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Abstract

We study the problem of online learning in contextual bandit problems where1

the loss function is assumed to belong to a known parametric function class.2

We propose a new analytic framework for this setting that bridges the Bayesian3

theory of information-directed sampling due to Russo and Van Roy [2018] and4

the worst-case theory of Foster, Kakade, Qian, and Rakhlin [2021] based on the5

decision-estimation coefficient. Drawing from both lines of work, we propose6

an algorithmic template called Optimistic Information-Directed Sampling and7

show that it can achieve instance-dependent regret guarantees similar to the ones8

achievable by the classic Bayesian IDS method, but with the major advantage9

of not requiring any Bayesian assumptions. The key technical innovation of our10

analysis is introducing an optimistic surrogate model for the regret and using it to11

define a frequentist version of the Information Ratio of Russo and Van Roy [2018],12

and a less conservative version of the Decision Estimation Coefficient of Foster13

et al. [2021].14

1 Introduction15

We present a framework for the analysis of a family of sequential decision-making algorithms known16

as Information-Directed Sampling (IDS). First proposed by Russo and Van Roy [2018], IDS is a17

Bayesian algorithm that selects its policies by optimizing a measure called the information-ratio,18

which measures the tradeoff between instantaneous regret and information gain about the problem19

instance at hand. In a Bayesian setup, both components of the information ratio are explicit functions20

of the posterior distribution over models, and can thus be explicitly calculated. As shown by Russo21

and Van Roy [2018], the resulting algorithm can guarantee massive statistical gains over more22

common approaches like Thompson sampling [Thompson, 1933] or optimistic exploration methods23

[Lai and Robbins, 1985], and in particular can take advantage of the structure of the problem instance24

much more effectively. Realizing the same gains in a non-Bayesian setup (which we will sometimes25

call frequentist, for lack of a better word) is hard for multiple reasons, the most severe obstacle26

being that the true model is entirely unknown and Bayesian posteriors cannot be used to quantify27

the uncertainty about the model in a meaningful way. As such, defining appropriate notions of28

information gain and information ratio is not straightforward. This is the problem we address in this29

paper.30

Our main contribution is constructing a version of information-directed sampling that is imple-31

mentable without Bayesian assumptions, and yields frequentist versions of the same problem-32

dependent guarantees as the ones achieved by the original IDS method in a Bayesian setup. The33

key element in our approach is the introduction of a surrogate model that allows for a meaningful34

definition of the information ratio that is amenable to a frequentist analysis. This surrogate model is35

the function of an optimistically adjusted posterior distribution inspired by the “feel-good Thompson36

sampling” algorithm of Zhang [2022], and is used to estimate the components of the information37
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ratio: the regret and the information gain. With these components, it becomes possible to define an38

information ratio that is an explicit function of the optimistic posterior, which can then be optimized39

to yield a decision-making rule that we call “optimistic information-directed sampling” (OIDS).40

For the sake of concreteness, we focus on the problem of contextual bandits and show that OIDS41

can not only recover worst-case optimal regret bounds in this case, but also satisfies problem-42

dependent guarantees that are commonly referred to as first-order bounds [Cesa-Bianchi et al., 2005,43

Agarwal et al., 2017, Allen-Zhu et al., 2018, Foster and Krishnamurthy, 2021]. Besides these general44

guarantees, we also provide some illustrative examples that show that OIDS can reproduce the45

expedited learning behavior of IDS on easy problems, but without requiring Bayesian assumptions.46

Our methodology also draws inspiration from the analytic framework of Foster, Kakade, Qian, and47

Rakhlin [2021], developed for a very general range of sequential decision-making problems. Their48

analysis revolves around the notion of the decision-estimation coefficient (DEC), which quantifies49

the tradeoffs that need to be made between achieving low regret and gaining information about the50

true model in a way that is similar to the information ratio of Russo and Van Roy [2016]. The main51

contribution of Foster et al. [2021] is showing that the minimax regret in any sequential decision-52

making problem can be lower bounded in terms of the DEC, and they also show that nearly matching53

upper bounds can be achieved via a simple algorithm they call estimation to decisions (E2D). Unlike54

the information ratio, the DEC does not make use of a Bayesian posterior to quantify uncertainty,55

but is rather defined as a worst-case notion, and as such provides frequentist guarantees that hold56

uniformly for all problem instances. However, the worst-case nature of the DEC can also be seen as57

an inherent limitation of their framework. In particular, the E2D algorithm is also based on the same58

conservative notion of regret-information tradeoff, and thus all known guarantees for this algorithm59

(and its variants such as the ones proposed by Chen et al., 2022, Foster et al., 2023a,b, Kirschner60

et al., 2023) fail to take advantage of problem structures that may facilitate fast learning.61

Our own framework unifies the advantages of the two threads of literature described above: unlike62

E2D, it is able to achieve instance-dependent guarantees and learn faster in problems with more63

structure, and, unlike standard IDS, it can do so without relying on Bayesian assumptions. Our64

analysis draws on elements of both lines of work, and also on the techniques introduced by Zhang65

[2022], as mentioned above.66

We are not the first to attempt the generalization of IDS beyond the Bayesian setting. Kirschner and67

Krause [2018] proposed a frequentist alternative to the information ratio for the special case of loss68

functions that are linear in some unknown parameter, and constructed an appropriate version of IDS69

that is able to take advantage of certain problem structures and obtain guarantees that improve upon70

the minimax rates. Their approach has inspired a line of work aiming to prove tighter and tighter71

problem-dependent bounds for a range of sequential decision-making problems, but so far all of these72

results remained limited to linearly structured losses and observations [Kirschner et al., 2020, 2021,73

Hao et al., 2022]. In contrast, our notion of information ratio does not require any specific problem74

structure like linearity, and arguably constitutes a more universal generalization of IDS beyond the75

Bayesian setting.76

Notation. The squared Hellinger distance between two probability distributions P and P ′ (with77

a common dominating measure Q) is defined as D2
H (P, P ′) = 1

2

∫ (√
dP
dQ −

√
dP ′

dQ

)2
dQ, and the78

relative entropy (or Kullback–Leibler divergence) as DKL (P∥P ′) =
∫
log dP

dP ′ dP .79

2 Preliminaries80

We study contextual bandit problems with finite action spaces and parametric loss functions. The81

sequential interaction scheme between the learner and the environment consists of the following82

steps being repeated for a sequence of rounds t = 1, 2, . . . , T :83

• The environment picks a context Xt ∈ X , possibly using randomization and taking into84

account the history of actions, losses and contexts,85

• the learner observes Xt and picks an action At ∈ A, possibly using randomization and86

taking into account the history of actions, losses and contexts,87
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• the learner incurs a loss Lt, drawn independently of the past from a fixed distribution that88

depends on Xt, At.89

We denote the sigma-algebra generated by the interaction history between the learner and the90

environment up to the end of round t as Ft = σ(X1, A1, L1, . . . , Xt, At, Lt), and the probabilities91

and expectations conditioned on the history as Pt [·] = P [ ·| Ft−1, Xt] and Et [·] = E [ ·| Ft−1, Xt].92

We will suppose that the action space is finite with cardinality |A| = K, and that the loss function93

belongs to a known parametric class, but is otherwise unknown to the learner. Specifically, we assume94

that there is a known parameter space Θ that parametrizes a class of loss functions ℓ : Θ×X×A → R,95

and a true parameter θ0 ∈ Θ such that Et [Lt|Xt, At] = ℓ(θ0, Xt, At). We will refer to this condition96

as realizability. The distribution of random losses under parameter θ generated in response to taking97

action a in context x will be denoted by p(θ, x, a), and we will write p(·|θ, x, a) to designate the98

corresponding density with respect to a reference measure (usually the counting measure or Lebesgue99

measure). Unless stated otherwise, we will assume that the loss distribution is fully supported on100

the interval [0, 1] for all parameters θ. Furthermore, we will often abbreviate ℓ(θ,Xt, a) as ℓt(θ, a)101

and p(θ,Xt, a) as pt(θ, a) to lighten our notation. Our formulation will make central use of policies102

which prescribe randomized behavior rules for the learning agent. Precisely, a policy π : X → ∆A103

maps each context x to a distribution over actions denoted as π(·|x). Since we will mostly work104

with action distributions conditioned on the fixed contexts Xt, we will mostly represent policies105

as distributions over actions, and use the same notation π ∈ ∆A for this purpose. We will focus106

on learning algorithms that, in each round t, select a randomized policy πt ∈ ∆A based on the107

interaction history Ft−1 and Xt. We also define the optimal loss in round t under model parameter108

θ as ℓ∗t (θ) = mina ℓt(θ, a). The agent aims to make its decisions in a way in that minimizes the109

expected sum of losses, and in particular aims to incur nearly as little loss as the true optimal policy.110

The extent to which the learner succeeds in achieving this goal is measured by the (total expected)111

regret defined as112

RT (θ0) = E

[
T∑

t=1

(ℓt(θ0, At)− ℓ∗t (θ0))

]
. (1)

The expectation is over all sources of randomness: the agent’s randomization over actions, the113

adversary’s randomization over contexts and the randomness of the realization of the losses. We also114

define instantaneous regret of an action a under parameter θ for each t as115

rt(a; θ) = ℓt(θ, a)− ℓ∗t (θ),

and the instantaneous regret of policy π as rt(π; θ) =
∑

a π(a)rt(a; θ). With this notation, the regret116

of the online learning algorithm can be written as RT (θ0) = E
[∑T

t=1 rt(πt; θ0)
]
.117

3 Two competing theories of sequential decision making118

Our work connects two well-established analytic frameworks for sequential decision making: the119

Bayesian framework of Russo and Van Roy [2018] and the worst-case framework of Foster, Kakade,120

Qian, and Rakhlin [2021]. We review the two in some detail below, highlighting some of their merits121

and limitations that we address in this paper.122

3.1 The information ratio and Bayesian information-directed sampling123

The influential work of Russo and Van Roy [2016, 2018] set forth an analytic framework based on124

a Bayesian learning paradigm where the true model parameter θ0 is supposed to be sampled from125

a known prior distribution Q0 ∈ ∆Θ, and the performance of the learner is measured on expectation126

with respect to this random choice of instance. We refer to the expected regret under this prior as the127

Bayesian regret. Their work has established that the Bayesian regret of any algorithm can be upper128

bounded in terms of a quantity called the Information Ratio (IR). For the sake of exposition, we will129

follow the setup and notation of Neu et al. [2022], who study the Bayesian version of our contextual130

bandit setting, and define the information ratio of policy π in the t-th round of interaction as131

ρt(π) =

(
Eθ0∼Qt

[rt(π; θ0)]
)2

IGt(π)
. (2)
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In the above expression, both the numerator and the denominator are functions of the posterior132

distribution Qt of the parameter θ0, computed based on all information available to the learner up to133

the beginning of round t. Specifically, the numerator is the squared expected regret in round t, where134

the expectation is taken under the posterior distribution Qt, and the denominator is an appropriately135

defined measure of information gain that serves to quantify the amount of new information revealed136

about θ0 after having observed the latest loss Lt. The information gain is formally defined as137

IGt(π) =
∑
a

π(a)

∫
DKL (pt(θ, a)∥pt(a)) dQt(θ), (3)

where pt(a) =
∫
pt(θ, a)dQt(θ) is the posterior predictive distribution of the loss Lt given that138

action a is played in context Xt. In other words, the information gain is the mutual information139

between the posterior-sample parameter θt ∼ Qt and a randomly sampled loss L̂t ∼ pt(θt, a).140

Given the above definitions, Russo and Van Roy [2016, 2018] show that the Bayesian regret of any141

algorithm can be upper bounded as follows:142

Eθ0∼Q0 [RT (θ0)] ≤

√√√√E

[
T∑

t=1

ρt(πt)

]
· E

[
T∑

t=1

IG(πt)

]
. (4)

The second sum above can be upper bounded by the entropy of θ0 under the prior distribution,143

regardless of what algorithm is used to select the sequence of policies. This suggests that one can144

achieve low regret by picking the sequence of policies in a way that minimizes the information ratio:145

πt = arg minπ ρt(π). This algorithm is called information-directed sampling (IDS), and has been146

shown to achieve regret guarantees that often improve significantly over worst-case bounds achieved147

by more traditional methods based on posterior sampling or optimistic exploration methods. In148

particular, for the contextual bandit setting we study in this paper, the works of Neu et al. [2022]149

and Min and Russo [2023] have shown that the information ratio of IDS is bounded by the number150

of actions K. When the parameter space is finite with cardinality N , this result implies that the151

algorithm achieves the minimax optimal regret bound of O(
√
KT logN) for this Bayesian setting.152

Despite their appealing properties, IDS-style methods have however remained largely limited to153

the Bayesian setting, as there appears to be no universal way of defining an algorithmically useful154

information ratio without Bayesian assumptions. In particular, the instantaneous regret rt(π; θ0)155

cannot be computed without knowledge of θ0, and there is no reason to believe that the information156

gain defined in terms of a Bayesian posterior would meaningfully measure the reduction in uncertainty157

about θ0 in this more general setting.158

3.2 The decision-estimation coefficient and the estimations-to-decisions algorithm159

The fundamental work of Foster et al. [2021] provides a general theory of sequential decision making,160

providing a range of upper and lower bounds depending on a quantity they call the decision-estimation161

coefficient (DEC). With a little deviation from their notation and terminology, the DEC associated162

with a policy π, a model class Θ and a “reference model” p̂t : A → ∆R is defined as163

DECγ,t(π; Θ, p̂) = sup
θ∈Θ

∑
a

π(a)
(
ℓ(θ,Xt, a)− ℓ(θ,Xt, πθ)− γD2

H (pt(θ, a), p̂t(a))
)
, (5)

where γ > 0 is a trade-off parameter. With this notation, Foster et al. [2021] define the decision-164

estimation coefficient associated with the model class Θ as165

DECγ(Θ) = sup
t

sup
p̂∈∆R

inf
π∈∆A

DECγ,t(π; Θ, p̂).

Besides the remarkable feat of showing that the minimax regret can be lower bounded in terms166

of the above quantity, they also show that nearly matching upper bounds can be achieved via a167

simple algorithm they call estimation to decisions (E2D). In each round t, E2D takes as input a168

reference model p̂t and outputs the policy achieving the minimum in the definition of the DEC:169

πt = arg minπ DECγ,t(π; Θ, p̂t). They show that the regret of this method can be upper bounded in170

terms of the DEC as follows:171

RT (θ0) ≤ DECγ(Θ) · T + γ

T∑
t=1

D2
H (pt(θ0, a), p̂t(a)) .
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This shows that the regret of E2D can be upper bounded as the sum of the DEC of the model class Θ172

and the total estimation error associated with the sequence of predictions p̂t (measured in terms of173

Hellinger distance). For the contextual bandit setting with finite parameter class of size N , they show174

that the total estimation error can be upper bounded by γ logN (under an appropriate choice of the175

predictions p̂t), and that the DEC is upper bounded by K/γ, which once again recovers the minimax176

optimal rate of order O(
√
KT logN) when γ is tuned correctly.177

A significant problem with the approach outlined above is that the DEC is an inherently worst-case178

measure of complexity due to the supremum taken over θ in its definition (5). Since the E2D algorithm179

itself is based on this possibly loose bound on the regret-to-information gap, this looseness may not180

only affect the bound but also the actual performance of the algorithm. Intuitively, one may hope to181

be able to do better by replacing the supremum over model parameters by only considering models182

that are still “statistically plausible” in an appropriate sense. In what follows, we provide an algorithm183

that realizes this potential.184

4 Optimistic information-directed sampling185

Our approach solves the issues outlined in the previous sections with both the Bayesian information186

ratio and the decision estimation coefficient. In particular, our method will extend Bayesian IDS187

by being able to provide non-Bayesian performance guarantees, and will be able to address the188

over-conservative nature of the DEC and provide strong instance-dependent guarantees.189

Following Zhang [2022], we start by defining the optimistic posterior Q+
t ∈ ∆Θ via the following190

recursive update rule (starting from an arbitrary prior Q+
1 (θ) ∈ ∆Θ):191

dQ+
t+1

dQ+
t

(θ) ∝ (pt(Lt|θ,At))
η · exp(−λ · ℓ∗t (θ)). (6)

Here, η and λ are positive constants that will be specified later. For now, we will only say that η192

should be thought of as a “large” constant of order 1, and λ as a “small” parameter of order 1/
√
T in193

the worst case. To proceed, we define the optimistic posterior predictive distribution of the loss for194

each t and a as the mixture pt(a) =
∫
pt(θ, a)dQ

+
t (θ), and the surrogate loss function and surrogate195

optimal loss function respectively as196

ℓ̄t(a) =

∫
ℓt(θ, a)dQ

+
t (θ) and ℓ̄∗t =

∫
ℓ∗t (θ)dQ

+
t (θ). (7)

In words, these quantities are averages with respect to a mixture model over all contextual bandit197

instances with mixture weights given by the optimistic posterior Q+
t . Notably, they are improper198

estimators of the true likelihood, loss, and optimal loss functions respectively, as there may be199

no single θ ∈ Θ that corresponds to these exact functions (unless one assumes certain convexity200

properties of the relevant objects). With these notations, we define the surrogate regret of policy π in201

round t as rt(π) = ℓ̄t(π)− ℓ̄∗t . As we will see in the analysis, the optimistic posterior plays a key202

role in ensuring that the surrogate regret does not overestimate the true regret by too much on average,203

which makes it a sensible target for minimization.204

It remains to define our notion of information gain that we will call surrogate information gain.205

Formally, this quantity is defined for each policy π as follows:206

IGt(π) =
∑
a∈A

π(a)

∫
D2

H

(
pt(θ, a), pt(a)

)
dQ+

t (θ). (8)

Notably, this definition matches the original notion of information gain used by Russo and Van Roy207

[2016, 2018], up to the differences that the divergence being used is the squared Hellinger divergence208

instead of Shannon’s relative entropy, and that the expectation is taken over the optimistic posterior209

instead of the plain Bayesian posterior. We will sometimes write rt(π;Q
+
t ) and IGt(π;Q

+
t ) to210

emphasize that these are functions of the optimistic posterior Q+
t . With the above definitions, we211

are now ready to introduce the central quantity of our algorithmic framework and our analysis: the212

surrogate information ratio defined for each policy π as213

IRt(π) =
(rt(π))

2

IGt(π)
=

(∑
a∈A π(a)

∫ (
ℓt(θ, a)− ℓ̄∗t (θ)

)
dQ+

t (θ)
)2∑

a∈A π(a)
∫
D2

H

(
pt(a), pt(θ, a)

)
dQ+

t (θ)
. (9)
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Importantly, computing the surrogate information ratio does not require knowledge of θ0: both its214

denominator and numerator can be expressed in terms of the optimistic posterior Q+
t . To emphasize215

this fact, we will sometimes write IRt(π;Q
+
t ) for IRt(π).216

We will also define the “offset” counterpart of the surrogate information ratio that is more closely217

related to the decision-estimation coefficient of Foster et al. [2021]. Following the terminology218

introduced in Section 3.2, we introduce the averaged decision-estimation coefficient (ADEC) of219

policy π for each µ > 0 as220

DECµ,t(π) = r̄t(π)− µ · IGt(π)

=
∑
a

π(a)

∫ (
ℓt(θ, π)− ℓ∗t (θ)− µD2

H

(
ℓt(θ, π), ℓ̄t(π)

))
dQ+

t (θ).
(10)

Once again, we also define the notation DECµ,t(π;Q
+
t ) = DECµ,t(π) to emphasize the dependence221

of the ADEC on the posterior distribution Q+
t . This definition departs from the classic DEC in that,222

instead of taking a supremum over model parameters, it is defined via an expectation with respect to223

the optimistic posterior, thus preventing overly conservative choices of θ. It should be clear from224

this definition that the ADEC is always smaller than its original counterpart defined by Foster et al.225

[2021], as long the latter uses the optimistic posterior predictive distribution as its reference model:226

DECµ,t(π;Q
+
t ) ≤ DECµ,t(π; pt,Θ).227

The surrogate information ratio and the ADEC are related to each other by the inequality228

DECµ,t(π) ≤
IRt(π)

4µ
(11)

that holds for all µ > 0. Conversely, it can be seen that229

IRt(π) = inf

{
C > 0 : DECµ,t(π) ≤

C

4µ
(∀µ > 0)

}
. (12)

These are both direct consequences of the inequality of arithmetic and geometric means. That is,230

whenever the ADEC behaves as Ct/µ for all µ, the surrogate information ratio succinctly summarizes231

its behavior at all levels µ. We will dedicate special attention to this case below, but we also note that232

there are several important cases where the ADEC behaves differently, and the information ratio is a233

less appropriate notion of complexity. We defer further discussion of this to Section 7.234

With the above notions, we are now ready to define the algorithmic framework we study in this235

paper, with two separate versions depending on whether we consider the surrogate information ratio236

or the average DEC as the basis of decision making. Both versions are referred to as optimistic237

information-directed sampling (optimistic IDS or OIDS). Following the terminology of Hao and238

Lattimore [2022], we call the first variant which selects its policies as πt = arg minπ IR(π;Q+
t )239

vanilla optimistic information-directed sampling (VOIDS), and the second variant that selects πt =240

arg minπ DECµ(π;Q
+
t ) regularized optimistic information-directed sampling (ROIDS). We provide241

the pseudocode for these methods for quick reference in Appendix A.242

5 Main results243

We now present our main results regarding the two varieties of our optimistic IDS algorithm. We244

first show a general worst-case regret bound stated in terms of the time horizon T and the information245

ratio. More importantly, we also show instance-dependent guarantees on the performance of OIDS246

that replace the scaling with T in the upper bounds by the total loss of the best policy after T steps.247

For simplicity of exposition and easy comparison with existing results, we will present our main248

results assuming that the parameter space Θ is finite with cardinality N , and that the losses are almost249

surely bounded in the interval [0, 1]. We extend these results to compact metric parameter spaces in250

Section 5.3, and provide an extension to subgaussian losses in Section 5.4. Besides these general251

results, we also present several examples where OIDS can achieve very low regret by exploiting252

various flavors of problem structure, in Appendix B.253

5.1 Worst-case bounds254

We start by stating a general worst-case regret bound that relates the regret of any algorithm to its255

surrogate information ratio. This result is the non-Bayesian counterpart of the bounds stated in Russo256
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and Van Roy [2018], Hao and Lattimore [2022] and Neu et al. [2022] in that it basically says that any257

algorithm with bounded information ratio will enjoy bounded regret.258

Theorem 1. Assume |Θ| = N < ∞ and let λ > 0 be arbitrary. Then, for any choice of prior259

Q1 ∈ ∆Θ, the regret of any algorithm satisfies the following bound:260

E [RT (θ0)] ≤
log 1

Q1(θ0)

λ
+ λT ·

(∑T
t=1 E

[
DEC1/10λ,t(πt;Q

+
t )
]

λT
+

21

4

)

≤
log 1

Q1(θ0)

λ
+ λT ·

(
10 ·

∑T
t=1 E

[
IRt(πt;Q

+
t )
]

T
+

21

4

)
.

(13)

We provide a proof sketch, with pointers to the full technical proof details, in Section 6.1. As is261

common in the information directed sampling literature, we will turn this guarantee into a more262

concrete bound on the regret of OIDS by exhibiting a “forerunner" algorithm that is able to control263

the surrogate information ratio and is relatively easier to analyze. Indeed, this will certify a regret264

bound for OIDS, since the latter precisely minimizes the surrogate information ratio at every round,265

and as such is guaranteed to achieve the same or a better bound. In particular, we use the feel-good266

Thompson sampling (FGTS) algorithm of Zhang [2022] as our forerunner, which samples a parameter267

θt from the optimistic posterior and then plays the policy πt = arg maxπ
∑

a π(a)ℓt(θt, a).268

Lemma 1. The surrogate information ratio and averaged decision-to-estimation-coefficient of269

VOIDS and ROIDS satisfy for any µ ≥ 0270

4µDECµ,t(ROIDS) ≤ 4µDECµ,t(VOIDS) ≤ IRt(VOIDS) ≤ IRt(FGTS) ≤ 8K. (14)

We note that the above result is more of a property of the posterior sampling policy than FGTS itself,271

as the bound holds for any distribution that is handed to OIDS. This result is not especially new:272

similar statements have been proven in a variety of papers including Russo and Van Roy [2016, 2018],273

Zhang [2022], Foster et al. [2021], Neu et al. [2022]. We provide a proof in Appendix E.4.1. Putting274

the two previous results together, we get the following upper bound on the regret of OIDS:275

Corollary 1. Assume |Θ| = N < ∞, and let λ =
√

logN
(80K+ 21

4 )T
. Then, the regret of ROIDS with276

input parameter µ = 1
10λ and VOIDS both satisfy277

E [RT ] ≤
√
(320K + 21)T logN. (15)

In particular, this recovers the minimax optimal rate of O(
√
KT logN) for this problem.278

5.2 First-order bounds279

We now present a more interesting result that replaces the dependence on T in the previous bound by280

the cumulative loss of the best policy—constituting an instance-dependent guarantee that is often281

called first-order regret bound. In particular, in the important class of “noiseless” problems where the282

optimal loss is zero, the result implies that OIDS achieves constant regret.283

Theorem 2. Assume |Θ| = N < ∞, let L∗ be such that E
[∑T

t=1 ℓ
∗
t (θ0)

]
≤ L∗, and let λ =284 √

5 logN
(500K+108)L∗ ∧ 1

250K+54 . Then the regret of ROIDS with input parameter µ = 1
10λ and VOIDS285

both satisfy286

E [RT ] ≤
√
(2500K + 540) logNL∗ + (1250K + 270) logN. (16)

We provide a proof in Appendix D.1.287

5.3 Infinite parameter spaces288

We extend the result of Theorem 1 to work for infinite parameter spaces. For simplicity, we focus on289

the case in which Θ is a bounded subset of a finite-dimensional vector space.290

Theorem 3. Assume Θ ⊂ Rd, maxx,y∈Θ ∥x− y∥ = 2R < ∞. Assume that for all x ∈ X, a ∈ A,291

and L ∈ [0, 1], the log-likelihood of the losses p(·, x, a, L) is C-Lipschitz. Assume that a ball of292
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radius 1
CT containing θ0 is included in Θ and set λ =

√
2d log(RCT )

(20K+ 21
4 )T

and Q1 a uniform prior on Θ.293

Then the regret of ROIDS with input parameter µ = 1
10λ and VOIDS both satisfy294

E [RT ] ≤
√

(160K + 42)dT log(CRT ) + 1 = O(
√
dKT log(CRT )). (17)

We provide a proof in Appendix D.2.295

5.4 Subgaussian losses296

We also extend the basic result of Theorem 1 to work for a more general family of losses. In particular,297

we drop the assumption that the likelihood model is well-specified and allow the losses to be sub-298

Gaussian. As the following result shows, we can still recover our regret bound of O(
√
KT logN)299

with some minor tweaks of the algorithm and the analysis. The resulting method is called OIDS-SG,300

and is presented in Appendix D.3 in full detail, along with the proof of the theorem below.301

Theorem 4. Assume that the losses are v-sub-Gaussian, that |Θ| = N < ∞ and set302

λ =

√
logN

( 1
4+20(v∧1)(1+K))T

. Then the regret of ROIDS-SG with input parameter µ = 1
80λ(v∧1)303

and VOIDS-SG both satisfy304

E [RT ] ≤
√

(1 + 80(v ∨ 1)(1 +K))T logN = O(
√
KT logN). (18)

6 Analysis305

This section provides an outline of the proofs of our main results. We first give a high-level overview306

of the key ideas that are shared in all proofs, and then fill in provide further technical details that are307

required to prove Theorems 1. Theorems 2, 3 and 4 are proved in Appendices D.1, D.2 and D.3.308

The core of our analysis is the following decomposition of the instantaneous regret in round t:309

E [rt(πt; θ0)] = E [rt(πt)] + E [rt(πt; θ0)− rt(πt)]

= E [rt(πt)] + E
[
Et

[
ℓt(θ0, At)− ℓt(At)

]]
+ E

[
ℓ̄∗t − ℓ∗t (θ0)

]
(19)

= E
[
DECµ,t(πt) + µIGt(πt) + UEt + OGt

]
.

Here, in the last line we have introduced the notations UEt = Et

[
ℓt(θ0, At)− ℓt(At)

]
to denote the310

underestimation error of the losses incurred by our own policy πt, and OGt = ℓ̄∗t − ℓ∗t (θ0) as the311

optimatily gap between the best loss possible in our mixture of models and the optimal loss attainable312

under the true parameter. The first term is small if the mixture model accurately evaluates the losses313

seen during learning (which is generally easy to ensure on average), and the second term is small314

if the model remains optimistic about the best attainable performance (which is facilitated by the315

optimistic adjustment to the posterior updates). An important quantity in the analysis is the (true)316

information gain of policy π defined as317

IGt(π) =
∑
a∈A

π(a)

∫
D2

H (pt(θ0, a, ·), pt(θ, a, ·)) dQ+
t (θ). (20)

This quantity is closely related to the surrogate information gain that is optimized by our algorithm,318

and plays a key role in bounding the underestimation errors. In particular, the following simple319

lemma establishes a connection between the true and surrogate information gains:320

Lemma 2. For any t and policy π, the information gain satisfies IGt(π) ≤ 4IGt(π).321

The proof can be found in Appendix E.2.1. Notably, the proof makes critical use of properties of the322

squared Hellinger distance, and is the main reason that the surrogate information gain is defined the323

way it is. In particular, the proof uses the fact that the Hellinger distance is a metric and as such it324

satisfies the triangle inequality—which is the reason that we were not able to go with the otherwise325

more natural choice of relative entropy in our definition of the information gain.326
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6.1 The proof of Theorem 1327

We first use the following worst-case bound on the underestimation error:328

Lemma 3. For any t and γ > 0, the underestimation error is bounded as |UEt| ≤ γ
2 + IGt(πt)

γ .329

The proof is relegated to Appendix E.1.1. Putting this bound together with the previous derivations,330

we get a regret bound that only depends on the averaged Decision-to-Estimation-Coefficient, the331

information gain and the optimality gap:332

E [rt] ≤ E
[

DECµ,t(πt) +

(
4µ+

1

γ

)
IGt(πt) + OGt

]
+

γ

2
. (21)

Following the terminology of Foster et al. [2023b], we will refer to the sum
(
4µ+ 1

γ

)
IGt(πt) + OGt333

as the optimistic estimation error. The following result establishes that the optimistic posterior334

updates can effectively control a quantity that is closely related to this term.335

Lemma 4. Let 0 < η < 1
2 , λ > 0, and β = 1

1−2η . Then, the following inequality holds :336

E

[
T∑

t=1

(
2η

λ
· IGt(πt) + OGt

)]
≤

log 1
Q1(θ0)

λ
+

λβT

8
. (22)

See Appendix E.3.1 for the proof. It remains to pick the hyperparameters in a way that the left-337

hand side matches the total optimistic estimation error, which is achieved when setting way that338
2η
λ = 4µ+ 1

γ . To make sure that this holds while minimizing the final constant, we choose η = 1
4 ,339

β = 2, and γ = 1
µ = 10λ. Plugging these constants into the bound above, and putting the result340

together with the bound of Equation (21) completes the proof of Theorem 1.341

7 Conclusion342

We have proposed a new analysis framework that bridges the concepts of information ratio and343

decision-estimation coefficient, and unifies the advantages of both frameworks. We conclude by344

discussing some directions of future work. We expand our discussion of related works and open345

problems in Appendix C.346

A very important open question is whether our notion of averaged DEC can also serve as a lower347

bound on the minimax regret like its original version proposed by Foster et al. [2021]. Since the348

ADEC is a lower bound on the DEC under a special choice of nominal model, we conjecture that349

it can also be used to lower bound the minimax regret in the same “low-probability” fashion as the350

original results of Foster et al. [2021]. On the same note, we remark that it seems unlikely that our351

DEC variant can be reconciled with the “constrained DEC” of Foster et al. [2023a], which has so far352

yielded the tightest lower bounds on the regret within this family of complexity notions. Whether or353

not the averaging idea we advocate for in this paper will turn out to be useful for fully characterizing354

the minimax regret in sequential decision making remains to be seen.355

It is interesting to observe that the optimistic posterior updates used by our method simplify drastically356

in the special case of “noiseless” problems where ℓ∗(θ,Xt) = 0 holds for all θ. This condition holds357

in two of the examples discussed in Appendix B, and more broadly in all problems where the optimal358

policy is guaranteed to achieve zero loss under all candidate parameters θ. As a more concrete example,359

we highlight the problem of bandit linear classification with surrogate losses, which satisfies this360

condition if the data is separable with a margin [Kakade et al., 2008, Beygelzimer et al., 2017, 2019].361

In such noise-free problems, the optimistic posterior update collapses to
dQ+

t+1

dQ+
t

(θ) ∝ (pt(Lt|θ,At))
η ,362

which is closer to the standard Bayesian update up to the important difference that it involves the363

“stepsize” parameter η. Interestingly, such “generalized” or “safe” Bayesian updates have been364

studied extensively in the context of statistical learning under misspecified models—see, e.g., Zhang365

[2006a,b], Grünwald [2012], de Heide et al. [2020]. This connection leads to a multitude of questions366

that we cannot hope to address in this short discussion, so we close with mentioning only one aspect367

that we find to be particularly exciting. Specifically, we wonder if the techniques established in these368

works could be useful for addressing misspecification in the context of sequential decision making369

under uncertainty, where this issue has been notoriously hard to formalize and handle [Du et al., 2019,370

Lattimore et al., 2020, Weisz et al., 2021]. We leave this exciting question open for future research.371
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A Pseudocode of OIDS463

We provide the pseudocode for OIDS in Algorithm 1 below.464

Algorithm 1 Optimistic Information Directed Sampling (OIDS)

Input: prior Q+
1 , parameters η, λ, µ.

For t = 1, . . . , T , repeat:
1. Observe context Xt,

2a. VOIDS: play policy πt = arg minπ∈∆(A) IRt(π,Q
+
t ),

2b. ROIDS: play policy πt = arg minπ∈∆(A) DECt(π,Q
+
t , µ),

3. incur loss Lt,
4. update optimistic prior, Q+

t+1(·) ∝ Q+
t (·)(pt(·, At, Lt))

η exp (−λℓ∗t (·)).

B Examples465

The most appealing property of IDS in the Bayesian setting is that it can take advantage of the466

structure of the problem at hand to achieve extremely good performance that is otherwise not467

achievable by methods like Thompson sampling or UCB. Indeed, unlike these methods, IDS has468

the ability to pick actions that are not optimal under any statistically plausible model, but can reveal469

useful information about the problem. Russo and Van Roy [2018] demonstrate several examples of470

situations where IDS provably achieves massive speedups via such queries. It is not clear that such471

speedups are achievable without Bayesian assumptions, although some evidence was offered by the472

work of Kirschner and Krause [2018] in the case of linear rewards. In this section, we demonstrate473

that our version of IDS can fully reproduce the fast learning behavior of Bayesian IDS on the original474

examples of Russo and Van Roy [2018], thus suggesting that OIDS may inherit many more good475

properties of its Bayesian counterpart than what our main theoretical results show. We also provide476

an additional example on which we demonstrate that OIDS can outperform DEC-based methods by477

addressing the over-conservatism encoded in the definition of the DEC.478

B.1 Revealing action479

We first adapt the “revealing actions” example of the original work of Russo and Van Roy [2018].480

This example features the action set A = {0, 1, . . . ,K}, the set of parameters Θ = {1, . . . ,K},481

and the loss function ℓ(θ, a) = I{a>0, a ̸=θ} + I{a=0}(1− 1
2θ
). The losses are deterministic and the482

agent gets loss 0 by picking the action corresponding to the unknown parameter θ0. Action 0 is483

special, it results in a large loss that however encodes the identity of the optimal action. Thus, the484

optimal exploration strategy is to pick this revealing action once, read out the identity of the optimal485

action, and play that action until the end of time. Russo and Van Roy [2018] show that IDS follows486

this exact strategy, and here we show that OIDS does the same when taking as input a (completely487

noninformative) uniform prior over the parameters.488

To show this, we will compute for any action the surrogate reward and surrogate information gain489

under the optimistic posterior (which is identical to the uniform prior, given that we are in the first490

round). For a ̸= 0, the surrogate regret is written as491

r1(a) =

∫
Θ

ℓ(θ, a)− ℓ(θ) dQ0(θ) =
1

K

K∑
θ=1

(1− I{a=θ}) = 1− 1

K
,

while for the revealing action, the surrogate regret is492

r1(0) = 1− 1

K
+

2−K

K
.

In particular r̄t(0) > r̄t(a) so the action 0 has the worst expected reward under our model. As for the493

information gain, we an explicit computation of the Hellinger distance for a ̸= 0 shows494

IGt(a) =
1

K
·

(
1−

√
1

K

)
+

K − 1

K
·

(
1−

√
K − 1

K

)
= O

(
1

K

)
.
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Meanwhile, for action 0 we have495

IGt(0) = 1−
√

1

K
= Θ(1).

B.2 Sparse linear model496

Our second example is a linear bandit problem where the action space corresponds to a finite subset497

of the Euclidean unit ball A = { x
∥x∥1

: x ∈ {0, 1}d, x ̸= 0}, the parameter space consists of the set498

of coordinate vectors Θ = {θ′ ∈ {0, 1}d, ∥θ′∥1 = 1}, and the loss function is ℓ(θ, a) = 1− ⟨a, θ⟩.499

As in the previous example, the losses are again deterministic. This is a linear bandit problem where500

the parameter θ is known to be 1-sparse. In particular, the optimal action under the model θ consists501

in only selecting action a = θ so any Thompson Samling based algorithm will only select one502

coordinate at a time and will take up to d steps to determine the true parameter θ0. In contrast, the503

optimal exploration policy will perform binary search on the action space and find the optimal action504

exponentially faster.505

To investigate the behaviour of OIDS on this problem, we will compute the surrogate regret and506

surrogate information gain of an action a. Since our prior is uniform, we have507

r1(a) = ℓ̄1(a) = P [⟨θ0, a⟩ > 0] · 1

∥a∥1
=

∥a∥1
d

· 1

∥a∥1
=

1

d

and508

IG1(a) =
∥a∥1
d

·

(
1−

√
∥a∥1
d

)
+

d− ∥a∥1
d

·

(
1−

√
d− ∥a∥1

d

)

= 1−
(
∥a∥1
d

) 3
2

−
(
1−

∥a∥1
d

) 3
2

Thus, the expected reward of all actions is the same, and the information gain is maximized for509

actions with norm ∥a∥1 = d
2 . IDS thus picks an action A1 uniformly at random and updates the510

posterior as follows. If the observed loss is 1, all parameters with ⟨θ,A1⟩ > 0 will be eliminated by511

the posterior update. If the observed loss is smaller than 1, all parameters satisfying ⟨θ,A1⟩ = 0 are512

excluded. The posterior is thus set as uniform over all surviving parameters and the process repeats.513

Continuing along the same lines, we can see that both versions of OIDS will continue performing514

binary search and identify the true parameter in log2 d time steps.515

B.3 Bandits with a revelatory zero516

Our final example is a multi-armed bandit problem where the losses keep looking exactly the same517

until a low-probability event happens that reveals the optimal action perfectly. In this setup (vaguely518

inspired by Example 3.3 of Foster et al., 2021), Θ = [K], and the losses are defined as uniformly519

distributed random variables in [0, 1] for all actions except a = θ. For this special action, the loss is520

defined as BtUt, with Ut uniform on [0, 1], and Bt is Bernoulli with mean 1−2∆ ∈ [0, 1]. The mean521

loss for this action is 1
2 −∆. For this model, there is essentially no way for any algorithm to discover522

the optimal action until the first time that a loss of zero is observed. In this case, the (optimistic)523

posterior immediately collapses on θ0. Consequently, OIDS keeps drawing uniform random actions524

until the first zero is observed, and plays the optimal action in all remaining rounds. The number of525

time steps spent with uniform exploration are geometrically distributed with mean K
2∆ , thus making526

for a total regret of approximately K
2 . Note that in this instance, the optimistic adjustment to the527

posterior is not necessary as the optimal loss of all models are the same, so the performance of the528

algorithm is unaffected by the choice of λ or µ.529

Interestingly, the E2D algorithm of Foster et al. [2021] cannot take advantage of the structure of this530

problem so effectively. When using the posterior predictive distribution pt as the nominal model, the531

Hellinger distance will approximately behave as D2
H (p(θ, a), p̂t(a)) ≈ I{θ ̸=θ0} after observing the532
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first zero. Thus, the worst-case DEC associated with policy π is written as533

DECγ(π; pt,Θ) = sup
θ

{
ℓ(θ, π)− ℓ(θ, aθ)− γI{θ ̸=θ0}

}
= sup

θ

∆
∑
a̸=θ

π(a)− γI{θ ̸=θ0}


= sup

θ

{
∆(1− π(θ))− γI{θ ̸=θ0}

}
.

When γ ≥ ∆, the expression in the supremum can be positive for certain policies π and parameters534

θ ̸= θ0, and thus the θ player will prefer picking θ ̸= θ0 for some policies. More precisely, the DEC535

for any policy will be given as536

DEC(π; Θ, p̂t) = max

{
∆(1− min

a̸=θ0
π(a))− γ, ∆(1− π(θ0))

}
.

In the extreme case γ = 0, the policy achieving maximum value is approximately uniform, and it537

approximates the optimal policy π∗ gradually as γ increases. When γ is large enough, the alternative538

θ ̸= θ0 stops being attractive to the max player and E2D starts outputting π∗. This happens at539

the threshold γ > ∆ at the latest. This observation matches the discussion of Foster et al. [2021,540

Example 3.3] and Foster et al. [2023a, p. 8], who demonstrate the same threshold behavior of the541

DEC and point out that this leads to tight lower bounds, without discussing the potential shortcomings542

of E2D that prevents it from obtaining tight upper bounds. It is easy to see that E2D fails because of543

the over-conservative definition of the DEC: while there is sufficient evidence to reject all alternative544

parameters, E2D still computes its optimization objective by taking a supremum over all model545

parameters θ, including ones that have already been ruled out by the observations. This clearly546

demonstrates the advantage of the surrogate model used by OIDS, which computes its objective with547

the help of the optimistic posterior distribution that allows faster elimination of unlikely parameters.548

C Further discussion549

In this section, we expand our discussion of related works and open questions.550

General bounded losses. At the surface level, it may seem that our results only apply to well-551

specified models where the likelihood model correctly captures the distribution of the random losses.552

This is of course a very restrictive assumption. However, it is easy to see that our framework can tackle553

arbitrary bounded losses via a standard binarization trick [Agrawal and Goyal, 2013]: supposing554

that the losses are bounded in [0, 1], they can be randomly rounded to {0, 1} to apply OIDS with a555

Bernoulli likelihood. It is easy to see that the regret bounds for these post-processed losses continue556

to hold for the original losses as well. We presume that our approach can be generalized beyond such557

sub-Bernoulli and sub-Gaussian losses to more general sub-exponential-family losses, but we leave558

the investigation of this generalization open for future work.559

Beyond contextual bandits. For the sake of simplicity, we have presented our results within the560

relatively modest framework of contextual bandits. That said, it is clear that our framework can be561

generalized to the much broader setting of “decision making with structured observations” studied562

by Foster et al. [2021], and that it can be used to prove regret bounds of the form of Theorem 1563

straightforwardly in said setting. However, so far we could only prove quantitative improvements564

over the DEC for contextual bandits, and thus we decided not to let down the reader by introducing a565

very general setting and then only providing interesting results in a narrow special case. Nevertheless,566

our results demonstrate that our framework can achieve strictly superior upper bounds on the regret in567

a highly nontrivial setting that has been studied extensively (see, e.g., Agarwal et al., 2017, Allen-Zhu568

et al., 2018, Foster and Krishnamurthy, 2021, Bubeck and Sellke, 2020, Olkhovskaya et al., 2023).569

Multiplicative or additive tradeoff? All of our results are stated in terms of both the surrogate570

information ratio, which measures the regret-to-information tradeoff multiplicatively, and the averaged571

DEC, which does so in an additive fashion. Based on these results, it is not immediately clear which572

of the two notions is more useful. Equations (11) and (12) suggest that the ADEC is always smaller573

than the information ratio, which may suggest that it may yield better guarantees. To a certain degree,574

Russo and Van Roy [2018] have already addressed this question: their Proposition 11 shows that575
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measuring the regret-information tradeoff additively results in strictly worse regret for a range of576

hyperparameter choices. While at the surface, this seems to defy the intuition provided our results, in577

reality their additive tradeoff is only vaguely related to the one we consider, and the regularization578

range for which the result holds does not seem to be practical in the first place. On the other hand,579

Foster et al. [2021] make a more robust argument against the information ratio in comparison with the580

DEC, showing that there are some hard problems for which the information ratio is infinite but the581

DEC remains finite (see their Section 9.3). Besides the fact that their information ratio is defined in582

an unorthodox way via the same conservative supremum as what appears in the definition of the DEC,583

this claim seems to miss some important follow-up work on IDS that has already addressed this584

issue. Specifically, Lattimore and György [2021] have pointed out that the information ratio is only585

suitable for problems where the minimax regret is of the order
√
T (which one can already notice by586

inspecting the general bound of Equation 4), and studying harder games with larger minimax regret587

may be done by introducing a generalized notion of information ratio that features a different power588

of the regret in the denominator. In the present paper, we decided to stay impartial and state our589

results for both flavors of optimistic IDS, and we hope that this debate will progress productively in590

the future.591

Connection with the Bayesian DEC. The attentive reader may have noticed that a notion closely592

related to our averaged DEC has already been mentioned in the original work of Foster et al.593

[2021]. Indeed, their Section 4.2 proposes a Bayesian version of the E2D algorithm that optimizes594

DECγ,t(·;Qt), where Qt is the exact Bayesian posterior over the model parameters. They show that595

the resulting algorithm enjoys essentially the same guarantees on the Bayesian regret as the worst-596

case guarantees obtained by the standard E2D method. Our approach effectively considers the same597

optimization objective, with the important change that the standard Bayesian posterior is replaced598

with the optimistic posterior of Zhang [2022]. This not only strengthens the mentioned results of599

Foster et al. [2021] by removing the Bayesian assumption necessary for its analysis, but also allows600

us to obtain instance-dependent guarantees as well. We believe that the same instance-dependent601

improvements (and more) should be directly provable for the Bayesian E2D method of Foster et al.602

[2021], but we did not pursue this direction as we preferred to focus on pointwise regret guarantees603

this time.604

D Proofs of the main results605

We now give the complete proofs of our main results. We relegate most of the technical content into606

Appendix E and only provide the main arguments here for better readability.607

D.1 The proof of Theorem 2608

We start our analysis from the regret decomposition of Equation (19) and apply Lemma 2 to obtain609

E [rt] ≤ E
[
DECµ,t(πt) + 4µIGt(πt) + UEt + OGt

]
.

As before, we can control the ADEC of OIDS by producing a suitable forerunner. In particular, we610

use the inverse-gap weighting IGW algorithm of Foster and Krishnamurthy [2021]611

Lemma 5. The surrogate information ratio and averaged decision-to-estimation-coefficient of612

VOIDS and ROIDS satisfy for any µ ≥ 0613

4µDECµ,t(ROIDS) ≤ 4µDECµ,t(VOIDS) ≤ IRt(VOIDS) ≤ IRt(IGW) ≤ 40Kmin
a∈A

ℓt(a). (23)

See Appendix E.4.2 for a definition of the (IGW) algorithm and the proof. The term on the right-hand614

side can be further bounded as615

DECµ,t(πt) ≤
10K

µ
min
a

ℓt(a) ≤
10K

µ
(Et

[
ℓt(At)

]
) =

10K

µ
(Et [ℓt(θ0, At)]− UEt)

The final tool is a refined version of Lemma 3 that controls the underestimation error in terms of the616

information gain and the current estimate of the loss.617

Lemma 6. For any t and γ > 0, the underestimation error is bounded as618

UEt ≤
IGt(πt)

γ
+ 2γEt [ℓt(θ0, At)] . (24)
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See Appendix E.1.2 for the proof. Putting this together with the previous regret decomposition, as619

long as 10K
µ ≤ 1, we get:620

E [rt] ≤ E
[(

4µ+
1

γ
·
(
1− 10K

µ

))
IGt(πt) + OGt +

(
2γ

(
1− 10K

µ

)
+

10K

µ

)
ℓt(θ0, At)

]
,

(25)
As before, we will regard the term

(
4µ+ 1

γ ·
(
1− 10K

µ

))
IGt+OGt as the optimistic estimation error,621

and adapt Lemma 4 to provide a refined bound on this quantity:622

Lemma 7. Let 0 < η < 1
2 , λ > 0, and β = 1

1−2η . Then, the optimistic estimation error satisfies623

T∑
t=1

(
2η

λ
· IGt(πt) +

(
1− λβ

2

)
OGt

)
≤ logN

λ
+

λβ

2

T∑
t=1

ℓ∗t (θ0). (26)

See Appendix E.3.2 for the proof. The claim of the theorem is then proved by tuning the hyperparam-624

eters in a way that the quantity bounded in the previous Lemma matches the optimistic estimation625

error.626

Under the condition 10K
µ ≤ 1, the following holds627

E [rt] ≤ E
[(

4µ+
1

γ
·
(
1− 10K

µ

))
IGt(πt) + OGt +

(
2γ

(
1− 10K

µ

)
+

10K

µ

)
ℓt(θ0, At)

]
≤ E

[(
4µ+

1

γ

)
IGt(πt) + OGt +

(
2γ +

10K

µ

)
ℓt(θ0, At)

]
,

where in the last line we also used that IGt and ℓt(θ0, At) are nonnegative to upper bound 1− 10K
µ ≤ 1.628

In order to apply Lemma 7, we would like to manipulate the above expression so that the coefficients of629

IGt and OGt match. To this end, we use the condition that λβ
2 ≤ 1

5 , which ensures that 1 ≤ 1
1−λβ

2

≤ 5
4630

and thus we can continue the above bound as631

E [rt] ≤ E
[
5

4
·
((

4µ+
1

γ

)
IGt(πt) +

(
1− λβ

2

)
OGt +

(
2γ +

10K

µ

)
ℓt(θ0, At)

)]
.

To apply Lemma 7, we choose η = 1
4 , β = 2, γ = 1

µ = 10λ, and sum over all rounds to obtain632

E [RT ] ≤ E

[
5

4
· logN

λ
+

5λ

4

T∑
t=1

ℓ∗t (θ0) + (125K + 25)λ

T∑
t=1

ℓt(θ0, At)

]

≤ E

[
5

4
· logN

λ
+ (125K + 27)λ

T∑
t=1

ℓt(θ0, At)

]
,

where we upper-bounded the optimal loss 5λ
4 ℓ∗t (θ0) by 2λℓt(θ0, At) in the last step. Introducing633

the notation L̂T =
∑T

t=1 ℓt(θ∗, At) and L∗
t =

∑T
t=1 ℓ

∗
t (θ0), the two sides of the equation can be634

rewritten as635

RT = L̂T − L∗
t ≤ E

[
5

4
· logN

λ
+ (125K + 27)λL̂T

]
.

Hence, after some reordering we arrive at636

E [RT ] · (1− (125K + 27)λ) ≤ E
[
5

4
· logN

λ
+ (125K + 27)λL∗

T

]
.

If λ < 1
2(125K+30) , we can divide both sides of the inequality by (1− (125K + 27)λ) to obtain637

E [RT ] ≤ E
[
5

2
· logN

λ
+ (250K + 54)λL∗

]
,

where L∗ is an upper bound on E [L∗
T ]. Finally, we plug the value λ =

√
5 logN

(500K+108)L∗ ∧ 1
250K+54638

to get the regret bound of Theorem 2.639
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D.2 The proof of Theorem 3640

The only difference with the finite parameter space analysis is in the control of the optimistic641

estimation error. In particular, we only need to adapt our analysis of the optimistic posterior and642

Lemma 4 to get the regret bound claimed in Theorem 3. We do this with the following lemma.643

Lemma 8. Let 0 < η < 1
2 , λ > 0, and β = 1

1−2η , assume the hypothesis of Theorem 3 hold. Then,644

the following inequality holds :645

E

[
T∑

t=1

(
2η

λ
· IGt(πt) + OGt

)]
≤

d log R
ϵ

λ
+

λβT

8
+
(η
λ
+ 1
)
· CTϵ. (27)

The proof is found in Appendix E.3.4. We can now put this together with the regret decomposition646

of Equation (21). As in the proof of Theorem 1, we need to pick the hyperparameters such that the647

optimistic estimation error matches the left hand side of the previous lemma. The same choice of648

hyperparameters η = 1
4 , β = 2, and γ = 1

µ = 10λ combined with Lemma 1 gives us the following649

bound650

E [RT ] ≤ λT (20K +
1

4
+ 5) +

d log R
ϵ

λ
+

(
1

4λ
+ 1

)
· CTϵ. (28)

Picking ϵ = 1/(CT ) gives us651

E [RT ] ≤
2d logRCT

λ
+ λT

(
20K +

21

4

)
+ 1, (29)

where we used 1
4 ≤ d logRCT . Finally picking λ =

√
2d log(RCT )

T(20K+ 21
4 )

recovers the claim of Theorem 3.652

D.3 The proof of Theorem 4653

One of the appeals of our approach is that with minor tweaking, we can extend the previous guarantees654

so subgaussian losses. To do that, we consider the following family of likelihoods:655

p(c|θ, x, a) ∝ exp

(
− (c− ℓ(θ, x, a))2

2

)
.

We also readjust our definition of information gain for this setting by replacing the squared Hellinger656

distance by the square loss. In particular, the Gaussian surrogate information gain is defined as657

IG
G
t (π) =

∑
a∈A

π(a)

∫ (
ℓt(θ, a)− ℓt(a)

)2
dQ+

t (θ)

and the (true) Gaussian information gain as658

IGG
t (π) =

∑
a∈A

π(a)

∫
(ℓt(θ, a)− ℓt(θ0, a))

2
dQ+

t (θ).

The surrogate information ratio and averaged DEC are adapted as any policy π659

IR
G
t (π) =

rt(π)

IG
G
t (π)

and DEC
G
µ,t(π) = rt(π)− µ · IG

G
t (π). (30)

Then, we define the corresponding algorithm template (called Optimistic Information Directed660

Sampling for subgaussian losses, OIDS-SG) as the method that either picks πt as the minimizer of661

IR
G
t or DEC

G
T . The two varieties are referred to as VOIDS-SG and ROIDS-SG.662

Replacing the surrogate information gain by its Gaussian counterpart, the regret decomposition of663

Equation (19) is still valid:664

E [rt] = E
[
DEC

G
t (πt, µ) + µIG

G
t (πt) + UEt + OGt

]
.

The surrogate and true information gains are related to each other by the following lemma:665
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Lemma 9. For any t and policy π, the information gain for Gaussians satisfies IG
G
t (π) ≤ 4IGG

t (π).666

See Appendix E.2.2 for the proof. We also relate the underestimation error to the information gain667

through the following lemma668

Lemma 10. For any t and γ > 0, the underestimation error is bounded as669

|UEt| ≤
γ

4
+

IGG
t (πt)

γ
.

The proof is presented in Appendix E.1.3. Putting these together, we get a regret bound that only670

depends on the average DEC, the information gain and optimality gap:671

E [rt] ≤ E
[

DEC
G
µ,t(πt) +

(
4µ+

1

γ

)
IGG

t (πt) + OGt +
γ

4

]
. (31)

We again refer to the sum
(
4µ+ 1

γ

)
IGG

t (πt) as the optimistic estimation error and will control it672

through an analysis of the optimistic posterior adapted to the sub-Gaussianity of the losses. This is673

done in the following lemma, whose proof we relegate to Appendix E.3.3.674

Lemma 11. Assume that the losses are v sub-Gaussian and that for all θ ∈ Θ, x ∈ X, a ∈ A,675

ℓ(θ, x, a) ∈ [0, 1], then setting η = 1+
√
1−1∧v
2v the following inequality holds :676

E

[
T∑

t=1

1

16λ(v ∨ 1)
· IGG

t (πt) + OGt

]
≤ logN

λ
+

λT

4
. (32)

Now we pick µ = 1
γ = 1

80λ(v∨1) and apply the previous lemma to obtain the bound677

E [RT ] ≤ E

[
T∑

t=1

DEC
G

1
80λ(v∨1)

,t(πt)

]
+

logN

λ
+ λT

(
1

4
+ 20(v ∨ 1)

)
. (33)

It remains to bound the ADEC. We do this by exhibiting a “forerunner” algorithm that is able to678

control the Surrogate Information Ratio. In particular, we use again the feel-good Thompson sampling679

(FGTS) algorithm of Zhang [2022] for this purpose.680

Lemma 12. The surrogate information and averaged decision-to-estimation-coefficient of OIDS and681

VOIDS satisfy the following bound for any µ > 0:682

4µDEC
G
µ,t(ROIDS-SG) ≤ 4µDEC

G
µ,t(VOIDS-SG) ≤ IR

G
t (VOIDS-SG) ≤ IR

G
t (FGTS) = K

(34)

Putting everything together, we obtain the bound683

E [RT ] ≤
logN

λ
+ λT

(
1

4
+ 20(v ∨ 1)(1 +K)

)
, (35)

from which the bound claimed in Theorem 4 follows by picking the optimal choice of λ.684

E Technical proofs685

This section presents the more technical parts of the analysis, along with detailed proofs. The content686

is organized into four main parts: Appendix E.1 presents techniques for bounding the underestimation687

error, Appendix E.2 provides techniques for relating the surrogate information gain to the true688

information gain, Appendix E.3 presents the analysis of the optimistic posterior updates to control689

the optimistic estimation error, and Appendix E.4 provides bounds on the surrogate information ratio690

and the ADEC. All subsections include a variety of results, stated respectively for the worst-case691

bounds, first-order bounds, and subgaussian losses.692
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E.1 Analysis of the Underestimation error693

E.1.1 Worst case analysis: The proof of Lemma 3694

We define the total variation distance between two distributions P , Q sharing a common dominating695

measure λ as696

TV(P,Q) =
1

2

∫
|p(x)− q(x)| dλ(x),

where p, q are their densities with respect to λ. The total variation distance can be upper bounded by697

the Hellinger distance as follows:698

TV(P,Q) =
1

2

∫ ∣∣∣(√p(x)−
√

q(x)) · (
√

p(x) +
√
q(x))

∣∣∣ dλ(x)
≤ 1

2

√∫ (√
p(x)−

√
q(x)

)2
dλ(x) ·

∫ (√
p(x) +

√
q(x)

)2
dλ(x)

≤ 1

2

√
2D2

H(P,Q) · 2
∫

(p(x) + q(x)) dλ(x)

=
√
2D2

H(P,Q)

≤ γ

2
+

D2
H(P,Q)

γ
.

Here, the first two inequalities follow from applying Cauchy–Schwarz, and the last one from the699

inequality of arithmetic and geometric means. Thus, we proceed as700

|UEt| =

∣∣∣∣∣∑
a

πt(a)

∫
ℓt(θ0, a)− ℓt(θ, a) dQ

+
t (θ)

∣∣∣∣∣
≤
∑
a

πt(a)

∫ ∣∣ℓt(θ0, a)− ℓt(θ, a)
∣∣dQ+

t (θ)

=
∑
a

πt(a)

∫
TV
(
Ber(ℓt(θ0, a)),Ber(ℓt(θ, a))

)
dQ+

t (θ)

≤
∑
a

πt(a)

∫
TV
(
pt(θ0, a), pt(θ, a)

)
dQ+

t (θ)

≤ γ

2
+

∑
a πt(a)

∫
D2

H

(
pt(θ0, a), pt(θ, a)

)
dQ+

t (θ)

γ

=
γ

2
+

IGt

γ
.

The first inequality above uses the boundedness of the losses in [0, 1], the second inequality is the701

data-processing inequality for the total variation distance (applied on the noisy channel X → Y that702

randomly rounds X ∈ [0, 1] to Y ∈ {0, 1}), and the last one is the inequality we have just proved703

above. This concludes the proof.704

E.1.2 Instance-dependent analysis: The proof of Lemma 6705

This proof requires a more sophisticated technique based on careful specialized handling of the706

“underestimated” and ”overestimated” actions. The argument is vaguely inspired by the techniques707

of Bubeck and Sellke [2020] and Foster and Krishnamurthy [2021]. Specifically, for a parameter θ,708

we define A−
θ = {a ∈ A : ℓt(θ, a) < ℓt(θ0, a)} as the set of actions where ℓt(θ, a) underestimates709
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ℓt(θ0, a). With this notation, we write710

UEt =
∑
a

πt(a)(ℓt(θ0, a)− ℓt(a))

=

∫ ∑
a

πt(a)
(
ℓt(θ0, a)− ℓt(θ, a))

)
dQ+

t (θ)

≤
∫ ∑

a∈A−
θ

πt(a)
(
ℓt(θ0, a)− ℓt(θ, a)

)
dQ+

t (θ)

=

∫ ∑
a∈A−

θ

πt(a) ·
√
γ(ℓt(θ0, a) + ℓt(θ, a))√
γ(ℓt(θ0, a) + ℓt(θ, a))

(ℓt(θ0, a)− ℓt(θ, a)) dQ
+
t (θ),

where the inequality follows by dropping the negative terms of the sum. Now, the inequality of711

arithmetic and geometric means implies that for any x, y ≥ 0, xy ≤ x2+y2

2 . We apply it to712

x = 2
√
γ(ℓt(θ0, a) + ℓt(θ, a)) and y = (ℓt(θ0,a)−ℓt(θ,a))

2
√

γ(ℓt(θ0,a)+ℓt(θ,a))
to obtain713

UEt ≤
∫ γ

∑
a∈A−

θ

πt(a) ·
(
ℓt(θ0, a) + ℓt(θ, a)

)
+

1

4γ

∑
a∈A−

θ

πt(a)

(
ℓt(θ0, a)− ℓt(θ, a)

)2
ℓt(θ0, a) + ℓt(θ, a)

 dQ+
t (θ).

To proceed, we use the inequality (ℓt(θ0,a)−ℓt(a))
2

ℓt(θ0,a)+ℓt(θ,a)
≤ 4D2

H(pt(θ, a), pt(θ0, a)) that holds for all a714

and θ, and is proved separately as Lemma 23. Hence,715

UEt ≤ 2γ
∑
a

πt(a)ℓt(θ0, a) +
1

γ

∫ ∑
a

D2
H(pt(θ, a), pt(θ0, a)) dQ

+
t (θ)

≤ 2γ
∑
a

πt(a)ℓt(θ0, a) +
IGt

γ
,

which concludes the proof.716

E.1.3 Subgaussian analysis: The proof of Lemma 10717

The claim follows from the following calculations:718

|UEt| =

∣∣∣∣∣∑
a

πt(a)

∫
ℓ(θ0, a)− ℓt(a) dQ

+
t (θ)

∣∣∣∣∣
≤
∑
a

πt(a)

∫ ∣∣ℓ(θ0, a)− ℓt(a)
∣∣ dQ+

t (θ)

≤
√∑

a

πt(a)

∫ (
ℓ(θ0, a)− ℓt(a)

)2
dQ+

t (θ)

=

√
IGG

t (πt)

≤ γ

4
+

IGG
t (πt)

γ
.

Here, the second inequality is Cauchy–Schwarz and the last one is the inequality of arithmetic and719

geometric means.720
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E.2 Analysis of the Surrogate Information Gain and the True Information Gain721

E.2.1 Bounded losses: The proof of Lemma 2722

The claim is proved as723

IGt(π) =
∑
a

π(a)

∫
D2

H

(
ℓt(a), ℓt(θ, a)

)
dQ+

t (θ)

≤ 2 ·
∑
a

π(a)

∫
D2

H

(
ℓt(a), ℓt(θ0, a)

)
dQ+

t (θ)

+ 2 ·
∑
a

π(a)

∫
D2

H (ℓt(θ0, a), ℓt(θ, a)) dQ
+
t (θ)

≤ 4 ·
∑
a

π(a)

∫
D2

H

(
ℓt(θ0, a), ℓt(θ, a)

)
dQ+

t (θ)

= 4IGt(π),

where the first inequality critically uses that the Hellinger distance is a metric and as such it satisfies724

the triangle inequality, and thus D2
H (P, P ′) ≤ 2D2

H (P,Q) + 2D2
H (Q,P ′) holds for any P , P ′ and725

Q by an additional application of Cauchy–Schwarz. The final inequality then uses the convexity of726

the Hellinger distance and Jensen’s inequality.727

E.2.2 Subgaussian losses: The proof of Lemma 9728

The claims follows from writing729

IG
G
t (π) =

∑
a

π(a)

∫ (
ℓt(a)− ℓ(θ, a)

)2
dQ+

t (θ)

≤ 2 ·
∑
a

π(a)

∫ (
ℓt(a)− ℓ(θ0, a)

)2
dQ+

t (θ)

+ 2 ·
∑
a

π(a)

∫
(ℓ(θ0, a)− ℓ(θ, a))

2
dQ+

t (θ)

≤ 4 ·
∑
a

π(a)

∫
(ℓ(θ0, a)− ℓ(θ, a))

2
dQ+

t (θ)

= 4IGG
t (π),

where the first inequality comes an application of the triangle inequality and Cauchy–Schwarz, and730

the second one comes from the convexity of the squared loss and Jensen’s inequality.731

E.3 Analysis of the Optimistic Posterior732

We start by providing a general statement about the properties of the optimistic posterior updates,733

which will then prove useful for bounding the optimistic estimation error.734

Lemma 13. Consider the optimistic posterior defined recursively by735

dQ+
t+1

dQ+
t

(θ) =
exp

(
−η log( 1

pt(Lt|θ,At)
)− λℓ∗t (θ)

)
∫
exp

(
−η log( 1

pt(Lt|θ′,At)
)− λℓ∗t (θ

′)
)
dQ+

t (θ
′)
, (36)

where Q+
1 = Q1 is some prior distribution on Θ and pt(·|θ, a) ∈ ∆R+ is the density the loss736

distribution associated with parameter θ. For any T > 0, for any α, β > 0 such that 1
α + 1

β = 1, for737

any distribution Q∗ ∈ ∆(Θ), and for any sequence of actions A1, . . . , AT and losses L1, . . . , LT ,738
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the following inequality holds:739

− 1

λα

T∑
t=1

log

∫
pt(θ,At, Lt)

ηαdQ+
t (θ)−

1

λβ

T∑
t=1

log

∫
exp (−λβℓ∗t (θ)) dQ

+
t (θ)

≤
∫ (

1

λα
·

T∑
t=1

log
1

pt(θ,At, Lt)ηα
+

T∑
t=1

ℓ∗t (θ)

)
dQ∗(θ) +

1

λ
· DKL (Q

∗∥Q1) .

(37)

Proof. We study the potential function Φ defined for all c ∈ RΘ as740

Φ(c) =
1

λ
log

∫
Θ

exp(−λc(θ))dQ1(θ).

We define ct(θ) =
η
λ log 1

pt(θ,At,Lt)
+ ℓ∗t (θ) and evaluate Φ

(∑T
t=1 ct

)
:741

Φ

(
T∑

t=1

ct

)
=

1

λ
log

∫
Θ

exp

(
− λ

T∑
t=1

ct(θ)

)
dQ1(θ) ≥ −

∫
Θ

T∑
t=1

ct(θ)dQ
∗(θ)− DKL (Q

∗∥Q1)

λ
.

where the inequality is the Donsker-Varadhan variational formula [cf. Section 4.9 in Boucheron et al.,742

2013]. We also have743

Φ

(
T∑

t=1

ct

)
=

T∑
t=1

(
Φ

(
t∑

k=1

ck

)
− Φ

(
t−1∑
k=1

ck

))

=

T∑
t=1

1

λ
log

∫
Θ
exp

(
−λ
∑t

k=1 ck(θ)
)
dQ1(θ)∫

Θ
exp

(
−λ
∑t−1

k=1 ck(θ)
)
dQ1(θ)

=

T∑
t=1

1

λ
log

∫
Θ

exp
(
−λ
∑t−1

k=1 ck(θ)
)

∫
Θ
exp

(
−λ
∑t−1

k=1 ck(θ)
)
dQ1(θ)

· exp (−λct(θ))dQ1(θ)

=

T∑
t=1

1

λ
log

∫
Θ

exp (−λct(θ))dQ
+
t (θ)

=

T∑
t=1

1

λ
log

∫
Θ

pt(θ,At, Lt)
η · exp (−λℓ∗t (θ))dQ

+
t (θ),

where the fourth equality is by definition of Q+
t and ct.744

We can now apply Hölder’s inequality with α, β > 0 such that 1
α + 1

β = 1, obtaining745

Φ

(
T∑

t=1

ct

)
≤ 1

λ
·

T∑
t=1

(
1

α
log

∫
Θ

pt(θ,At, Lt)
ηαdQ+

t (θ) +
1

β
log

∫
Θ

exp (−λβℓ∗t (θ))dQ
+
t (θ)

)
.

Plugging both bounds together, we get the claim of the lemma.746

The following statement will be useful for turning the above guarantee into a bound on the information747

gain:748

Lemma 14. For any t ≥ 1 and any policy πt ∈ ∆(A), the following inequality holds:749

E [IGt(πt)] ≤ E

[
− log

∫
Θ

(
pt(θ,At, Lt)

pt(θ0, At, Lt)

) 1
2

dQ+
t (θ)

]
. (38)

Proof. Let τ be the dominating measure used to define the densities pt(·|θ, a). We write:750

E [IGt(πt)] = E

[∫
Θ

∑
a

πt(a)D2
H (pt(θ0, a), pt(θ, a)) dQ

+
t (θ)

]

22



= E

[∫
Θ

∑
a

πt(a)

(
1−

∫
R
(pt(c|θ,At)pt(c|θ0, At))

1
2 dτ(c)

)
dQ+

t (θ)

]

= E

[∫
Θ

Et

[∫
R

(
1−

(
pt(c|θ,At)

pt(c|θ0, At)

) 1
2

)
pt(c|θ0, At)dτ(c)

]
dQ+

t (θ)

]

= E

[∫
Θ

Et

[∫
R

(
1−

(
pt(Lt|θ,At)

pt(Lt|θ0, At)

) 1
2

)
pt(Lt|θ0, At)

]
dQ+

t (θ)

]

≤ E

[
Et

[
− log

∫ (
pt(Lt|θ,At)

pt(Lt|θ0, At)

) 1
2

dQ+
t (θ)

]]

= E

[
− log

∫
Θ

(
pt(θ,At, Lt)

pt(θ0, At, Lt)

) 1
2

dQ+
t (θ)

]
.

Here, we used the tower rule of expectation several times, and also the elementary inequality751

log(x) ≤ x− 1 that holds for all x. This concludes the proof.752

E.3.1 Worst case analysis: The proof of Lemma 4753

Lemma 15. For any t ≥ 1, β, λ > 0, as long as ℓ∗t (θ) ∈ [0, 1] for all values of θ, the following754

inequality holds755

1

λβ
log

∫
Θ

exp (−λβℓ∗t (θ))dQ
+
t (θ) ≤ −ℓ̄∗t +

λβ

8
. (39)

Proof. This is a direct consequence of Hoeffding’s lemma for bounded random variables, see for756

example Section 2.3 of Boucheron et al. [2013].757

The proof of Lemma 4 then follows directly by applying Lemma 13 with η, α such that ηα = 1
2758

(which means β = 1/(1− 2η)) and with Q∗ a dirac distribution in θ0, and combining the result with759

Lemmas 14 and 15 above.760

E.3.2 Instance dependent analysis and proof of Lemma 7761

Lemma 16. For any t ≥ 1, β, λ > 0, as long as ℓ∗t (θ) ∈ [0, 1] for all values of θ, the following762

inequality holds763

1

λβ
log

∫
Θ

exp
(
(−λβℓ∗t (θ))

)
dQ+

t (θ) ≤ −ℓ̄∗t

(
1− λβ

2

)
. (40)

Proof. We use the two elementary inequalities log(x) ≤ x − 1 that holds for all x ∈ R and764

e−x ≤ 1− x+ x2

2 that holds for all x ≥ 0 to show765

1

λβ
log

∫
Θ

exp
(
−λβℓ∗t (θ)

)
dQ+

t (θ) ≤
1

λβ

(∫
Θ

1− λβℓ∗t (θ) +

(
λβ

2
ℓ∗t (θ)

)2

dQ+
t (θ)− 1

)

≤ 1

λβ

(∫
Θ

−λβℓ∗t (θ) +

(
λβ

2

)2

ℓ∗t (θ)dQ
+
t (θ)

)

= −ℓ̄∗t

(
1− λβ

2

)
,

where we used the fact that for all θ ∈ Θ, we have ℓ∗t (θ) ∈ [0, 1] and thus ℓ∗t (θ)
2 ≤ ℓ∗t (θ).766

We use again Lemma 13 with η, α such that ηα = 1/2 and with Q∗ a dirac distribution in θ0. Then767

we apply Lemma 16 and Lemma 14 to conclude the proof of Lemma 7.768
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E.3.3 Subgaussian analysis: The proof of Lemma 11769

Lemma 17. Assume that the losses are v sub-Gaussian and that for all θ ∈ Θ, x ∈ X , a ∈770

A, ℓ(θ, x, a) ∈ [0, 1]. For any t ≥ 1, η, α ≥ 0 such that δ = ηα
2

(
1− ηαv

2

)
≥ 0 and any policy771

πt ∈ ∆(A), the following inequality holds772

δ(1− 2δ) · E
[
IGG

t (πt)
]
≤ E

[
− log

∫
Θ

(
pt(θ,At, Lt)

pt(θ0, At, Lt)

)ηα

dQ+
t (θ)

]
. (41)

Proof. We remind the reader than Ft = θ(X1, A1, L1, . . . , Xt−1, At−1, Lt−1) is the σ-algebra773

generated by the interaction history between the learner and the environment up to the end of round t.774

By the tower rule of expectation, we have775

E
[
− log

∫
Θ

(
pt(θ,At, Lt)

pt(θ0, At, Lt)

)ηα

dQ+
t (θ)

]
= E

[
E
[
− log

∫
Θ

(
pt(θ,At, Lt)

pt(θ0, At, Lt)

)ηα

dQ+
t (θ)

∣∣∣∣Ft−1, Xt, At

]]
≤ E

[
− logE

[∫
Θ

(
pt(θ,At, Lt)

pt(θ0, At, Lt)

)ηα

dQ+
t (θ)

∣∣∣∣Ft−1, Xt, At

]]
= E

[
− log

∫
Θ

∫
R

(
pt(θ,At, L)

pt(θ0, At, L)

)ηα

dPLt|Xt,At
(L)dQ+

t (θ)

]
. (42)

Where the first inequality comes from Jensen’s Inequality applied to the logarithm and PLt|Xt,At
776

is the conditional law of Lt given Xt and At. We fix θ ∈ Θ, drop the subscripts for simplicity and777

define ℓ = ℓt(At), ℓ0 = ℓt(θ0, At) and Pt = PLt|Xt,At
. Using the definition of the likelihood pt, we778

get779 ∫ (
pt(θ,At, L)

pt(θ0, At, L)

)ηα

dPt(L)

=

∫
exp

(
−ηα

(
(L− ℓt(θ,At))

2

2
+

(L− ℓ(θ0, At))
2

2

))
dPt(L)

=

∫
exp

(ηα
2
(2L− ℓ− ℓ0) · (ℓ− ℓ0)

)
dPt(L)

= exp
(
−ηα

2
(ℓ+ ℓ0) · (ℓ− ℓ0)

)
·
∫

exp (ηαL(ℓ− ℓ0)) dPt(L)

= exp
(ηα

2
(ℓ∗20 − ℓ2)

)
·
∫

exp (ηαL(ℓ− ℓ0)) dPt(L)

≤ exp
(ηα

2
(ℓ20 − ℓ2)

)
· exp (ηαℓ0 · (ℓ− ℓ0)) exp

(
η2α2v

2
(ℓ− ℓ0)

2

)
≤ exp

(
−(ℓ− ℓ0)

2 · ηα
2

(
1− ηαv

2

))
.

Now we define δ = ηα
2 (1− ηαv

2 ) we have :780 ∫ (
pt(θ,At, L)

pt(θ0, At, L)

)ηα

dPt(L)

≤ exp
(
−(ℓ− ℓ0)

2 · δ
)

≤1− δ(ℓ− ℓ0)
2 +

δ2

2
(ℓ− ℓ0)

4

≤1− δ(ℓ− ℓ0)
2 + 4δ2(ℓ− ℓ0)

2

≤1− δ(1− 2δ)(ℓ− ℓ0)
2.

Where we use that |ℓ− ℓ0| ≤ 2. Finally using that for any x > 0, log x ≤ x− 1 and equation 42, we781

get the claim of the Lemma.782
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It remains to pick the best values for η, α and β and apply Lemma 13 with Q∗ a dirac distribution783

in θ0 and Lemma 15. To finish the proof of Lemma 17, we combine the previous Lemma (17) with784

Lemma 15 and Lemma 13. We want the quantity δ(1 − 2δ) to be as big as possible, this happens785

when δ = 1
4 . This is only possible if v ≤ 1 and ηα

2 = 1+
√
1−v

2v . If v > 1, our best choice of ηα
2 is786

1
2v and in that case δ(1− 2δ) = 1

4v

(
1− 1

2v

)
≥ 1

8v . Finally, uniting both cases, we set α = β = 2,787

η = 1+
√
1−v∧1
2v and we have that δ(1− 2δ) ≥ 1

8(1∨v) .788

E.3.4 Metric Parameter Analysis : the proof of Lemma 8789

We start by a technical lemma on the Lipschtzness of the losses and the optimal losses.790

Lemma 18. For any x, θ, a, ℓt(·, x, a) and ℓ∗t (·, x) are C-Lipschitz.791

Proof. Let τ be the measure against which the densities p(·|θ, x, a) are defined. Without loss of792

generality, we can assume that
∫
[0,1]

dτ(c) = 1. Letting θ1, θ2 ∈ Θ, we have793

|ℓ(θ1, x, a)− ℓ(θ2, x, a)| =

∣∣∣∣∣
∫
[0,1]

c(p(c|θ1, x, a)− p(c|θ2, x, a))dτ(c)

∣∣∣∣∣
≤
∫
[0,1]

|(p(c|θ1, x, a)− p(c|θ2, x, a))|dτ(c)

=

∫
[0,1]

|exp (log(p(c|θ1, x, a)))− exp (log(p(c|θ2, x, a)))|dτ(c)

≤
∫
[0,1]

C ∥θ1 − θ2∥dτ(c)

= C ∥θ1 − θ2∥ ,
where the second inequality comes from the C-Lipschtzness of the composition of the exponential794

that is 1-Lipschitz on the negative numbers and the log likelihood that is C-Lipschitz. This proves795

the C-Lipschtzness of ℓt(·, x, a). Now it easily follows that ℓ∗(·, x) is also C-Lipschitz, being an796

infimum of a family of C-Lipschitz functions.797

Now we introduce two further lemmas related to Lemma 13 when Q∗ is chosen as a uniform798

distribution on a ball of radius ϵ.799

Lemma 19. Fix θ0 ∈ Θ, and ϵ > 0, and assume that a ball including θ0 with radius ϵ is contained800

in Θ. Letting Q∗ be the uniform distribution on such a ball, we have801

DKL (Q
∗∥Q1) = d log

(
R

ϵ

)
. (43)

Proof. Since both Q∗ and Q1 are uniform, the ratio of their density is equal to the ratio of the volume802

of Θ and the volume of a ball of radius ϵ. Since Θ is included in a ball of radius R, this ratio is803

bounded by (Rϵ )
d. Finally804

DKL (Q
∗∥Q1) =

∫
Θ

dQ∗

dQ1
(θ) log

(
dQ∗

dQ1
(θ)

)
dQ1(θ) ≤ log

(
R

ϵ

)d ∫
Θ

dQ∗(θ) = d log

(
R

ϵ

)
.

805

Lemma 20. Under the same conditions as Lemma 19, we have806 ∣∣∣∣∣
∫ (

1

λα
·

T∑
t=1

log
pt(θ0, At, Lt)

ηα

pt(θ,At, Lt)ηα
+

T∑
t=1

(ℓ∗t (θ)− ℓ∗t (θ0))

)
dQ∗(θ)

∣∣∣∣∣ ≤
(η
λ
+ 1
)
· CTϵ.

(44)

Proof. This is a direct consequence of the Lipschitzness of the log-likelihood and Lemma 18.807

Putting Lemma 13 together with this choice of Q∗ and with Lemma 14 and Lemma 15, we finish the808

proof of Lemma 8809
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E.4 Upper bounds on the averaged DEC and the Surrogate Information ratio810

Here we provide the technical tools to bound the surrogate information ratio and the averaged DEC811

for some appropriately chosen forerunner algorithms.812

E.4.1 Worst-case analysis: The proof of Lemmas 1 and 12813

Here we study the performance of Thompson sampling as the forerunner algorithm, which will814

certify a bound on the surrogate information ratio of OIDS. The Thompson sampling policy πt works815

by sampling θt according to the posterior Q+
t and then playing the action At ∈ arg mina ℓt(θt, a).816

To facilitate the derivations below, we define a∗t : Θ → A the greedy action selector by a∗t (θ) =817

arg mina ℓt(θ, a) (with ties broken arbitrarily). By definition of the policy, sampling according to818

πt is the same as sampling according to dQ+
t and then applying the greedy action selector. More819

formally, for any measurable function f , we have820 ∫
Θ

f(a∗t (θ))dQ
+
t (θ) =

∑
a

πt(a)f(a).

Moreover, we have that ℓ̄∗t =
∫
Θ
ℓ∗t (θ)dQ

+
t (θ) =

∫
Θ
ℓt(θ, a

∗
t (θ))dQ

+
t (θ). Putting these observations821

together, we can write the surrogate regret as822

rt(πt) =
∑
a

πt(a)
(
ℓt(a)− ℓ̄∗t

)
=

∫
Θ

ℓt(a
∗
t (θ))− ℓt(θ, a

∗
t (θ)). (45)

Observe that the regret is the difference of the expectation of the same function under the joint823

distribution of θt and At and their product distribution, and thus measures the extent to which the824

two are “coupled”. We will analyze this quantity by a decoupling argument inspired by Zhang [2022]825

and Neu et al. [2022].826

For setting up the decoupling analysis, we first need some technical lemmas. We start by a corollary827

of the Fenchel–Young inequality for strongly convex functions that will come handy.828

Lemma 21. Let I be an interval on the real line and let D : I2 → R be a convex function satisfying829

the following conditions:830

• For any y ∈ I , the function x → D(x, y) is proper, closed and C-strongly convex.831

• For any x ∈ I , D(x, x) = 0.832

Then for any x, y ∈ I and any µ ∈ R we have833

(x− y)u ≤ D(x, y) +
u2

2C
. (46)

Proof. Let y ∈ I . We compute the Legendre–Fenchel conjugate of x → D(x, y), defined for any834

u ∈ R as835

D∗(u, y) = sup
x∈I

{xu− f(y)} .

Since y is a minimum of x → D(x, y) and D(y, y) = 0, we have that D∗(0, y) = 0. Moreover using836

Lemma 15 of Shalev-Shwartz [2007], we directly have that D∗ is 1
C smooth in its first coordinate and837

that ∂D∗

∂u (0, y) = y, so that for any u ∈ R we have838

D∗(u, y) ≤ D∗(0, y) + u
∂D∗

∂u
(0, y) +

u2

2C
≤ yu+

u2

2C
.

Then, by the Fenchel–Young inequality, this implies the following for any x ∈ I and any u ∈ R:839

x · µ ≤ D(x, y) +D∗(u, y) ≤ y · u+
u2

2C
.

This proves the statement.840

We use this inequality to prove the following general decoupling lemma that can handle arbitrary841

joint distributions of random variables.842
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Lemma 22. Let D : [0, 1]2 → R be C-strongly convex and satisfy the same hypothesis as for the843

previous lemma. Let Q ∈ ∆(Θ), f : Θ × A → [0, 1] and a∗ : Θ → A. Assume f and a∗ are844

measurable. We define π ∈ ∆(A) by π(a) =
∫
Θ
I{a∗(θ)=a}dQ(θ) and f̄(a) =

∫
Θ
f(θ, a)dQ(θ).845

Then for any µ > 0 the following holds846 ∫
Θ

f̄(a∗(θ))− f(θ, a∗(θ))dQ(θ) ≤ µ

∫
Θ

∑
a

π(a)D(f̄(a), f(θ, a))dQ(θ) +
K

2µC
(47)

Proof. We start by writing847 ∫
Θ

f̄(a∗(θ))− f(θ, a∗(θ)) =

∫
Θ

∑
a

µπ(a)

µπ(a)
I{a∗(θ)=a}

(
f̄(a)− f(θ, a)

)
dQ(θ)

=

∫
Θ

∑
a

µπ(a)

( I{a∗(θ)=a}

µπ(a)

(
f̄(a)− f(θ, a)

))
dQ(θ)

≤
∫
Θ

∑
a

µπ(a)

(
D(f̄(a), f(θ, a)) +

I{a∗(θ)=a}

2Cµ2π(a)2

)
dQ(θ),

where we used Lemma 21 with u =
I{a∗(θ)=a}

µπ(a) in the last line. Finally, we have848 ∫
Θ

f̄(a∗(θ))− f(θ, a∗(θ)) ≤ µ

∫
Θ

∑
a

π(a)D(f̄(a), f(θ, a))dQ(θ) +
1

2µC

∑
a

∫
Θ

Ia∗(θ)=a

π(a)
dQ(θ)

≤ µ

∫
Θ

∑
a

π(a)D(f̄(a), f(θ, a))dQ(θ) +
K

2µC
,

where we used π(a) =
∫
Θ
Ia∗(θ)=adQ(θ) in the last line.849

To prove Lemma 1, we use the above result with Q = Q+
t , f = ℓt and a∗ = ajt and D chosen as850

the squared Hellinger distance D2
H , which is 1

4 -strongly convex in its first argument by Lemma 24851

provided in Appendix E.5. Thus, applying Lemma 22 we get for any µ > 0 that852

rt(πt) ≤ µ

∫
Θ

∑
a

πt(a)D2
H(ℓt(a), ℓt(θ, a))dQ

+
t (θ) +

2K

µ
.

This concludes the proof of Lemma 1.853

Lemma 12 is proved by choosing D(x, y) = (x− y)2 that is 2-strongly convex in its first argument,854

which yields the advertised result as855

rt(πt) ≤ µ

∫
Θ

∑
a

πt(a)(ℓt(a)− ℓt(θ, a))
2dQ+

t (θ) +
K

4µ
.

E.4.2 Instance-dependent analysis: The proof of Lemma 5856

This analysis uses the so-called inverse-gap weighting algorithm of Abe and Long [1999] as857

forerunner—see also the works of Foster and Rakhlin [2020] and Foster and Krishnamurthy [2021]858

that reignited interest in this method. Our analysis below is especially inspired by the latter work.859

We define the inverse gap weighting policy with scale parameter γ and with respect to a nominal loss860

function f : A → R+ as861

π(IGW)
γ,f (a) =

{
f(b)

Kf(b)+γ(f(b)−f(a)) if a ̸= b

1−
∑

a ̸=b π
(IGW)
γ,f (a) if a = b

where b ∈ arg mina f(a) is fixed (with ties broken arbitrarily). We fix θ and apply Lemma 4 of862

Foster and Krishnamurthy [2021] with nominal loss ℓt : A → R and true loss ℓt(θ) : A → R to get863

ℓt(b)− ℓt(θ, a
∗
t (θ)) ≤

K

4γ
ℓt(b) + 2γ · π(IGW)

γ,ℓt
(a∗(θ))

(ℓt(a
∗(θ))− ℓt(θ, a

∗(θ)))2

ℓt(a∗t (θ)) + ℓt(θ, a∗t (θ))
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≤ K

4γ
ℓt(b) + 2γ ·

∑
a

π(IGW)
γ,ℓt

(a)
(ℓt(a)− ℓt(θ, a))

2

ℓt(a) + ℓt(θ, a)
,

where b ∈ arg mina ℓt(a) and a∗t (θ) ∈ arg mina ℓt(θ, a). To proceed, we use that for any p, q ∈864

[0, 1], we have (p−q)2

p+q ≤ 4 · D2
H(Ber(p),Ber(q)) (cf. Lemma 23 in Appendix E.5). We combine this865

with the data processing inequality for f -divergences to obtain866

ℓt(b)− ℓt(θ, a
∗
t (θ))) ≤

K

4γ
ℓt(b) + 8γ ·

∑
a

π(IGW)
γ,ℓt

(a)D2
H(Ber(ℓt(a)),Ber(ℓt(θ, a)))

≤ K

4γ
ℓt(b) + 8γ ·

∑
a

π(IGW)
γ,ℓt

(a)D2
H(pt(a, ·), pt(θ, a, ·)).

(48)

On the other hand, we can rewrite the surrogate regret of the inverse gap weighting policy as867

rt(π
(IGW)
γ,ℓt

) =

∫ ∑
a

π(IGW)
γ,ℓt

(a)(ℓt(a)− ℓ∗t (θ)) dQ
+
t (θ)

=

∫ ∑
a

π(IGW)
γ,ℓt

(a)(ℓt(a)− ℓt(θ, a
∗
t (θ))) dQ

+
t (θ)

=

∫ ∑
a̸=b

π(IGW)
γ,ℓt

(a)(ℓt(a)− ℓt(b)) dQ
+
t (θ) +

∫ ∑
a

π(a)(ℓt(b)− ℓt(θ, a
∗
t (θ))) dQ

+
t (θ).

The second term in the above decomposition can be bounded using Equation (48). As for the first868

term, we can exploit the definition of the policy to write869 ∑
a ̸=b

π(IGW)
γ,ℓt

(a)(ℓt(a)− ℓt(b)) =
∑
a ̸=b

ℓt(b)(ℓt(a)− ℓt(b))

Kℓt(b) + γ(ℓt(a)− ℓt(b))
≤ Kℓt(b)

γ
.

Putting these bounds together gives870

rt(π
(IGW)
γ,ℓt

) ≤ Kℓt(b)

γ
+

Kℓt(b)

4γ
+ 8γ ·

∫ ∑
a

D2
H(pt(a, ·), pt(θ, a, ·)) dQ+

t (θ)

≤ 5Kℓt(b)

4γ
+ 8γ · IGt,

Optimizing over γ, we get the claim of Lemma 5.871

E.5 Auxiliary results872

Lemma 23 (Proposition 3 Foster and Krishnamurthy, 2021). For any p, q ∈ [0, 1], we have873

(p− q)2

p+ q
≤ 4D2

H(Ber(p),Ber(q)).

Proof. The statement follows from the simple calculation874

D2
H(p, q) ≥ 1

2
(
√
p−√

q)2 =
1

2

(
(
√
p−√

q)(
√
p+

√
q)

√
p+

√
q

)2

=
1

2

(p− q)2

(
√
p+

√
q)2

≥ 1

4

(p− q)2

p+ q
,

where the last step uses the elementary inequality (x+ y)2 ≤ 2(x2 + y2) that holds for any x, y.875

Lemma 24. For any fixed q ∈ [0, 1], the function p 7→ D2
H(Ber(p),Ber(q)) is 1

4 -strongly convex.876

Proof. The proof is based on showing that the second derivative of the function of interest is uniformly877

lower bounded by a positive constant. This follows from calculating the first derivative as878

∂D2
H(p, q)

∂p
=

1

2

(
−
√

q

p
+

√
1− q

1− p

)
,
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and then lower-bounding the second derivative as879

∂2D2
H(p, q)

∂2p
=

1

4

(√
q

p3
+

√
1− q

(1− p)3

)
≥ 1

4

(√
q +

√
1− q

)
≥ 1

4
.

This inequality is tight when q = 0 or q = 1.880
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