuating
interactions

epoch epoch epoch
50 1000 50 1000 50 1000

Figure 9: Curves of the utility of interactions during the learning of DNNs. These interactions can
be categorized into five groups. Please refer to Appendix E for results on more samples.

the masked sentence xT . In this way, the Shapley values of different words serve as an attribution
map of different words to the i-th principal feature component fi. Please refer to Appendix D for
the visualization on the language data.

Visualization of interactions. Then, we visualize the interaction, which is composed of multiple
feature components. For each interaction S ⊆ Nfeature with a considerable utility Iand/or(S|x), we
accumulate the heatmaps {M(i)|i ∈ S} of all the principal feature components involved in S to
visualize the interaction. Specifically, for each principal feature component i ∈ S, we first normalize
its heatmapM(i) byM′(i) =M(i)/maxj(|M(i)

j |). Then, we sum up the heatmaps of all the feature
components involved in interaction S to visualize interaction S, i.e.,M(S) =

∑
i∈SM

′(i).

Figure 7 visualizes interactions with the largest utility |Iand/or(S|x)| in RN-20 and PointNet trained
on the MNIST, CIFAR-10, and ShapeNet datasets. Figure 8 (b) visualizes interactions on the SST-
2 dataset. The red color indicates that the word has a positive attribution to the principal feature
component, while the blue color indicates a negative attribution.

4.2 EMERGENCE OF PRIMITIVE INTERACTIONS DURING THE TRAINING PROCESS

In this section, we visualize the dynamics of interactions during the learning process. Then, we
find that the salient interactions encoded in the DNN usually can be categorized into five groups,
i.e., reliable interactions, withdrawing interactions, forgetting interactions, betraying interactions,
and fluctuating interactions. The number and complexity of interactions in each group provide new
insights into the learning of the DNN.

Specifically, let θ0, θ1, . . . , θT denote parameters of DNNs trained after different epochs t =
0, 1, . . . , T . We use Iand/or(S|x, θt) to denote the interaction in the DNN after t epochs. In order
to visualize the dynamics of the interactions during training, we draw the curve of Iand/or(S|x) for
each salient interaction S across different epochs. For each DNN, we compute the interaction utility
based on the top r = 10 principal feature components after every five epochs. Figure 9 illustrates
the curves of Iand/or(S|x) for each salient interaction throughout the learning process.

Five groups of interactions. Figure 9 (a,b) shows the interactions belonging to the first and sec-
ond groups, respectively. In the first group, the strength of the utility of these interactions increases
throughout the learning process in a relatively stable manner. Thus, we can consider such interac-
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RN-20 on CIFAR-10 VGG on CIFAR-10 RN-20 on MNIST VGG on MNIST CNN on SST-2
reliable
withdrawing
forgetting
betraying
fluctuating

Figure 10: The number of interactions of each order in each group.

Table 1: Average number of interactions belonging to each group in the most salient interactions.
Reliable Withdrawing Forgetting Betraying Fluctuating

VGG-11 on CIFAR-10 28.4 26.4 6.0 26.6 12.6
RN-20 on CIFAR-10 33.4 26.2 16.6 17.8 6.0

VGG-11 on MNIST 44.2 21.4 5.8 20.8 7.8
RN-20 on MNIST 49.6 18.2 18.0 12.6 1.6

CNN on SST-2 33.6 14.4 0.4 12.8 38.8

tions are stably learned by the DNN, and we call them reliable interactions. In the second group, the
utility of interactions is usually close to zero in the beginning. Then, the strength of their utility first
increases and then decreases, sometimes decreasing to almost zero. These interactions are referred
to as withdrawing interactions.

As Figure 9 (c) shows, the initial utility of interactions in the third group is non-ignorable. In
the third group, the interaction strength keeps decreasing to zero. These interactions are gradually
forgotten by the DNN. We call them forgetting interactions.

Figure 9 (d,e) show interactions in the fourth and fifth groups. In the fourth group, interactions
experience a gradual shift towards an interaction utility that is opposite to their initial utility. These
interactions are called betraying interactions. The interactions in the fifth group have fluctuating
interactive utilities throughout the learning process, being called fluctuating interactions.

The number and order (complexity) of interactions in each group. For each DNN, we selected
100 interactions whose maximum interactions strength (maxt |Iand(S|x, θt)| and maxt |Ior(S|x, θt)|)
throughout the training process were ranked in top 100 among all interactions. Then, we computed
the number of interactions belonging to each group among these 100 salient interactions. Table 1
reports the average number of interactions in each group over different samples. We found that
compared to VGG-11, RN-20 learned more reliable and forgetting interactions, while having less
betraying and fluctuating interactions. This might be because the residual connections in ResNet-
20 made the features more stable. Besides, we also noticed that the DNNs trained on the MNIST
dataset usually encoded more reliable interactions and less betraying and fluctuating interactions
than DNNs trained on the CIFAR-10 dataset. This result indicated that the dynamics of interactions
provided us with a new perspective to analyze the difficulty of training a DNN on a dataset.

We further studied the complexity (order) of interactions in each group. Figure 10 reports the num-
ber of interactions of each order in different groups. We found that the distribution of interactions
over different orders were similar in different models. Besides, we found that high-order interac-
tions were usually fluctuating and withdrawing interactions, because high-order interactions usually
represented complex unstable features.

5 CONCLUSION

In this study, we have proposed a method for visualizing the changes in interactions encoded in
a DNN during the learning process. We have extended the interaction defined on raw input vari-
ables by (Li & Zhang, 2023a), and have newly defined interactions on principal feature components.
This extension greatly boosts the sparsity/simplicity of the interaction-based explanation of a DNN,
which enables us to visualize how different interactions gradually emerge during the learning pro-
cess. Based on the visualization of interactions throughout the entire learning process, we have
found that all interactions could be categorized into five groups, i.e., reliable, withdrawing, forget-
ting, betraying, and fluctuating interaction. The visualization of how a DNN learns different types
of interactions offers a novel perspective for understanding the DNN.
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ETHIC STATEMENT

In this study, we propose a method to define and visualize the emergence of primitive interactions
throughout the learning of a DNN, which can help us understand how a DNN learns features from
the dataset during the training process. The proposed interactions can be considered as primitive
inference patterns encoded by the DNN, and can faithfully explain the output scores of the DNN.
There are no ethical issues with this paper.

REPRODUCIBILITY STATEMENT

We have provided proofs for the theoretical results of this study in Appendix B and Appendix C.
We have also provided experimental details in the “Experimental settings” paragraph in Section 3.2
and Appendix D.
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A COMMON CONDITIONS FOR SPARSE INTERACTIONS

Ren et al. (2023c) have proven that under three common conditions, a trained DNN usually encodes
very sparse interactions. The three conditions are as follows. (1) The high-order derivatives of the
network output w.r.t. the input are all zero; (2) When we randomly mask some input variables, the
average confidence of the network inference over different masked samples monotonically decreases
along with the number of masked input variables. (3) The decreasing speed of the average inference
confidence is not faster than a polynomial function along with the ratio of masked input variables.

B RELATIONSHIP BETWEEN AND INTERACTIONS AND OR INTERACTIONS

In this section, we provide a further discussion on understanding the relationship between AND and
OR interactions.

Given a DNN v(·) and an input sample x ∈ Rn, let b ∈ Rn denote the baseline values input
variables, which represent the masked states of variables in the input. Then, if the variables in
L ⊆ N are preserved and other variables are masked, the masked input xL is defined as follows.

(xL)i =

{
xi, i ∈ L

bi, i /∈ L
(6)

Based on the above definition of masked inputs, the AND interaction can be computed as
Iand(S|x) =

∑
L⊆S(−1)|S|−|L|vand(xL). The OR interaction between variables in x is computed as

Ior(S|x) = −
∑

L⊆S(−1)|S|−|L|vor(xN\L). To simplify the analysis, we assume vand(·) = vor(·) =
0.5v(·).
Conversely, if we consider b as the input sample and take x as baseline values of input variables in
b, the masked input bL is defined as follows.

(bL)i =

{
bi, i ∈ L

xi, i /∈ L
(7)

According to Eq. (6) and Eq. (7), we have xN\L = bL. Therefore, we can rewrite the OR interaction
as follows.

Ior(S|x) = −
∑
L⊆S

(−1)|S|−|L|vor(xN\L)

= −
∑
L⊆S

(−1)|S|−|L|vor(bL)

= −
∑
L⊆S

(−1)|S|−|L|vand(bL)

= −Iand(S|b)

(8)

Therefore, the OR interaction can be viewed as a special AND interaction by considering original
variable values x as masked states and taking the masked states b as normal values of the variables.

C EXPLAINING ATTRIBUTIONS OF PRINCIPAL COMPONENTS

In this section, we prove that we can directly use the AND and OR interactions to estimate Shapley
values (Shapley, 1953) of principal feature components, which also demonstrates the reliability of
the extracted interactions.

The Shapley value is one of the most classic metrics for measuring the numerical contribution
(or attribution) of each input variable, i.e., the attribution of each principal feature component to
the DNN output g(f). In the scenario of Shapely values, we consider the r feature components
f1, f2, . . . , fr(fi = qiq

T
i (f − f̄)) as r players. The inference score g(f) is considered as the overall

reward obtained by all players (feature components). The Shapley value is proposed to allocate the
overall reward g(f) to each player (feature component). Thus, we can consider the Shapley value
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of the feature component fi as the attribution of fi to the DNN output. The Shapley value of the
feature component fi is given as follows.

ϕ(i|f) =
∑

S⊆Nfeature\{i}

[
|S|!(r − |S| − 1)!/r!

]
·
[
g(fS∪{i})− g(fS)

]
(9)

The Shapley value has been proven (Weber, 1988) to satisfy the linearity, nullity, symmetry, and
efficiency axioms, thus being regarded as a fair metric for allocating the reward (i.e., the network
output g(f)) to different feature components.
Theorem 2 (proven in the supplementary material). The Shapley value ϕ(i|f) of each
feature component fi can be reformulated as ϕ(i|f) =

∑
S⊆Nfeature,i∈S

1
|S|Iand(S|f) +∑

S⊆Nfeature,i∈S
1
|S|Ior(S|f).

C.1 PROOF OF THEOREM 2

Proof: According to the definition of Shapley values, ϕ(i|f) = ES⊆Nfeature\{i}[g(fS∪{i}) − g(fS)].
For simplicity, we use g(S) to represent the output g(fS) on the masked feature fS . Similarly,
we use Iand(S) and Ior(S) to represent Iand(S|f) and Ior(S|f), respectively. Besides, we use N to
represent Nfeature.

Then, according to Theorem 1 in the paper, we have ∀S ⊆ N, g(S) = g(∅) +
∑

L⊆S,L ̸=∅ Iand(L) +∑
L∩S ̸=∅ Ior(L). Thus,

g(S ∪ {i})− g(S)

=

g(∅) + ∑
L⊆(S∪{i}),L ̸=∅

Iand(L) +
∑

L∩(S∪{i})̸=∅

Ior(L)

−

g(∅) + ∑
L⊆S,L ̸=∅

Iand(L) +
∑

L∩S ̸=∅

Ior(L)


=

 ∑
L⊆(S∪{i}),L ̸=∅

Iand(L)−
∑

L⊆S,L ̸=∅

Iand(L)

+

 ∑
L∩(S∪{i}) ̸=∅

Ior(L)−
∑

L∩S ̸=∅

Ior(L)


=

∑
L⊆S

Iand(L ∪ {i})︸ ︷︷ ︸
A

+
∑

L∩S=∅

Ior(L ∪ {i})︸ ︷︷ ︸
B

In this way, the Shapley value can be decomposed into ϕ(i|f) = ES⊆N\{i}[A+B]. In the following
proof, we first analyze the sum of AND interactions ES⊆N\{i}[A], and then analyze the sum of OR
interactions ES⊆N\{i}[B].

ES⊆N\{i}[A]

=ES⊆N\{i}
∑
L⊆S

Iand(L ∪ {i})

=
1

n

n−1∑
m=0

1(
n−1
m

) ∑
S⊆N\{i},
|S|=m

∑
L⊆S

Iand(L ∪ {i})

=
1

n

∑
L⊆N\{i}

n−1∑
m=0

1(
n−1
m

) ∑
S⊇L,

S⊆N\{i},
|S|=m

Iand(L ∪ {i})

=
1

n

∑
L⊆N\{i}

n−1∑
m=|L|

1(
n−1
m

) ∑
S⊇L,

S⊆N\{i},
|S|=m

Iand(L ∪ {i}) // since S ⊇ L, |S| = m ≥ |L|.

=
1

n

∑
L⊆N\{i}

n−1∑
m=|L|

1(
n−1
m

)(n− 1− |L|
m− |L|

)
Iand(L ∪ {i})
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=
1

n

∑
L⊆N\{i}

n−1−|L|∑
k=0

1(
n−1
|L|+k

)(n− 1− |L|
k

)
︸ ︷︷ ︸

αL

Iand(L ∪ {i}) // Let k = m− |L|.

=
∑

L⊆N\{i}

1

|L|+ 1
Iand(L ∪ {i}) // Ren et al. (2023a) have proven that αL =

n

|L|+ 1
.

=
∑

S⊆N,i∈S

1

|S|
Iand(S) // Let S = L ∪ {i}.

Then, for the sum of OR interactions, we have
ES⊆N\{i}[B]

=ES⊆N\{i}
∑

L∩S ̸=∅

Ior(L ∪ {i})

=
1

n

n−1∑
m=0

1(
n−1
m

) ∑
S⊆N\{i},
|S|=m

∑
L∩S ̸=∅

Ior(L ∪ {i})

=
1

n

∑
L⊆N\{i}

n−1∑
m=0

1(
n−1
m

) ∑
S∩L ̸=∅,

S⊆N\{i},
|S|=m

Ior(L ∪ {i})

=
1

n

∑
L⊆N\{i}

n−1∑
m=0

1(
n−1
m

) ∑
S⊆N\{i}\L,

|S|=m

Ior(L ∪ {i})

=
1

n

∑
L⊆N\{i}

n−1−|L|∑
m=0

1(
n−1
m

) ∑
S⊆N\{i}\L,

|S|=m

Ior(L ∪ {i}) // Since S ⊆ N \ {i} \ L, |S| ≤ n− 1− |L|.

=
1

n

∑
L⊆N\{i}

n−1−|L|∑
m=0

1(
n−1
m

)(n− 1− |L|
m

)
Ior(L ∪ {i})

=
1

n

∑
L⊆N\{i}

n−1−|L|∑
k=0

1(
n−1

n−1−|L|−k

)( n− 1− |L|
n− 1− |L| − k

)
Ior(L ∪ {i}) // Let k = n− 1− |L| −m.

=
1

n

∑
L⊆N\{i}

n−1−|L|∑
k=0

1(
n−1
|L|+k

)(n− 1− |L|
k

)
︸ ︷︷ ︸

αL

Ior(L ∪ {i})

=
1

n

∑
L⊆N\{i}

n

|L|+ 1
Ior(L ∪ {i})

=
∑

L⊆N\{i}

1

|L|+ 1
Ior(L ∪ {i})

=
∑

S⊆N,i∈S

1

|S|
Ior(S) // Let S = L ∪ {i}.

Therefore, ϕ(i|f) =
∑

S⊆N\{i}[A] +
∑

S⊆N\{i}[B] =
∑

S⊆N,i∈S
1
|S|Iand(S) +∑

S⊆N,i∈S
1
|S|Ior(S).

C.2 EXPERIMENTAL VERIFICATION
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𝜙
,
෠ 𝜙
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Figure 11: The cosine similarity
between the accurate Shapley val-
ues and the Shapley values esti-
mated using interactions.

Additionally, we conducted experiments to examine the above
mathematical connection, i.e., using the utility of all AND
interactions and OR interactions to estimate Shapley val-
ues of principal feature components. Let Ωα denote the
most salient α interactions with the largest |Iand/or(S|f)|.
Then, we used all AND/OR interactions in Ωα to es-
timate the Shapley value of the i-th feature component,
as follows. ϕ̂α(i|f) =

∑
S⊆Nfeature,i∈S,S∈Ωα

1
|S|Iand(S|f) +∑

S⊆Nfeature,i∈S,S∈Ωα

1
|S|Ior(S|f). Figure 11 shows the co-

sine similarity between the accurate Shapley values ϕ =
[ϕ(1|f), ϕ(2|f), . . . , ϕ(r|f)] and the Shapley values ϕ̂ =
[ϕ̂(1|f), ϕ̂(2|f), . . . , ϕ̂(r|f)] estimated using the top α salient in-
teractions. The results in Figure 11 indicate that the top-ranked
10% interactions had provided sufficient information to well explain the Shapley values.

D MORE VISUALIZATION RESULTS OF PRINCIPAL FEATURE COMPONENTS
AND SALIENT INTERACTIONS

This section provides additional results of the visualization of principal feature components and
salient interactions.

For image data, Figures 12 and 13 show the visualization of principal feature components extracted
from the ResNet-20 and VGG-11 models trained on the CIFAR-10 dataset, respectively. Using these
feature components, Figures 14 and 15 visualize the salient interactions encoded in the two models.
Similarly, Figures 16 and 17 show the visualization of principal feature components obtained from
the ResNet-20 and VGG-11 trained on the MNIST dataset, respectively, and Figures 18 and 19
visualize the salient interactions encoded in these models.

For language data, we trained a three-layer unidirectional LSTM and a CNN on the SST-2 dataset,
respectively. Figure 20 shows both visualizations of feature components and salient interactions
in the LSTM network. Figure 21 shows both visualizations of feature components and salient in-
teractions in the CNN network. We found that most salient interactions in language data usually
only consisted of only a few top-ranked feature components. As a result, the visualization of salient
interactions was sometimes similar to the visualization of feature components.

For point cloud data, we visualize the gradient of the significance of feature components w.r.t. 3D
points in the input. Given a point cloud x ∈ Rn×3, let xj ∈ R3 denote a 3D point, and let f ∈ Rm

denote the intermediate-layer feature. For each feature direction qi, we use |si| to represent the
significance of the feature component in f along the feature direction qi, where si = qTi (f − f̄).
In order to compute the gradient of |si| w.r.t. the 3D coordinates of each 3D point, We first add a
random noise δ ∼ N (0, 0.52I) ∈ Rn×3 to the point cloud x, i.e., x(0) ← x + δ. Then, we compute
the gradient of |si| on the perturbed input, i.e., ∇(i)(x(0)) = ∂|si|(x(0))

∂x(0) . The gradient is added to
the input to further strengthen the feature component by x(1) ← x(0) + η · ∇(i)(x(0)), where η is a
small constant. We iteratively compute the gradient ∇(i)(x(t)) of the component significance w.r.t.
the modified input x(t), and modify the input by x(t+1) ← x(t) + η · ∇(i)(x(t)). We use the change
in the input point cloudM(i) = x(T ) − x ∈ Rn×3 to represent the heatmap of the principal feature
component.

In experiments, we repeatedly sampled 10 different random noises δ for each input, we computed
the gradients of points in the perturbed input for T = 20 iterations to obtain the heatmapM(i). To
obtain a representative heatmap, we averaged the heatmaps M(i) obtained from the 10 randomly
perturbed inputs. For visualization, we took the three dimensions corresponding to each point in
M(i) as the RGB number to draw the heatmap. However, the RGB number must be in the range of
[0, 1]. Therefore, we used two methods to normalize the values inM(i) to the range of [0, 1].

The first normalization method is to scale the value M̃(i)
j,c at each point j ∈ N in each channel

c ∈ {1, 2, 3} of the heatmap as M̃(i)
j,c = |M(i)

j,c|/maxj{M(i)
j,c} for visualization. Figure 22 shows

more visualization results of principal feature components in the PointNet learned on the ShapeNet
dataset, and Figure 23 shows visualizations of salient interactions.
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Figure 12: Visualization of principal feature components in ResNet-20 learned on the CIFAR-10
dataset.

Alternatively, the heatmap M(i) can be normalized in another way for visualization. We computed
M̃(i)

j,c = |M(i)
j,c|/maxc{M(i)

j,c} for each point j ∈ N . Figure 24 and Figure 25 show the correspond-
ing heatmaps of feature components and salient interactions.

E MORE RESULTS OF FIVE GROUPS OF INTERACTIONS

This section demonstrates more examples of interactions, which are categorized into five groups,
i.e., reliable, withdrawing, forgetting, betraying, and fluctuating interactions.

In order to analyze the behavior of interactions, we first computed the interaction utility Iand/or(S|θt)
of each interaction S at different epochs t. Then, all interactions were sorted based on their maxi-
mum interaction strength maxt |Iand/or(S|θt)| throughout the learning process. We selected the top
3% interactions with the largest strength maxt |Iand/or(S|θt)| as salient interactions in the learning.
These salient interactions were further categorized into five groups, as shown in Figure 27 and Fig-
ure 26. Note that not all samples exhibited all five types of interactions, because we only considered
the top 3% salient interactions here. Other interactions with small strengths were regarded as noisy
patterns and were not discussed.
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Figure 13: Visualization of principal feature components in VGG-11 learned on the CIFAR-10
dataset.
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Figure 14: Visualization of salient interactions in ResNet-20 learned on the CIFAR-10 dataset.
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Figure 15: Visualization of salient interactions in VGG-11 learned on the CIFAR-10 dataset.
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Figure 16: Visualization of principal feature components in ResNet-20 learned on the MNIST
dataset.
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Figure 17: Visualization of principal feature components in VGG-11 learned on the MNIST dataset.
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Figure 18: Visualization of salient interactions in ResNet-20 learned on the MNIST dataset.
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Figure 19: Visualization of salient interactions in VGG-11 learned on the MNIST dataset.

1st

2nd

3rd

4th

5th

Principal feature components Salient interactive concept

equals the original and in some ways even betters it

equals the original and in some ways even betters it

equals the original and in some ways even betters it

equals the original and in some ways even betters it

equals the original and in some ways even betters it

equals the original and in some ways even betters it

equals the original and in some ways even betters it

equals the original and in some ways even betters it

equals the original and in some ways even betters it
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(a) The input sentence is “equals the original and in some ways even betters it”, with a positive
sentiment.

like to skip but film buffs should get to know
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(b) The input sentence is “like to skip but film buffers should get to know”, with a positive sentiment.
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muddled , simplistic and more than a little pretentious .
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muddled , simplistic and more than a little pretentious .
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muddled , simplistic and more than a little pretentious .

muddled , simplistic and more than a little pretentious .

muddled , simplistic and more than a little pretentious .

(c) The input sentence is “muddled, simplistic and more than a little pretentious.”, with a negative
sentiment.

Figure 20: Visualization of principal feature components and salient interactions of three examples
in the LSTM trained on the SST-2 dataset.
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(a) The input sentence is “has finally made a movie that isn’t just offensive”, with a positive sentiment.
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(b) The input sentence is “doesn’t work because there is no foundation for it”, with a negative senti-
ment.
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(c) The input sentence is “many of the things that made the first one charming”, with a positive
sentiment.

Figure 21: Visualization of principal feature components and salient interactions of three examples
in the CNN trained on the SST-2 dataset.
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Figure 22: Visualization of principal feature components in PointNet learned on the ShapeNet
dataset. Heatmaps were normalized using the first approach in Section D.
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Figure 23: Visualization of salient interactions in PointNet learned on the ShapeNet dataset.
Heatmaps were normalized using the first approach in Section D.
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Figure 24: Visualization of principal feature components in PointNet learned on the ShapeNet
dataset. Heatmaps were normalized using the second approach in Section D.
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Figure 25: Visualization of salient interactions in PointNet learned on the ShapeNet dataset.
Heatmaps were normalized using the second approach in Section D.
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Figure 26: Curves of interactions in PointNet trained on the ShapeNet dataset.
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(a) Curves of interactions in ResNet-20 trained on the CIFAR-10 dataset.
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(b) Curves of interactions in VGG-11 trained on the CIFAR-10 dataset.
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(c) Curves of interactions in ResNet-20 trained on the MNIST dataset.
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(d) Curves of interactions in VGG-11 trained on the MNIST dataset.

Figure 27: interactions can be categorized into five groups according to their curves during the
learning process.
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