
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

THE POLYTOPAL COMPLEX AS A FRAMEWORK TO ANA-
LYZE MULTILAYER RELU NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Neural networks have shown superior performance in many different domains.
However, a precise understanding of what even simple architectures actually are
doing is not yet achieved, hindering the application of such architectures in safety-
critical embedded systems. To improve this understanding, we think of a network
as a continuous piecewise linear function. The network decomposes the input space
into cells in which the network is an affine function; the resulting cells form a
polytopal complex. In this paper we provide an algorithm to derive this complex.
Furthermore, we capture the local and global behavior of the network by computing
the maxima, minima, number of cells, local span, and curvature of the complex.
With the machinery presented in this paper we can extend the validity of a neural
network beyond the finite discrete test set to an open neighborhood, covering large
parts of the input domain. To show the effectiveness of the proposed method we
run various experiments on the effects of width, depth, and regularisation. We
further find that under regularization, less cells capture more of the volume, while
the total number of cells stays in the same range. Together, these findings provide
novel insights into the network and its training parameters.

1 INTRODUCTION

Motivation. Consider the two circles on the left of Figure 1. To classify the data shown in figure,
we trained two neural networks of size 2-50-50-1 (the number refers to the number of perceptrons
in each layer), one with a bias term, and one without. Both networks achieve zero training error,
yet only the right network generalizes beyond the training data by capturing the symmetry of the
data. If the only available test data is close to the training data, we would not detect this problem,
highlighting the need for methods which extend the validity of the network beyond the test data.

Figure 1: We trained two 2-50-50-2 MLPs, one with bias term, shown on the right, and one without a
bias term shown, in the middle, to classify the concentric circles. Both MLPs fitted the data perfectly,
yet we only trust the right MLP.

This paper. We think of the network as a function from F : RD → R defined on some bounded
domain of the input space. We further assume that the network consists of piecewise linear activation
functions in the hidden layers. Under these assumptions we partition the input domain into a set of
polytopes C ; see Figure 2 for an illustration of how the first layer of the network decomposes the
input domain.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

A B

CD

F

E

h

h1h2h3h4h5 h1

h2

h3

h4

h5

Figure 2: The 1st-3rd images show respectively a single neuron separating the input domain, the
neurons of the first layer doing this separately, and stacked together to give the cell decomposition
after the first layer. Repeating the process for all cells gives the decomposition shown on the right.

Furthermore, for each vertex v of the polytopal complex, we can take the star st(v) to capture the
behavior of the network in the neighborhood of the vertex. Here the neighborhood of the vertex is the
union of the cells of its star. For an arbitrary data point x we take the star of the face containing x.
We only have to consider the (finite) set of vertices of the star to analyse it and estimate the variation
of F around x. Moreover, we can assess the descent and curvature by analysing the (finite) set of
faces of the star.

With the machinery of this paper we extend the validity of a neural network beyond a discrete test
data point to its neighborhoods, specifically by (1) finding the cell of the complex in which x lies,
(2) building the star of the cells vertices, and (3) computing properties of the network on the star.
Moreover, we can assess how much volume of the input domain is covered by the cells of the complex
which contain test data points.

Summary of contribution. (1) The core of the paper is an algorithm which outputs a decomposition
of the input space of a relu mlp in convex polytopes, which itself constitutes a polytopal complex. (2)
We analyze the algorithm and introduce checks for the validity of the decomposition. (3) We leverage
the decomposition for various analyses such as analyzing the star of the vertices of the complex, we
capture the local behavior of the network, such as the number of extrema, the span, and the curvature.
(4) We study the generalization error with our analytical framework. (5) Finally, we study the effects
of depth, width, and regularization on the complex.

2 BACKGROUND

2.1 POLYTOPAL CELL COMPLEX

Literature. There exists a well established literature on the theoretical notions of the paper. In this
section we highlight the subset used in this paper.

For pl-manifolds we refer to Rourke & Sanderson (1982). The cells of a 1-layered mlp can be
understood as a hyperplane arrangement; for more on hyperplane arrangements see Stanley (2006).
The theory of polytopes is covered in Ziegler (1995) and Grünbaum et al. (2003). We refer to Polthier
(2002) for the definition of discrete surface curvature, for the Griewank function we refer to Griewank
(1981), and for the Himmelblau function see Himmelblau (1972).

Complex and star. A finite family C of polytopes in RD is called a complex if (i) every face of a
member of C is itself a member of C , and (ii) the intersection of any two members of C is a face
of each of them. Let C be a complex and C ∈ C an element of that complex. The star of C in
C , denoted by st(C,C), is the smallest sub-complex of C containing all the members of C which
contain C.

2.1.1 ANALYSIS OF POLYTOPAL CELL COMPLEX

Idea. We can think of the network F as a graph over its bounded domainB ⊂ RD. Since F is affine
when restricted to a cell Ck of the network complex C , it follows that for x ∈ Ck = conv{v1, ...vp}

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

V

f(V)

A

f(A)

B

f(B)

C

f(C)

D

f(D)

V

f(V)

A

f(A)

B

f(B)

C

f(C)

D

f(D)

V

f(V)

A

f(A)

B

f(B)

C

f(C)

D

f(D)

V

f(V)

A

f(A)

B

f(B)C

f(C)

D

f(D)

Figure 3: Examples of flat(κ = 0), spherical(κ > 0), and hyperbolic(κ < 0) curvatures at a vertex.

the output of the network is determined by the values of F at the vertices of Ck, i.e.

F (x) = F (λ1v1 + ...+ λpvp) = λ1F (v1) + ...+ λpF (vp),
∑
i

λi = 1 (1)

Local minima, maxima. From Equation (1), follows that F attains its minima and maxima at the
vertices of the complex, with the exception of k-cells, at which F is constant. We exclude these cases
from our further discussion. We say that F has a local minimum at vertex v provided that for all
vertices w1, ..., wq ∈ star(v) we have F (v) < F (wi).

Span and spectral bound. We can further compute the global and local span of the star. The local
span measures how much F changes. Since the number of weights of the network is finite, there are
only finitely many cells Ck ∈ C in the network complex. In each cell Ck, the network F is an affine
function of the type x 7→ ⟨νk, x⟩+ ρk. Assuming for the moment a network without a bias term, the
output of the network can be bounded by

||F (x)||22 ≤ max
νk

| ⟨νk, x⟩ |2 ≤ ||x||22 max
νk

||νk||22. (2)

2.1.2 DISCRETE GAUSSIAN CURVATURE

Gauss curvature. We investigate curvature only for the two-dimensional case. Curvature measures
how much we distort the graph of the network over the star compared to the flat star defined in the
plane. This distortion is the difference between two terms: the sum of the interior angles of the 2-cells
of the graph meeting the center F (v) of the image of the star, and the sum of the interior angles of
the 2-cells of the flat star meeting at the center v. Figure 3 shows examples of flat curvature, positive
curvature (twice), and negative curvature.

Definition. Let {f1, ..., fm} be the faces of the image of the star st(v) under the network F , and
let θi be the vertex angle of face fi at the vertex F (v). The Gauss curvature κ of a two-dimensional
polyhedral surface at a vertex v is defined as the vertex angle excess

κ(v) = 2π −
m∑
i=1

θi(v). (3)

2.2 EXPERIMENTAL SETUP

Introduction. We took the Himmelblau function, and the Griewank function. We sampled 6400
data points and trained MLPs on this data. The full setup is in the Appendix B.1.3.

Himmelblau function. The Himmelblau function has four local minima and one maximum. It
has a step descent while outside of these extreme. We restricted it to the square [−5, 5]2. It ranges
between 0 and 890. Its local maximum is at x = −0.3 and y = −0.9, with 181.6 and its four minima
are located at (3, 2), (−2.8, 3.1), (−3.8,−3.3), and (3.6,−1.8) with value 0.

f(x, y) = (x2 + y − 11)2 + (x+ y2 − 7)2 (4)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Griewank function. We took the Griewank function restricted to the square [−10, 10]2. Here we
can study how the network captures the minima and maxima of the function.

f(x) = 1 +
1

4000

2∑
i=1

x2i −
2∏

i=1

cos
xi√
i

(5)

3 COMPUTING THE DECOMPOSITION

3.1 ALGORITHM

Task. Given a multilayer perceptron F : RD → RS defined by its weight matrices, bias vectors,
and activation functions, the task is to decompose a bounded box of the input space into a finite set of
convex polytopes such that the network F is linear on each polytope. Furthermore, we want to know
the neighboring relations of the polytopes. In other words, we want to compute a (polytopal) complex
C induced by the network on B ⊂ RD.

Steps. The proposed algorithm operates iteratively in three steps. Given a set of polytopes it
partitions each polytope into sub-polytopes with the hyperplanes given by the network. For each
polytope: (α) It derives a partition into sub-polytopes by a set of hyperplanes. (β) It identifies
vertices of attached polytopes, (γ) It computes the (sub)-faces of the set of polytopes.

(α0) - Initial step. We define the decomposition of the axis-parallel bounding box {b0, ..., b2D−1}:

vertices = {b0, ..., b2D−1} (6)
links = {{b0, b1}, {b0, b3}, ..., {b2D−2, b2D−1}} (7)

D -faces = {{b0, b1, ..., b2D−1}} (8)

The intermediate steps of the algorithm only use the vertices, the links, and the D-faces.

(α1) - Set of cutting hyperplanes of cell. At each cell Ck the i-th layer of the network before the
activation is an affine function. This affine function is determined by the activation pattern of the cell
C ∈ Ci−1. To compute it, we take the midpoint x of the cell, derive the activation pattern of the cell,
set the corresponding rows and columns of the weights and biases to zero, and output the product
Hi,k = ÂiÂi−1 · · · Â0 for the linear part and bi,k = Âi(Âi−1(...(Â1b̂0 + b̂1) + b̂2)...) + b̂i for the
bias term of the network at layer i and cell C.

(α2) - Partition cell by hyperplanes. In step (α2) we iteratively go through the hyperplanes given
by (Hi,k, bi,k). We begin with cell Ck,i, cut it if necessary, and continue with the next hyperplane
and the current decomposition of Ck,i. In this way we cut the initial cell step by step into more and
more pieces.

(α3) - Partition single cell. A cell C is given by the convex hull of its vertices {v0, ..., vk}. The
hyperplane assigns a sign to the set of vertices which we collect in I+, I− and I0. We further compute
the cuts J of the hyperplane and the cell by cutting the 1-faces of the cell. The convex hull of J ∪ I0
is the common face of the cuts C+ and C− of the cell C = C+ ∪C−. Thus, C+ = conv I+ ∪ I0 ∪ J
and C− = conv I− ∪ I0 ∪ J .

(β)-Identifying vertices. This steps identifies vertices of polytopes which share a common face.

(γ) -Intersection semilattice. Finally, we obtain the inner k-faces by taking the pairwise intersec-
tion of all cells and determining the affine dimension of the space spanned by the common vertices.
To obtain the faces on the boundary, we intersect the cell with the 0-faces, 1-faces, 2-faces, ...,
(D − 1)-faces of the bounding box.

3.2 VALIDITY CHECK AND DATA STRUCTURE

Uniqueness and independence of cutting order. We argue that it does not matter in which order
we cut the cells by the neurons of a layer. In other words we argue that the derived polytopal complex

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Figure 4: Computation time in seconds and number of cells of 2-30-30-1 networks trained on the
Griewank data as a function of the bounding box. The plots report the mean of ten experiments.

is unique. This can be shown by induction. For a zero-layered network the algorithm outputs the
polytopal complex of the bounding box which is unique. At each layer the algorithm partitions
the cells by its corresponding set of hyperplanes. Reduced to each cell this partition is unique, this
follows as an hyperplane arrangement uniquely partitions the input space - each partition is uniquely
identified by its sign vector. It remains to show that to the partitions of two pasted adjacent cells
match. This follows as the cutting (bended) hyperplanes, defined by a sign change in one neuron is
continuous: Let us suppose cells A,B are adjacent in layer k with shared (D − 1)-face C. If cell
A and its (D − 1)-face C is cut by hyperplane P (as defined by the network in cell A), then there
is a hyperplane P ′ defined by the network in cell B which equals P when restricted to the shared
(D − 1)-face C. To go from P to P ′ one changes the sign vector of P at the neuron of the shared
(D − 1)-face.

Validity of decomposition. We can assess the validity of the decomposition by (1) checking that
the volume of the cells equals the volume of the bounding box, (2) we can further check if any derived
vertex lies outside of the input cube, (3) checking if the sum of even faces equals the sum of odd
faces plus one; in other words we compute the Euler characteristic of the complex, and (4) we can
compare the number of 0-faces derived by computing the intersection lattice in the final step of the
algorithm with the number of vertices derived during the decomposition.

Degenerate polytopes. Degenerate polytopes can arise during the cutting and in the final step while
computing the intersection lattice. For the first case: As we cut the cells sequentially, we detect if
a hyperplane leads to a degenerate polytope, as in this case all vertices of such a polytope lie in a
closed half-space. For the second case: While intersecting two polytopes of the complex we derive
the affine dimension of the intersection. These argument work in theory, in practice (as laid out in the
appendix) almost equal hyperplanes may lead to degenerate polytopes. This is similar to meshing
errors and can not be avoided in floating point or fixed-point arithmetic.

Remark on used data structure. Internally, we used the coordinates of the vertices v ∈ RD. For
each vertex we stored its supporting hyperplanes H1, ..., Hk. We further stored 0-faces, 1-faces, and
D-faces, as list of indices, pointing to the vertices. In this way we can compute the intersection of
two faces, by the set theoretic intersection of indices to determine the vertices of the intersection,
followed by a computation of the rank of the intersection. Furthermore, this allows us to derive
the intersection of a hyperplane and 1-face between vertex v and w by (1) computing the spanning
vectors of its affine space - again we can achieve this by taking the intersection of indices of the
supporting hyperplanes of both vertices. (2) adding the intersecting hyperplane to the supporting
hyperplanes and computing its point of intersection.

3.3 DEPENDENCE OF BOUNDING BOX

Number of cells and bounding box. Increasing the bounding box of the algorithm will increase
the number of cells the algorithm has to compute thus it will take longer. But above a certain value
this will saturate, as no new cells are added to the bounded complex. Figure 4 shows this effect. We
trained ten 2-30-30-1 networks on the Griewank data for the figure and computed the decompositions
with increasing bounding boxes. Note that the training data lies in the box [−10, 10]2

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Figure 5: Computation time in seconds of the decomposition for networks of different width, depth
and dimension.

Figure 6: Computation time of the decomposition for networks of different width and depth. Each
model was trained ten times.

Remark. We added the bounding box to the algorithm mainly to avoid numerical errors caused by
floating points. If we consider networks with almost similar weights, this happens if we regularize
the network heavily, then the positions of the intersecting vertices will be quite large. Combining this
with vertices close to the origin is asking for numerical troubles. We can exclude this by using the
bounding box. In practise this is no issue as (physical) signals of embedded systems are bounded
anyway.

3.4 TIMING

A note on complexity. The present algorithm and that of Berzins (2023) have some similarities.
The main difference is that Berzins (2023) uses the 1-skeleton of the decomposition whereby only
computing the vertices of the complex. The algorithms share enough similarity that their run time
analysis carries over to our algorithm, giving a complexity of O(|vertices|).

Width, depth, and dimension. In order to assess the run time of the algorithm empirically we
trained several architectures of different width and depth on the Himmelblau data. In particular, for
the width experiments we considered networks of type 2-10-1,...,2-100-1. For the depth experiments
we considered networks of type 2-10-1,...,2-10-...-10-1. Furthermore, to assess dependence on the
input dimension we sampled data from four concentric spheres of dimension D with radii 1,2,3, and
4. The task of the network of type D-5-5-4 was to classify the correct sphere. We repeated each
experiment ten times and report the median. Figure 5 shows the resulting curves. To analyze this
further we varied depth and width at the same time. For the plot of Figure 6. we trained a network
of type 2-width-...-width-1 on the himmelblau function, and decomposed it. We can see that deeper
models tend to take longer than wider models.

4 APPLICATIONS

4.1 MEASURING THE GENERALIZATION ERROR

Motivation. How well does MSE(dev) represent MSE(true)? The polytopal complex provides
further measures besides MSE(dev) to evaluate a trained model such as number of linear regions, the

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

measure 201(51) 640(160) 2023() 6400(1600)
MSE(true) 175.18±60.85 48.66±13.70 15.30±5.69 7.66±3.88

MSE(train) 15.39±7.62 18.24±6.47 11.04±4.43 6.69±3.53

MSE(dev) 189.87±98.01 42.57±17.64 15.13±6.91 7.90±4.06

CELLS(total) 627.40±174.10 734.80±406.71 612.60±272.80 874.00±473.24

CELLS(train) 0.21±0.05 0.38±0.09 0.60±0.06 0.69±0.07

CELLS(dev) 0.07±0.02 0.18±0.06 0.37±0.06 0.51±0.09

VOL(train) 63.04±3.95 83.53±5.89 95.65±2.97 98.33±1.12

VOL(dev) 30.03±3.01 53.23±9.04 79.25±8.29 91.03±5.46

Table 1: For each column we trained ten 2-30-30-1 MLPs on (201+51, 640+160, 2023+506,
6400+1600) data points (train+dev) uniformly sampled from [-5,5]x[-5,5] MSE(true) was estimated
with 50000 data points sampled uniformly within [-5,5]x[-5,5]. CELLS(total) reports the number of
linear regions, CELLS reports the number of cells which contain train- or dev-data, VOL reports the
percentage of volume of these cells.

measure ∼ Σ((0, 0), 1) ∼ Σ((0, 0), 2) ∼ Σ((0, 0), 3) ∼ Σ((0, 0), 4)
MSE(true) 11921.57±1015.29 119.19±93.01 71.58±38.11 694.31±268.91

MSE(train) 0.31±0.16 31.67±26.72 90.94±34.12 1759.20±752.39

MSE(dev) 2.42±2.40 290.48±327.24 10853.04±16563.03 66372.37±71741.04

MSE(train-bd) 0.31±0.16 22.73±18.57 41.58±20.30 640.33±299.30

MSE(dev-bd) 2.42±2.40 27.11±22.15 46.43±21.69 662.40±287.36

CELLS(total) 560.70±47.03 722.70±327.42 758.20±176.41 400.50±60.52

CELLS(train) 0.34±0.03 0.55±0.08 0.60±0.05 0.63±0.06

CELLS(dev) 0.23±0.02 0.36±0.08 0.39±0.05 0.44±0.06

VOL(train) 46.53±2.47 92.27±2.96 96.19±0.93 98.34±0.39

VOL(dev) 35.18±3.00 79.80±6.86 85.28±2.31 92.51±1.39

Table 2: For each column we trained ten 2-30-30-1 MLPs on (6400+1600) data points sampled from
a normal distribution centered at (0,0) with increasing σ. An explanation of the rows names is given
in Table 1, in addition in MSE(train-bd) and MSE(dev-bd) we only considered data points inside of
[-5,5]x[-5,5].

percentage of cells which contain training data (and development data), the volume of these cells. The
experiments in this section evaluate these measures. We measure MSE(true) by sampling uniformly
50000 data points form [-5,5]x[-5,5].

Increasing data size. For each column of Table 1 we trained ten MLPs of type 2-30-30-1 to fit the
Himmelblau function with increasing data sizes. As we can see MSE(dev) follows the true MSE,
whereas MSE(train) fails to capture it for smaller data sizes. We observe further that the number of
total number of cells does not correlate with MSE(true), instead looking at the number of cells which
actually contain data points and their volume gives a more informed answer if we can trust the model.

Distributional shift. For each column of Table 2 we trained ten MLPs of type 2-30-30-1 to fit the
Himmelblau function with fixed data size of 6400 training points sampled from a normal distribution
centered at the origin with increasing σ ∈ {1, 2, 3, 4}. For small σ the data lies entirely in the
bounding box, whereas for large σ, some data points lie outside of this box. Before discussing the
table, we note that the Himmelblau function has a steep descent for large ||x||, we further note that the
normal distribution is symmetric, thus at the corners of [-5,5]x[-5,5] the model see less data during
training for smaller values of σ. We observe that MSE(dev) does not match MSE(true). Furthermore,
MSE(train-bd) and MSE(train-dev) are close to each for σ ∈ {2, 3, 4}, but they match MSE(true)
only for σ = 4. We further note in the experiment that the number of cells is no proxy for good
generalisation. Only if the data covers large parts of the volume does MSE(dev-bd) match MSE(true),
this is caused by the distributional shift. Finally, we note that already a few cells cover large parts of
the volume.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 7: For each shown combination of depths and width we trained ten networks on the
Himmelblau data.

Figure 8: Each plot shows the quantiles of 24x100 trained MLPs. The plot on the left shows the
number of cells, the next plot shows the spans maximal and minimal span of the stars, the third
plot shows the spectral bound of the complex, the right most plot shows the product of the spectral
norms of the weights. We see that the number of cells remains constant, whereas the other parameters
decrease as we increase regularization.

4.2 CONTROLLING THE STRUCTURE

Motivation. It is desirable to control the pl-structure of the trained network. Yet at the same time
this will be quite challenging. At present we can only do this indirectly. The most direct way is
by choosing depth and width of the network. A more indirect way is through the training data.
Finally, we can also regularize the network. In this section we study the effects of depth, width, and
regularization.

Controlling depth and width. In this set of experiments we investigated the effect of depth and
width on the number of cells of the complex, as well as the final MSE. We trained several networks
of type 2-width-...-width-1 on the Himmelblau data. Figure 7 reports the results. We see that the
networks should at least have two preferable three layers in order to achieve a good fit as measured
by the MSE. Further we infer that increasing width and depth at the same time yields more complex
networks, but with no effect on the MSE.

Controlling regularization factor. Regularization offers another way to control the structure of
the network, yet it remains unclear what it controls. For the experiment we added l2-regularization to
the loss function. We considered 24 different regularization factors. For each regularization factor we
trained one hundred times a MLP of type 2-50-50-1 on Himmelblau data. In Figure 8 we observe
that the number of faces remains roughly constant, until training collapses. In the second plot of the
figure, we notice that the span of the stars decreases, in other words as we regularize the stars become
more flat. Finally, the last two plots show the spectral bound of the network defined on the bounding
box, and the product of the spectral norm of the matrices. We see the regularization decreases the
spectral norm, but we also note the large gap between the true spectral norm and its upper bound.

5 RELATED WORK

Counting of linear regions and activation patterns. This line of research connects the expres-
siveness of the network and its architecture, motivated by the questions such as Is deeper better
than wider? Deriving the number of cells for neural network dates back to bounding the number of

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

cells in a hyperplane arrangement Stanley (2006). Montúfar et al. (2014) gave upper bounds on the
number of linear regions of the network. This was followed by Hanin & Rolnick (2019b), Goujon
et al. (2024), Wang (2022), Serra et al. (2018). Besides linear regions also activations patterns have
been counted Hanin & Rolnick (2019a).

Expressiveness of neural networks. It is impossible to compute the polytopal complex for net-
works of large input dimensions. But we can sneak into these networks by studying planes or paths in
the input space. This is done for example in Raghu et al. (2017),Novak et al. (2018), Humayun et al.
(2024b). Another approach is to consider a subset of the linear regions, see Gamba et al. (2022),

Related algorithms. The closest algorithms to the present paper Balestriero & LeCun (2023)
provides an algorithm which returns the exact number of cells and their activation pattern, but they
do not return the vertices and their structure. In a sense this algorithm operates entirely on the
h-representation of the polytopes.

Berzins (2023), provides an algorithm for the enumeration problem of neural networks. Their core
idea is a sequential cutting of the 1-skeleton of the complex per layer. There is some similarity to
step (α3) of our algorithm but our algorithm derives the entire structure of the polytopal complex not
just the 1-skeleton. This cell structure is necessary to derive curvature and volume.

Finally, Humayun et al. (2024a), Humayun et al. (2023) provides an algorithm for two-dimensional
input based on planar geometry. A deeper discussion of the related algorithms can be found in
Appendix C.1.

Polytopal complex. Polytopes (and convex analysis) have been used to analyse and improve
properties of networks such as robustness Croce et al. (2019), bounds on architecture Arora et al.
(2016). In another direction Liu et al. (2023) used the polytopal complex to study topological signals
of manifolds in the input space from samples. More recently, tropical geometry has provides a related
path to study neural networks Brandenburg et al. (2024).

Vizualisation and explainability. Finally, we briefly mention other approaches to visualize and
explain neural network, Zeiler & Fergus (2014) focusses on feature visualization. Olah et al. (2018)
address the need to understand how neural networks predict on given data points, Ergen & Pilanci
(2020) studied two-layer ReLU Networks based on formulating a convex optimization problem with
infinitely many constraints. Lipton (2018) points out, important desiderata for interpretability are
trust and informativeness. There is also a line of work Li et al. (2018) that analyses the loss landscape
of neural nets to better understand training dynamics.

6 CONCLUSION

Summary. We have provided an algorithm to compute the polytopal complex of a neural network.
This allowed to compute several statistics of a trained network. We analysed an example network
qualitatively and quantitatively, by looking at its level sets, by computing the percentage of the
volume covered by data, among others. We have seen that width and depth control the number of
cells of the decomposition on average. Regularization, in contrast, did not change the number of cells
much, but it controlled the span of the stars and the spectral radius of the network.

Limitations. This work is limited to neural networks with a finite computational budget, a small
number of inputs, bounded input domain, and a continuous piece-wise linear activation function.
However, this is a typical setting in embedded systems and virtual sensors.

Future directions. We did not look at discrete curvature beyond two dimension. Another extension
is the approximation of (bounded) continuous activation functions such as the tanh function by ReLU
activations. It is practically impossible to analyze the polyhedral complex of a network with input
dimension greater than ten. But similar to Humayun et al. (2024a) it would be interesting to intersect
the input space with a low dimensional subspace and study the (reduced) polyhedral complex. Finding
a more direct way of controlling the pl-structure different or finding a novel loss term is also an
exciting and important research direction.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

REFERENCES

Raman Arora, Amitabh Basu, Poorya Mianjy, and Anirbit Mukherjee. Understanding deep neural
networks with rectified linear units. CoRR, abs/1611.01491, 2016. URL http://arxiv.org/
abs/1611.01491.

Randall Balestriero and Yann LeCun. Fast and exact enumeration of deep networks partitions regions.
In IEEE International Conference on Acoustics, Speech and Signal Processing ICASSP 2023,
Rhodes Island, Greece, June 4-10, 2023, pp. 1–5. IEEE, 2023. doi: 10.1109/ICASSP49357.2023.
10095698. URL https://doi.org/10.1109/ICASSP49357.2023.10095698.

Arturs Berzins. Polyhedral complex exptraction from relu networks using edge subdivision. vol-
ume 40. PMLR, 2023.

Marie-Charlotte Brandenburg, Georg Loho, and Guido Montufar. The real tropical geometry of
neural networks, 2024. URL https://archive.org/abs/2403.11871.

Francesco Croce, Maksym Andriushchenko, and Matthias Hein. Provable robustness of relu networks
via maximization of linear regions. In Kamalika Chaudhuri and Masashi Sugiyama (eds.), Pro-
ceedings of the Twenty-Second International Conference on Artificial Intelligence and Statistics,
volume 89 of Proceedings of Machine Learning Research, pp. 2057–2066. PMLR, 16–18 Apr
2019. URL https://proceedings.mlr.press/v89/croce19a.html.

Tolga Ergen and Mert Pilanci. Convex geometry of two-layer relu networks: Implicit autoencoding
and interpretable models. In International Conference on Artificial Intelligence and Statistics, pp.
4024–4033. PMLR, 2020.

Matteo Gamba, Adrian Chmielewski-Anders, Josephine Sullivan, Hossein Azizpour, and Marten
Bjorkman. Are all linear regions created equal? In Gustau Camps-Valls, Francisco J. R. Ruiz, and
Isabel Valera (eds.), Proceedings of The 25th International Conference on Artificial Intelligence
and Statistics, volume 151 of Proceedings of Machine Learning Research, pp. 6573–6590. PMLR,
28–30 Mar 2022. URL https://proceedings.mlr.press/v151/gamba22a.html.

Alexis Goujon, Arian Etemadi, and Michael Unser. On the number of regions of piecewise
linear neural networks. Journal of Computational and Applied Mathematics, 441:115667,
2024. ISSN 0377-0427. doi: https://doi.org/10.1016/j.cam.2023.115667. URL https:
//www.sciencedirect.com/science/article/pii/S0377042723006118.

A.O. Griewank. Generalized descent for global optimization. J. Opt. Th. Appl., 34:11–39, 1981.

Branko Grünbaum, Volker Kaibel, Victor Klee, and Günter M. Ziegler. Convex polytopes.
Springer, New York, 2003. ISBN 9780387004242. URL http://www.springer.com/
mathematics/geometry/book/978-0-387-00424-2.

Boris Hanin and David Rolnick. Deep relu networks have surprisingly few activation patterns, 2019a.
URL https://arxiv.org/abs/1906.00904.

Boris Hanin and David Rolnick. Complexity of linear regions in deep networks. In Kamalika
Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th International Conference
on Machine Learning, volume 97 of Proceedings of Machine Learning Research, pp. 2596–2604.
PMLR, 09–15 Jun 2019b. URL https://proceedings.mlr.press/v97/hanin19a.
html.

D. Himmelblau. Applied Nonlinear Programming. McGraw-Hill, 1972.

Ahmed Imtiaz Humayun, Randall Balestriero, and Richard Baraniuk. Training dynamics of deep
network linear regions. arXiv preprint arXiv:2310.12977, 2023.

Ahmed Imtiaz Humayun, Randall Balestriero, Guha Balakrishnan, and Richard Baraniuk. Splinecam:
Exact visualization and characterization of deep network geometry and decision boundaries, 2024a.
URL https://arxiv.org/abs/2302.12828.

Ahmed Imtiaz Humayun, Randall Balestriero, and Richard Baraniuk. Deep networks always grok
and here is why. arXiv preprint arXiv:2402.15555, 2024b.

10

http://arxiv.org/abs/1611.01491
http://arxiv.org/abs/1611.01491
https://doi.org/10.1109/ICASSP49357.2023.10095698
https://archive.org/abs/2403.11871
https://proceedings.mlr.press/v89/croce19a.html
https://proceedings.mlr.press/v151/gamba22a.html
https://www.sciencedirect.com/science/article/pii/S0377042723006118
https://www.sciencedirect.com/science/article/pii/S0377042723006118
http://www.springer.com/mathematics/geometry/book/978-0-387-00424-2
http://www.springer.com/mathematics/geometry/book/978-0-387-00424-2
https://arxiv.org/abs/1906.00904
https://proceedings.mlr.press/v97/hanin19a.html
https://proceedings.mlr.press/v97/hanin19a.html
https://arxiv.org/abs/2302.12828

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the loss landscape
of neural nets. Advances in neural information processing systems, 31, 2018.

Zachary C Lipton. The mythos of model interpretability: In machine learning, the concept of
interpretability is both important and slippery. Queue, 16(3):31–57, 2018.

Yajing Liu, Christina M Cole, Chris Peterson, and Michael Kirby. Relu neural networks, polyhedral
decompositions, and persistent homolog, 2023. URL https://arxiv.org/abs/2306.
17418.

Guido Montúfar, Razvan Pascanu, Kyunghyun Cho, and Yoshua Bengio. On the number of linear
regions of deep neural networks. Proceedings of the 35th International Conference on Machine
Learning, Stockholm, Sweden, PMLR 80, 2018, 35, 2014.

Roman Novak, Yasaman Bahri, Daniel A. Abolafia, Jeffrey Pennington, and Jascha Sohl-Dickstein.
Sensitivity and generalization in neural networks: an empirical study, 2018. URL https:
//arxiv.org/abs/1802.08760.

Chris Olah, Arvind Satyanarayan, Ian Johnson, Shan Carter, Ludwig Schubert, Katherine Ye, and
Alexander Mordvintsev. The building blocks of interpretability. 2018. doi: 10.23915/distill.00010.
https://distill.pub/2018/building-blocks.

Konrad Polthier. Polyhedral Surfaces of Constant Mean Curvature. Habilitationsschrift, TU-Berlin,
Berlin, 2002. Available at https://page.mi.fu-berlin.de/polthier/articles/
index.html.

Maithra Raghu, Ben Poole, Jon Kleinberg, Surya Ganguli, and Jascha Sohl-Dickstein. On the
expressive power of deep neural networks. In Doina Precup and Yee Whye Teh (eds.), Proceedings
of the 34th International Conference on Machine Learning, volume 70 of Proceedings of Machine
Learning Research, pp. 2847–2854. PMLR, 06–11 Aug 2017. URL https://proceedings.
mlr.press/v70/raghu17a.html.

C.P. Rourke and B.J. Sanderson. Introduction to Piecewise-linear Topology. Ergebnisse der
Mathematik und ihrer Grenzgebiete. Springer-Verlag, 1982. ISBN 9783540111023. URL
https://books.google.de/books?id=NkPvAAAAMAAJ.

Thiago Serra, Christian Tjandraatmadja, and Srikumar Ramalingam. Bounding and counting linear
regions of deep neural networks. In Jennifer Dy and Andreas Krause (eds.), Proceedings of
the 35th International Conference on Machine Learning, volume 80 of Proceedings of Machine
Learning Research, pp. 4558–4566. PMLR, 10–15 Jul 2018. URL https://proceedings.
mlr.press/v80/serra18b.html.

Richard P. Stanley. An introduction to hyperplane arrangements, 2006.

Yuan Wang. Estimation and comparison of linear regions for relu networks. In Lud De Raedt (ed.),
Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI-22,
pp. 3544–3550. International Joint Conferences on Artificial Intelligence Organization, 7 2022. doi:
10.24963/ijcai.2022/492. URL https://doi.org/10.24963/ijcai.2022/492. Main
Track.

Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional networks. In
Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12,
2014, Proceedings, Part I 13, pp. 818–833. Springer, 2014.

Günter M. Ziegler. Lectures on polytopes. Springer-Verlag, New York, 1995. URL http://www.
worldcat.org/search?qt=worldcat_org_all&q=9780387943657.

11

https://arxiv.org/abs/2306.17418
https://arxiv.org/abs/2306.17418
https://arxiv.org/abs/1802.08760
https://arxiv.org/abs/1802.08760
https://page.mi.fu-berlin.de/polthier/articles/index.html
https://page.mi.fu-berlin.de/polthier/articles/index.html
https://proceedings.mlr.press/v70/raghu17a.html
https://proceedings.mlr.press/v70/raghu17a.html
https://books.google.de/books?id=NkPvAAAAMAAJ
https://proceedings.mlr.press/v80/serra18b.html
https://proceedings.mlr.press/v80/serra18b.html
https://doi.org/10.24963/ijcai.2022/492
http://www.worldcat.org/search?qt=worldcat_org_all&q=9780387943657
http://www.worldcat.org/search?qt=worldcat_org_all&q=9780387943657

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

A APPENDIX / SUPPLEMENTAL MATERIAL

A.1 NOTATIONS

Neural network. The network considered in this papers are functions of the following internal
structure.

F : RD0
A0·+b0−→ RD1

ϕ0→ RD1
A1·+b1−→ RD2

ϕ1→ · · ·RDL
AL·+bL−→ RDL+1

ϕL→ RDL+1 (9)
The algorithm of the paper also considers intermediate computations of the network. We denote by
Fi the network at layer i after the activation function, and with Gi the network at layer i before the
activation function. Schematically this looks as follows.

Fi : R
D0

A0·+b0−→ RD1
ϕ0→ RD1 · · ·RDi

Ai·+bi−→ RDi+1
ϕL→ RDi+1 (10)

and

Gi : R
D0

A0·+b0−→ RD1
ϕ0→ RD1 · · ·RDi

Ai·+bi−→ RDi+1 (11)
Here we used the following notation:

• F - the multilayer perceptron F : RD → RS considered in the paper.
• Fi - the output of the multilayer perceptron Fi : R

D → RD
i at the i-th layer after the

activation function.
• Gi - the output of the multilayer perceptron Gi : R

D → RD
i at the i-th layer before the

activation function.
• A,A0, A1, ... - the weight matrices of the mlp, with A denoting any weight matrices, and
Ak denoting a weight matrix from the k-layer to the (k + 1)-layer.

• b, b0, b1, ... - the bias vectors of the mlp, with b denoting any bias vector, and bk denoting
the bias vector from the k-layer to the (k + 1)-layer.

• ϕ, ϕ1, ϕ2, - activation functions of the network. In most cases this is either the relu, or a
linear function.

• L - the number of hidden layers of the considered network;
• D,D0, D1, ... - the input dimension of the network, and the dimensions of the k-layer of

the network.
• S - the output dimension of the network;
• (Nk, ρk) ∈

(
RS×D,RS

)
, (νk, ρk) ∈

(
RD,R

)
- defines the affine mapping given by

the network in cell Ck, i.e. F (x) = Nkx + ρk for all x ∈ Ck, for a vector output and
F (x) = ⟨νk, x⟩+ ρk;

• Qk - matrix which switches at the decision boundary of cell Ck;
• Rk - matrix which switches at the level sets of F ;

Index sets. We describe the vertices, k-faces, and hyperplanes of the arrangement by subsets of the
integers. To each vertex, k-face, and hyperplane corresponds a geometric realisation. So the integer
v ∈ N corresponds to a point p ∈ RD. One can think of the vertex as an index of a sequence of
geometric points. Similarly a k-face is a subset of the natural numbers to which a subset of points of
the Euclidean space corresponds. Analogously, a hyperplane H is an index which points to a pair
(n, d) ∈ RD ×R.

• v, v0, v1, ... - vertices of the arrangement, v, v0, ... ∈ N;
• F - the face semilattice of the decomposition;
• F k - all k-faces;
• fk, fk0 , f

k
1 , ..., g

k, gk0 , g
k
1 , ... ∈ F k - k-faces of a complex;

• A - the affine space semi lattice;
• A k - the k-dimensional affine spaces. Each space is spanned by a k-face of the semi-lattice.
• H - the set of hyperplanes of the arrangement;
• H l - a set of l-many hyperplanes corresponding to the (d− l)-faces;

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Geometric realization. In theory we could derive all computations here. A superscript if present
indicates the dimension of the object. A subscript denotes a specific element.

• (n, d), (n0, d0), (n1, d1), ... - pairs (nk, dk) ∈ RD×R defining hyperplanes, or halfspaces;
• V - the set of vertices, v ∈ RD;
• C0, C1, ... - the k-cells of the arrangement.
• C, C1, C2, ... - the cells of maximal dimensions of the arrangement.
• H - the set of hyperplanes;
• H+ - the set of positive halfspaces;
• H− - the set of negative halfspaces;
• H,H0, H1, ... - hyperplanes, i.e. H1 = H1(n1, d1) = {x ∈ RD| ⟨n1, x⟩+ d1 = 0};

• H+, H+
0 , H

+
1 , ... - (closed) positive halfspaces, i.e. H+

1 = H−
1 (n1, d1) = {x ∈

RD| ⟨n1, x⟩+ d1 ≥ 0};

• H−, H−
0 , H

−
1 , ... - (closed) negative halfspaces, i.e. H−

1 = H−
1 (n1, d1) = {x ∈

RD| ⟨n1, x⟩+ d1 ≤ 0};

Complex, link and star

• C - (bounded) polytopal complex induced by the network.
• B ⊂ RD - a bounding box on which the network is considered.
• F - the face complex;
• st(v) - the star of vertex v;

Operations. Here we list several operations which we are using throughout the paper.

• conv - the convex hull of a set of vertices;
• aff-dim(v1, ..., vi) - the affine dimension of a set of vertices, i.e. the dimension of the affine

space spanned by the vertices.
• ∂ - the boundary of a face;
• ⟨·, ·⟩ - the scalar product of RD, i.e. ⟨x, y⟩ =

∑
k xkyk for x = (x1, ..., xD)T , y =

(y1, ..., yD)T ∈ RD;
• x ∨ y - alternative way of writing the max function, i.e. x ∨ y = max{x, y} we use it for

the relu activation function: e.g. relu(x) = Ax + b ∨ 0. The symbol comes from lattice
theory and is called join.

• intX - the interior of a given set X , i.e. the largest open set O contained in the given set
O ⊂ X . We use it to denote an open halfspace intH+(n, d) = {x ∈ RD| ⟨n, x⟩+ d > 0}.

• 1 - a vector of 1’s of the correct dimension.

Properties. Here we list symbols of properties of the network which we compute in the main paper.

• κ(v) - the (total) Gauss curvature of a two dimensional polyhedral surface at vertex p.

A.2 VARIANTS

Idea. This section summaries what can be cast in the relu-framework of the paper.

B FURTHER APPLICATIONS

B.1 ANALYZING A TRAINED NETWORK

Summary. Here we show, exemplarily, how to assess a trained network with the polytopal complex.
To this end we trained a 2-30-30-1 network on 64 samples of the Himmelblau function for 20000

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Figure 9: The figure shows the training data, the decomposition of the trained network, the network
shown as a graph over its decomposition, and the level sets of a 2-30-30-1 network trained on the
Himmelblau data. We point out the X-type structure of the decomposition in the second plot.

Figure 10: The first plot of the figure shows the neighborhood graph of the cells, each node scaled
by its cell volume. For the second plot, we color-coded each node, with blue=contains data, and
orange=no data. The third plot shows the stars of the network, again scaled by volume. The fourth
plot color-codes the curvatures of the inner stars, with blue=flat and red=curved.

epochs. Figure 9 shows the training data, the decomposition of the trained network, the network
shown as a graph over its decomposition, and the level sets. To compute the level sets, we encode the
levels in an additional layer with weight vector [[1, ..., 1]] and bias term [l1, l2, ..., ln]. More details
are given in Appendix B.1.2.

Neighborhood graph, cell volume and training data. The network decomposes the input box
into 367 cells. Thus, we fitted the training data with 367 different linear models. If we had just one
cell, and a low MSE, we certainly would trust our model. To achieve a similar level of trust for
neural networks, we first compute the neighborhood graph of the cells. Here two cells are connected
by an edge if they share a common face. In addition, we computed the volume of each cell, this
is the volume of the convex hull of the vertices of the cell. The first plot in Figure 10 shows the
neighborhood graph of the cells with the nodes scaled by the volume its cell. We observe an X-type
structure clustered with small cells, and large cells outside of the X. This resembles the local extrema
of the Himmelblau function quite well. The second plot of Figure 10 shows the neighborhood graph
of the cells with the nodes scaled by the volume of the cells. In addition, we color-coded each node
which contained training data in blue, and orange otherwise. In total 46% of the cell volume is
covered by data. This shows how to extend the discrete training data set to a neighborhood given by
the union of the cells. In our example, we see many cells without training data centered in the middle
of the bounding box. Looking at the plots we would tend to mistrust the model. But this assessment
may be to early as we did not use the local structure of the network. The linear models of the cells
are connected! In order to assess this local structure we need the stars.

Stars, local extrema and curvature. The closed curves in the level set plot reveal visually that we
have at least six extrema. In order to assess the model further we derived the star of each vertex. The
third plot in Figure 10 shows the stars of the network. Again we scaled each node by the volume of its
star. For the fourth plot we computed the curvature of the interior vertices and color-coded the nodes.
Using the stars of the vertices we find that there are ten local minima and fourteen local maxima.
Further, looking at the curvature in the center, there the linear models of the cells are not supported
by data, we see that the network is mostly flat. It seems that the model is interpolating the data.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

B.1.1 CLASSIFICATION NETWORKS

Classification layer. In a classification layer the network F : RD → RS outputs the argmax-
function of the vector

argmaxk F (x) (12)

here we argmax over the components of F (x). At the decision boundaries of the classifier the differ-
ence of two components of F (x) change sign. In other words writing F (x) = (Fi(x), ..., FS(x)), for
some pairs of i, j ∈ {1, ..., S} we have Fi(x)− Fj(x) = 0. This local sign change can be encoded
in a relu network by replacing the softmax layer of the current cell Ck given by x 7→ Nkx + ρk.
Let us denote the component of this vector for x ∈ Ck by (ψ1(x), ..., ψS(x))

T = Nk(x) + ρk.
Then the network outputs class i, if ψi(x) > ψj(x) for all j ∈ {1, ..., î, ..., S}. In other words
ψi(x)− ψj(x) > 0. Now using the notation ψi(x) = [Nk]i(x) + [ρk]i. We can design a matrix Qk

and bias term qk which switches sign at the decision boundary of the classifier at the current cell by
setting.

Qk =

[Nk]1 − [Nk]2

. . .
[Nk]1 − [Nk]S
[Nk]2 − [Nk]3

. . .
[Nk]S−1 − [Nk]S

 and qk =

[ρk]1 − [ρk]2

. . .
[ρk]1 − [ρk]S
[ρk]2 − [ρk]3

. . .
[ρk]S−1 − [ρk]S

 (13)

Example. To make this concrete, suppose we wish to classify four concentric circles in the plane
by a relu-network of shape 2 → 5 → 5 → 4. Suppose further we are given a cell Ck with affine
mapping given by matrix Nk and bias term ρk. Then the input of the softmax is the four-dimensional
vector (ψ1(x), ..., ψ4(x)). To catch all decision boundaries of the cell we have to take the pairwise
difference of all components: ψ1(x)−ψ2(x), ψ1(x)−ψ3(x) and so on. With this matrixQk ∈ R6×2

and bias vector qk ∈ R6 constructed above read

Qk =

[Nk]1 − [Nk]2
[Nk]1 − [Nk]3
[Nk]1 − [Nk]4
[Nk]2 − [Nk]3
[Nk]2 − [Nk]4
[Nk]3 − [Nk]4

 =

n11 − n21 n12 − n22
n11 − n31 n12 − n32
n11 − n41 n12 − n42
n21 − n31 n22 − n32
n21 − n41 n22 − n42
n31 − n41 n32 − n42

 and qk =

[ρk]1 − [ρk]2
[ρk]1 − [ρk]3
[ρk]1 − [ρk]4
[ρk]2 − [ρk]3
[ρk]2 − [ρk]4
[ρk]3 − [ρk]4

 (14)

Here we assume that the components of Nk are given by Nk = (nij). Each cell of this complex
predicts a single class. By running through all the cells of this complex we obtain a cell decomposition
by output class.

B.1.2 LEVEL SETS

Task. While applying the methods described in this paper on a real setting it is desirable to now
what inputs give a specific output. These subset of the input space can then be studied further to
analyse if the desired behaviour of the network matches its actual behavior. Furthermore, this allows
us to observe cause and effect, i.e. we can alter the weights and study how the computed subsets
change increasing our trust in the networks further.

Algorithm. To reformulate the task, given F : RD → R and c ∈ R we want to compute the level
sets F−1(c). It is obvious that this level set is a pl-submanifold of the input space. To compute it
note that by adding a layer of the type x 7→ {x− c ∧ 0} to the network we build a function which
changes its sign at the level c. To determine the level set we simply run the algorithm to obtain a
decomposition of the input space C̃ , and select all k-faces of C̃ for which F equals to c at all vertices
of the k-faces.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Figure 11: Level sets of networks trained on four functions considered in the paper: quadratic
function, Griewank function, Himmelblau function, noise function.

Example. To make this concrete, let us suppose we want to compute the level sets of levels
{−1,−0, 1, 2} of the network F : RD → R. To compute the levels we add relu-layer to the network

R =

 1
1
1
1

 and r = −

 2
1
0
−1

 (15)

derive the decomposition of the input space by the network, and collect all those 0-faces,...(D − 1)-
faces whose vertices are mapped to the corresponding level. Figure 11 shows four examples of level
sets of networks.

B.1.3 EXPERIMENTAL SETUP

Introduction. We took the Himmelblau function, the Griewank function, the quadratic function
and the uniformly perturbed constant function as test function. We sampled 6400 data points and
trained MLPs on this datar. Figure 12 depicts these fucntions.

Himmelblau function. The Himmelblau function has four local minima and one maximum. It
has a step descent while outside of these extreme. We restricted it to the square [−5, 5]2. It ranges
between 0 and 890. Its local maximum is at x = −0.3 and y = −0.9, with 181.6 and its four minima
are located at (3, 2), (−2.8, 3.1), (−3.8,−3.3), and (3.6,−1.8) with value 0.

f(x, y) = (x2 + y − 11)2 + (x+ y2 − 7)2 (16)

Quadratic function. We took the quadratic function restricted to the square [−10, 10]2. We can
use this function to study how well the networks pick up symmetry and curvature.

f(x, y) = x2 + y2 (17)

Griewank function. We took the Griewank function restricted to the square [−10, 10]2. Here we
can study how the network captures the minima and maxima of the function.

f(x) = 1 +
1

4000

2∑
i=1

x2i −
2∏

i=1

cos
xi√
i

(18)

Noise function. We uniformly sampled random points in the square [−10, 10]2, the network has to
learn the constant function.

B.2 EFFECTS OF REGULARIZATION

B.2.1 HIMMELBLAU FUNCTION

Experimental details. For the plots of Figure 14 we slowly increased l2-regularization during
training. All other hyper-parameters parameters (network: 2-50-50-1, relu-relu-linear activations,
6400 randomly sampled training data points from the [-5,5]x[-5,5] square, 1000 epochs, lr=1e-
3, batchsize=128, ADAM, mse-loss, standard keras implementation) were fixed. After training
we decomposed each network and derived the stars of each vertex. We only considered those
decompositions which passed our tests: the volume should be equal to 100, the Euler characteristic
should be 1, and no vertex should lie outside of the bounding input cube.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Quadratic Griewank Himmelblau Noise

Figure 12: Plots of the functions used in the paper.

Characteristics. In these plots we show the computed characteristics: number of minima, number
of maxima, span of the function, l2-norm of the linear part of the function dubbed spectral bound,
product of spectral norms of the weight matrices, maximal and minimal curvatures, final loss and
final mse.

Figure 13: Derived characteristics of the Himmelblau while increasing regularization.

Location of maxima and minima. Figure 14 contains also extrema on the boundary. We colored
minima red, maxima blue, and flat vertices in green.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Figure 14: The locations of minima(red), maxima(blue), and flat points(green) while increasing
regularisation. In each panel one-hundred experiments were run. Thus in total 2400 experiments.

2d histograms. For the histograms plots shown in Figure 16 and Figure ?? we only considered the
inner extrema and excluded flat minima or maxima.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Figure 15: The locations and number of maxima of the Himmelblau function while increasing
regularization. In each panel one-hundred experiments were run.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Figure 16: The locations and number of minima of the Himmelblau function while increasing
regularization. In each panel one-hundred experiments were run.

Discussion. We were surprised how big we had to increase the regularization factor until the training
process broke down. This explains the small increases of the regularisation factor.

We can see that the networks capture the essence of the Himmelblau function, although the location
(and number) of minima varies a lot. Only after we increased regularization a lot the number location
of the extrema become more correct. But the price we pay is that the mse of the network becomes
faulty. In summary one has to balance what is the intention of the function. Either good mse but bad
localization or good localization and worse mse.

B.2.2 GRIEWANK FUNCTION

Experimental details. For the plots of Figure 17 we slowly increased l2 regularization during
training. All other hyper-parameters parameters (network: 2-20-20-1, relu-relu-linear activations,
6400 randomly sampled training data points from the [-10,10]x[-10,10] square, 1000 epochs, lr=1e-
3, batchsize=128, ADAM, mse-loss, standard keras implementation) were fixed. After training

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

we decomposed each network and derived the stars of each vertex. We only considered those
decompositions which passed our tests: the volume should be equal to 100, the Euler characteristic
should be 1, and no vertex should lie outside of the bounding input cube.

Evaluation. The first set of plot contains also extrema on the boundary. We colored minima red,
maxima blue, and flat vertices in green.

Figure 17: The locations of minima(red), maxima(blue), and flat points(green) while increasing
regularisation. In each panel one-hundred experiments were run. Thus in total 1600 experiments.

2d histograms. For the histogram plots we only considered the inner extrema. The sixteen panels
shown in Figure 18 encode the number of minima and locations of the Griewank function as
regularization is increased. The sixteen panels shown in Figure 19 encode number and locations of
maxima of the Griewank function as we increase regularization.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Figure 18: The location in number of minima in a 2d-histogram plots while increasing regularization.
In each panel one-hundred experiments were run, but we only considered those experiments for
which algorithm outputs a valid decomposition. There are no local minima for a regularization factor
of 7.94e− 01.

Figure 19: The location in number of maxima in a 2d-histogram plots while increasing regularization.
In each panel one-hundred experiments were run, but we only considered those experiments for
which algorithm outputs a valid decomposition. There are no local maxima for a regularization factor
of 7.94e− 01.

B.3 EFFECTS OF DEPTH AND WIDTH

B.3.1 INCREASING DEPTH

Himmelblau functions. For the plots of Figure 22 we started with a network of type 2-20-1 and
increased the depth up to networks of type 2-20-20-20-20-20-20-1. All other training parameter
(no regularisaiton, relu-...-relu-linear activations, 6400 randomly sampled training data points from
the [-5,5]x[-5,5] square, 1000 epochs, lr=1e-3, batchsize=128, ADAM, mse-loss, standard keras

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

implementation) were fixed. After training we constructed the level set networks of four of these
networks and computed the decomposition as well.

Figure 20: Level sets of networks trained on the Himmelblau function with increasing depth. Each
row has the same depth.

Discussion. Again we see that in our setting we need at least two layers to capture the Himmelblau
function. Futher it is obvious that this is a difficult function for the network to capture. Visually,
it looks convenient for networks of depth six, but the network struggles to capture the curvature
correctly.

B.3.2 INCREASING WIDTH

Himmelblau functions. For the plots of Figure 23 we started with a network of type 2-5-5-1 and
ended with networks of type 2-50-50-1. All other training parameter (no regularization, relu-...-
relu-linear activations, 6400 randomly sampled training data points from the [-5,5]x[-5,5] square,
1000 epochs, lr=1e-3, batchsize=128, ADAM, mse-loss, standard keras implementation) were fixed.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

After training we constructed the level set networks of two of these networks and computed the
decomposition as well.

Figure 21: Level sets of networks trained on the Himmelblau function with increasing width.

Discussion. We see that even with 50 neurons and two hidden layers the curvature is not captured.

B.3.3 INCREASING DEPTH

Griewank functions. For the plots of Figure 22 we started with a network of type 2-20-1 and
increased the depth up to networks of type 2-20-20-20-20-20-20-1. All other training parameter (no
regularisaiton, relu-...-relu-linear activations, 6400 randomly sampled training data points from the
[-10,10]x[-10,10] square, 1000 epochs, lr=1e-3, batchsize=128, ADAM, mse-loss, standard keras
implementation) were fixed. After training we constructed the level set networks of four of these
networks and computed the decomposition as well.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Figure 22: Level sets of networks trained on the Griewank function with increasing depth. Each row
has the same depth.

B.3.4 INCREASING WIDTH

Griewank functions. For the plots of Figure 23 we started with a network of type 2-5-5-1 and
ended with networks of type 2-50-50-1. All other training parameter (no regularization, relu-...-relu-
linear activations, 6400 randomly sampled training data points from the [-10,10]x[-10,10] square,
1000 epochs, lr=1e-3, batchsize=128, ADAM, mse-loss, standard keras implementation) were fixed.
After training we constructed the level set networks of two of these networks and computed the
decomposition as well.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Figure 23: Level sets of networks trained on the Griewank function with increasing width.

Discussion. We see that even with 50 neurons and two hidden layers the curvature is not captured.

C FURTHER DETAILS ON THE ALGORITHM

C.1 ALTERNATIVE ALGORITHMS

Related algorithms. For small networks Balestriero & LeCun (2023) provides an algorithm
which returns the exact number of cells and their activation pattern. It has some similarities to
our algorithm but differs in scope. More crucially, it keeps track of the current decomposition by
storing the activation patterns of non-void cells. In a sense this algorithm operates entirely on the
h-representation of the polytopes. In contrast, we keep track of the cells by storing its vertices. In fact
we use both v- and h-representation of the polytopes. The vertices are necessary to derive the stars,
which in turn capture the local behavior of the network.

Berzins (2023) provides an algorithm for the enumeration problem of neural networks. Their core
idea is a sequential cutting of the 1-skeleton of the complex per layer. So at a layer, all potential
hyperplanes are generated by going through all possible activations patterns of the neurons. If the
hyperplane cuts an edge, the sign pattern of the vertices of the edge differ and we get two edges and a
novel vertex. In addition one has to consider 2-faces as the intersection with the hyperplane gives a
novel edges as well. There is some similarity to step (α3) of our algorithm but our algorithm derives
the entire structure of the polytopal complex not just the 1-skeleton. This cell structure is necessary
to derive curvature and volume.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Another work presented in Humayun et al. (2024a), Humayun et al. (2023) provides an impressive
algorithm to compute the polyhedral complex of a two dimensional network and its decision bound-
aries. But the algorithm presented in Humayun et al. (2023) works only for two dimensional inputs -
furthermore it seems challenging to extend the core idea of the algorithm to higher dimensions. Our
algorithm does not have a dimensional restriction. We further complement the subsequent work on
grokking of Humayun et al. (2024b) by analysing the effect of regularisation on the distribution of
cells.

C.2 PITFALLS

Numerical issues. Partitioning input spaces by neural networks may lead to numerical issues. The
main culprit are imprecisions caused by floating numbers. We identified three different causes. Our
algorithm partitions the polytopes of layer k separately. This implies that we compute vertex as the
intersection of a set hyperplanes several times. Each time these hyperplanes are not the same. While
attaching polytopes in step (β) of the algorithm we have to decide if two of such vertices are in fact
the same. Another error can be introduced while computing the affine dimension of a set of vertices -
we do this based on the svd. Finally while cutting a polytope by a hyperplane, we determine if the
vertices of the polytope lie in that hyperplane. Further we intersect the hyperplane with the links of
the polytope. Again we have to decide if the point of intersection lies in the polytope. To do this we
compute the sign of the vertex with respect to the hyperplane - this can be numerically challenging if
we are close to zero.

Most numerical issues arise for almost similar weights. This causes almost identical features which
give rise to arbitrary close vertices while intersecting another feature.

We observe this during heavy regularization. Here the network tend to cluster the weights leading to
sets of almost equal weights. But also while constructing examples one tends to overdetermined the
vertices leading to challenging problems.

For our implementation we increased the number of precision to 30 while doing internal computations
using the mpmath library. Furthermore, computing the Euler characteristics and volume consider-
ations give further evidence of the validity of a decomposition. Let us remark that also mention
numerical difficulties and resolve this by going to double precision on their GPU implementation.

Computational resources total number of experiments. We trained and decomposed many
networks during the preparation of this paper. Although the networks are small their shear number
makes it hard to repeat this in reasonable time. A small network (2-5-5-1) is decomposed in a few
seconds at most, the larger ones (2-100-100-1) can take up some time maybe 30minutes. Particularly
time consuming is the computation of the levels sets. We did all of this on an internal cluster on an
CPU, implemented in pure python. We estimate the number of experiments of the main paper to be
5000. The additional experiments in the appendix about another 10000. A single experiment can be
done easily on a personal pc.

27

	Introduction
	Background
	Polytopal Cell Complex
	Analysis of polytopal cell complex
	Discrete gaussian curvature

	Experimental setup

	Computing the decomposition
	Algorithm
	Validity check and data structure
	Dependence of bounding box
	Timing

	Applications
	Measuring the generalization error
	Controlling the structure

	Related Work
	Conclusion
	Appendix / supplemental material
	Notations
	Variants

	Further Applications
	Analyzing a trained network
	Classification networks
	Level sets
	Experimental setup

	Effects of regularization
	Himmelblau function
	Griewank function

	Effects of depth and width
	Increasing depth
	Increasing width
	Increasing depth
	Increasing width

	Further details on the algorithm
	Alternative algorithms
	Pitfalls

